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In this paper we describe experiments with self organizing feature maps that have been
implemented on a transputer system. The use of feature maps for clustering is investigated and it is
shown that a naive application of Kohonen's algorithm, although preserving the topology of the
input data, is not able to capture clusters. A new method, called U-matrix, is proposed which is
capable to classify coffectly all examples. First experiments with medical data of high
dimensionality show a high correlation with expert clustering of the data.
1. Introduction
Since its introduction in 1982 organizing feature maps have been used for a variery of applications
including robot programming, modelling of VLSI production, electrophoresis diagnostic medical
picture processing and others [Kohonen 82, Bertsch/Dengler 87, Keller/Fogelman 88,
Ritter/Schulten 861. All these applications rely on the ability of Kohonen's algorithm to adapt
itself suitably to the structure of a high dimensional data space. In this paper we investigate the use
of Kohonen's maps for exploratory data analysis, in particular for cluster analysis.
In chapter two we describe the construction of self organizing feature maps with Kohonen's
method. We show that an direct usage of Kohonen maps is not suited best for the purpose of
clustering. In chapter three a novel method how Kohonen maps can be used in order tö allow
exploratory data analysis is proposed. Chapter four gives first results for a nontrivial example.
2. Feature Maps for Clustering
The following is a short description of Kohonen's algorithm to consffuct feature maps[Kohonen
841. Let S be a subset of R, I = {x1, .....xd, xi€ Sn} the input data and d(x,y) a vector nonn
defined on Sn, U alatticeof n dimensionalvectors (calledunits) with a mappingn: Ux U ->R+

called neighborhood. The mapping f:Sn -> U: f(x) = uii, iff d(x,ui1) = min (d(x,u), u e U) is
called feature map iff the lattice U is constructed using thö following Training Algorithm. U is also
called a Kohonen net with dimension o. Training Algorithm:
For t = 0 to T do (learning epoch): for each x e I do(learning step): for each u e

fu(t-l) if n(f(x),u)>b(t)
u(t) = 

tuc,-r)*n(,1*(x-u(t-1)) if n(f(x),u)<uio 
where b(t) is a decreasing real valued function

with b(0) < o, b(T) =0 and 0 < t4(0 ( 1, o function on t which decreases with time t. In the
following we will use as lattice U a rectangular two-dimensional array of vectors, i.e

xl function: n(uii,vp) = 1@P.
)uter system with 17 processors [Ultsch/Siemon
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One of the properties of a Kohonen net should be that the topological (neighborhood) relationships
among the input are reflected as faithfully as possible in the arrangement of the corresponding
units in the lattice [Riaer/Schulten 86, Kohonen 84]. Cluster analysii groups "similar" objects i.e.
objects that have cornmon features into disjunct subsets calted cluiters [DelchseVTrampisitr gS]. ff
the property, that a Kohonen map is topolögy conserving holds, then clusters in the iniut data,-i.e.
subsets of data, that are close neighbours in Rn should be mapped onto the lattice U with the same
close,relationship. Any clusters in Rn should also appear in the lattice U of lower dimensionality.
ln.grdgr to investigate the clustering capabilities of a Kohonen map, we used data generated in the
tollowing way: We choose 4 points (ABCD) in the three-dimensional unit cube, that constructed a
tetraeder with edge-length of .96. (see figure la) For each of these four points ten random
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vectors were generated, having a length in the range from .1 to .4 with a mean length of .2. The
random vectors were added to the edge points of the tetraeder in order to get four separated data
clusters. All vectors were scaled such that they fitted into the three-dimensional unit-cube (i.e. Sn
= I3). Figure lb shows the the data clusters.

Figure 1: a) the tetraeder, b) the data clusters
A clustering algorithm should sepilate the data set into exactly four subsets and indicate, that the
four subsets are dissimilar. To test this, a Kohohen net of dimension 64 was used and rained with
the 40 dau points, leaving out the vectors A to D. Figure 2a shows the initial distribution of f(x)
of each data point; Figure 2b depicts the Kohonen net after 50.000 learning steps. This rype of
diagram is called coordinate matrix in the sequel.
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As it can bee seen, the net arranges the clusters into the different corners of the lattice U. The
distances among the data points, however, are evenly distributed. If their membership in the
original clusters would not be known, no clwtering could be detected. Other experiments with
hexaeders and octaeders showed the same behaviour [Ultsch/Siemon 89].
3 The U-Matrix Method
We have seen in the last paragraph, that coordinate matrices are not directly suited to detect clusters
of data in the input space. In this paragraph we will describe a method called U-matrix method,
that allows to get a more suitable picture of the vector distribution.

i of distances to its immediate neighbours can be
i) = d(ui i ,ui+1i), dxy(i j)  = d(ui;,u1al i+t) and
llowing-methoä to combine thdfour distances

WS:
U-matrix 2r- 2i 2i+l

2i-r dz(i-l. i- l) dvd-l.i) dz(i-lj)
2i dx(i,i-l) du(i,i) dx(i.i)
2ir dz(i, i-l) dv(i,i) dz(i.i)

b) the data clusters
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Where dz(ij) = 0.5*(dxy(ij)+dxv(ij) and du(ij) may be arbitraryly chosen. This can be used, for
example, to indicate the correspondence of this enffy to unit ui1. This diagram we call unified
distance matrix or short (J-matrtx. For each unit uii in U there i-s a corresponding element du(ij)
in the U-matrix. The entries next to du(ij) contain tfie distances dy, dy and the diagonal distances
at their geometrical correct places. The diagonal distanced dxy and dyx are represented on the
diagonal elements of the U-matrix as the arithmetic mean of dxy and dyx. The U-matrix contains
therefore a geometrical correct approximation of the vector distribution in the Kohonen net. To get
a visual impression on how this distribution is, we propose to display the U-matrix in three
dimensions i.e. display its elements as a height over a grid that corresponds to the lattice. This
display has "valleys" where the vectors in the lattice U are close to each other and "hills" or
"\valls" where the vectors in the lattice U have a larger distance.
Figure 3a shows the U-matrix for the tetraeder data. As it can be seen, the map is now divided into
four different regions, coffesponding to the four data clusters. The regions are sepamted by a
"wall" i.e. a large vector to vector distance, indicating a dissimilarity in the input data. The U-
matrix for hexaeder data shows the same effect (see figure 3b). In this case the data is separated
into six different regions.
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Figure 3: a) U-matrix of tetraeder data
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b) U-matrix of hexaeder data
To explore the properties of a n-dimensional data space we propose to interprete the landscape of
the U-matrix. We call this method the U-matrix method [Ultsch/Siemon 89]. Given a n-
dimensional data set I the question is, whether there exists any structure in the form of subsets of
data that are very similar to each other:

.1) Construct a Kohonen map on a two dimensional array U;
2) Calculate the U-matrix as described above;
3) Map the input data onto the U-matrix by using the feature map f ;
4) Interprete the U-matrix as follows:

If a subset C of input data I falls into a valley in the U-matrix, then C is a cluster in I, i.e. C
contains similar vectors.If the input data-vectors are neighbours in the U-matrix, they are
close to each other in Rn. If different depressions are separated by walls or are geometrically
far apart, then there is a large dissimilarity among the different clusters. The relative location
of clusters in the U-matrix reflect their (dis-) similarities in Rn.The higher the walls between
clusters, the more dissimilar are the clusters in Rn

4. Application of the U-matrix method
To test our method with a data set that has, first, more than three dimensions and, second, stems
from real life data we have used the data set in a standard text book on cluster analysis
[Deichseffrempisch 85]. The data consists of blood measurements. Each of the 20 data vectors
contains 11 different blood values. According to medical diagnosis, the data can be groped into
eight healthy patients, three patients with metabolical acidosis, one patient with a cerebral
deficiency frve patients with respriratory acidosis and three patients with lactacidosis.
The different components of the data vectors are measured in different scales. In order to apply a
vector metric for all components the range of the components has to be the same, otherwise
components with a larger absolute range would dominate the vector metric.To solve this problem
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we have used the so ca[ed z-transformation on each vector's components: subtract the coordinate
mean from the coordinate value and divide by the standard devialion of this coordinate (see e.g.
[Deichsel/Trampisch 85]). Figure 5a shows the coordinate matrix and figure 5b the U-matrix för
this data.
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Figure 5: a)Coordinate matrix of blood data
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b) U-matrix of blood data
5. Discussion
The U-matrix method allows a Kohonen map to group n-dimensional data into clusters of similar
data. This grouping of the data corresponds with the medical diagnosis of the patients. More ttran a
ready made clustering algorithm we see our method as a tool for the inspection of high
dimensional data. The algorithm can be thought of as a mapping from Rn to a nonlinearily flattened
two-dimensional surface such that interesting topological relations are conserved. The regions
where the two-dimensional surface is bent and the amount of bending is represented topologi:ally
correct in the U-matrix. Other methods to depict the properties of a high dimensionafdata space
like Chernoffs faces of Kleiner Hartigan trees rely on the human ability to compare and absnact
pictures of faces respectively trees [Barnett 81]. Our method uses geometrical closeness as a
measure for similarity. For the separation of different groups (clusters) of data our method uses
the third dimension in the form of walls. Fist experience with the method suggest a high
correlation with expert diagnosis of data. In a current test series we will experiment with high
dimensional data äbout drinking water quality and with blood data öf patients with-a
mangelkrankheit.
6. Conclusion
In this paper we have investigated the use of Kohonen's self organizing feature maps for
exploratory data analysis. A naive application of Kohonen's algorithm, although preserving the
topology of the input data is not able to show clusters inherent in the input data. A new method,
called U-matrix, is proposed. This method is capable to classify correctly all artificially generated
data. Moreover experiments with data of high dimensionality stemming from the area of medicine
show a high correspondence with expert diagnosis of the data, As a first result this encourages the
application of Kohonen's algorithm for the use in exploratory data analysis.
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