Kapitel 3 – klassische Investitionsrechnung

Problemstellung – worum geht es in diesem Kapitel?

- Mit dem Kapitalwert haben wir ein sinnvolles Verfahren zur Beurteilung von Investitionsobjekten kennengelernt.
- Es gibt darüberhinaus eine Reihe "klassischer" Verfahren.
- Diese sind zwar nur unter restriktiven
 Bedingungen anwendbar oder gleich völlig sinnlos, man sollte sie aber trotzdem kennen.

Klassische Investitionsrechnung

- Verfahren der klassischen Investitionsrechnung:
 - Auf einer so genannten "flachen Zinsstruktur" basierende Verfahren
 - Klassischer Kapitalwert
 - Klassischer Endwert
 - Klassische Annuität
 - 2. Eher unsinnige Verfahren
 - Der interne Zinfuß/Zinssatz
 - Die Pay-Off-Periode

Kapitel 3, erster Teil

Auf einer flachen Zinsstruktur basierende Verfahren

Allgemeine Formeln für Barwert und Kapitalwert

 Die allgemeine Formel für den Barwert lautete:

BW =
$$Z_1/(1+i_1)+Z_2/(1+i_2)^2+...+Z_T/(1+i_T)^T$$

 Die allgemeine Formel für den Kapitalwert lautete:

KW=
$$Z_1/(1+i_1)+ Z_2/(1+i_2)^2+ ...+Z_T/(1+i_T)^T - A_0$$

 Beide Formeln sind abhängig von den (üblicherweise verschiedenen) Zinssätzen i₁, i₂,...,i_T.

Spezialfall: flache Zinsstruktur

 Von einer "flachen Zinsstruktur" spricht man, wenn die Zinssätze i₁, i₂,...,i_T alle identisch sind:

$$i_1 = i_2 = \dots = i_T = i$$

- Vorteil:
 - Man kann leichter rechnen und erhält einige schöne Formeln.
- Nachteil:
 - Eine flache Zinsstruktur kommt in der Realität selten vor, so dass die Formeln wenig nützlich sind.

Klassischer Barwert

• Klassischer Barwert beim Zins i:

BW(i) =
$$Z_1/(1+i)+ Z_2/(1+i)^2+ ...+Z_T/(1+i)^T$$

Klassischer Kapitalwert

Klassischer Kapitalwert beim Zins i:

$$KW(i) = -A_0 + Z_1/(1+i) + Z_2/(1+i)^2 + ... + Z_T/(1+i)^T$$

Klassischer Kapitalwert als Entscheidungskriterium

- Bei mehreren <u>konkurrierenden</u> Investitionsobjekten:
 - Wähle das IO mit dem höchsten positiven Kapitalwert.
- Bei mehreren <u>kombinierbaren</u> Investitionsobjekten:
 - Führe alle IOs mit positivem Kapitalwert durch.

Aufgabe

• (Aufgabensammlung)

Der klassische Endwert (1)

- Beim (klassischen) Kapitalwert wird ein IO in <u>t=0</u> mit der festverzinslichen Anlage/Kreditaufnahme verglichen.
- Der (klassische) Endwert vergleicht ein IO in t=T mit der festverzinslichen Anlage/Kreditaufnahme.
- Idee:
 - Finanziere die Anfangsauszahlung A₀ über einen Kredit, der in t=T fällig wird.
 - Lege alle Zahlungen Z₁ bis zum Zeitpunkt T an.

Der klassische Endwert (2)

Ergebnis in T:

Rückzahlung des Kredits:

$$-A_0^*(1+i)^T$$

Aus der Anlage der Zahlungen Z_t erhält man in T:

$$+Z_1^*(1+i)^{T-1}$$

 $+Z_2^*(1+i)^{T-2}$
...
 $+Z_{T-1}^*(1+i)$
 $+Z_T$

Der klassische Endwert (3)

Gesamtergebnis in T:

```
\mathsf{EW}(\mathsf{i}) \\ = -\mathsf{A}_0^*(1+\mathsf{i})^\mathsf{T} + \mathsf{Z}_1^*(1+\mathsf{i})^\mathsf{T-1} + \mathsf{Z}_2^*(1+\mathsf{i})^\mathsf{T-2} + \ldots + \mathsf{Z}_{\mathsf{T-1}}^*(1+\mathsf{i}) + \mathsf{Z}_\mathsf{T}^\mathsf{T-1} + \mathsf{Z}_\mathsf{T-1}^\mathsf{T-1} + \mathsf{Z}_\mathsf{T-1}^
```

- In den Zeitpunkten t=0,t=1,...,t=T-1 hat man per Saldo jeweils genau eine Zahlung von Null.
- Im Zeitpunkt T erhält man den "Endwert" als Saldo.

Graphik: Kapitalwert vs. Endwert

$$t=0$$
 $t=1$ $t=2$... $t=T-1$ $t=T$
 $-A_0$ $+Z_1$ $+Z_2$... $+Z_{T-1}$ $+Z_T$

Entnahme KW:

 Δ_{KW} 0 0 ... 0

Entnahme EW:

 $0 \qquad 0 \qquad 0 \qquad \dots \qquad 0 \qquad \underline{\Lambda}_{\mathsf{EW}}$

Der klassische Endwert als Entscheidungskriterium

- Ein einzelnes IO ist dann vorteilhaft, wenn es einen positiven Endwert hat.
- Bei konkurrierenden IOs wird das IO mit dem höchsten positiven Endwert gewählt.
- Bei kombinierbaren IOs werden alle Objekte mit positivem Endwert gewählt.

Aufgabe

• (Aufgabensammlung)

Klassischer Kapitalwert und klassischer Endwert

Durch Ausklammern erkennt man:

$$\begin{split} & \quad \quad \mathsf{EW}(\mathsf{i}) \\ &= -\mathsf{A}_0^* (1+\mathsf{i})^\mathsf{T} + Z_1^* (1+\mathsf{i})^\mathsf{T-1} + Z_2^* (1+\mathsf{i})^\mathsf{T-2} + \ldots + Z_{\mathsf{T-1}}^* (1+\mathsf{i}) + Z_\mathsf{T} \\ &= (1+\mathsf{i})^\mathsf{T} * \{ -\mathsf{A}_0 + Z_1/(1+\mathsf{i}) + Z_2/(1+\mathsf{i})^2 \ldots + Z_\mathsf{T}/(1+\mathsf{i})^\mathsf{T} \} \\ &= (1+\mathsf{i})^\mathsf{T} * \mathsf{KW}(\mathsf{i}) \end{split}$$

• Kurz:

$$EW(i) = (1+i)^{T} *KW(i)$$

Aufgabe

• (Aufgabensammlung)

Konsequenz: Äquivalenz von klassischem Kapital- und Endwert

- Da Zinsen niemals negativ sind, ist $(1+i)^T > 0$.
- Somit gilt für zwei Investitionsobjekte IO₁ und IO₂ stets:

$$KW(IO_1,i) > KW(IO_2,i)$$
 \Leftrightarrow
 $EW(IO_1,i) > EW(IO_2,i)$

 Die beiden Beurteilungskriterien sind also äquivalent und führen zu den gleichen Entscheidungen.

Bar- und Endwerte von Zahlungsströmen mit konstanten Zahlungen

Gegeben sei eine Zahlungsreihe mit:

$$Z_t = Z, t = 1, ..., T$$

- Verbal: in den Zeitpunkten t=1 bis t=T sind die Zahlungen jeweils gleich hoch.
- Weiterhin gelte auch:

$$i_t = i, t=1,...,T$$

 Wie lassen sich Bar- und Endwert einer solchen Zahlungsreihe berechnen?

Barwert bei gleich hohen Zahlungen: $Z_t = Z$, t=1,...,T

• Es gilt dann:

```
BW(i) = Z_1/(1+i)+ Z_2/(1+i)^2+ ...+Z_T/(1+i)^T

= Z/(1+i)+ Z/(1+i)^2+ ...+Z/(1+i)^T

= Z^*\{1/(1+i)+ 1/(1+i)^2+ ...+1/(1+i)^T\}

= Z^*RBWF(i,T)

Definition: "Rentenbarwertfaktor":

RBWF(i,T)

:= \{1/(1+i)+ 1/(1+i)^2+ ...+1/(1+i)^T\}
```

Endwert bei gleich hohen Zahlungen: $Z_t = Z$, t=1,...,T

• Es gilt dann:

```
EW(i)
= Z_1^*(1+i)^{T-1} + Z_2^*(1+i)^{T-2} + ... + Z_{T-1}^*(1+i)^1 + Z_T
= Z^*(1+i)^{T-1} + Z^*(1+i)^{T-2} + ... + Z^*(1+i)^1 + Z
= Z^*\{(1+i)^{T-1}+ (1+i)^{T-2}+ ...+ (1+i)^1 + 1\}
= Z*REWF(i,T)
 Definition: "Rentenendwertfaktor":
        REWF(i,T)
= (1+i)^{T-1} + (1+i)^{T-2} + ... + (1+i)^{1} + 1
```

Rentenendwertfaktor und Rentenbarwertfaktor – kompaktere Darstellung

• Es gilt:

$$RBWF(i,T) = \frac{(1+i)^{T}-1}{(1+i)^{T} \cdot i}$$

$$REWF(i,T) = \frac{(1+i)^{T}-1}{i}$$

Also gilt auch:

$$RBWF(i,T)^*(1+i)^T = REWF(i,T)$$

Einschub – eine nützliche Formel, Herleitung von REWF und RBWF (1)

- Anfang: nicht klausurrelevanter Abschnitt (Herleitung der Formeln)
- Es gilt:

$$1+q+q^2+q^3+...+q^{n-1} = (1-q^n)/(1-q)$$

Herleitung:

$$S(q,n-1):=1+q+q^2+q^3+...+q^{n-1}$$

$$=1+q^*\{1+q+q^2+...+q^{n-2}\}$$

$$=1+q^*\{1+q+q^2+...+q^{n-2}+q^{n-1}\}-q^n$$

$$=1+q^*S(q,n-1)-q^n$$

Einschub – eine nützliche Formel, Herleitung von REWF und RBWF (2)

• Kurz:

$$S(q,n-1)=1+q*S(q,n-1)-q^n$$

Auflösen nach S(q,n-1):

$$S(q,n-1) = {1 - q^n}/{(1-q)}$$

Dies liefert die behauptete Gleichung.

Einschub – eine nützliche Formel, Herleitung von REWF und RBWF (3)

• Es gilt:

REWF(i,T) = $(1+i)^{T-1}+ (1+i)^{T-2}+ ...+ (1+i)^{T-1} + 1$ = $q^{T-1}+ q^{T-2}+...+q+1$ = S(q,T-1)

• Mit:

$$q = (1+i)$$

Einschub – eine nützliche Formel, Herleitung von REWF und RBWF (3)

Somit folgt:

REWF(i,T)
=
$$S(1+i,T-1)$$

= $\{1 - (1+i)^n\}/(1-(1+i))$
= $\{(1+i)^n - 1\}/i$

 Den RBWF kann man mit q=1/(1+i) ebenfalls leicht berechnen:

RBWF(i,T)
:=
$$\{q+ q^2+ ...+q^T\} = q*S(q,T-1)$$

Einschub – eine nützliche Formel, Herleitung von REWF und RBWF (4)

 Den RBWF kann man mit q=1/(1+i) ebenfalls leicht berechnen:

RBWF(i,T)
:=
$$\{q+ q^2+ ...+q^T\} = q*S(q,T-1)$$

- (Nach einigen einfachen Umformungen erhält man die behauptete Formel für den RBWF.)
- Ende nicht klausurrelevanter Abschnitt.

Zwischenfazit: Bar- und Endwerte im Fall Z_t=Z, t=1,...,T

• Merke:

$$BW(i,T,Z) = Z*RBWF(i,T)$$
$$EW(i,T,Z) = Z*REWF(i,T)$$

 (Man beachte: Zahlungen fallen dabei nur von t=1 bis t=T an. Zahlungen in t=0 sind in diesen Formeln nicht berücksichtigt)

Aufgabe

• (Aufgabensammlung)

Die klassische Annuitäten

Definition - Annuität

• Eine Annuität ist ein Zahlungsstrom mit <u>konstanten</u> Zahlungen Z in t=1,...,T.

t=1	t=2	 t=T
+Z	+Z	 +Z

Annuitätenmethode und Kapitalwert

- Der Kapitalwert kann interpretiert werden als der Betrag, den man in t=0 entnehmen kann (finanziert durch das IO).
- Bei der Annuität entnimmt man einen konstanten Betrag in t=1,...,T.

	Entnahme t=0	Entnahme t=1	Entnahme t=2	Entnahme t=3
KW	+291,80	0	0	0
Annuität	0	+107,21	+107,21	+107,21

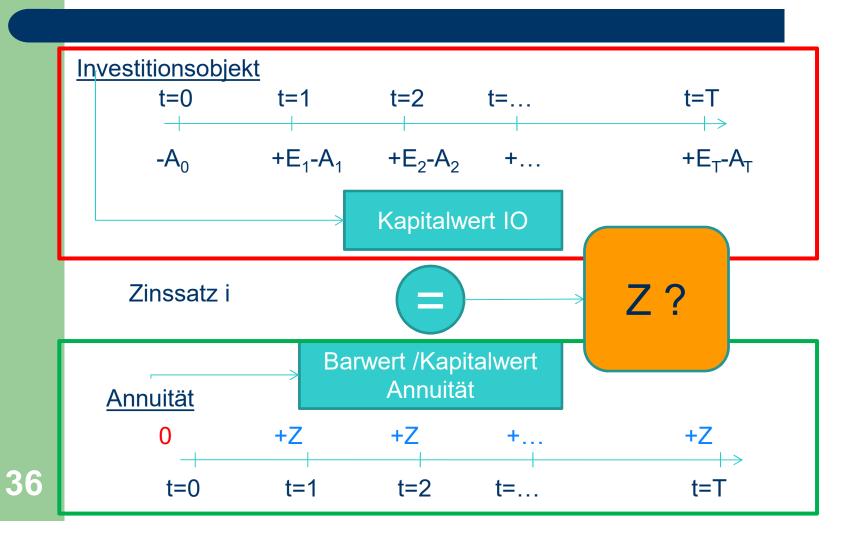
Grundidee

- Gegeben seien
 - Zwei prinzipiell beliebige, konkurrierende IOs.
 - der Zinssatz i.
- Idee:
 - Rechne die IOs um in Annuitäten...
 - mit gleicher Laufzeit…
 - \dots und Anfangszahlung $A_0 = 0$.
 - Wähle das IO mit der höchsten Annuitätenzahlung Z!

Vorgehensweise (1)

- Wir kombinieren die Zahlungen aus dem Investitionsobjekt...
- ...mit Banktransaktionen
 - also Kreditaufnahme bzw. Anlage von Zahlungen aus dem Investitionsobjekt
- ... so dass eine Annuität entsteht:
 - mit Laufzeit T
 - mit einer Anfangsauszahlung in Höhe von Null
- ... und am Ende der Periode T weder eine Forderung noch eine Verbindlichkeit bei der Bank verbleibt.

Vorgehensweise (2)



Vorgehensweise (3)

- 1. Berechne Kapitalwert des IOs
- 2. Barwert Annuität (T) = Z*RBWF(i,T)
- 3. Barwert Annuität = Kapitalwert IO

```
Barwert Annuität
```

```
= Z*RBWF(i,T)
```

= KWIO

```
\Leftrightarrow Z= KW<sup>IO</sup>/RBWF(i,T)
```

= $KW^{IO*}\{1/RBWF(i,T)\}$

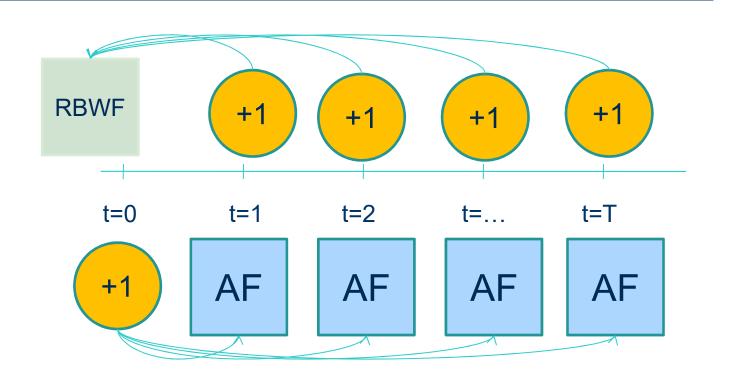
≡ KW^{IO}*ANF(i,T)

Annuitätenfaktor und Rentenbarwertfaktor (1)

 Definiere: "Annuitätenfaktor" (oder auch: "Wiedergewinnungsfaktor")

ANF(i,T):=1/RBWF(i,T)

Annuitätenfaktor und Rentenbarwertfaktor (2)



Beispiel (1)

 Wir verwenden einen Zinssatz von i = 5% und die folgenden IOs:

	t=0	t=1	t=2	t=3
IO ₁	-1.000	+250	+400	+800
IO_2	-1.000	+700	+400	+250

1. Schritt: Berechnung der Kapitalwerte

- BW(IO₁) =250/(1,05)+400/(1,05)²+ 800/(1,05)³ = 1.291,98
- $KW(IO_1) = 1.291,98 1000 = 291,98$
- BW(IO₂) =700/(1,05)+400/(1,05)² +250 /(1,05)³ = 1.245,44
- $KW(IO_2) = 1.245,44 1.000 = 245,44$

2. Schritt: Berechnung einer Annuität mit gleichem Kapitalwert (1)

- Nun sucht man eine Zahlungsreihe Z (t=1..., bis t=T) mit Anfangsauszahlung 0, die den gleichen Kapitalwert/Barwert wie das jeweilige IO hat.
- Es muss gelten:

```
KW_{IO} = Z/(1+i)+...+Z/(1+i)^{T}
=Z^{*}[1/(1+i)+...+1/(1+i)^{T}]
- \Leftrightarrow Z = KW_{IO}/[1/(1+i)+...+1/(1+i)^{T}]
= KW_{IO}^{*}1/RBWF(i,T)
\equiv KW_{IO}^{*}Annuitätenfaktor(i,T)^{*}
```

Beispiel (2)

IO1:

```
- KW(IO_1,5\%) = 291,98

= Z_{IO1}*[1/(1,05)+1/(1,05)^2+1/(1,05)^3]

- \Leftrightarrow Z_{IO1} = 291,98/[1/(1,05)+1/(1,05)^2+1/(1,05)^3]

= 291,98/2,723248 \approx 107,21
```

IO2:

3. Schritt

- Bei konkurrierenden IOs wählt man das IO mit der höheren (positiven) Annuität.
- Ein einzelnes IO ist dann vorteilhaft, wenn die Annuität positiv ist.

Beispiel (3)

Hier würde man IO₁ wählen:

```
-Z_1 = 107,21 > Z_2 = 90,13
```

- Zudem gilt: $Z_1 > 0$
- Man kommt zur gleichen Entscheidung wie bei Verwendung des Kapitalwertes:
 - $KW(IO_1,5\%) = 291,98 > KW(IO_2,5\%) = 245,44 > 0$

Probe (1)

• Umwandlung von IO₁ in eine Annuität, i=5%:

t	IO1	Kreditausnahme (+) Kreditrückzahlung (-)	Saldo	Kontostand
t=0	-1.000	+1.000	0	-1.000
t=1	+250	-142,79	107,21	<u>-907,21</u> =
				- 1000*1,05
				+ 142,79
t=2	+400	-292,79	107,21	-659,78
t=3	+800	-692,79	107,21	0,021 ≈ 0

Probe (2)

• Umwandlung von IO₂ in eine Annuität, i=5%:

t	IO1	Banktransaktionen: Kreditaufnahme (+) Kreditrückzahlung (-)	Saldo	Kontostand
t=0	-1.000	+1.000	0	-1.000
t=1	+700	-609,87	90,13	-440,13
t=2	+400	-309,87	90,13	-152,27
t=3	+250	-159,97	90,13	-0,0135 ≈ 0

Vergleich mit dem Kapitalwert (1)

 Die Annuität eines IOs erhält man aus dem Kapitalwert gemäß:

```
Annuität<sub>IO1</sub> = KW(IO_1,i)/RBWF(i,T)
Annuität<sub>IO2</sub> = KW(IO_2,i)/RBWF(i,T)
```

- Der Faktor RBWF(i,T) ist aber für alle IOs identisch und positiv.
- Es gilt:

$$KW(IO_1) > KW(IO_2)$$
 \Leftrightarrow

Annuität(IO_1) > Annuität(IO_2)

Fazit: klassischer Kapitalwert, Endwert und klassische Annuität

- Ergebnis:
- Alle drei Verfahren kommen stets zur gleichen Beurteilung von Investitionsobjekten!
- Sie haben lediglich eine etwas andere ökonomische Interpretation.

Aufgabe

• (Aufgabensammlung)