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Abstract

The diagonal model (DM) is a recently published nonrandomized response (NRR) survey method to
collect data on categorical sensitive characteristics Y ∗. Based on DM data, the distribution of Y ∗

can be estimated. In contrast to randomized response (RR) techniques, NRR schemes avoid the use
of a randomization device. Due to this fact, survey complexity and study costs decrease. In this
article, we assume that not only Y ∗, but also nonsensitive characteristics X∗1 , ..., X

∗
p are involved in

the survey. Then, the aim of this paper is to provide methods to investigate the dependence of Y ∗ on
X∗ = (X∗1 , ..., X

∗
p ). For instance, the influence of gender and profession on income (recorded in income

classes) may be under study. In particular, we describe two estimation procedures: Stratum-wise esti-
mation and LR-DM estimation. Stratum-wise estimation is suitable if only few covariate levels appear
in the sample. LR-DM estimation is based on a logistic regression model for the relation between Y ∗

and X∗ and requires several techniques for generalized linear models (e.g., Fisher scoring). In simu-
lations, we first investigate the convergence behavior of the Fisher scoring algorithm. Subsequently,
we illustrate the connection between efficiency of the LR-DM estimation and the degree of privacy
protection. Finally, the efficiency of the LR-DM estimation is compared with the efficiency of the
stratum-wise estimation.

Zusammenfassung

Das Diagonal-Modell (DM) ist eine kürzlich publizierte Nonrandomized-Response-Methode für die Er-
hebung von Daten über ein sensitives, kategoriales Merkmal Y ∗. Basierend auf Diagonal-Modell-Daten
ist die Schätzung der Verteilung von Y ∗ möglich. Anders als bei Randomized-Response-Techniken
ist bei Nonrandomized-Response-Verfahren die Ausführung eines Zufallsexperimentes durch die Be-
fragten nicht nötig. Dadurch werden die Komplexität der Umfrage und die Umfragekosten reduziert.
In diesem Artikel gehen wir davon aus, dass neben Y ∗ auch nicht-sensitive Merkmale X∗1 , ..., X

∗
p in

die Umfrage involviert sind. Ziel dieser Arbeit ist es, Methoden zu entwickeln, die die Untersuchung
des Einflusses von X∗ = (X∗1 , ..., X

∗
p ) auf Y ∗ ermöglichen. Zum Beispiel könnte die Abhängigkeit des

Einkommens (erfasst in Klassen) von Geschlecht und Beruf von Interesse sein. In diesem Aufsatz
werden zwei Schätzprozeduren beschrieben: Die schichtweise Schätzung und die LR-DM-Schätzung.
Schichtweise Schätzung ist geeignet, wenn nur wenige Kovariablenlevel in der Stichprobe auftreten.
LR-DM-Schätzung basiert auf einem logistischen Regressionsmodell für die Beziehung zwischen Y ∗ und
X∗ und benötigt verschiedene Methoden für generalisierte lineare Modelle (z.B. den Fisher-Scoring-
Algorithmus). In umfangreichen Simulationen untersuchen wir zunächst das Konvergenzverhalten des
Fisher-Scoring-Algorithmus. Anschließend illustrieren wir die Beziehung zwischen der Effizienz der
LR-DM-Schätzung und dem Grad an Schutz der Privatsphäre. Schlussendlich vergleichen wir die Ef-
fizienz von LR-DM-Schätzung mit der Effizienz der schichtweisen Schätzung.

KEYWORDS: Untruthful answers; Answer refusal; Logistic regression; Generalized linear model;
Fisher scoring

1Philipps-University Marburg, Department for Statistics (Faculty 02), Universitätsstraße 25, 35032 Marburg, Ger-
many (e-mail: groenitz@staff.uni-marburg.de).
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1 Introduction

To gather data about sensitive characteristics like income and tax evasion, it is not recommendable
to ask directly, because direct questioning provokes answer refusal (i.e., missing values) or untruthful
answers. Instead, survey designs that protect the respondents’ privacy should be applied, because
they can improve the respondents’ cooperation. The first privacy-protecting survey method was the
randomized response (RR) model by Warner (1965). Today there are several RR procedures which
enable the estimation of the distribution of a sensitive characteristic. However, in practice, the inves-
tigator is sometimes not only interested in the distribution of the sensitive characteristic, but also in
the dependence of the sensitive characteristic on certain covariates. For instance, the influence of age
and profession on income might be under study.

The first covariate extension of a RR technique can be found in the book of Maddala (1983), p.
54-56, who proposes a model that enables the analysis of the relation between nonsensitive exogenous
variables and a binary sensitive variable.

The paper by Scheers and Dayton (1988) extends the randomized response model by Warner (1965)
and the unrelated question (UQM) model (see Greenberg et al. (1969)) with covariates. A survey
according to the covariate Warner model proceeds as follows: Consider a sensitive characteristic Y ∗

with two outcomes, say Y ∗ = 1 and Y ∗ = 2, and an arbitrary respondent. Initially, he or she is asked
directly for his or her values of p nonsensitive covariates. Subsequently, he or she draws randomly one
of the questions:

Q∗ = 1 : “Is your value of Y ∗ equal to 1”? Q∗ = 2 : “Is your value of Y ∗ equal to 2”? (1)

The question might be selected by spinning a spinner for example. The selection occurs hidden and
the selected question is not revealed to the interviewer. The respondent replies either “yes” or “no”,
but the interviewer can not identify the respondent’s value of the sensitive characteristic. The authors
model the dependence of Y ∗ on the covariables, for example, by a logistic regression model, and de-
scribe methods to maximize the likelihood function. In the case of the UQM, question Q∗ = 2 would
contain a nonsensitive attribute, such as “Are you born in the first quarter of the year?”. Within
a real data study, the influence of the GPA (grade point average) on academic cheating behavior is
investigated. Additional details of this study, especially a comparison between the estimations based
on the covariate UQM and an anonymous questionnaire, are available in Scheers and Dayton (1987).

The work by van der Heijden and van Gils (1996) presents a covariate version of the RR method
by Kuk (1990). Van den Hout et al. (2007) deal with the analysis of the relation between multiple
sensitive characteristics and covariates where the sensitive data are gathered by randomized response
methods. They present a real data example regarding social benefit fraud, more precisely the illegal
receipt of unemployment benefit in the Netherlands. In particular, the relation between the binary
sensitive questions “Is the number of your job applications less then required?” and “Do you conduct
any work without reporting this?” and certain covariates (sex, age and an indicator whether the
respondent is the main earner in the household) is studied.

In the publications of the previously mentioned authors, RR models are involved in the survey. That
means that the respondents have to conduct a random experiment with the help of a randomization
device (e.g., spinner or deck of cards). In contrast, nonrandomized response (NRR) techniques, which
have been proposed increasingly in the last years, do not need a randomization device. The absence of
a randomization device causes a reduction in survey complexity and study costs. Moreover, the respon-
dent would always give the same answer if the survey was conducted again. One such NRR method
is the diagonal model (DM) by Groenitz (2012) that is suitable for categorical sensitive characteristics.

After reviewing the DM in Section 2, we consider in Section 3 a survey which includes a sensitive
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Y ∗ ∈ {1, ..., k} and nonsensitive characteristics X∗1 , ..., X
∗
p where the DM is applied to elicit data

about Y ∗. Here, the aim of Section 3 is to investigate the influence of X∗ = (X∗1 , ..., X
∗
p ) on Y ∗.

For this, we present a stratum-wise estimation as well as an estimation that is based on a logistic
regression model (LRM). For the latter, extensive material regarding generalized linear models (e.g.,
Fisher scoring) is required. In Section 4, ample simulations are presented: After a discussion about
the convergence behavior of the Fisher scoring algorithm, we analyze the relation between efficiency
of the estimation based on a LRM and the degree of privacy protection. Subsequently, we compare
the efficiency of the estimation based on a LRM with the efficiency of the stratum-wise estimation.

2 The diagonal model

Groenitz (2012) proposes a nonrandomized response model for multichotomous sensitive variables,
namely the diagonal model. This model enables the estimation of the distribution of a sensitive
characteristic Y ∗ with codomain {1, ..., k} by the frequencies of certain nonrandomized answers A∗,
which depend on an auxiliary variable W ∗ ∈ {1, ..., k}. The auxiliary variable is assumed to be
nonsensitive and independent from Y ∗ with a known distribution PW ∗ . Moreover, we assume that the
interviewer does not know the respondents’ values for W ∗. Every respondent should give an answer
according to

A∗ := [(W ∗ − Y ∗) mod k] + 1. (2)

Instead of presenting this formula to the respondents, who may be not familiar with the modular
arithmetic, every respondent is given a table where he or she can find the answer to give. For example
for k = 5, such a table is given by

Y ∗/W ∗ W ∗ = 1 W ∗ = 2 W ∗ = 3 W ∗ = 4 W ∗ = 5
Y ∗ = 1 1 2 3 4 5
Y ∗ = 2 5 1 2 3 4
Y ∗ = 3 4 5 1 2 3
Y ∗ = 4 3 4 5 1 2
Y ∗ = 5 2 3 4 5 1

Additionally, an example of an answer like “If your value of Y ∗ equals 3 and your value of W ∗ equals
1, please give the answer A∗ = 4” should be included in the questionnaire. The interviewee searches
his or her values of Y ∗ and W ∗ and gives an answer A∗. Since it is not possible to identify the correct
Y ∗-value with the help of the answer, we assume that the interviewees cooperate. For instance, W ∗

could describe the period of birthday of the respondent’s mother.

We denote the proportion of units in the population having Y ∗ = i, W ∗ = i and A∗ = i with
π∗i , c

∗
i and µ∗i , respectively. Moreover, let C be the k × k matrix where every row is a left-cyclic shift

of the row above and the first row is equal to c∗ = (c∗1, ..., c
∗
k). The proportions c∗1, ..., c

∗
k are the model

parameters and C is referred to as “design matrix of c∗”. We have

(µ∗1, ..., µ
∗
k)
t = C · (π∗1, ..., π∗k)t. (3)

The paper by Groenitz (2012) describes the maximum likelihood (ML) estimation in the case of
simple random sampling with replacement, where it turns out that finding an explicit form of the ML
estimator is difficult for some samples. However, he shows that the estimation of π∗ can be viewed as
missing data problem and operated with the expectation maximization (EM) algorithm.
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3 Influence of nonsensitive covariates on the sensitive variable

Let us consider a survey involving a categorical, sensitive characteristic Y ∗ ∈ {1, ..., k} where k = q+1
and a vector of nonsensitive characteristics X∗ = (X∗1 , ..., X

∗
p ). Here, the respondents do not provide

their values of Y ∗, but give an answer A∗ according to the diagonal model. This answer A∗ depends
on both Y ∗ and an auxiliary characteristic W ∗. We define c∗ and the matrix C as in Section 2 and
assume throughout the remainder of this article:

- All components of c∗ are nonzero (when a c∗i equaled zero, every answer A∗ would restrict the
possible Y ∗-values).

- The matrix C is invertible.

The aim of this section is to study the dependence of Y ∗ on X∗. The quantity Y ∗ is called endogenous
characteristic and X∗1 , ..., X

∗
p are called exogenous characteristics or covariates or regressors. We

consider both deterministic and stochastic covariates.

3.1 The case of deterministic covariates

In this subsection, we assume that the investigator chooses the values of the covariates X∗ (i.e., they
are fixed and known) and searches persons having the predefined covariate levels. Each person is then
requested to give a response A∗ according to (2).
For instance, for X∗1 , X∗2 , and Y ∗ representing sex, profession, and income, respectively, this procedure
means that the investigator determines for any combination of sex and profession how many persons
possessing this combination are involved into to survey. Then appropriate persons are selected and
each person in the sample gives DM answer A∗ depending on his or her income and his or her value
of the nonsensitive characteristic W ∗.

Say n persons are interviewed. Consider for i = 1, ..., n and j = 1, ..., k

Yij =
{

1, if person i has attribute Y ∗ = j
0, else

, Aij =
{

1, if person i answers A∗ = j
0, else

,

let Wi denote the value of W ∗ corresponding to the i-th person and let xij represent the value of X∗j
corresponding to the i-th person. Set

Y =

Y1

...
Yn

 =

Y11 · · · Y1q

...
...

Yn1 · · · Ynq

 , A =

A1

...
An

 =

A11 · · · A1q

...
...

An1 · · · Anq

 , x =

x1

...
xn

 =

x11 · · · x1p

...
...

xn1 · · · xnp

 .

Notice, the realizations of the auxiliary variables Wi and the sensitive variables Yi are not observed
while data on the answers Ai and the regressors xi are available. We introduce πij = E(Yij) and
πi = (πi1, ..., πiq) as well as µij = E(Aij) and µi = (µi1, ..., µiq). Eventually, we define

π∗j (x
∗) : proportion of units with Y ∗ = j among the units in the population having X∗ = x∗. (4)

In this subsection, we assume throughout

(D1) Y1, ...., Yn independent

(D2) W1, ...,Wn are independent and identically distributed.

(D3) The two quantities (Y t
1 , ..., Y

t
n)t and (W1, ...,Wn)t are independent.
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These conditions are fulfilled if (Y ∗, X∗) and W ∗ are independent and if for each covariate level chosen
by the investigator, the sample units are drawn by simple random sampling with replacement from the
population units having this covariate level where the selection for one covariate level is independent
from the selection for the other covariate levels.

Let x∗ be one of the covariate levels specified by the investigator, i.e., there is a row of x equal
to x∗. The quantity π∗j (x

∗) can be estimated from the answers A∗ of the persons in the sample having
this covariate level x∗ according to the estimation procedure in Groenitz (2012) for the diagonal model.
Possibly, the EM algorithm must be applied for the estimation.
Let us now assume g ≤ n different covariate levels are available. This means that x has g different
rows. Then, the set of sample units having the i-th covariate level can be interpreted as stratum i.
For this reason, we call the just described estimation method “stratum-wise estimation”. One can ex-
pect the stratum-wise estimation to be suitable if each stratum contains sufficiently large sample units.

In the sequel, we present an estimation method based on a logistic regression model (LRM). Oc-
casionally, we will call this estimation technique briefly the “LR-DM estimation”. LRMs are often
applied to analyze the influence of certain covariates on a categorical endogenous characteristic. Some
material on LRMs that we need in this article is collected in Appendix A. For the LR-DM estimation,
we make the additional assumption:

(D4) There is a β = (β(1)t , ..., β(q)t)t with β(i) ∈ Rp×1 so that (Y, x, β) is a logistic regression model.

Of course, the vector β has length s := pq and (D4) includes the independence of Y1, ..., Yn. Define
for z = (z1, ..., zq)

h : z 7→ (h1(z), ..., hq(z)) =
(

ez1
1+ez1+...+ezq , . . . , ezq

1+ez1+...+ezq

)
, and xi :=

xi . . .
xi

 ∈ Rq×pq,

(5)
and x = (x1, ....,xn). Then, we have πi = h((xiβ)t). To estimate β from the LRM (Y, x, β), we have
to make a detour via the answers collected in A, because Y is not observed. Let C(1 : q, j) ∈ Rq,
j = 1, ..., q+ 1, denote the j-th column of C without the last entry, set c̃j = C(1 : q, j)−C(1 : q, q+ 1)
for j = 1, ..., q, and define the q × q matrix C̃ := [c̃1|c̃2| . . . |c̃q]. We introduce the map

m(z) = m(z1, ..., zq) =

C̃ ·
h1(z)

...
hq(z)

+ C(1 : q, k)


t

. (6)

The following theorem contains an important observation:

Theorem 1 (A, x, β,x,m) is a generalized linear model (GLM).

Proof: We must verify that the definition for a GLM (see Appendix B.1) is fulfilled. Since Ai is
a function of Yi and Wi, the independence of A1, ..., An follows. The (discrete) density of Ai is given
by

fAi(a1, ..., aq) = µa1
i1 · · ·µ

aq
iq · µ

1−a1−...−aq
ik · 1A(a1, ..., aq), ai ∈ R,

where A = {(a1, ..., aq) : ai ∈ {0, 1}, a1 + ...+ aq ≤ 1}. Set Θ = R1×q, Ψ = {1} and for θ ∈ Θ, ψ ∈ Ψ,
y ∈ R1×q

fθ,ψ(y) = c(y, ψ) · e
θyt−b(θ)

ψ where c(y, ψ) = 1A(y) and b(θ) = log(1 + eθ1 + ...+ eθq).

The distribution corresponding to fθ,ψ(y) is denoted with Pθ,ψ. Consequently, (Pθ,ψ)θ∈Θ,ψ∈Ψ is a sim-
ple, q-parametric exponential family with scale parameter and we have for ψ = 1: For all i = 1, ..., n,
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the distribution of Ai belongs to (Pθ,ψ)θ∈Θ. Thus, the distribution assumption in Appendix B.1 is
satisfied.

The function h is invertible with

h−1(w1, ..., wq) = (log
w1

w∗
, . . . , log

wq
w∗

) where w∗ := 1− (w1 + ...+ wq). (7)

Applying a chain rule, it suffices to show that the matrix C̃ is regular to ensure the reversibil-
ity of m. Assume C̃ is not regular. Then, this matrix has eigenvalue zero, i.e., there is a vec-
tor v = (v1, ..., vq)t 6= 0 with C̃v = 0. Denoting the q × q identity matrix by Iq we can write
C̃ = [Iq|(0, ..., 0)t] ·C · [Iq|(−1, ...,−1)t]t. It follows that 0 = [Iq|(0, ..., 0)t] ·C · (v1, ..., vq,−

∑q
j=1 vj)

t =:
[Iq|(0, ..., 0)t] · U . Thus, the first q entries of U are zero. By taking the sum of these q numbers, we
can conclude that the k-th entry of U is also zero. Altogether, C has eigenvalue zero. Because we
assumed C to be invertible, this is a contradiction. Hence, C̃ is regular.

Finally, we have
µi = (µi1, ..., µiq) = m

(
(xiβ)t

)
, (8)

which completes the proof.

�

Let ai be an observed realization of Ai. The likelihood function β 7→ fA1(a1) · · · fAn(an) can be
maximized via the Fisher scoring algorithm. Some details of this iterative method are provided in
Appendix C.1. For our GLM (A, x, β,x,m), we must specify quantities from C.1 as follows. The
expectation vector µi = µi(β) is given through (8). The Jacobi matrix of m from (6) equals m′(z) =
C̃ · h′(z). Here, the Jacobi matrix of h is h′(z) = [diag(exp(z) ·Q(z))− exp(zt) exp(z)] / (Q(z))2 with
componentwise application of exp and Q(z) = 1 + ez1 + ...+ ezq . Furthermore, we have

Di(β) =
[
m′((xiβ)t)

]t and Σi(β) = V arβ(Yi) = diag(µi(β))− µi(β)tµi(β).

In GLMs, the asymptotic normality (F (β̂))
1
2 (β̂ − β) L−→ N(0, I) holds for n → ∞ and β̂ is approx-

imately N(β, F−1(β̂) )-distributed if the total sample size n is sufficiently large (Fahrmeir and Tutz
(2010), p. 106). Here, F (β̂) is the Fisher matrix calculated under β̂ and F−1(β̂) can be taken from the
last iteration of the Fisher scoring algorithm (cf. Appendix C.1). An estimate for the asymptotical
standard error of the i-th component of β̂ is given by

ŜEAS(β̂i) =
√

[F−1(β̂)]ii. (9)

We now study the estimation of the population parameters π∗j (x
∗) from (4). Let us choose a fixed

value x∗. Once obtained a maximum likelihood estimate β̂, we can calculate estimates

[π̂∗1(x∗), ..., π̂∗q (x
∗)] = h((x∗β̂)t), π̂∗k(x

∗) = 1− π̂∗1(x∗)− ...− π̂∗q (x∗), (10)

where x∗ is the q × s design matrix corresponding to x∗. The identity (10) implies that π̂∗j (x
∗) is a

function of β̂. In particular, with H(β) = (H1(β), ...,Hq(β)) = h((x∗β)t) and Hk(β) = hk((x∗β)t)
where hk(z) = 1− h1(z)− ...− hq(z), we have the equations

(π̂∗1(x∗), ..., π̂∗q (x
∗)) = H(β̂) and π̂∗k(x

∗) = Hk(β̂). (11)

Using a first-order Taylor approximation of H at β, we obtain

V ar(H(β̂)) ≈ V ar[H(β) + JH(β) · (β̂ − β)] = JH(β) · V ar(β̂) · J tH(β)

≈ JH(β̂) · ˆV ar(β̂) · J tH(β̂) = Jh((x∗β̂)t) · x∗ · ˆV ar(β̂) · x∗t · J th((x∗β̂)t) =: ˆV ar(H(β̂))
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where J denotes the Jacobi matrix and ˆV ar(β̂) is given by F−1(β̂). Thus, to estimate the variance of
π̂∗j (x

∗) (j = 1, ..., q), we can use the j-th diagonal element of ˆV ar(H(β̂)). Analog, we can derive

ˆV ar(Hk(β̂)) = Jhk((x∗β̂)t) · x∗ · ˆV ar(β̂) · x∗t · J thk((x∗β̂)t)

with the Jacobi matrix Jhk(z1, ..., zk) = (−ez1 , ...,−ezq)/(Q(z))2. The estimated standard errors for
the π̂∗j (x

∗) are given by taking the square root of the estimated variances for π̂∗j (x
∗).

Linear hypotheses concerning β

H0 : Cβ = ρ against H1 : Cβ 6= ρ (12)

where C is a r× s matrix (r ≤ s) with full row rank can be tested with the well known Wald statistic
(cf. Fahrmeir and Tutz (2010), p. 107)

w = (Cβ̂ − ρ)t · [C · F−1(β̂) · Ct]−1 · (Cβ̂ − ρ),

which is asymptotically χ2
Rank(C)-distributed under H0.

The LR-DM estimation is built on the model structure, especially on (8). To check whether the
data fit the relation (8), the Pearson statistic can be applied, provided that we have grouped data
such that there is a sufficiently large number of observations in each group. As in Appendix C.1, let
g ≤ n be the number of different rows of x, i.e., the number of covariate levels, set for r = 1, ..., g

Ir = {i ∈ {1, ..., n} : sample unit i possesses covariate level r},

define nr to be the number of elements in Ir and assume i1 ∈ I1,...,ig ∈ Ig. The null hypothesis H0 is
given by

E(Ai1) = m((xi1β)t), ...,E(Aig) = m((xigβ)t) for one β ∈ Rs. (13)

Set (Ãr1, ..., Ãrk) = n−1
r

∑
l∈Ir(Al1, ..., Alk) and (µ̃r1, ..., µ̃rq) = m((xir β̂)t) and µ̃rk = 1− µ̃r1− ...− µ̃rq.

The Pearson statistic P compares Ãrj and µ̃rj , in particular, P equals

P =
g∑
r=1

nr

k∑
j=1

(Ãrj − µ̃rj)2

µ̃rj
.

If the nr are sufficiently large, we have approximately P ∼ χ2
(g−p)q under H0. For more details, see

Fahrmeir and Tutz (2010), p. 107. We remark that µi = m((xiβ)t)⇔ πi = h((xiβ)t). Consequently,
the rejection of H0 from (13) implies that the LRM (Y, x, β) does not fit the observed data.

We provide the self-programmed MATLAB program fisherscore1.m, which computes ML estimates
for β and π∗j (x

∗) (with corresponding standard errors) and assesses the goodness-of-fit, as supplemental
material.

3.2 The case of stochastic covariates

In practice, it may occur that the values of the exogenous characteristics are not deterministic (i.e., not
determined by the interviewer), but realizations of random variables. For such stochastic regressors, a
survey proceeds as follows. Each interviewee is asked directly for his or her values of the nonsensitive
covariates X∗1 , ..., X

∗
p . Afterwards, he or she is requested to give an answer A∗ according to the DM

answer formula (2).

Let n, Y , A, Wi be defined as in Subsection 3.1, let the random variable Xij represent the value of X∗j



Groenitz, Covariate Nonrandomized Response Model Discussion Paper 2 / 2013 8

corresponding to the i-th person in the sample and set Xi = (Xi1, ..., Xip) as well as X = (Xt
1, ..., X

t
n)t.

In this subsection, we have to incorporate the stochastic character of X into our assumptions. In
particular, we assume throughout this subsection

(S1) (Y1, X1), ..., (Yn, Xn) are n iid vectors.

(S2) W1, ...,Wn are iid.

(S3) The two quantities

Y1, X1
...

Yn, Xn

 and

W1
...
Wn

 are independent.

These requirements are satisfied when (Y ∗, X∗) and W ∗ are independent and the interviewees are
selected by simple random sampling with replacement from the population.

Stratum-wise estimation can be conducted analog to Subsection 3.1. To convey the LR-DM esti-
mation as presented in the previous subsection to the case of stochastic regressors, we further assume

(S4) There is a β = (β(1)t , ..., β(q)t)t with β(i) ∈ Rp×1 so that (Y,X, β) is a LRM with stochastic
covariates (see Appendix A.2).

We have that (A1, X1), ..., (An, Xn) are n iid vectors and that A1, ..., An are independent given X1 =

x1, ..., Xn = xn (for all values x1, ..., xn). Moreover, with Xi :=

Xi

. . .
Xi

 ∈ Rq×pq and

X = (X1, ....,Xn) as well as m from (6), we have E(Ai|X) = m((Xiβ)t) and (A,X, β,X,m) is a
GLM with stochastic covariates (cf. Appendix B.2).

The maximum likelihood estimation for β ∈ Rs×1 with s = pq in this GLM with stochastic covariates
can be traced back to the ML estimation in a GLM with deterministic covariates (see Appendix C.2).
Thus, our program fisherscore1.m can also be applied to calculate MLEs in the case of stochastic
covariates. The asymptotic normality (F (β̂))

1
2 (β̂ − β) L−→ N(0, I) of the MLE β̂ also holds for GLMs

with stochastic covariates (Fahrmeir and Tutz (2010), p. 106). Thus, β̂ has the approximative dis-
tribution N(β, F−1(β̂) ) when n is sufficiently large. Consequently, an estimate for the asymptotical

standard error of β̂i is
√

[F−1(β̂)]ii. Linear hypotheses (12) can be tested with the Wald statistic
(Fahrmeir and Tutz, p.107)

W = (Cβ̂ − ρ)t · [C · F−1(β̂) · Ct]−1 · (Cβ̂ − ρ),

which is also in the case of stochastic covariates asymptotically χ2
Rank(C)-distributed under the null

hypothesis.

For a fixed covariate level x∗, the population parameters π∗j (x
∗) from (4) can be estimated totally

analog to Subsection 3.1 by (11). The estimated standard errors for this estimation can be obtained
again as in Subsection 3.1.

For grouped data with a sufficiently large number of observations in each group, the goodness-of-
fit can be assessed by the Pearson statistics P as in Subsection 3.1, where we have the approximative
conditional distribution P |X = x ∼ χ2

(g−p)q under H0.
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4 Simulations

4.1 Convergence behavior of the scoring algorithm

The maximum likelihood estimation for a GLM according to Section 3 requires the maximization of

β 7→
n∑
i=1

(ai1, ..., aik) · log
(
C · (πi1, ..., πik)t

)
(14)

where aij is a realization of Aij , πij depends on β, and log is applied componentwise. It may occur that
the function (14) does not possess a maximum. A discussion about the existence of an MLE in general
GLMs including further references can be found in Fahrmeir and Tutz (2010), p. 43. Nevertheless, the
mathematical conditions for the existence are usually difficult to check in practice. We will illustrate
the non-existence with some examples:

1. We first give an example for which we can show by simple analytic methods that a MLE does
not exist. Let Y ∗ ∈ {1, ..., k} (with π∗i > 0) be a sensitive variable and assume we have conducted
a survey due to the non-covariate diagonal model with n interviewees drawn by a simple random
sample with replacement. Define Y , A, Wi as in Subsection 3.1. For observed values aij of Aij , the
log-likelihood is given by

l̃((π1, ..., πk)t) =

(
n∑
i=1

(ai1, ..., aik)

)
· log

(
C · (π1, ..., πk)t

)
.

Set x = (1, ..., 1)t ∈ Rn, Xi = Iq, x = (x1, ...,xn), β = h−1(π∗1, ..., π
∗
q ) with the link function h−1 from

(7). With the map m from (6), it follows that (A, x, β,x,m) is a GLM with log-likelihood function

l(β) =

(
n∑
i=1

(ai1, ..., aik)

)
· log (C ·H(β)) ,

whereH is a function Rq×1 → {(x1, ..., xk)t : xi ∈ (0, 1),
∑k

i=1 xi = 1} withH(β) = (h1(βt), ..., hq(βt), 1−
h1(βt)− ...− hq(βt))t.

Let us now specify k = 2, c∗ = (0.6, 0.4) and let the number of respondents who give answer 1
and 2 equal 15 and 5, respectively. Suppose that l possesses on R a maximum β̂. Then, H(β̂) would
be the maximum of l̃ on the set {(x1, x2)t : xi ∈ (0, 1), x1 + x2 = 1}. However, we can easily show
that l̃ does not possess a maximum on {(x1, x2)t : xi ∈ (0, 1), x1 + x2 = 1} for above specifications.
Due to this contradiction, l has no maximum on R.

2. Let us consider a sensitive Y ∗ with range {1, 2} and exogenous characteristics X∗ = (X∗1 , X
∗
2 )

where X∗1 is constant equal to one and X∗2 ∈ {1, 2, 3}. We assume stochastic covariates and make the
following specifications taken from an example in Scheers and Dayton (1988), Section 3:

n = 200, w =

w1

w2

w3

 =

0.1587
0.6826
0.1587

 , β =
(
β1

β2

)
=
(
−3.118
1.218

)

where wi is defined to be the proportion of individuals in the universe having attributeX∗2 = i. Further-
more, we set c∗ = (0.7, 0.3). As before c∗ describes the distribution of an auxiliary variable. We have
simulated 1000 samples where realizations ofA andX are available for each sample. To obtain one sam-
ple it suffices to generate absolute frequencies of the covariate levels (n1, n2, n3) ∼Multinomial(n,w)
and to subsequently draw the frequencies of the answers A∗ = j for each covariate level from the multi-
nomial distribution with number of trials equal to ni and cell probabilities (m(β1+iβ2), 1−m(β1+iβ2)).
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For each sample, we tried to compute a MLE β̂ with the self-programed MATLAB program fisherscore1
and also with the function glmfit which is already available in MATLAB. A valid estimate is obtained
for most samples, but for some samples the estimation fails. For instance, no problems occur for

covariate level (X∗1 , X
∗
2 ) (1, 1) (1, 2) (1, 3)

observations 32 137 31
frequency of A∗ = 1 16 55 16

(15)

where β̂ =
(
−0.8750 0.0999

)t. Otherwise, the sample with

covariate level (X∗1 , X
∗
2 ) (1, 1) (1, 2) (1, 3)

observations 30 144 26
frequency of A∗ = 1 8 68 18

(16)

leads to β̂ = (NaN, NaN)t in fisherscore1 respectively to a complex-valued β̂ = (−8.2030 +
6.2832i, 3.9660− 3.1416i)t using glmfit. The contour plots in Figures 1 and 2 give an illustration of
the log-likelihood function for (15) and (16). According to our simulation, non-convergence occurred
in 5.4% (fisherscore1) respectively 7.3% (glmfit) of the samples. The difference may be explained
by the fact that fisherscore1 has used several starting values whereas user-defined starting values
cannot be inputted in glmfit.
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Figure 1: Contour plot for the log-likelihood l corresponding to (15): Consider the isoline l = −140.
Outside this isoline we have l < −140 and the maximum of l is located in the domain {β : l(β) ≥
−140}. In particular, the maximum is (−0.875, 0.0999) with log-likelihood value −136.93.

4.2 Efficiency of LR-DM estimation and degree of privacy protection (DPP)

For the non-covariate diagonal model, Groenitz (2012), Sections 3.5 and 4.2, has shown how the
distribution c∗ = (c∗1, ..., c

∗
k) of the auxiliary characteristic W ∗ influences the DPP and efficiency. The
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Figure 2: Contour plot for the log-likelihood l corresponding to (16): If we are located in (0, 0)t

and move upwards and to the left in the picture, we will successively find vectors β with increasing
likelihood.

goal of this section is to illustrate the influence of c∗ for the LR-DM estimation within a simulation
study. Here, we consider k = 4, n = 300, X∗ = (X∗1 , X

∗
2 ), where X∗1 is a constant equal to one and

X∗2 has codomain {1, ..., 5}, as well as β = (3.5, −1.25, 2.5, −0.5, 2, −0.25)t and w = (1, 2, 3, 2, 1)/9.
The i-th component of w denotes the proportion of people in the population with level X∗2 = i. The
entry (i, j) of the matrix 

0.4015 0.3127 0.2435 0.0423
0.2143 0.3534 0.3534 0.0789
0.0975 0.3403 0.4370 0.1252
0.0399 0.2949 0.4863 0.1789
0.0153 0.2392 0.5063 0.2392

 (17)

denotes the proportion of units with Y ∗ = j among the units in the universe having covariate value
X∗2 = i. That is, the matrix entries equal the π∗j (x

∗) according to (4). Imagine that Y ∗ describes
income classes where category Y ∗ = 1 (Y ∗ = k) represents low (high) income, and covariable X∗2
describes age classes where X∗2 = 1 (X∗2 = 5) indicates a low (high) age. Then, (17) might be realistic
relative frequencies, because income often grows with increasing age.

We can measure the efficiency of estimators π̂∗j (x
∗) for each covariate level x∗ (for our setup, we

have x∗ ∈ {(1, i) : i = 1, ..., 5}) by

trace [MSE (π̂∗1(x∗), ..., π̂∗k(x
∗))] = MSE(π̂∗1(x∗)) + ...+MSE(π̂∗k(x

∗)). (18)

In our simulations, we consider several vectors c∗. As in Groenitz (2012), we use the standard devi-
ation of the vector c∗, denoted by σ = std(c∗) ∈ [0,

√
1/k], to quantify the DPP. In other words, we

measure the closeness of the distribution of W ∗ to a degenerate and a uniform distribution.
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The simulations start with the draw of 500 vectors c∗ = (c∗1, ..., c
∗
4) which are uniformly scattered

on {(x1, ..., x4) ∈ [0, 1]4 : x1 + ... + x4 = 1}. One such c∗ can be generated as follows: Simulate
(c∗1, c

∗
2, c
∗
3) from a Dirichlet distribution with parameter (1, 1, 1, 1), see Gentle (1998), p. 111, and

define c4 = 1− (c1 + c2 + c3).

For each drawn c∗, we compute the standard deviation of c∗ as measure for the DPP and gener-
ate 100 samples. To obtain one sample, we draw (n1, ..., n5) ∼Multinomial(n,w). This implies that
we have stochastic covariates. Afterwards, we draw the frequencies of the responses A∗ = j for each
covariate level x∗ from the multinomial distribution with parameters ni andm1((x∗β)t), ... ,mq((x∗β)t), 1−

q∑
j=1

mj((x∗β)t)

 . (19)

As before, x∗ denotes the q×s design matrix corresponding to x∗. As already mentioned in Section 4.1,
the ML estimation for β may fail. We delete all samples in which fisherscore1 does not converge.
For each of the remaining samples, we calculate π̂∗j (x

∗) from β̂, see (10). Based on the realizations of
π̂∗j (x

∗), we calculate the empirical MSE. That is, we compute an estimate Ê((π̂∗j (x
∗) − π∗j (x∗))2 | B)

with the event B = { MLE exists }. The quantity (18) is then estimated by the simulated MSE sum∑4
j=1 Ê((π̂∗j (x

∗)− π∗j (x∗))2 | B).

As soon as the simulations for the randomly drawn c∗ have been completed, we repeat the procedure
with the vectors c∗(1), ..., c∗(6) ∈ R4 according to Theorem 2b in Groenitz (2012) for the corresponding
degrees of privacy protection σi = i/12. Clearly, the σi (i = 1, ..., 6) are equidistant points in the range
of the standard deviation.
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Figure 3: Nonconvergence rates in dependence of the standard deviation σ. A small point corresponds
to a vector c∗ that is drawn randomly. The boldfaced black dots belong to the c∗(i).

Due to Figure 3, the nonconvergence probability seems to have a lower bound that depends on σ. The
nonconvergence rates of c∗(i) decrease from c∗(1) to c∗(6) and are close to this lower bound. However,
c∗(1) and c∗(2) are impractical, because the ML estimation often fails. Let us now consider Figure 4.
For any covariate level, the point cloud for the randomly drawn vectors has a lower bound. The crosses
(×) for c∗(2), ..., c∗(6) (c∗(1) was omitted due to the high nonconvergence rate) are located quite accurate
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Figure 4: Plots of the simulated MSE sum against the standard deviation for each covariate level. E.g.,
x1 in the heading of the first plot, means the covariate level x∗ = (1, 1). A small point corresponds to
a vector c∗ that is drawn randomly. The boldfaced black dots belong to c∗(2), ..., c∗(6).

on this bound. Thus, we conclude that the c∗(i) are efficient choices for PW ∗ for the corresponding de-
grees of privacy protection. If we connect the 5 crosses, we obtain a strictly monotonically decreasing
polygonal curve. That means a larger degree of privacy protection is associated with smaller efficiency.
Altogether, the observed influence of PW ∗ on efficiency of the LR-DM estimation coincides with the
results for the non-covariate diagonal model.

Hence, the interviewer should fix a medium value of σ and determine the vector c∗ via Theorem
2b from Groenitz (2012). Finally, an auxiliary attribute W ∗ should adapted on the chosen c∗.

4.3 Efficiency comparison

Let us consider a sensitive characteristic Y ∗ ∈ {1, ..., k} and covariates X∗ = (X∗1 , X
∗
2 ) where X∗1 is

constant equal to one and X∗2 is nonsensitive and can attain the outcomes 1, ..., g∗. We specify k = 3,
c∗ = (2/3, 1/6, 1/6), and g∗ ∈ {3, 5}, i.e., either three or five covariate levels appear in the population.
Moreover, we assume that the relation between Y ∗ and X∗ follows a logistic regression model with
β = (3.50, −1.25, 2.50, −0.50)t. We have the following proportions of units having Y ∗ = j among the
units in the population with covariate level x∗:

g∗ = 3 covariate levels g∗ = 5 covariate levels

x∗ / j 1 2 3
(1,1) 0.5307 0.4133 0.0559
(1,2) 0.3315 0.5465 0.1220
(1,3) 0.1732 0.6045 0.2224

x∗ / j 1 2 3
(1,1) 0.5307 0.4133 0.0559
(1,2) 0.3315 0.5465 0.1220
(1,3) 0.1732 0.6045 0.2224
(1,4) 0.0777 0.5741 0.3482
(1,5) 0.0310 0.4845 0.4845

(20)

Similar to Section 4.2 the proportions in (20) might be realistic proportions for Y ∗ and X∗2 describing
income and age classes, respectively. Notice, the elements of the tables in (20) equal the π∗j (x

∗)
according to (4). We consider sample sizes n ∈ {100, 200, 300, 400} and several specifications for w
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where the i-th component of w denotes the relative frequency of units in the universe having x∗ = (1, i):

g∗ = 3 : w(1) = (1, 1, 1)/3 and w(2) = (1, 2, 3)/6
g∗ = 5 : w(1) = (1, 1, 1, 1, 1)/5 and w(2) = (1, 2, 3, 2, 1)/9

(21)

The aim of this subsection is to compare the efficiency of two estimation procedures: On the one hand,
we estimate π∗j (x

∗) from (20) according to the LR-DM estimation. On the other hand, a stratum-wise
estimation is conducted.

For each specification of (g∗, w, n), we simulate 1000 samples. Each sample consists of ni = round(wi ·
n) interviewees with covariate level x∗ = (1, i). Here, the operator round means rounding to the near-
est integer and wi is the i-th component of w. This situation corresponds to deterministic covariates.
For covariate level x∗ = (1, i), we draw the frequencies of the replies A∗ from a multinomial distri-
bution analog to the description around (19). Since the ML estimation for β may fail, we delete all
samples in which fisherscore1 does not converge. For each of the remaining samples, we calculate
estimates for π∗j (x

∗) - once by LR-DM estimation and once by stratum-wise estimation.

For each considered estimator, we compute the average and the empirical mean squared error (MSE)
from the available realizations. This means that we obtain estimates for expectation and MSE of the
estimators. An excerpt of the simulation output can be found in the Tables 1 and 2.

LR-DM estimation
average of the estimates

covariate level Y ∗ = 1 Y ∗ = 2 Y ∗ = 3

n = 300,

w(1)

(1, 1) 0.5411 0.3972 0.0617
(1, 2) 0.3283 0.5478 0.1239
(1, 3) 0.1718 0.6127 0.2156
(1, 4) 0.0835 0.5774 0.3390
(1, 5) 0.0385 0.4757 0.4858

non-conv 3

n = 300,

w(2)

(1, 1) 0.5289 0.4081 0.0629
(1, 2) 0.3247 0.5509 0.1244
(1, 3) 0.1712 0.6111 0.2176
(1, 4) 0.0851 0.5715 0.3434
(1, 5) 0.0414 0.4731 0.4855

non-conv 4

Stratum-wise estimation
average of the estimates

covariate level Y ∗ = 1 Y ∗ = 2 Y ∗ = 3

n = 300,

w(1)

(1, 1) 0.5295 0.3992 0.0713
(1, 2) 0.3322 0.5419 0.1259
(1, 3) 0.1738 0.5971 0.2292
(1, 4) 0.0918 0.5738 0.3344
(1, 5) 0.0569 0.4710 0.4721

n = 300,

w(2)

(1, 1) 0.5052 0.4076 0.0872
(1, 2) 0.3288 0.5443 0.1269
(1, 3) 0.1739 0.6067 0.2194
(1, 4) 0.0931 0.5642 0.3427
(1, 5) 0.0694 0.4665 0.4641

Table 1: The left (right) part of the table contains the averages of the estimates for π∗j (x
∗) accord-

ing to the LR-DM estimation (stratum-wise estimation). The entry “non-conv” counts how often
fisherscore1 did not converge.

We first regard five covariate levels. It turns out, that the nonconvergence rates decrease strongly
with increasing sample size (for w(1): reduction from 19,6% (n = 100) to 0,3% (n = 400); for w(2):
reduction from 13% (n = 100) to 0,2% (n = 400)). This coincides with the theoretic result that the
existence of a MLE for β in GLMs is asymptotically guaranteed (cf. Fahrmeir and Tutz (2010), p.44).

Let us now focus on the estimation of the conditional proportions π∗j (x
∗). On average, the esti-

mates calculated according to both LR-DM and stratum-wise estimation are close to the true values
of π∗j (x

∗). Regarding efficiency, the empirical MSEs of the estimates decreases if the sample size grows.
Moreover, the empirical MSEs corresponding to LR-DM estimation are always smaller than the MSEs
corresponding to stratum-wise estimation. The quotient of empirical MSE for LR-DM estimation
divided by empirical MSE for stratum-wise estimation attains values between 17% and 93% where it
is mostly less than 60%. That is, the estimation precision can be improved significantly by using the
functional form (22) from Appendix A.1.
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LR-DM estimation (MSEs)

covariate level Y ∗ = 1 Y ∗ = 2 Y ∗ = 3

n = 300,

w(1)

(1, 1) 0.0129 0.0102 0.0022
(1, 2) 0.0063 0.0057 0.0039
(1, 3) 0.0048 0.0059 0.0051
(1, 4) 0.0029 0.0053 0.0054
(1, 5) 0.0014 0.0103 0.0112

non-conv. 3

n = 300,

w(2)

(1, 1) 0.0178 0.0142 0.0024
(1, 2) 0.0066 0.0062 0.0035
(1, 3) 0.0044 0.0052 0.0038
(1, 4) 0.0029 0.0056 0.0056
(1, 5) 0.0017 0.0142 0.0159

non-conv. 4

Stratum-wise estimation (MSEs)

covariate level Y ∗ = 1 Y ∗ = 2 Y ∗ = 3

n = 300,

w(1)

(1, 1) 0.0147 0.0142 0.0065
(1, 2) 0.0146 0.0149 0.0094
(1, 3) 0.0117 0.0169 0.0132
(1, 4) 0.0077 0.0152 0.0143
(1, 5) 0.0058 0.0146 0.0147

n = 300,

w(2)

(1, 1) 0.0260 0.0242 0.0112
(1, 2) 0.0129 0.0144 0.0084
(1, 3) 0.0079 0.0104 0.0081
(1, 4) 0.0070 0.0133 0.0129
(1, 5) 0.0102 0.0264 0.0252

Table 2: Empirical mean squared errors (MSEs) of the estimates for π∗j (x
∗) using the LR-DM procedure

and the stratum-wise estimation.

The aforementioned observations for five covariate levels can be also found in the case of three covariate
levels. The only noticeable difference is that higher nonconvergence rates of fisherscore1 occur in
the three level case. Altogether, we conclude the major result of this section: If the logistic regression
model fits the data, the use of the functional structure (22) leads to a considerably reduction of the
MSE.

5 Summary

In this article, we have considered a survey with a sensitive attribute Y ∗ ∈ {1, ..., k} and nonsen-
sitive characteristics X∗ = (X∗1 , ..., X

∗
p ) where the collection of data on Y ∗ is conducted with the

nonrandomized diagonal model. To examine the dependence of Y ∗ on X∗, we have introduced the
stratum-wise estimation and the LR-DM estimation, which is built on a logistic regression model for
the relation between Y ∗ and X∗. For the LR-DM estimation, maximum likelihood estimates must be
computed iteratively where the Fisher scoring algorithm is helpful. In simulations, we investigated the
convergence probabilities of Fisher scoring and discussed how the efficiency of the LR-DM estimation
depends on the degree of privacy protection. In a further part of the simulation study, we considered
a situation where the data fit a logistic regression model. We found out that the application of the
functional relation between the proportion of units in the population having outcome Y ∗ = j and the
covariates leads to considerably smaller mean squared errors than a stratum-wise estimation.
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Appendix

For the LR-DM estimation we need some material regarding logistic regression models (LRMs) and
generalized linear models (GLMs). Although LRMs and GLMs are well-known (e.g., Fahrmeir and
Tutz (2010)), we briefly mention some facts in this appendix to increase the readability of the paper.

A Logistic regression models (LRMs)

A.1 LRMs with deterministic covariates

Consider random variables Yij (i = 1, ..., n; j = 1, ..., q), define the random vectors Yi = (Yi1, ..., Yiq)
and the random matrix Y = (Y t

1 , ..., Y
t
n)t. Let xij (i = 1, ..., n; j = 1, ..., p) be real numbers, define

xi = (xi1, ..., xip) and the deterministic matrix x = (xt1, ..., x
t
n)t. Moreover, assume β(1), ..., β(q) ∈ Rp×1

and set β = (β(1)t , ..., β(q)t)t. The triple (Y, x, β) is called logistic regression model, if

1. Y1, ..., Yn are independent and the random vector (Yi1, ..., Yiq, 1 −
∑q

j=1 Yij) is multinomially
distributed with number of trials equal to one.

2. The equations

P(Yij = 1) =
exiβ

(j)

1 + exiβ
(1) + ...+ exiβ

(q)
(i = 1, ..., n; j = 1, ..., q) (22)

hold for the cell probabilities.

When (Y, x, β) is a LRM, we set k = q + 1, Yik = 1−
∑q

j=1 Yij and can conclude that

P(Yij = 1) /P(Yik = 1) = exiβ
(j)

(j = 1, ..., q). (23)

In applications, LRMs are useful to study the dependence of a categorical characteristic Y ∗ ∈ {1, ..., k}
with k = q+ 1 on a vector of covariates X∗ = (X∗1 , ..., X

∗
p ). Here, one considers a sample of size n and

the Yij are given by

Yij = 1 (Yij = 0) if sample unit i possesses outcome Y ∗ = j (Y ∗ 6= j),

whereas the value of X∗ corresponding to the i-th sample unit is denoted with xi. According to (23),
the components of the parameter β can be interpreted in the following way: E.g., an increase by 1 in
the second covariate causes a change in the odds ratio P(Yij = 1) /P(Yik = 1) by the factor eβ

(j)
2 .

A.2 LRMs with stochastic covariates

In practice, the values of the covariates are often not deterministic, but realizations of random quan-
tities. This motivates to consider also LRMs with stochastic regressors. Define Y and β as in A.1, let
Xij (i = 1, ..., n; j = 1, ..., p) be random variables, set Xi = (Xi1, ..., Xip) and X = (Xt

1, ..., X
t
n)t. The

triple (Y,X, β) is called a LRM with stochastic covariates, if the following properties are satisfied for
every value x of X:

1. The Y1, ..., Yn are independent given X = x and the conditional distribution of the vector
(Yi1, ..., Yiq, 1−

∑q
j=1 Yij) given X = x is a multinomial distribution with number of trials equal

to one.

2. The identities

P(Yij = 1 |X = x) =
exiβ

(j)

1 + exiβ
(1) + ...+ exiβ

(q)
(i = 1, ..., n; j = 1, ..., q) (24)

hold (xi is the i-th row of x).
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B Generalized linear models (GLMs)

As preparatory work, we need the following definition: A family (Pθ,ψ)θ∈Θ,ψ∈Ψ of distributions on the
Borel σ-algebra over Rq is called “simple, q-parametric exponential family with scale parameter” if
functions c : Rq × Ψ → [0,∞) and b : Θ → R exist with the property: Any Pθ,ψ has a density of the
form

fθ,ψ(y) = fθ,ψ(y1, ..., yq) = c(y, ψ) · e
θyt−b(θ)

ψ (y ∈ Rq).

B.1 GLMs with deterministic covariates

Consider random variables Yij (i = 1, ..., n; j = 1, ..., q), the random vectors Yi = (Yi1, ..., Yiq) and the
random matrix Y = (Y t

1 , ..., Y
t
n)t. Let xij (i = 1, ..., n; j = 1, ..., p) be real numbers, xi = (xi1, ..., xip)

and x = (xt1, ..., x
t
n)t. Moreover, let β be a vector in Rs×1, xi a q × s matrix created from xi,

x = (x1, ...,xn), and h : z = (z1, ..., zq) 7→ (h1(z), ..., hq(z)) an invertible function. Then, (Y, x, β,x, h)
is called a generalized linear model, if (G1) and (G2) hold:

(G1) Distribution assumption:

(a) There is a simple, q-parametric exponential family with scale parameter (Pθ,ψ)θ∈Θ,ψ∈Ψ and
one element ψ ∈ Ψ with the property: For all i = 1, ..., n, the distribution of Yi belongs to
(Pθ,ψ)θ∈Θ.

(b) Y1, ..., Yn are independent.

(G2) Structure assumption:

The expectation vector µi = E(Yi) and the linear predictor ηi = (xiβ)t are connected by h,
that is, µi = h(ηi).

In applications, n is the sample size while xi and Yi represent the values of the covariates and the
endogenous characteristics corresponding to the i-th sample unit.

B.2 GLMs with stochastic covariates

Consider Y , β and h as in B.1. Let Xij (i = 1, ..., n; j = 1, ..., p) be random variables, Xi =
(Xi1, ..., Xip) and X = (Xt

1, ..., X
t
n)t. Moreover, let Xi be a q × s matrix created from Xi, X =

(X1, ...,Xn). We call (Y,X, β,X, h) a GLM with stochastic covariates, if:

(G1) Distribution assumption:

(a) There is a simple, q-parametric exponential family with scale parameter (Pθ,ψ)θ∈Θ,ψ∈Ψ and
one element ψ ∈ Ψ with the property: For all i = 1, ..., n and all possible realizations x of
X, the conditional distribution of Yi given X = x belongs to (Pθ,ψ)θ∈Θ.

(b) Y1, ..., Yn are independent given X = x (for any value x of X).

(G2) Structure assumption:

The conditional expectation µi = E(Yi|X) and ηi = (Xiβ)t are connected by µi = h(ηi).
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C Fisher scoring in GLM

Fisher scoring is an iterative method to compute maximum likelihood estimates. Notice, in (G1) from
B.1 respectively B.2 the set of scale parameters Ψ appears. We describe Fisher scoring only for the
case Ψ = {1}, because this case is relevant in this article.

C.1 Fisher scoring in GLMs with deterministic covariates

Let (Y, x, β,x, h) be a GLM and y = (yt1, ..., y
t
n)t ∈ Rn×q an observed value of Y . According to (G1),

we need to maximize l(β) = l(β, y) =
∑n

i=1 li(β) in β where li(β) = li(β, y) = θiy
t
i − b(θi). To

maximize l, the Fisher scoring algorithm generates a sequence of estimates (βν)ν∈N0 as follows: When
an estimate βν is available from the preceding iteration, the next estimate is computed by

βν+1 = βν + F−1(βν) · s(βν). (25)

Here, s(β) = s(y, β) = (l′(β))t is called score function, where l′(β) ∈ R1×s denotes the Jacobi matrix
of l at β, and F (β) = E[− d2

dβ2 l(Y, β)] = V ar(s(Y, β)) is the Fisher matrix. Define the partial score
functions si(β) = si(y, β) = (l′i(β))t and the partial Fisher matrices Fi(β) = V ar(si(Y, β)). We have
s(β) =

∑n
i=1 si(β) and can show by standard calculations that si(β) = xti ·Di(β)·[Σi(β)]−1 ·(yi−µi(β))t

with
Di(β) =

[
h′((xiβ)t)

]t
, Σi(β) = V arβ(Yi), µi(β) = h((xiβ)t),

where h′(z) represents the Jacobi matrix (Djhi(z))i,j=1,...,q. Moreover, F (β) =
∑n

i=1 Fi(β) and
Fi(β) = xti ·Wi(β) · xi hold, where Wi(β) = Di(β) [Σi(β)]−1Di(β)t.

We notice that the number of computations for Fisher scoring can be reduced when the number
of different covariate levels is smaller than the number of rows of x: Let g ≤ n be the number of
different rows of x, i.e., we have g covariate levels. We introduce the sets (r = 1, ..., g)

Ir = {i ∈ {1, ..., n} : sample unit i possesses covariate level r},

define nr to be the number of elements in Ir and assume i1 ∈ I1,...,ig ∈ Ig. We remark that all
units with the same covariate level have identical values for µi(β), i.e, µi(β) = µj(β) for i, j ∈ Ir
(r = 1, ..., g). An analog statement holds for Di(β), Σi(β), Wi(β) and Fi(β). For this reason, we can
conclude

F (β) =
g∑
r=1

nr · Fir(β) and s(β) =
g∑
r=1

xtirDir(β) [Σir(β)]−1 nr

[(
1
nr

∑
i∈Ir

yti

)
− µir(β)t

]
.

Hence, to obtain F (β) and s(β), we have to sum up each g terms. When g is considerably smaller
than n, the effort to calculate F (β) and s(β) decreases significantly.

C.2 Fisher scoring in GLMs with stochastic covariates

Consider a GLM with stochastic covariates (Y,X, β,X, h) and assume y and x are observed realizations
of Y and X respectively. As usual, let fYi|X(· |x) denotes the density of Yi given X = x. We have
to maximize the function β 7→

∏n
i=1 fYi|X(yi|x). However, this function is the likelihood function

corresponding to a GLM with deterministic covariates. Thus, we can apply C.1.
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Supplemental material



  1 function [beta, Iter, SE,V_beta, p_beta, fit]=...
  2     fisherscore1(X,Y,model,C0,BETA0,epsilon)
  3 
  4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5 
  6 % Supplemental material for the manuscript
  7 % Groenitz, H.: A Covariate Nonrandomized Response Model for
  8 % Multicategorical Sensitive Variables. 
  9 
 10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 11 
 12 
 13 
 14 %This program can be applied to estimate parameters (a) in logistic
 15 %regression models and (b) according to LR-DM estimation
 16 
 17 % I N P U T 
 18 
 19 % X: design matrix. The number of rows in X is the number of different
 20 % covariate levels, the number of columns is the number of covariates.
 21 % Y: response matrix with q+1 columns. The entry Y_ij represents the
 22 % absolute frequency of category j among the units having the i-th
 23 % covariate level. 
 24 % model: When intending to analyze an ordinary logistic regression model,
 25 % type 'logreg'. When considering the diagonal model with covariates and
 26 % intending to conduct a LR-DM estimation type 'diagcov'.
 27 % C0: (q+1) x (q+1) design matrix in the diagonal model, every row is a
 28 % left-cyclic shift of the row above (for model 'logreg' an arbitrary 
 29 % (q+1) x (q+1) matrix can be typed for C0).
 30 % BETA0: starting values for Fisher scoring algorithm
 31 % epsilon:  accuracy of calculation
 32 
 33 % O U T P U T
 34 
 35 % beta: vector of estimated parameters (maximum likelihood estimate, MLE)
 36 % Iter: number of iterations of Fisher scoring algorithm
 37 % SE: estimated standard errors for the estimation
 38 % V_beta: estimated variance matrix of the estimator
 39 % p_beta: p-values for the tests with H_0: beta_i=0
 40 % fit=[chi2, pchi2, dev, pdev, df] where
 41 % chi2: value of the test statistic for the chi^2-goodness-of-fit test
 42 % pchi2: p-value for chi^2-goodness-of-fit test
 43 % dev: value of the test statistic for the deviance test (this is another
 44 % well-known goodness-of-fit test, cf. ``Multivariate Statistical Modelling
 45 % Based on Generalized Linear Models'' by Fahrmeir and Tutz (2010),
 46 % Springer, page 50)
 47 % pdev: p-value for deviance test
 48 % df: degrees of freedom for chi^2 / deviance test
 49 
 50 % E X A M P L E 1 (estimation in logistic regression models)
 51 % The data of this example are taken from an example in the book "Multivariate 
 52 % statistische Verfahren'' by Fahrmeir et al. (1996), de Gruyter, page
 53 % 263 / 267 where the sales of gasoline stations are investigated.
 54 
 55 % The rows of the following matrix X represent the observed covariate
 56 % levels
 57 % x1=ones(1,12)';x2=[ones(1,6) -1 -1 -1 -1 -1 -1]';
 58 % x3=[1 1 1  -1 -1 -1  1 1 1  -1 -1 -1]';x4=[1 0 -1 1 0 -1 1 0 -1 1 0 -1]';
 59 % x5=[0 1 -1 0 1 -1 0 1 -1 0 1 -1]'; X=[x1 x2 x3 x4 x5];
 60 
 61 % Each row of the following matrix Y contains the absolute frequencies of
 62 % the categories 1 (low sales), 2 (medium sales), 3 (large sales) for the 
 63 % corresponding covariate level



 64 % y1=[2 2 3 65 63 48 4 2 5  38 16 179]';y2=[3 0 4 32 24 12 4 0 12 19 7  55]';
 65 % y3=[0 0 1 20  4  6 7 1  4 27 2  29]'; Y=[y1 y2 y3];
 66 
 67 % Set
 68 % beta0=zeros(10,1); para=eye(10);
 69 % then the command 
 70 % [beta, Iter, SE,V_beta, p_beta, fit]=fisherscore1(X,Y,'logreg',para,beta0,10^-8)
 71 % delivers among others the MLE beta:
 72 % 1.2209 0.3735 -0.5320 -0.9716 0.6174 0.8744 0.3542 0.0978 -0.7246 0.5615
 73 
 74 % EXAMPLE 2 (Diagonal model with covariates, LR-DM estimation)
 75 
 76 % We introduce the following quantities
 77 % X=[1 1 1 1 1; 1 2 3 4 5]';
 78 % Y=[35 16 30; 27 18 35; 20 22 38; 16 27 36; 15 33 33];
 79 % C0=[2/3 1/6 1/6; 1/6 1/6 2/3; 1/6 2/3 1/6];BETA0=[0 0 0 0; 1 -1 1 -1];
 80 % That is, we have two covariates, and the available covariate levels are
 81 % (1,1),...,(1,5). E.g., for covariate level (1,1), we have 35 respondents
 82 % giving diagonal model answer 1, 16 respondents giving answer 2 and 30
 83 % respondents giving answer 3. The command
 84 % [beta, Iter, SE,V_beta, p_beta, fit]=fisherscore1(X,Y,'diagcov',C0,BETA0,10^-8)
 85 % returns among others the estimate beta equal to
 86 % 3.5691  -1.2722  2.5304  -0.5052
 87 
 88 %------------------------------------------------------------------
 89 q=length(Y(1,:))-1; R=q+1; n=length(X(:,1)); p=length(X(1,:)); nn=sum(Y,2); 
 90 if min(nn)==0
 91     error('n_i equals 0 for some i; Remove corresponding rows in X and Y.')
 92 end
 93 
 94 %----- Def. of functions-------------------------------------------
 95 Q =@(z)sum(exp([0 z])); %z row vector
 96 Jh=@(z)( diag(exp(z)*Q(z)) - exp(z')*exp(z)) /(Q(z))^2;
 97 %           D h1
 98 % Jh = [     .      ]   Jacobi matrix of h
 99 %           D hq
100 h =@(z)exp(z)/Q(z);
101 
102 CC=C0(1:q,1:q);        
103 for j=1:q
104     CC(:,j)=CC(:,j)-C0(1:q,R);   
105 end
106 m =@(z)h(z) * CC' + C0(1:q,R)';
107 function M=Jm(z,CC,q,Jh) %Jacobi matrix of m % "nested function"
108 M=zeros(q); JJ=feval(Jh,z);
109 for l=1:q
110     M=M + CC(:,l)*JJ(l,:);
111 end
112 end
113 %--------------------------------------------------------------------
114 
115 if strcmp(model,'logreg')   %compares strings
116 % Here, the case of a logistic regression model is studied.   
117  
118 beta0=BETA0; 
119    
120 for j=1:n
121     Y(j,:)=Y(j,:)/nn(j);
122 end
123 Y=Y(:,1:q);
124 b0=beta0;
125 
126 F=0;score=0;



127 for i=1:n 
128     X_i     =X(i,:);
129     for j=2:q
130         X_i=blkdiag(X_i,X(i,:)); %block diagonal matrix
131     end
132     P_i     =(X_i*b0)' ; %predictor
133     D_i     =Jh(P_i)';
134     mu_i    =h(P_i);
135     Sigma_i =(diag(mu_i)-mu_i' * mu_i)/nn(i);
136     W_i     =D_i * inv(Sigma_i) * D_i';
137     
138     F=F + X_i' * W_i * X_i;
139     score=score + X_i'*D_i * inv(Sigma_i) * (Y(i,:)'-mu_i');
140 end
141 b1=b0 + F\score; %A^-1 * b : A\b
142 
143 Iter=1;
144 
145 while norm(b1-b0)/norm(b0)>epsilon
146     Iter=Iter+1;
147     b0=b1;
148     
149     F=0;score=0;
150     for i=1:n 
151     X_i     =X(i,:);
152     for j=2:q
153         X_i=blkdiag(X_i,X(i,:));
154     end
155     P_i     =(X_i*b0)';  %predictor
156     D_i     =Jh(P_i)';
157     mu_i    =h(P_i);
158     Sigma_i =(diag(mu_i)-mu_i' * mu_i)/nn(i);
159     W_i     =D_i * inv(Sigma_i) * D_i';
160     
161     F=F + X_i' * W_i * X_i;
162     score=score + X_i'*D_i * inv(Sigma_i) * (Y(i,:)'-mu_i');
163     end
164     
165     b1=b0 + F\score; % A^-1 * b: A\b
166 end
167 
168 beta=b1;
169 
170 % Standard errors, testing H_0: beta_i=0, goodness-of-fit tests (chi^2 /
171 % deviance)
172 
173 chi2=zeros(n,1); dev=zeros(n,1); F=0;
174 for i=1:n
175     X_i     =X(i,:);
176     for j=2:q
177         X_i=blkdiag(X_i,X(i,:));
178     end
179     P_i     =(X_i*beta)';  %beta: MLE
180     D_i     =Jh(P_i)';
181     mu_i    =h(P_i);
182     Sigma_i =(diag(mu_i)-mu_i' * mu_i)/nn(i);
183     W_i     =D_i * inv(Sigma_i) * D_i';
184     
185     %for Fisher matrix at the MLE beta
186     F=F + X_i' * W_i * X_i;
187     
188     %for chi2-goodness-of-fit test
189     chi2(i)=(Y(i,:)-mu_i)* inv(Sigma_i) *(Y(i,:)-mu_i)';



190     
191     % for deviance; mnpdf(X,PROB) X and PROB  1-by-k vectors, where k is the
192     % number of multinomial categories
193     Z_i=round( [Y(i,:) 1-sum(Y(i,:))]*nn(i) ); %abs. frequencies
194       
195     L1=mnpdf(Z_i, [mu_i 1-sum(mu_i)]);    l1=log(L1);
196     L2=mnpdf(Z_i, Z_i/nn(i));  l2=log(L2);
197     dev(i)=l1-l2;
198 end
199 
200 %Estimated standard errors for the components of the MLE
201 SE=sqrt(diag(inv(F)));
202 
203 %Estimated variance matrix for the MLE 
204 V_beta=inv(F);
205 
206 %Testing H_0: beta_i=0 (t-statistics; p-values)
207 T=beta./SE; p_beta=2*(1-normcdf( abs(T) ) );
208 
209 % goodness-of-fit
210 CHI2=sum(chi2); DEV=-2*sum(dev);
211 df=n*q-p*q; % degrees of freedom
212 %p-values
213 pCHI2=1-chi2cdf(CHI2,df); pDEV=1-chi2cdf(DEV,df);
214 fit=[CHI2,pCHI2,DEV,pDEV,df];
215 
216 end
217 
218 % --------------------------------------------------------
219 
220 if strcmp(model,'diagcov')  
221 % Case of diagonal model with covariates, LR-DM estimation is conducted.
222 
223 YY=Y; %for later calculation of the log-Likelihood
224 for j=1:n
225     Y(j,:)=Y(j,:)/nn(j);
226 end
227 Y=Y(:,1:q);
228 
229 E=zeros(length(BETA0(:,1)),p*q+1);
230 
231 for jj=1:length(BETA0(:,1))
232     beta0=BETA0(jj,:)';
233    
234     b1=beta0;
235     cond=inf;Iter=1;
236     while cond>epsilon
237         Iter=Iter+1;
238         b0=b1;
239     
240         F=0;score=0;
241         for i=1:n 
242         X_i     =X(i,:);
243         for j=2:q
244          X_i=blkdiag(X_i,X(i,:));
245         end
246         P_i     =(X_i*b0)';  
247         D_i     =Jm(P_i,CC,q,Jh)';
248         mu_i    =m(P_i);
249         Sigma_i =(diag(mu_i)-mu_i' * mu_i)/nn(i);
250         W_i     =D_i * inv(Sigma_i) * D_i';
251     
252         F=F + X_i' * W_i * X_i;



253         score=score + X_i'*D_i * inv(Sigma_i) * (Y(i,:)'-mu_i');
254         end
255     
256         b1=b0 + F\score; %A^-1 * b = A\b
257         cond=norm(b1-b0)/norm(b0);
258     
259         %To avoid endless loops
260         if Iter > 1000
261             b1=ones(p*q,1)*NaN;
262             cond=0;
263         end
264        
265     end %endwhile
266 
267     beta=b1;  
268 
269     %Plausibility check
270 
271     if sum(isnan(beta))==0 && sum(isinf(beta))==0 && rcond(F)<10^-15
272         beta=ones(p*q,1)*NaN;
273     end
274     %now a beta for this starting value is available
275 E(jj,1:p*q)=beta'; 
276 mu=zeros(n,q+1);
277 for i=1:n
278     eta_i=zeros(1,q);
279        for j=1:q
280                 eta_i(j)=X(i,:)*beta( (j-1)*p+1: j*p);
281        end
282     mu(i,1:q)=m(eta_i);
283 end
284 mu(:,q+1)=1-sum(mu(:,1:q),2);
285 E(jj,p*q+1)=sum(sum(YY.*log(mu)));
286 % value of the log-likelihood (Y: frequencies of the answers)
287 end  %end jj-loop
288 
289 % Which starting value leads to the largest likelihood?
290 % The max function ignores NaNs. max([0 1 Nan])=1; max([NaN NaN])=NaN;
291 
292 M=max(E(:,p*q+1));
293 
294 if isnan(M)==1
295     beta=ones(p*q,1)*NaN;
296 else 
297     ind=find(E(:,p*q+1)==M);
298     ind=ind(1);
299     beta=E(ind,1:p*q)';
300 end    
301     
302 % Standard errors, testing H_0: beta_i=0, goodness-of-fit tests (chi^2 /
303 % deviance)
304 
305 chi2=zeros(n,1); dev=zeros(n,1); F=0;
306 for i=1:n
307     X_i     =X(i,:);
308     for j=2:q
309         X_i=blkdiag(X_i,X(i,:));
310     end
311     P_i     =(X_i*beta)';  
312     D_i     =Jm(P_i,CC,q,Jh)';
313     mu_i    =m(P_i);
314     Sigma_i =(diag(mu_i)-mu_i' * mu_i)/nn(i);
315     W_i     =D_i * inv(Sigma_i) * D_i';



316     
317     %for Fisher matrix at the MLE beta
318     F=F + X_i' * W_i * X_i;
319     
320     %for chi2-goodness-of-fit test
321     chi2(i)=(Y(i,:)-mu_i)* inv(Sigma_i) *(Y(i,:)-mu_i)';
322     
323     % for deviance test; mnpdf(X,PROB) X and PROB  1-by-k vectors, where k is the
324     % number of multinomial categories
325     Z_i=round( [Y(i,:) 1-sum(Y(i,:))]*nn(i) ); %abs. frequencies
326       
327     L1=mnpdf(Z_i, [mu_i 1-sum(mu_i)]);    l1=log(L1);
328     L2=mnpdf(Z_i, Z_i/nn(i));  l2=log(L2);
329     dev(i)=l1-l2;
330 end
331 
332 %Estimated standard errors for the components of the MLE
333 SE=sqrt(diag(inv(F)));
334 
335 %Estimated variance matrix for the MLE
336 V_beta=inv(F);
337 
338 %Testing H_0: beta_i=0 (t-statistics, p-values)
339 T=beta./SE; p_beta=2*(1-normcdf( abs(T) ) );
340 
341 %for goodness-of-fit tests
342 CHI2=sum(chi2); DEV=-2*sum(dev);
343 df=n*q-p*q; % degrees of freedom
344 %p-values
345 pCHI2=1-chi2cdf(CHI2,df); pDEV=1-chi2cdf(DEV,df);
346 fit=[CHI2,pCHI2,DEV,pDEV,df];
347 end
348 
349 end
350 
351 
352 
353 
354 
355 
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