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Abstract

To gather data on sensitive characteristics, such as annual income, tax evasion, insurance fraud or
students’ cheating behavior, direct questioning is not helpful, because it results in answer refusal or
untruthful responses. For this reason, several randomized response (RR) and nonrandomized response
(NRR) survey designs, which increase cooperation by protecting the respondents’ privacy, have been
proposed in the literature. In the first part of this paper, we present a Bayesian extension of a recently
published, innovative NRR method for multichotomous sensitive variables. With this extension, the
investigator is able to incorporate prior information on the parameter, e.g. based on a previous study,
into the estimation and to improve the estimation precision. In particular, we calculate posterior modes
with the EM algorithm as well as estimates based on parameter simulation, multiple imputation, and
Rao-Blackwellization. The performance of these estimation methods is evaluated in a simulation study.
In the second part of this article, we show that for any RR or NRR model, the design matrices of the
model play the central role for the Bayes estimation whereas the concrete answer scheme is irrelevant.
This observation enables us to widely generalize the calculations from the first part and to establish a
common approach for the Bayes inference in RR and NRR designs for categorical sensitive variables.
This unified approach covers even multi-stage models and models that require more than one sample.

Zusammenfassung

Zur Datenerhebung bei sensitiven Merkmalen wie Einkommen, Steuerhinterziehung, Versicherungs-
betrug oder Prüfungsbetrug ist Direktbefragung problematisch, da sie oft zu Antwortverweigerungen
oder Falschantworten führt. Aus diesem Grund wurden in der Literatur verschiedene Randomized-
Response- und Nonrandomized-Response-Umfrageverfahren (kurz RR- und NRR-Verfahren), welche
die Privatsphäre der Befragten schützen und dadurch deren Kooperationsbereitschaft erhöhen, vor-
geschlagen. Im ersten Teil dieses Aufsatzes präsentieren wir eine Bayes-Erweiterung eines kürzlich
publizierten NRR-Modells für kategoriale sensitive Merkmale. Durch diese Erweiterung ist es möglich
Vorinformation über den Parameter, die zum Beispiel auf einer vorherigen Erhebung basieren könnte,
in die Schätzung einzubeziehen und dadurch die Schätzgenauigkeit zu verbessern. Wir ermitteln den
Modus der a-posteriori-Verteilung mit dem EM-Algorithmus und berechnen Schätzer basierend auf
Parametersimulation, multipler Imputation und Rao-Blackwellisierung. Diese Schätzverfahren wer-
den im Rahmen einer Simulationsstudie verglichen. Im zweiten Teil des Artikels zeigen wir, dass
die Designmatrizen des Modells bei jedem RR- / NRR-Modell für kategoriale sensitive Merkmale die
zentrale Rolle für die Bayes-Schätzung spielen wohingegen die konkrete Antwortformel irrelevant ist.
Diese Beobachtung ermöglicht es uns die Rechnungen aus dem ersten Teil des Aufsatzes weitreichend
zu verallgemeinern und einen gemeinsamen Ansatz für die Bayes-Schätzung bei RR- / NRR-Verfahren
zu entwickeln. Dieser vereinheitlichte Ansatz deckt sogar mehrstufige Modelle sowie Modelle, welche
mehrere Stichproben benötigen, ab.

KEYWORDS: Randomized response; Nonrandomized response; Bayesian estimation; EM algorithm;
Data augmentation

1Philipps-University Marburg, Department for Statistics (Faculty 02), Universitätsstraße 25, 35032 Marburg, Ger-
many (e-mail: groenitz@staff.uni-marburg.de).
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1 Introduction

Let us consider a survey on a sensitive attribute X. For instance, X may represent income classes or
the number of times the respondent has evaded taxes. In the case of direct questioning (DQ), many
respondents will not reveal the true value of X. Instead, answer refusal and untruthful responses will
occur. This leads to a serious bias when estimating the distribution of X based on DQ. For this reason,
several randomized response (RR) and nonrandomized response (NRR) techniques have been devel-
oped in the literature to obtain trustworthy estimates of the distribution of X. To protect privacy,
the respondents are always requested to provide a scrambled answer A instead of the X-value. This
practice reduces untruthful answers and answer refusal. The realizations of A and X are observed and
missing data, respectively.

A RR technique was first proposed by Warner (1965), whose seminal model has been extended in
various dimensions until today. RR models have in common that every respondent is supplied with a
randomization device (RD), such as a coin or a deck of cards. The respondents use the RD to conduct
a random experiment, whose outcome influences the required scrambled answer. The necessity of
running the random experiment is cumbersome. This is why nonrandomized response approaches are
coming up in recent years with articles by Tian et al. (2007), Yu et al. (2008), Tan et al. (2009),
Tang et al (2009) and Groenitz (2012). NRR models do not need a RD; in such models, the answer
depends on an auxiliary variable, and the respondent would give the same answer if he or she was
asked again. NRR methods are easy to implement and suitable for face-to-face and e-mail surveys.
Compared with RR techniques, NRR methods reduce both survey complexity and study costs.

In privacy-protecting (PP) models (i.e., RR or NRR designs), maximum likelihood (ML) estimates can
be derived from the empirical distribution of the scrambled answers. However, for the case in which
prior information on the distribution of interest is available, Bayesian methods should be applied to
incorporate the prior information. Bayesian estimation means that we collect the prior information in
a prior distribution and analyze the observed data posterior distribution. Note that even if there is
no prior information, the Bayesian approach with a uniform prior distribution can be recommendable:
for this prior, the posterior mode equals the ML estimator (MLE). However, in small samples, the
posterior standard deviation and confidence intervals based on posterior quantiles can be expected to
be more suitable than the asymptotic standard error of the MLE and confidence intervals based on
the asymptotic normality of the MLE.

Bayesian methods (usually based on a Dirichlet prior) have been proposed for some PP designs:
Winkler and Franklin (1979) as well as Migon and Tachibana (1997) present Bayesian approaches
for Warner’s (1965) RR model. O’Hagan (1987) derives Bayes linear estimators for Warner’s model
and the unrelated question model (UQM) by Horvitz et al. (1967). Unnikrishnan and Kunte (1999)
describe a unified model for Warner’s model and the UQM as well as a unified model for the common
handling of the model by Abul-Ela et al. (1967) and the polychotomous UQM by Greenberg et al.
(1969). For both unified models, the Gibbs sampler is used to generate realizations from the posterior
distribution. Bayesian inference for Mangat’s (1994) RR model can be found in Kim et al. (2006).
Tang et al. (2009) suggest a certain NRR model and explain the corresponding Bayesian estimation.
Bayesian methods for the NRR methods by Tian et al. (2007) and Yu et al. (2008) can be found in
Tian et al. (2009). Barabesi and Marcheselli (2010) propose a Bayesian approach to the joint estima-
tion of the distribution of a binary sensitive variable and the sensitivity level from data collected with
a certain two-stage RR scheme. The Bayes estimation for the RR model by Mangat and Singh (1990)
is derived in Hussain et al. (2011).

In the first part of this paper, we extend the work by Groenitz (2012), who presents the nonrandom-
ized diagonal model (DM) including ML estimation, in order to have the possibility to incorporate
prior information into the estimation and to obtain more precise estimates. In Section 2, we narrate



Groenitz, Prior Information in Privacy-Protecting Surveys Discussion Paper 1 / 2013 3

the diagonal model and derive Bayesian estimates for this model. In particular, we calculate poste-
rior modes via the EM algorithm as well as estimates based on parameter simulation (PS), multiple
imputation (MI) and Rao-Blackwellization (RB) for the DM survey design. For PS, MI, RB, the
data augmentation algorithm, which generates certain Markov chains, turns out to be beneficial. The
quality of PS, MI, RB for a survey according to the diagonal model is investigated in a simulation study.

For the DM, we observe in Section 2 that the design matrix of the model, i.e., a matrix of condi-
tional probabilities, plays the central role for the calculation of posterior modes and estimates based
on PS, MI, RB. In the second part of this paper, we show the following generalization of this obser-
vation: For any PP survey model dealing with categorical X, the only component of the model that
is needed to compute Bayes estimates is the set of design matrices of the model. The concrete answer
scheme is irrelevant for Bayes inference. This result enables us to establish a common approach for
the Bayes estimation in PP survey designs for categorical sensitive variables in Section 3. This unified
approach covers many published and potential PP designs including certain multi-stage designs and
designs demanding multiple samples. Here, we derive general formulas that can be applied to a lot of
PP models for which Bayesian concepts have not been discussed yet.

2 Bayes estimation for the diagonal model

2.1 Diagonal model

Groenitz (2012) proposed the diagonal model (DM), which can be applied to gather data on a sensitive
characteristic X ∈ {1, ..., k}. For the DM, a nonsensitive auxiliary variable W ∈ {1, ..., k} (e.g., W
may describe the period of birthday) must be specified such that X and W are independent and that
the distribution of W is known. The respondent is introduced to give the answer

A := [(W −X) mod k] + 1. (1)

Equation (1) should not be shown to the respondents; instead, every interviewee receives a table that
illustrates (1). E.g., for k = 4, we have

X/W W = 1 W = 2 W = 3 W = 4
X = 1 1 2 3 4
X = 2 4 1 2 3
X = 3 3 4 1 2
X = 4 2 3 4 1

The number in the interior of the table is the required answer A. Notice, the answers A do not restrict
the possible X-values. Hence, we assume that the interviewees cooperate and reveal their values of A.
We remark that the DM is applicable even if all the values of X are sensitive (e.g., if the values of X
correspond to income classes).

Throughout this article, let πi, ci, λi be the proportion of units in the population having attribute
X = i, W = i, A = i, respectively. Moreover, define C(i, j) to be the proportion of individuals having
A = i among the persons with X = j. We then have (λ1, ..., λk)T = C · (π1, ..., πk)T with the k × k
matrix C = [C(i, j)]ij , where every row of C is a left-cyclic shift of the row above and the first row of
C is equal to (c1, ..., ck). C is called the “design matrix” and plays an important role for the Bayes
estimation in the DM.
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2.2 Basic principles and definitions for Bayes estimation

We assume a simple random sample with replacement (SRSWR) of n units has been drawn. These n
persons are introduced to answer according to the DM answer formula (1). Let Xi and Ai be the i-th
respondent’s value of X and A, respectively. Consequently, A = (A1, ..., An) and X = (X1, ..., Xn)
represent the observed data and the missing data, respectively. Thus, a DM survey generates a data
structure that corresponds to a special missing data problem. For this reason, we can apply known
missing data methods, e.g., EM algorithm or data augmentation, to incorporate prior information into
the estimation for the DM.

In the subsequent subsections, we derive Bayes estimates for the unknown π = (π1, ..., πk−1)T ∈ Rk−1.
In a Bayesian view, π is treated as a realization of a random variable Π. The prior information about
π is collected in a prior distribution defined by a density fΠ, which is specified by the investigator.
In this article, we focus on Dirichlet prior distributions. In Subsection 2.3, we explain a possibility
to convert prior information into a concrete Dirichlet distribution. In addition to fΠ, the conditional
distribution of the complete data (X,A) given Π must be defined. We denote the corresponding
density by fX,A |Π(·, · |π), and set for xj , aj ∈ {1, ..., k}

fX,A |Π(x,a |π) =
n∏
j=1

C(aj , xj) · πxj , (2)

where x = (xj)j , a = (aj)j . That is, we have conditional independence of the n vectors (Xj , Aj) given
Π. It follows that

fX |A,Π(x |a, π) =
n∏
j=1

C(aj , xj) · πxj

fAj |Π(aj |π)
, (3)

where fAj |Π(α |π) is the entry number α ∈ {1, ..., k} of vector C · (π1, ..., πk)T .

Assume a value a of A has been observed in the survey. The basic idea is to evaluate the poste-
rior distribution of Π given a and the distribution of X given a. In Subsection 2.4, we compute
posterior modes with the EM algorithm, and in 2.5, we describe ways based on the data augmen-
tation algorithm (in particular, parameter simulation and multiple imputation) to estimate the true
proportion π. Estimators derived by the idea of Rao-Blackwell’s theorem are considered in 2.6.

2.3 Dirichlet prior distributions

The random vector Π = (Π1, ...,Πk−1) is Dirichlet distributed if it has Lebesgue density

fΠ(π) = fΠ(π1, ..., πk−1) = K · πδ1−1
1 · · ·πδk−1−1

k−1 · (1−
k−1∑
i=1

πi)δk−1 · 1Ek−1
(π), (4)

where Ek−1 = {(x1, ..., xk−1) ∈ [0, 1]k−1 : x1 + ... + xk−1 ≤ 1}, δ = (δ1, ..., δk) is a vector of pa-
rameters with δi > 0 and K is a constant depending on δ. We will usually write Π ∼ Di(δ) in the
sequel. Let us assume that (π̂(p)

1 , ..., π̂
(p)
k )T is the investigator’s guess for the unknown proportions.

This guess may be based on a previous study. One option to convert this guess into a Dirichlet dis-
tribution is as follows. Choose a proportionality factor d, and define δi to be proportional to π̂(p)

i , i.e,
δi = π̂

(p)
i · d. Let (D1, ..., Dk−1) be Dirichlet distributed with these δi. Then, we have E(Di) = π̂

(p)
i

and V ar(Di) = π̂
(p)
i (1 − π̂(p)

i )/(d + 1). Obviously, small and large d result in a large and small vari-
ance, respectively. If the investigator feels certain that his or her guess is close to the true vector of
proportions for the current study, a relatively large d should be chosen. If the investigator is unsure,
a relatively small d will reflect this uncertainty.
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Figure 1: Scatter plots of each 10000 random numbers from several Dirichlet distributions. In (a), we
have δ = (1, 1, 1), for (b)-(c) we use δi as described in Subsection 2.3 where d = 0.5 in (b), d = 10
in (c) and d = 25 in (d). The black point equals (0.28, 0.43), which is the investigator’s guess for the
unknown π1 and π2.

The scatter plots of each 10000 draws from several Dirichlet distributions for k = 3 can be found
in Figure 1. Realizations of the Dirichlet distribution can be obtained from Gamma distributed ran-
dom variables, see Gentle (1998), p. 111. For δ = (1, 1, 1), the points (x1, x2) are uniformly scattered
on E2. This corresponds to a situation without prior information. For the figures (b) - (d), we define
(0.28, 0.43, 0.29) to be the investigator’s guess. In (b), we use d = 0.5 and δi as described above. It
seems that there are more realizations close to the boundaries x1 = 0, x2 = 0, and x1 + x2 = 1 than
realizations close to (0.28, 0.43). Thus, d = 0.5 seems inappropriate. In (c), we have d = 10, and
the draws form a point cloud around (0.28, 0.43). The extent of this point cloud is larger than the
extent of the point cloud in (d) where d = 25. That is, situation (d) corresponds to a larger certainty
concerning the guess for the unknown true proportions.

2.4 Posterior modes for the diagonal model

As described in Dempster, Laird, Rubin (1977) for general missing data situations, the EM algorithm
can be applied to generate a sequence π(t) that converges to the posterior mode, i.e, the mode of the
observed data posterior density fΠ |A(· |a). In particular, we have

log fΠ |X,A(π |x,a) = log fA |Π(a |π) + log fX |A,Π(x |a, π) + log fΠ(π) + constant. (5)

Let π(t) be available from iteration t. Computing the expectation with respect to the distribution
given by fX |A,Π(· |a, π(t)) yields

Q(π |π(t)) + log fΠ(π) = log fΠ |A(π |a) +H(π |π(t)) + constant,

where

Q(π |π(t)) =
∫

log fX,A |Π(x,a |π) · fX |A,Π(x |a, π(t)) ∂x

H(π |π(t)) =
∫

log fX |A,Π(x |a, π) · fX |A,Π(x |a, π(t)) ∂x.

Notice that Q(π |π(t)) equals the conditional expectation of the complete data log-likelihood given the
observed data and π(t). In the E step of iteration t + 1, the function Q∗(· |π(t)) with Q∗(π |π(t)) =
Q(π |π(t)) + log fΠ(π) is calculated. In the subsequent M step, we find π(t+1), which is the maximum
of Q∗(· |π(t)). This π(t+1) increases the value of the observed data posterior density, i.e., it fulfills
fΠ |A(π(t+1) |a) ≥ fΠ |A(π(t) |a). A possible starting value is (1/k, ..., 1/k)T . A detailed description of
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this general scheme can be also found in Schafer (2000), Chapter 3.2.

Adopting this general scheme to a survey according to the diagonal model, we have for π = (π1, ..., πk−1),
πk = 1− π1 − ...− πk−1 (apart from a constant)

Q(π |π(t)) =
k∑
i=1

m̂
(t)
i · log πi and Q∗(π |π(t)) =

k∑
i=1

(
δi − 1 + m̂

(t)
i

)
· log πi (6)

with m̂(t)
i =

∑k
j=1 nj ·π

(t)
i ·C(j, i)/fA1 |Π(j |π(t)), where nj is the number of respondents in the sample

giving answer j. We remark that m̂(t)
i is equal to the sum of the i-th column of the k × k matrix

C .∗
[[
ñT ./ λ(π(t))

]
· (π(t)

1 , ..., π
(t)
k )
]
.

Here, the signs .∗ and ./ stand for componentwise multiplication and division, respectively, and

ñ = (n1, ..., nk) and λ(π(t)) = (fA1 |Π(1 |π(t)), ..., fA1 |Π(k |π(t)))T

hold. The maximum of the function Q∗(· |π(t)) is given by π(t+1)
i = (δi−1+m̂(t)

i )/(n−k+δ1 + ...+δk).

2.5 Parameter simulation and multiple imputation for the diagonal model

Beyond finding the posterior mode, we can draw realizations from fΠ |A(· |a) and fX |A(· |a). To
draw from these distributions, the data augmentation (DA) algorithm by Tanner and Wong (1987)
is most convenient. The DA algorithm generates realizations (x(t), π(t)) of a Markov chain, short
MC, (X(t),Π(t)) for t ∈ N. This Markov chain converges in distribution to fX,Π |A(·, · |a). Thus, by
integration, the sequence (Π(t)) has the asymptotic distribution fΠ |A(· |a).

Let us consider the diagonal model survey design and a prior distribution given by fΠ ∼ Di(δ) with
fixed and known parameter δ. The DA algorithm proceeds as follows. Let π(t−1) = (π(t−1)

1 , ..., π
(t−1)
k−1 )T

and π
(t−1)
k = 1 −

∑k−1
i=1 π

(t−1)
i be available from the preceding iteration t − 1. The next iteration t

consists of the imputation step (I step) and the posterior step (P step):

I step: Drawing from fX |A,Π(· |a, π(t−1)) can be done by generating independent realizations xj
(j = 1, ..., n), where xj must be drawn according to the density fXj |Aj ,Π(· | aj , π(t−1)). However, we
only need the frequency of value i (i = 1, ..., k) among the values xj for the subsequent P step. For
this reason, let m(t)(i, j) describe the in iteration t simulated number of persons who have X-value j
among the persons in the sample who give answer i. We draw

(m(t)(i, 1), ...,m(t)(i, k)) ∼Multinomial(ni, γ
(t)
i ).

The vector γ(t)
i contains the cell probabilities and is defined to be the i-th row of the k × k matrix

C .∗
[[

(1, · · · , 1)T ./ λ(π(t−1))
]
·
(
π

(t−1)
1 , ..., π

(t−1)
k

)]
,

where
λ(π(t−1)) = (fA1 |Π(1 |π(t−1)), ..., fA1 |Π(k |π(t−1)))T .

Set m(t)
j =

∑k
i=1m

(t)(i, j), which is the simulated number of persons having X = j in iteration t.

P step: We simulate realizations (π(t)
1 , ..., π

(t)
k−1)T from fΠ |X,A(· |x(t),a), which is the density cor-

responding to the Di(m(t)
1 + δ1, ...,m

(t)
k + δk) distribution.
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To determine a starting value π(0), one option is to draw an outcome from the prior density. Al-
ternatively, π(0)

i = 1/k can be used.

If t is large, then π(t) can be treated as realization from fΠ |A(· |a). Assume we have generated

one Markov chain of length L2 ∈ N. We delete m(t) = (m(t)
1 , ...,m

(t)
k ) and π(t) from the burn-in period

t = 1, ..., L3− 1 and save them for t = L3, ..., L2. Thus, there remains a sequence (m(t), π(t)) of length
L2 − L3 + 1. We have two ways to extract information from this sequence. The first way is referred
to as parameter simulation (see e.g., Schafer (2000), p. 89) and considers the π(t). The mean and
the empirical standard deviation of the π(t)

i can be used as an estimate for the true proportion πi and
as a measure for the estimation precision, respectively. The empirical α/2 and 1− α/2 quantiles can
be used as lower and upper bounds of a 1 − α confidence interval (CI) for πi. A slightly different
strategy is to view the m(t) = (m(t)

1 , ...,m
(t)
k ), t = L3, ..., L2 as multiple imputations for the unobserved

variables (
∑n

j=1 1{Xj=1}, ...,
∑n

j=1 1{Xj=k}). Each imputation m(t) results in an estimate m(t)/n for
the unknown vector (π1, ..., πk). That is, we obtain L2−L3 +1 estimates for πi, which can be combined
to a single estimate by using the mean. The empirical standard deviation and the α/2 and 1 − α/2
quantiles of the L2 − L3 + 1 estimates for πi are suitable to measure the estimation precision and to
construct a 1− α CI for πi, respectively.

In the last paragraph, we analyzed realizations of a single Markov chain, that is, we have considered
a dependent sample. Of course, an alternative approach is given by simulating L1 ∈ N independent
Markov chains and saving only the values from the last iteration of each chain. It follows that we
have L1 independent draws from fΠ |A(· |a) and L1 independent multiple imputations, which can be
evaluated analogously to the dependent quantities of the last paragraph.

2.6 Diagonal model estimates motivated by the Rao-Blackwell Theorem

Parameter simulation with a single Markov chain results in an estimate s = (L2−L3 +1)−1
∑L2

t=L3
π(t)

for the observed data posterior mean E(Π |A = a). This s is used to estimate the true proportions
πi. In the context of a general missing data situation, Schafer (2000), section 4.2.3, discusses an
estimate based on the idea of the Rao-Blackwell theorem. Applied to our situation of diagonal model
interviews, this estimate is given by

s̃ = (L2 − L3 + 1)−1
L2∑
t=L3

E(Π |X = x(t),A = a). (7)

The distribution of Π given a and x(t) appears in the P step of DA. Thus, we have

E(Π |X = x(t),A = a) =
(m(t)

1 + δ1, ...,m
(t)
k−1 + δk−1)T

(n+ δ1 + ...+ δk)
,

where m(t)
j is again the simulated count of persons having X = j in iteration t. The components of s̃

provide estimates for the unknown πi. Analogously to Section 2.5, the empirical standard deviation
and quantiles of E(Πi |X = x(t),A = a), t = L3, ..., L2 can be used to measure precision and to
construct confidence intervals for πi, respectively. Obviously, instead of analyzing a single dependent
Markov chain, it is also possible to generate L2 − L3 + 1 independent Markov chains of length L3,
where only the last iteration of each chain is saved for the estimation.

2.7 Simulation study

The simulations in this section are conducted to assess the benefit and the quality of the estimation
procedures given in Sections 2.4-2.6. We run all simulations with MATLAB. We choose the true
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parameter π = (0.3, 0.4, 0.3), which may represent the proportions of persons in certain income
classes, and (P(W = 1), ...,P(W = 3)) = (2/3, 1/6, 1/6), where W represents a nonsensitive auxiliary
characteristic. Groenitz (2012) presents ways to construct a W for a given distribution and shows
that the above distribution of W provides a medium degree of privacy protection. The design matrix
is then given by

C =

c1 c2 c3

c2 c3 c1

c3 c1 c2

 =

2/3 1/6 1/6
1/6 1/6 2/3
1/6 2/3 1/6

 .

We consider sample sizes n ∈ {100, 300}, the confidence level 1 − α = 0.95, and three Dirichlet(δ)
prior distributions whose scatter plots appear in Figure 1. In particular, we study δ(1) = (1, 1, 1),
δ(2) = (2.8, 4.3, 2.9), and δ(3) = (7, 10.75, 7.25). The first is the noninformative prior, the sec-
ond and third are informative priors. Both informative priors correspond to an investigator’s guess
(π̂(p)

1 , π̂
(p)
2 , π̂

(p)
3 ) = (0.28, 0.43, 0.29) with d(2) = 10 and d(3) = 25, i.e, prior three indicates a larger

certainty about the guess than prior two. In other words, prior three is more informative than prior
two.

The simulation procedure is as follows. We draw 1000 samples of size n. In each sample, we cal-
culate the posterior mode and apply parameter simulation (PS), multiple imputation (MI), and Rao-
Blackwellization (RB) according to Sections 2.4-2.6 to calculate estimates and confidence intervals for
the true πi. The estimation quality is evaluated by the average estimate for πi, the empirical MSE of
the estimates for πi, the empirical width, and the empirical coverage probability (CP) of the confidence
intervals for πi. The simulation results for PS, MI, and RB based on a single dependent Markov chain
of length 1000 with burn-in period t = 1, ..., 500 are reported in Table 1 in the appendix.
For each of the methods PS, MI, and RB and for both considered sample sizes, we recognize that the
average estimates are always close to the true proportions. The simulated MSEs and the widths of
the CIs decrease as the prior becomes more informative. Additionally, we observe the tendency that
the more informative the prior, the higher the coverage probabilities.

Reduced MSEs and shorter CIs are the effects caused by increasing the sample size.

Comparing the MSEs of the estimates for πi, we find that RB and PS have nearly identical val-
ues, whereas MI shows the largest MSEs. The confidence widths of RB are smaller than the widths of
MI, and PS delivers the widest CIs. However, RB has the lowest and PS has clearly the highest CPs.
Due to the MSE results and the highest CPs, we evaluate PS to be the best method.

For comparison, we calculate the maximum likelihood estimates (MLEs) for each 1000 samples of
size n = 300 and n = 100 and compute Bootstrap CIs (without normality assumption) for the πi
for each sample from B = 2000 Bootstrap replications, see Groenitz (2012), Section 3.2 and 3.3.
The average ML estimates (see Table 3 in the appendix) are close to the true proportions. Consider
n = 300 first. For the uniform prior (δ(1)), the CI widths and CPs for PS are slightly smaller than
for ML. The MSEs of PS and ML are close to each other. The reason is that the posterior variance
is a consistent estimate for the large sample variance of the ML estimator (see e.g., Little and Rubin
(2002), Section 9.2.4). Parameter simulation with the informative prior with δ(2) reduces the MSEs
provided by ML by up to approximately 20%, and the more informative prior with δ(3) leads to a
reduction by approximately 40%.
We next examine n = 100. We notice that PS with the noninformative prior has smaller MSEs than
ML. Moreover, we point out that PS with δ(2) and δ(3) decreases the MSEs of ML by approximately
40% and 75%, respectively. The widths of the CIs for πi decrease by approximately 15% for δ(2) and
30% for δ(3) by using PS instead of ML.
For both informative priors and both sample sizes, there is a tendency that the CPs of PS are larger
than the CPs of ML and overachieve the 95% level.
The estimates generated by PS are posterior means. On average, these posterior means are close to
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the posterior modes (see appendix, Table 4). The MSEs of the posterior means and modes are quite
similar for n = 300. In the case n = 100, the posterior modes provide a bit higher MSEs. We remark
that the posterior mode for the uniform prior equals the MLE, if both are calculated from the same
sample. This explains that the average MLEs and posterior means as well as the corresponding MSEs
in Tables 3 and 4 are close to each other.

We also have conducted simulations in which the Bayes estimates were computed with the help of
independent Markov chains. In particular, for each of 1000 simulated samples, we have calculated the
PS, MI, and RB estimates from 500 independent chains of length 501, where only the last iteration of
each chain is saved for the estimation. The simulation results are provided in Table 2. We discover
that the above statements regarding estimates based on a single MC remain valid for the estimation
with independent chains.

In sum, we emphasize that the estimation accuracy can be significantly improved by using Bayesian
methods when prior information is available.

3 Common approach for Bayes estimation in privacy-protecting sur-
vey designs

Studying the calculations to obtain posterior modes and estimates based on parameter simulation,
multiple imputation, and Rao-Blackwellization in Section 2, we observe that the design matrix C is
the only component of the diagonal model that influences these calculations. Let us now consider an
arbitrary PP design for X ∈ {1, ..., k} with kA possible scrambled answers and S required samples
(in the DM, kA equals k and S = 1). For each sample, we then have one design matrix. In the
sequel, we restrict to PP designs whose design matrices do not contain nuisance terms, i.e., unknown
parameters. For such a design, the only model component that is needed to compute Bayes estimates
is the set of design matrices. That is, all relevant model information is stored in the design matrices -
it does not matter whether we consider a RR or NRR method, moreover, the concrete answer scheme
is irrelevant. Hence, most PP models for categorical X can be handled by a common approach. This
fact has not been addressed in existing papers about Bayesian inference in PP models.
In Subsection 3.1, we give the design matrices for some PP models. Subsequently, in Subsection 3.2, we
develop a general framework for Bayes estimation in PP designs for categorical X. Here, we generalize
the calculations from Section 2 in order to cover many PP designs including certain multi-stage and
multi-sample techniques.

3.1 Other privacy-protecting designs for categorical sensitive variables

We consider PP designs (i.e., RR or NRR models) for categorical sensitive variables X ∈ {1, ..., k}
with kA possible answers (coded with 1, ..., kA) and S required samples. The complete data, i.e., the
union of missing and observed data, are given by the vectors (Xsj , Asj)sj where Xsj and Asj denote the
X-value and the scrambled answer of respondent j in sample s, respectively (s = 1, ..., S; j = 1, ..., ns).
We demand the following conditions:

(M1) The n = n1 + ...+nS vectors (Xsj , Asj) are independent. Further, for s = 1, ..., S, the ns vectors
(Xs1, As1), ..., (Xs,ns , As,ns) are identically distributed, and Xsj ∼ X for all indices s, j.

(M2) The kA × k matrices of conditional probabilities Cs = [Cs(i, j)]ij = [P(As1 = i |Xs1 = j)]ij have
known entries (s = 1, ..., S).
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Assumption (M1) means that the design needs S independent simple random samples with replace-
ment (SRSWR) where the distribution of the scrambled answer is allowed to alter in different samples.
We call the matrices Cs “design matrices”. We next provide some examples of PP survey techniques,
for which (M1)-(M2) are satisfied. All PP designs considered in the sequel are assumed to be applied
to a SRSWR (for S = 1) respectively S ≥ 1 independent SRSWR.

The RR model by Warner (1965) considers X ∈ {1, 2} and needs one SRSWR. Each respondent
draws and answers one of the questions “Do you have X = 1?” and “Do you have X = 2?”. The first
question is drawn with known probability c. The possible answers are “yes” and “no” (coded with 1
and 2). Then, the rows of C = C1 are known and given by (c, 1− c) and (1− c, c).

The RR design by Abul-Ela, Greenberg, Horvitz (1967) is applicable to X ∈ {1, ..., k}, k ≥ 2, and needs
S = k− 1 independent samples (each sample is a SRSWR). The interviewees select and answer one of
the k questions “Do you have X = j?” (j = 1, ..., k). The probability csj (s = 1, ..., k − 1; j = 1, ..., k)
that question j is selected in sample s is determined by the RD and is known. Coding “yes” and “no” by
1 and 2 results in the 2×k matrices Cs having the j-th column equal to (csj , 1−csj)T (s = 1, ..., k−1).

The unrelated question model (UQM) - see Horvitz et al. (1967) and Greenberg et al. (1969) -
is constructed for a sensitive X ∈ {1, 2}. According to the result of a random experiment, each in-
terviewee answers either “Do you have X = 1?” or “Do you have Y = 1?” where Y ∈ {1, 2} is an
unrelated nonsensitive variable. Let c be the known probability that the first question is selected, and
assume φ = P(Y = 1) to be known. Then, the UQM requires a single SRSWR, and we have C = C1

with rows (c+ (1− c)φ, (1− c)φ) and ((1− c)(1− φ), (1− c)(1− φ) + c). If the distribution of Y is
unknown, the UQM needs two independent SRSWR. In this case, we can define the new variable

X̃ ∈ {1, ..., 4} (8)

that attains the values 1, 2, 3, 4 if (X,Y ) attains (1, 1), (1, 2), (2, 1), (2, 2), respectively. This X̃ plays
the role of X from (M1) and (M2). Let cs1 be the known probability that question 1 is selected in
sample s. It follows that Cs has the rows (1, cs1, 1− cs1, 0) and (0, 1− cs1, cs1, 1).

Omitting details, we also can fulfill (M1)-(M2) for the RR methods for X ∈ {1, ..., k} (k ≥ 2) suggested
by Eriksson (1973), and Liu et al. (1975).
The two-stage RR design by Mangat and Singh (1990) considers X ∈ {1, 2}. In the first stage, each
respondent conducts a random experiment that decides whether the question “Do you have X = 1?”
must be answered or whether the respondent has to go to stage two. In stage two, another random
experiment must be accomplished by the interviewee. According to its outcome, either the question
“Do you have X = 1?” or “Do you have X = 2?” must be answered. This model needs one SRSWR,
and C = C1 has the known rows (T +(1−T )c, (1−T )(1− c)) and ((1−T )(1− c), T +(1−T )c), where
T is the probability that the experiment in stage one decides that the question must be answered and
c is the probability of drawing the first question in stage two.
Omitting certain details again, for the RR model by Mangat (1994), (M1)-(M2) are fulfilled, where
kA = 2, S = 1, and C = C1 with rows (1, 1− c) and (0, c) for a c ∈ (0, 1).

Quatember (2009) presents a standardized RR model for X ∈ {1, 2} and explains that 16 survey
designs are special cases of his model. In this standardized design, each interviewee draws randomly
one of the five instructions:

1: Answer “Do you have X = 1?” 2: Answer “Do you have X = 2?”
3: Answer “Do you have Y = 1?” 4: Say “yes” 5: Say “no”

Here, Y ∈ {1, 2} is a nonsensitive characteristic. Let us consider a single SRSWR, set φ = P(Y =
1), and define ci to be the probability that instruction i is drawn. Coding answers “yes” and
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“no” with 1 and 2 yields the 2 × 2 design matrix with rows (c1 + c3φ + c4, c2 + c3φ + c4) and
(c2 + c3(1− φ) + c5, c1 + c3(1− φ) + c5) and (M1)-(M2) are fulfilled.

The properties (M1)-(M2) are also satisfied for the following NRR models: the hidden sensitivity
model by Tian et al. (2007), the crosswise and triangular model by Yu et al. (2008), and the multi-
category model by Tang et al. (2009). For instance, Tang et al. (2009) consider X ∈ {1, ..., k}, k ≥ 2.
The respondent’s answer depends on the value of X and on the value of a nonsensitive auxiliary
variable W ∈ {1, ..., k}, which is independent of X and possesses a known distribution (e.g., W may
describe the period of the birthday). If X = 1, an answer equal to the value of W is required. For
X = i, the response i (i = 2, ..., k) must be given. The design needs a single SRSWR. The first column
of the k × k matrix C = C1 equals (P (W = 1), ...,P(W = k))T , and column i (i = 2, ..., k) is a vector
having entry i equal to 1 and all other entries equal to 0.

We finish this section with a model that violates (M2): the two-trial UQM by Horvitz et al. (1967)
is for X ∈ {1, 2} and needs S = 2 independent SRSWR. Each respondent selects one of the questions
“Do you have X = 1?” or “Do you have Y = 1?” with the help of a random experiment (Y is again
an unrelated variable). Subsequently, the selection is repeated. The possible answers are 1=(“yes”,
“yes”), 2=(“yes”, “no”), 3=(“no”, “yes”), 4=(“no”, “no”). The distribution of Y is unknown, and
independence between X and Y is assumed. Then, we have

Cs =


c2s1 + 2cs1cs2φ+ c2s2φ c2s2φ

cs1cs2(1− φ) cs1cs2φ
cs1cs2(1− φ) cs1cs2φ
c2s2(1− φ) c2s1 + 2cs1cs2(1− φ) + c2s2(1− φ)


with s ∈ {1, 2}, where φ = P(Y = 1), cs1 is the known probability that question 1 is selected in sample
s, and cs2 = 1 − cs1. Since φ is unknown, (M2) does not hold. A possible remedy is to abandon the
independence assumption for X and Y and to consider X̃ from (8) again. X̃ plays the role of X in
(M1)-(M2) with

Cs =


1 c2

s1 c2
s2 0

0 cs1cs2 cs1cs2 0
0 cs1cs2 cs1cs2 0
0 c2

s2 c2
s1 1

 ,

where s ∈ {1, 2}. This version of the two-trial UQM, which can be found in Bourke and Moran (1988),
Section 2, satisfies (M1)-(M2).

3.2 Bayes estimation in PP models

The calculations from Section 2 can be generalized to arbitrary randomized response and nonrandom-
ized response survey techniques with (M1)-(M2). For such a model, the missing data X and observed
data A are given by (Xsj)sj and (Asj)sj , respectively (s = 1, ..., S; j = 1, ..., ns). Set for xsj ∈ {1, ..., k}
and asj = {1, ..., kA}

fX,A |Π(x,a |π) =
S∏
s=1

ns∏
j=1

Cs(asj , xsj) · πxsj ,

where the Cs are the design matrices of the PP model and x = (xsj)sj , a = (asj)sj . Accordingly, we
have

fX |A,Π(x |a, π) =
S∏
s=1

ns∏
j=1

Cs(asj , xsj) · πxsj

fAsj |Π(asj |π)
,

where fAsj |Π(α |π) is the entry number α ∈ {1, ..., kA} of vector Cs · (π1, ..., πk)T . As in Section 2, we
focus on Dirichlet prior distributions.
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To calculate the posterior mode in a PP design with (M1)-(M2), (6) becomes

Q(π |π(t)) =
S∑
s=1

k∑
i=1

m̂
(t)
si · log πi and Q∗(π |π(t)) =

k∑
i=1

(
δi − 1 +

S∑
s=1

m̂
(t)
si

)
· log πi

with m̂(t)
si =

∑kA
j=1 nsj ·π

(t)
i ·Cs(j, i)/fAs1 |Π(j |π(t)), where nsj is the number of respondents in sample

s giving answer j. The term m̂
(t)
si is equal to the sum of the i-th column of the kA × k matrix

Cs .
∗
[[
ñTs ./ λs(π

(t))
]
· (π(t)

1 , ..., π
(t)
k )
]

with

ñs = (ns1, ..., nskA
) and λs(π(t)) = (fAs1 |Π(1 |π(t)), ..., fAs1 |Π(kA |π(t)))T .

Maximization of Q∗(· |π(t)) results in π
(t+1)
i = (δi − 1 +

∑S
s=1 m̂

(t)
si )/(n− k + δ1 + ...+ δk).

To conduct parameter simulation and to obtain multiple imputations, data augmentation for a general
privacy-protecting survey design proceeds as follows:
I step: It suffices to simulate the number of sample units with X = j. Let m(t)

s (i, j) be the in iteration
t simulated number of persons who have X-value j among the persons who give answer i in sample s.
Draw

(m(t)
s (i, 1), ...,m(t)

s (i, k)) ∼Multinomial(nsi, γ
(t)
s,i ).

The vector γ(t)
s,i contains the cell probabilities and is defined to be the i-th row of the kA × k matrix

Cs .
∗
[[

(1, · · · , 1)T ./ λs(π(t−1))
]
·
(
π

(t−1)
1 , ..., π

(t−1)
k

)]
,

where
λs(π(t−1)) = (fAs1 |Π(1 |π(t−1)), ..., fAs1 |Π(kA |π(t−1)))T .

Obviously, the cell probabilities depend (apart from the parameters of the preceding iteration) only
on the design matrices. The desired number of persons having X = j in iteration t is then m

(t)
j =∑S

s=1

∑kA
i=1m

(t)
s (i, j).

P step: Draw a new parameter (π(t)
1 , ..., π

(t)
k−1)T from fΠ |X,A(· |x(t),a), a density corresponding to

the Di(m(t)
1 + δ1, ...,m

(t)
k + δk) distribution.

Rao-Blackwellized estimates for a general PP design can be obtained analogously to Subsection 2.6
by averaging conditional expectations. In particular, the estimate is given by

s̃ = (L2 − L3 + 1)−1
L2∑
t=L3

E(Π |X = x(t),A = a).

with (compare P step of data augmentation above)

E(Π |X = x(t),A = a) =
(m(t)

1 + δ1, ...,m
(t)
k−1 + δk−1)T

(n+ δ1 + ...+ δk)
,

where m(t)
j is again the simulated count of persons having X = j in iteration t.
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4 Summary

Survey concepts that protect the respondents’ privacy are important to obtain reliable data on sen-
sitive characteristics. To exploit prior information on the distribution of the sensitive variable, the
application of Bayesian methods is appealing. In this paper, we have developed a Bayesian extension
of the privacy-protecting, nonrandomized diagonal model survey technique by Groenitz (2012). We
illustrated in simulations that precision can be significantly improved by incorporating available prior
information into the estimation. In the second part of this paper, we found that for any privacy-
protecting survey design dealing with categorical sensitive characteristics, all relevant model informa-
tion is stored in the design matrices. For this reason, we were able to present the Bayes inference for
privacy-protecting models in a general framework that covers a lot of randomized and nonrandomized
response methods.
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A Appendix: Simulation Outputs

This appendix contains the simulation results described in Section 2.7.

n = 300 - estimation based on a single Markov chain

Parameter simulation Multiple imputation Rao-Blackwellization

av.est. MSE width CP av.est. MSE width CP av.est. MSE width CP

π1 0.2986 0.0027 0.2071 0.9540 0.2982 0.0028 0.1827 0.9300 0.2986 0.0027 0.1809 0.9260

δ(1) π2 0.3972 0.0029 0.2140 0.9410 0.3979 0.0030 0.1873 0.9140 0.3972 0.0029 0.1854 0.9070
π3 0.3043 0.0028 0.2075 0.9470 0.3039 0.0028 0.1830 0.9180 0.3042 0.0028 0.1812 0.9140

π1 0.2969 0.0022 0.1970 0.9610 0.2974 0.0023 0.1760 0.9250 0.2969 0.0022 0.1704 0.9190

δ(2) π2 0.4070 0.0025 0.2047 0.9610 0.4063 0.0027 0.1812 0.9240 0.4070 0.0025 0.1753 0.9180
π3 0.2961 0.0027 0.1971 0.9330 0.2963 0.0028 0.1758 0.9130 0.2961 0.0026 0.1701 0.9030

π1 0.2942 0.0017 0.1799 0.9720 0.2954 0.0019 0.1645 0.9470 0.2942 0.0016 0.1518 0.9380

δ(3) π2 0.4077 0.0018 0.1886 0.9740 0.4058 0.0021 0.1700 0.9450 0.4076 0.0018 0.1569 0.9420
π3 0.2981 0.0015 0.1803 0.9740 0.2988 0.0018 0.1644 0.9490 0.2981 0.0015 0.1518 0.9450

n = 100 - estimation based on a single Markov chain

Parameter simulation Multiple imputation Rao-Blackwellization

av.est. MSE width CP av.est. MSE width CP av.est. MSE width CP

π1 0.2956 0.0078 0.3460 0.9470 0.2945 0.0083 0.3142 0.9140 0.2957 0.0078 0.3050 0.9030

δ(1) π2 0.3985 0.0082 0.3625 0.9450 0.4004 0.0087 0.3249 0.9170 0.3985 0.0082 0.3154 0.9060
π3 0.3059 0.0078 0.3477 0.9480 0.3050 0.0082 0.3154 0.9220 0.3058 0.0077 0.3063 0.9100

π1 0.2974 0.0046 0.3047 0.9670 0.2991 0.0056 0.2836 0.9340 0.2974 0.0046 0.2578 0.9290

δ(2) π2 0.4090 0.0053 0.3189 0.9720 0.4070 0.0064 0.2923 0.9400 0.4091 0.0053 0.2657 0.9300
π3 0.2936 0.0046 0.3027 0.9700 0.2939 0.0056 0.2815 0.9450 0.2936 0.0046 0.2559 0.9350

π1 0.2898 0.0023 0.2514 0.9900 0.2922 0.0035 0.2476 0.9680 0.2897 0.0023 0.1981 0.9570

δ(3) π2 0.4151 0.0026 0.2673 0.9880 0.4115 0.0039 0.2595 0.9660 0.4152 0.0026 0.2076 0.9510
π3 0.2951 0.0021 0.2514 0.9960 0.2963 0.0033 0.2470 0.9740 0.2950 0.0021 0.1976 0.9580

Table 1: Simulation results for PS, MI, RB based on a single Markov chain. The performance of the estimation
strategies is assessed in terms of the average estimate for πi, the simulated MSE of the estimates for πi, the
empirical width and coverage probability of the confidence intervals for πi (α = 5%). The true proportions are
given by (0.3, 0.4, 0.3).
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n = 300 - estimation based on independent Markov chains

Parameter simulation Multiple imputation Rao-Blackwellization

av.est. MSE width CP av.est. MSE width CP av.est. MSE width CP

π1 0.2971 0.0027 0.2080 0.9550 0.2968 0.0028 0.1837 0.9200 0.2971 0.0027 0.1819 0.9110

δ(1) π2 0.4004 0.0032 0.2155 0.9490 0.4010 0.0032 0.1883 0.9140 0.4004 0.0032 0.1864 0.9110
π3 0.3024 0.0029 0.2083 0.9440 0.3022 0.0030 0.1838 0.9080 0.3025 0.0029 0.1819 0.9030

π1 0.2963 0.0024 0.1983 0.9490 0.2969 0.0025 0.1767 0.9180 0.2963 0.0024 0.1710 0.9120

δ(2) π2 0.4074 0.0026 0.2058 0.9510 0.4066 0.0028 0.1818 0.9140 0.4074 0.0026 0.1760 0.9090
π3 0.2963 0.0022 0.1982 0.9570 0.2965 0.0024 0.1770 0.9210 0.2963 0.0022 0.1713 0.9150

π1 0.2944 0.0017 0.1814 0.9690 0.2955 0.0019 0.1653 0.9360 0.2943 0.0017 0.1526 0.9310

δ(3) π2 0.4091 0.0018 0.1899 0.9740 0.4074 0.0021 0.1712 0.9370 0.4091 0.0018 0.1580 0.9280
π3 0.2965 0.0017 0.1811 0.9650 0.2971 0.0020 0.1653 0.9310 0.2965 0.0017 0.1526 0.9290

n = 100 - estimation based on independent Markov chains

Parameter simulation Multiple imputation Rao-Blackwellization

av.est. MSE width CP av.est. MSE width CP av.est. MSE width CP

π1 0.3000 0.0071 0.3504 0.9590 0.2991 0.0076 0.3186 0.9350 0.3001 0.0071 0.3094 0.9280

δ(1) π2 0.3956 0.0082 0.3645 0.9520 0.3975 0.0087 0.3276 0.9300 0.3957 0.0083 0.3180 0.9140
π3 0.3043 0.0085 0.3499 0.9420 0.3034 0.0089 0.3171 0.9080 0.3043 0.0084 0.3078 0.8990

π1 0.2911 0.0047 0.3040 0.9710 0.2921 0.0057 0.2823 0.9360 0.2910 0.0047 0.2566 0.9240

δ(2) π2 0.4080 0.0049 0.3212 0.9780 0.4059 0.0059 0.2942 0.9520 0.4081 0.0049 0.2675 0.9430
π3 0.3009 0.0045 0.3058 0.9820 0.3021 0.0054 0.2841 0.9510 0.3010 0.0045 0.2583 0.9380

π1 0.2880 0.0022 0.2513 0.9980 0.2900 0.0032 0.2478 0.9800 0.2880 0.0022 0.1982 0.9680

δ(3) π2 0.4166 0.0028 0.2683 0.9910 0.4133 0.0041 0.2602 0.9700 0.4166 0.0028 0.2081 0.9600
π3 0.2954 0.0022 0.2528 0.9930 0.2968 0.0034 0.2486 0.9680 0.2954 0.0022 0.1988 0.9560

Table 2: Simulation results for PS, MI, RB based on independent Markov chains. The performance of the
estimation strategies is assessed in terms of the average estimate for πi, the simulated MSE of the estimates
for πi, the empirical width and coverage probability of the confidence intervals for πi (α = 5%). The true
proportions are given by (0.3, 0.4, 0.3).

ML estimation for n = 300

av.est. MSE width coverage

π1 0.2996 0.0028 0.2097 0.9580
π2 0.4008 0.0030 0.2174 0.9510
π3 0.2996 0.0028 0.2102 0.9470

ML estimation for n = 100

π1 0.3024 0.0084 0.3587 0.9580
π2 0.4008 0.0094 0.3735 0.9510
π3 0.2968 0.0083 0.3584 0.9500

Table 3: This table contains the simulation results for the ML estimation based on 1000 samples. Aver-
age ML estimates for πi, empirical MSEs for the ML estimates as well as empirical widths and coverage
probabilities for Bootstrap CIs (α = 5%) reported. The true proportions are given by (0.3, 0.4, 0.3).

Posterior modes

n = 300 n = 100

av. est. MSE av. est. MSE

π1 0.2979 0.0027 0.2942 0.0086

δ(1) π2 0.3982 0.0030 0.4013 0.0089
π3 0.3040 0.0028 0.3045 0.0084

π1 0.2964 0.0022 0.2960 0.0052

δ(2) π2 0.4080 0.0026 0.4126 0.0060
π3 0.2956 0.0027 0.2914 0.0052

π1 0.2940 0.0017 0.2880 0.0026

δ(3) π2 0.4085 0.0019 0.4186 0.0030
π3 0.2976 0.0016 0.2934 0.0024

Table 4: Simulation results for the observed data posterior mode. The table reports the average poste-
rior mode and the corresponding empirical MSE. The true proportions are given by (0.3, 0.4, 0.3).


