Direkt zum Inhalt
 
 
Bannergrafik (Univ.)
 
  Startseite  
 
Sie sind hier:» Universität » Aktuelles » Nachrichten » 2012b » Wie sich Zellen gegen Gen-Schäden schützen
  • Print this page
  • create PDF file

08.06.2012

Wie sich Zellen gegen Gen-Schäden schützen

Marburger Zellforscher berichten in „Science“, wie Proteine mit Eisen-Schwefel-Zentren entstehen

Ein Adapter zwischen Werkbank und Endmontage: Das Protein MMS19 trägt dazu bei, Eisen-Schwefel-Zentren in Proteine einzubauen, die für die Vervielfältigung und Reparatur der Erbsubstanz DNA erforderlich sind. Das berichten Marburger und US-amerikanische Wissenschaftler vorab in der Online-Ausgabe des Wissenschaftsmagazins „Science“. Wie die Autoren zeigen, kommt die beobachtete Funktion von MMS19 bei Einzellern wie der Hefe ebenso vor wie bei komplexeren Organismen, auch beim Menschen.

Enzyme mit Eisen-Schwefel (FeS)-Clustern sind unersetzlich für zahlreiche essenzielle Lebensprozesse, insbesondere bei der Vervielfältigung der Erbsubstanz DNA sowie deren Reparatur nach Schädigungen, zum Beispiel durch UV-Strahlung oder mutagene Chemikalien. „Wie das MMS19-Protein hierzu beiträgt, war seit seiner Entdeckung vor 30 Jahren unbekannt“, sagt der Zellbiologe Professor Dr. Roland Lill von der Philipps-Universität, der als Seniorautor der Veröffentlichung firmiert.

DNA_Schutz_MMS19
Eine Modelldarstellung zeigt, wie kompliziert die Entstehung von Eisen-Schwefel-haltigen Proteinen vor sich geht. (Abbildung: Philipps-Universität/AG Lill)

Die Entstehung von FeS-Proteinen ist ein mehrstufiger Prozess, der das Zusammenwirken einer Reihe von spezialisierten Enzymen erfordert. Lill und seine Kollegen weisen in ihrem Aufsatz nach, dass MMS19 sowohl mit Bestandteilen dieser Maschinerie interagiert, als auch mit den entstehenden FeS-haltigen Proteinen. „Unsere Daten lassen vermuten, dass MMS19 als Adapter die Übertragung der FeS-Cluster auf die verschiedenen Zielmoleküle erleichtert“, fassen die Forscher ihre Ergebnisse zusammen. „Viele früher gemachte Beobachtungen zur Beteiligung des MMS19 an der Synthese und Reparatur der DNA und an der Transkription können mit dieser nun geklärten Funktion bei der FeS Proteinherstellung leicht verstanden werden.“

Die molekularen Interaktionen von MMS19 lassen sich sowohl in Kulturen menschlicher Zellen zeigen, als auch bei Hefepilzen, die Energie auch ohne die Veratmung von Sauerstoff gewinnen können. Die Biogenese von FeS-Proteinen beginnt jeweils in den Mitochondrien, die vor allem als diejenigen Zellbestandteile bekannt sind, in denen die Zellatmung stattfindet. „Die entscheidende Funktion der Mitochondrien bei der Entstehung von FeS-Proteinen und somit für die Aufrechterhaltung der DNA im Zellkern ist wohl auch der Grund dafür, dass diese Organellen selbst in solchen Organismen erhalten sind, die ohne Sauerstoff auskommen“, spekulieren die Wissenschaftler.

AG_Lill_MMS19
Die Zellforscherinnen und Zellforscher (von links) Dr. Judita Mascarenhas, Professor Dr. Roland Lill, Dr. Oliver Stehling, Dr. Daili Netz und PD Dr. Antonio Pierik arbeiteten auf Marburger Seite an der Aufklärung der Funktion von MMS19. (Foto: Philipps-Universität/AG Lill)

Die Erkenntnisse sind Lill zufolge für zahlreiche Erkrankungen von Bedeutung, die mit DNA-Schäden und DNA-Reparatur einhergehen. Dazu gehören einige Formen des Krebses, insbesondere Hautkrebsarten, aber auch das Altern. So lasse sich nun erstmals erklären, warum manche mitochondriale Erkrankungen zahlreiche Schädigungen der DNA des Zellkerns nach sich ziehen, etwa die „Friedreich-Ataxie“, eine neurodegenerative Störung. „Die zentrale Rolle der Mitochondrien bei der Synthese von FeS-Proteinen ist der Schlüssel hierzu“, erklärt Lill.    

Die Arbeitsgruppe von Roland Lill ist Teil des Sonderforschungsbereichs 593 der Deutschen Forschungsgemeinschaft sowie des „LOEWE“-Zentrums für Synthetische Mikrobiologie an der Philipps-Universität. Lill erhielt im Jahr 2003 den Leibnizpreis, den am höchsten dotierten deutschen Wissenschaftspreis; einem Ranking der Zeitschrift „Laborjournal“ zufolge zählt er zu den dreißig meistzitierten deutschen Zellbiologen. Die vorliegende Arbeit wurde finanziell unterstützt unter anderem durch die Deutsche Forschungsgemeinschaft, die Von-Behring-Röntgen-Stiftung, die Max-Planck-Gesellschaft, die Feldberg-Stiftung, den Fonds der chemischen Industrie sowie die Rhön Klinikum AG.

Originalpublikation: Oliver Stehling & al.: MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity, Science 2012 (Online-Vorveröffentlichung), DOI: 10.1126/science.1219723

 

Weitere Informationen:

Ansprechpartner: Professor Dr. Roland Lill,
Institut für Zytobiologie
Tel.: 06421 28-66899
E-Mail: Sfb593@staff.uni-marburg.de
Internet: www.uni-marburg.de/sfb593/

 

Hintergrundartikel zum Thema:

FeS-Cluster bei DNA-Replikation: http://www.uni-marburg.de/aktuelles/news/2011/1128a

Sonderforschungsbereich 593 verlängert: http://www.uni-marburg.de/aktuelles/news/2010a/1123a

Biosynthese von FeS-Proteinen: http://www.uni-marburg.de/aktuelles/news/2010a/0901a

 

Zuletzt aktualisiert: 08.06.2012 · Johannes Scholten

 
 
 
Philipps-Universität Marburg

Philipps-Universität Marburg, Biegenstraße 10, 35032 Marburg
Tel. +49 6421 28-26118, Fax +49 6421 28-28903, E-Mail: pressestelle@verwaltung.uni-marburg.de

Facebook-Logo Twitter-Logo YouTube-Logo

URL dieser Seite: http://www.uni-marburg.de/aktuelles/news/2012b/0608a

Impressum | Datenschutz