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Abstract

An enterprise is cutting circular objects, so called rounds, out of so called coils, i.e. steel
strips wound into rolls. The enterprise is interested in cutting the desired number of rounds
with minimal trim loss where some restrictions due to the production process have to be
taken into consideration. In the past the steel producer delivered coils in different widths
ordered by the enterprise whereas they are produced in an international standard width of
1250 mm. Therefore the steel producer wants to deliver only coils in international standard
widths or pieces subdivided from standard coils to avoid unusable coil remainders. The
producer offers to compensate for the increasing amount of trim loss at the enterprise by
a price reduction. This paper describes a method in order to give an upper bound for the
increase in trim loss for a given production program, if the offer will be accepted.

Zusammenfassung

In einem stahlverarbeitenden Unternehmen werden aus Stahlblechbahnen Kreise gestanzt,
wobei einige produktionstechnische Restriktionen zu beachten sind. Bislang wurden vom
Stahlerzeuger die Stahlblechbahnen in beliebigen Breiten geliefert. Da diese Bahnen aber in
der internationalen Standardbreite von 1250 mm produziert werden, musste der Produzent
bislang die ungenutzten Teilbahnen irgendwie verwerten. Daher möchte der Stahlerzeuger
nur noch Bahnen in der Standardbreite liefern, die er auch in Teilbahnen zerschneiden
würde. Zum Ausgleich würde er sich durch eine Preissenkung am Zusatzverschnitt beim
verarbeitenden Unternehmen beteiligen. In der Arbeit wird eine Methode beschrieben,
mit der eine obere Schranke für die dadurch bedingte Zunahme des Verschnitts zu einem
vorgegebenen Produktionsprogramm bestimmt werden kann.

KEYWORDS: Trim loss, cutting stock, optimization, Kepler’s conjecture, sphere packings

MSC2010 Subject Classification: 52C26, 52C15, 11H31, 05B40, 90C90

1 Introduction

An enterprise E is cutting circular objects, so called rounds, out of coils, i.e. steel strips wound into
rolls. The enterprise is interested in cutting the needed number of rounds with minimal trim loss

1Talks on this topic were given at the Joint Statistical Seminare Marburg–Wroclaw in Wroclaw, 27. 9. 2005, and at
the conference in honour of the 80th birthday of Prof. Dr. Dietrich Kölzow in Erlangen, 22. 7. 2011.

2Karlheinz Fleischer, Philipps-Universität Marburg, Fachbereich Wirtschaftswissenschaften, Abteilung Statistik, Uni-
versitätsstraße 25, D-35037 Marburg, e-mail: k.fleischer@wiwi.uni-marburg.de.
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where some constraints due to the production process have to be taken into consideration. In the past
the steel producer P delivered coils in arbitrary widths according to E’s demand. Since the coils are
always produced in an international standard width of 1250 mm, P has to care about the remains.

P therefore offers E the following deal:
If E would be willing to order only standard coils or subdivided standard coils P would be willing to
compensate for the increasing amount of trim loss by a certain price reduction. For its decision on
accepting the deal or not, E has to estimate the increase in trim loss for his production program.

This paper describes a method to calculate the trim loss for a given production program first for
arbitrary coil widths without further restrictions and additionally for coils subdivided from standard
coils.

In practice some further restrictions due to the cutting process still have to be taken into account.
Additionally, in the second optimization one further restriction occurs, since the twin coils should be
used in nearly the same lengths, as we will see.

About 400 years ago Johannes Kepler [7] considered the problem of the densest packing of spheres. For
which arrangement of identical spheres do we have a minimal amount of space between the spheres?
A short survey through the history of this and similar problems is given by Wills [16]. Leppmeier [9]
presents a nicely readable introduction and gives an overview on sphere packings and related topics.
An introduction from a more mathematical point of view on sphere packings, a lot of related problems
and their connection are also given by Conway & Sloane [1].

Obviously the problem of densest packings of spheres and other objects is related to packing and
cutting stock problems. For which arrangement of objects a maximal number of such objects can
be packed into a given container of fixed size? In two dimensions we could regard it as a barbecue
problem: By which arrangement of (identical) steaks a maximal number of such steaks can be placed
on a (limited) grill?

In this manner of speaking the paper deals with the arrangement of circular steaks on long rectangular
grills only.

In the literature this concrete practical problem together with the relevant restrictions is not yet
considered. Most papers treat cutting stock problems for rectangular pieces.

Dyckhoff et al. [3] mention only three papers dealing with real cutting stock problems with pieces of
other than rectangular shapes until 1984. Lampl & Stahl [8] consider cutting stock problems of spheres
out of certain rectangles, where spheres of different sizes can be cut simultaneously. Niederhausen [11]
just describes a software using a Monte-Carlo-procedure for the determination of optimal cutting
plans of arbitrarily shaped objects out of given rectangles of fixed size. At last Ellinger et al. [4]
treat cutting of different pieces of clothes in the textile industry, which usually are not in the shape
of a circle. Furthermore they use the simplex method of linear optimization in order to determine an
optimal pattern of different objects to satisfy one customer’s orders but not the overall minimization
of the trim loss by arranging the pieces of clothes.

Subsequent papers either consider concrete rectangular cutting problems or sphere packings without
concrete applications in cutting stock or packing problems. The last ones mainly deal with the sausage
conjecture of L. Fejes Tóth [13] in higher dimensions or deduce bounds for the possible number of
(unit-)circles, which can be arranged in a convex area (see Segre, Mahler [12], Groemer [5], Wegner
[14], Wegner [15]).

According to Hinxman [6] the problem treated in this paper can be classified as a 11
2 dimensional prob-

lem, since the length of the rectangular coil is not fixed but has to be minimized under consideration
of some further restrictions.
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2 Overview

First we will describe restrictions due to the production process as well as the handling of these
constraints during the optimization process.

Afterwards we scrutinize possible optimal arrangements of rounds of the same size on a coil of fixed
width. We will find just a few possible arrangements which contain the optimal one. For all these
arrangements trim loss can be calculated simply. This enables us to compute the amount of trim loss,
the proportion of trim loss and the required amount of the coil for every round size and every coil
width under consideration.

Using simple optimization methods we are able to find the optimal coil widths as well as the minimal
trim loss proportion for a fixed number of different coils (which is determined by the stock capacity
or specific requirements of the entrepreneur). Optimization in this paper is realized by the simplex
method of Nelder & Mead [10].

In order to find optimal coil widths for coils which unite to standard coils the same optimization
methods can be used. But then another problem comes up. Optimization will lead to different parts
of a standard coil which are required in very different lengths usually, which means we will have
remainings of some coils which will increase permanently. Hence a modification is described which
ensures a similar usage of twin coils but can unfortunately not guarantee to find the optimum. But
at least it will give an upper bound for the minimal trim loss proportion which is available in an
reasonable amount of time and will be useful for the decision of the enterprise E in the introductory
problem.

The paper concludes with some exemplary computational results.

3 Consideration of restrictions due to the production process

In the present case some restrictions regarding the production of the rounds have to be taken into
account.

1. Rounds must be arranged in a lattice structure, i.e. rounds in each line have to be arranged with
equal space between them horizontally. The rounds of the second line can be shifted to the left
or right compared to the rounds in the first row. Then the rounds in the third row are arranged
in the same way as the rounds in the first row, the rounds in the fourth row are arranged like
the rounds in the second row and so on.

2. For rounds of different size different cutting heads have to be used. In each change of the cutting
head the coil has to be taken out of the machine where usually the coil will be scratched a bit.
Thus always a few metres of the coil length (the exact amount cannot be specified in advance)
are cut off and are loss, too. Hence a small number of changes of the cutting head will be
advantageous which means that all rounds of one size should be cut at the same time with one
cutting head before it is changed.
Moreover cutting of rounds of different sizes from the same part of a coil at the same time will
not be possible. Hence arrangements of different rounds as they are considered in the paper of
Lampl & Stahl [8] are not allowed in our case.

3. Between any two rounds there has to be some space, in german called Innensteg Is (usually
about 3-5 mm).
This restriction can be kept by arranging rounds of fictional radius re = r + 1

2 Is instead of the
real radius r. If two rounds with radius re touch each other then the distance between the
borders of the real rounds is precisely Is.
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4. Some space at the border of the coil is used for the guidance through the machine. This distance
Rs, in german called Randsteg, to the border (usually about 3-4 mm) cannot be used for
rounds, too.
As distance to the border the maximum of Rs and 1

2 Is must be respected. Since Is is already
taken into account by using re the distance to the border must at least be Rse = Rs − 1

2 Is,
which in practice will always be positive.
We can respect this restriction by calculating with an effectively usable coil width of b − 2Rse
instead of the real coil width b.

5. The cutting head can move at most a certain distance a (for the used machine of the manufacturer
it holds a = 425 mm) from the middle of the coil to the left or to the right. Hence the middle
of the furthest round (at the left and also at the right side) can be placed at most in a distance
of a from the middle of the coil.
Thus the maximal coil width which can be used for the arrangement of rounds of radius re due
to the movement restriction of the cutting head will be

2

(
a+ r +

1

2
Is

)
= 2(a+ re) .

Wider coils can be guided through the machine but some space at the border will be unusable.

Observe that this restriction together with the last one can be considered by computing with an
effective coil width of

be = min {b− 2Rse; 2(a+ re)} .

Furthermore observe that the effective coil width depends on the size of the round.

6. Coils of a given thickness are not substitutable by coils of other thicknesses. Hence optimizing
the total trim loss means minimizing trim loss for each thickness separately.

Consideration of restrictions 3 - 5 is illustrated in figure 1.

Remark: Innensteg, Randsteg and a probably not usable part of the coil at the border (see restrictions
3 - 5) is treated as trim loss.

Border of coil Middle of coil

maximal movement a

?
Rs

?
Is︷︸︸︷r

��>
Is

Border of coil Middle of coil

Maximal movement a

︷︸︸︷r︸ ︷︷ ︸
re

?

Rse

C
CO

1
2 Is

Figure 1: Illustration of restrictions 3 - 5

Since the enterprise E has to store all coils of different widths and different thicknesses it usually wants
to use only a small number of different coils, in our case about 4 - 6 coils of each thickness.

4 Some basic relations

The computation of the amount of trim loss uses some simple basic geometric relations, which are
regarded now.
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Because of the placement of the rounds in a lattice structure according to restriction 1, the arrange-
ments of the first two rows will repeat. Therefore, we just focus on a ‘window’, which is determined by
the (vertical) borders of the coils and the (horizontal) lines of the centres of the rounds in the first and
the third row, as illustrated in figure 2. The trim loss proportion of the produced number of rounds
will be the trim loss proportion of the window without considering the first and the last produced row
which is not important according to restriction 2.

q q qh



Figure 2: Window

If the window’s height is called h and m denotes the number of rounds in the first two rows (and
simultaneously the number of rounds in the window) we get

Exploitation proportion: N =
100mr2π

hb
% (1)

Trim loss proportion: V = 100

(
1− mr2π

hb

)
% (2)

In order to compute the exploitation and the trim loss proportion the window’s height h is needed. It
can be found by elementary geometric reflections. In figure 3 we consider certain arrangements which
involve the relevant cases developed later on.

q q

q q
q qh

2

re

h
2

v︷ ︸︸ ︷ q

q q

q q
q q

h
2

v v

Figure 3: Computation of the window’s height

Let v denote the horizontal shift of the rounds of the second row compared to the rounds of the first
row. For both arrangements we can conclude

h

2
=

√
(2re)2 − v2 =

√
4r2e − v2

h = 2
√

4r2e − v2 (3)
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5 Optimal arrangements of rounds of fixed size on a coil of fixed
width

Now we will look for optimal arrangements of rounds on a coil of fixed width. First of all let us assume
that n rounds have to be placed into the first row and develop possibly optimal arrangements of the
rounds. Later on we will be able to conclude which numbers n are really possible or even useful in
the first row.

Thus, let us assume that n rounds have to be put into the first row. Without loss of generality we can
also assume that at most n rounds are placed in the second row (otherwise change rows one and two).

Because of the lattice structure of the rounds there must be either n or n − 1 rounds in the second
row. Henceforth we will denote these kinds of arrangements by (n,n) and (n,n-1) respectively.

In both cases trim loss will be minimal, if the window containing this fixed number m = 2n or
m = 2n− 1 of rounds respectively will have minimal height (see (1)).

Obviously it must hold be ≥ 2nre, otherwise the effective coil width is to small for n rounds in one
row.

Starting with be = 2nre we will develop favourable arrangements and then consider how to find a
minimal window height for the rounds if the effective coil width increases.

The results are summarized in table 1 together with important characteristics.

First of all, let us assume be = 2nre which means that the n rounds in the first row have to lie directly
side by side without leaving any space between them.
Then for an (n,n)-arrangement the second row has to look like the first row as illustrated in figure
4a), because any slight shift to the right requires a slightly wider coil.

For an (n,n-1)-arrangement the window’s height is going to be minimal, if the n − 1 rounds of the
second row are positioned as far upwards as possible as shown in figure 4b).

. . .

a)

. . .

b)

Figure 4: Possible arrangements for be = 2nre

Obviously, for other arrangements the window height will increase in both cases leading to a higher
amount of trim loss.

A simple comparison of the usable coil proportion shows that the (n,n)-arrangement in figure 4a) will
be better than the (n,n-1)-arrangement in figure 4b) if and only if n < 2 +

√
3, i.e. n < 4.

What happens, if the effective coil width is slightly increasing?

Let us consider (n,n)-arrangements first. In this case the rounds in the second row can be shifted to
the right into the gap between the rounds of the first row. Thereby the window’s height is decreasing
compared to the placement as in figure 4a) with unused coil space in the first and third row at the
right border. An arrangement as shown in figure 5 arises.3

3Those arrangements are not considered by the enterprise but will be considered in this paper. A simple command
can exclude this case in the software from further consideration if desired.
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. . .

Figure 5: (n,n)-arrangement for 2nre ≤ be ≤ (2n+ 1)re

If we would shift apart the rounds in the first row in case of be ≤ (2n + 1)re then the rounds in the
second and third row have to move up thereby increasing the window’s height as well as the trim loss.

Such an arrangement where each round in the second row touches exactly one round of the first row
is possible only if be − 2nre < re. For be − 2nre = re we obtain the arrangement in figure 6.

. . .

Figure 6: (n,n)-arrangement for be = (2n+ 1)re

Hence, in case of 2nre ≤ be ≤ (2n + 1)re the arrangement in figure 5 is possible which contains the
arrangements in figures 4a) and 6 as special cases for be = 2nre and be = (2n+ 1)re, respectively.

If we increase the effective coil width in figure 6 or in figure 4b) then the window’s height would
decrease by shifting the rounds apart in each row as shown in figure 7. The more the coil width

. . .

a)

. . .

b)

Figure 7: Possible arrangements with some space between rounds

increases the more the window’s height decreases, because the rounds of the second row would move
downwards. The minimal height of the window is obtained, if the rounds of the third row touch the
rounds of the first row as shown in figure 8. For a wider coil the additional space cannot be used to
reduce the window’s height, if we hold on to (n,n)- or (n,n-1)-arrangements.

The (n,n)-arrangement in figure 8a) requires be ≥ (2n− 1)
√

3re + 2re and the (n,n-1)-arrangement in
figure 8b) be ≥ 2(n− 1)

√
3re + 2re.

Hence the (n,n)-arrangement in figure 7a) is possible only if (2n + 1)re ≤ be ≤ 2re + (2n − 1)
√

3re.
As specific cases the arrangements in figure 6 (left bound) and figure 8a) (right bound) are contained.
Also, the (n,n-1)-arrangement in figure 7b) is possible only if 2nre ≤ be ≤ 2re + 2(n − 1)

√
3re and

contains the arrangements in figure 4b) (left bound) and in figure 8b) (right bound) as special cases,
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. . .

a)

. . .

b)

Figure 8: Arrangements with maximal space between the rounds

too.
The assignments in figures 8a) and 8b) are optimal for (n,n)- and (n,n-1)-arrangements respectively,
where the additional space at the right border cannot be used to decrease the trim loss for fixed n.
Observe, that we only consider (n,n)- and (n,n-1)-arrangements for fixed n so far. Trim loss might be
lower for (n+1,n+1)- or (n+1,n)-arrangements .

Table 1 summarizes which arrangements have to be checked for fixed possible and useful n in order to
find the optimal arrangement (n,n)- or (n,n-1)-arrangement which minimizes the trim loss for fixed coil
width b and fixed radius r of a round. The horizontal shift v and the window’s height h is computed
according to the elementary geometric considerations in section 4 and formula (3).

Table 1: Summary of possible cases

Arrangement Fig. Condition v h

(n,n) 5 2nre ≤ be ≤ (2n+ 1)re be − 2nre 2
√

4r2e − v2

(n,n) 7a (2n+ 1)re < be ≤ [(2n− 1)
√

3 + 2]re
be − 2re
2n− 1

2
√

4r2e − v2

(n,n) 8a be > [(2n− 1)
√

3 + 2]re
√

3re 2re

(n,n-1) 7b 2nre ≤ be ≤ 2re[(n− 1)
√

3 + 1]
be − 2re
2(n− 1)

2
√

4r2e − v2

(n,n-1) 8b be > 2re[(n− 1)
√

3 + 1]
√

3re 2re

Furthermore, we are now able to determine which numbers n of rounds in the first row are possible

and useful. First of all it must hold 2nre ≤ be, consequently n ≤ be
2re

that means n ≤ nmax =
[
be
2re

]
,

where [x] denotes the largest integer less or equal to x.
The smallest useful n is given, if the largest possible distance between the rounds in the first row as
shown in figure 8b) occurs. Hence, nmin is just the maximal number n for which we have

be ≥ (2n− 1)
√

3re + 2re

that means

n ≤ be − 2re

2
√

3re
+

1

2

and thus

nmin =

[
be − 2re

2
√

3re
+

1

2

]
.

Summarizing these results we can see that for a given effective coil width be only numbers n from the
following interval (4) are possible respectively useful as the number of rounds in the first row:[

be − 2re

2
√

3re
+

1

2

]
≤ n ≤

[
be
2re

]
. (4)
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Hence, for given coil width b and radius r we can calculate be and re as well as the minimal and
maximal number for n according to the interval (4). Then we can check the trim loss for each n out
of the interval (4) and the accompanying (n,n)- and (n,n-1)-arrangement according to table 1. From
this finite and small number of cases we can easily find the optimal arrangement, that means the one
with minimal trim loss.

6 Optimizing the coil widths for arbitrary choice of the width

Above we described how to find the optimal arrangement together with the amount and the proportion
of trim loss for a given size of the round, a given coil width and the desired number of rounds of this
size to be produced.

Now let {(r1,m1), . . . , (rl,ml)} be the desired production program where ri denotes the radius and
mi the demand of round i.

For a given number k of different coils with fixed widths b1, . . . , bk we can place each round on each
coil in order to find the optimal coil, the minimal trim loss proportion and the total amount of trim
loss for the whole production program by summing over all different rounds. This means that for a
fixed production program the trim loss proportion for a given vector (b1, . . . , bk) of coil widths is the
value f(b1, . . . , bk) of a function f . Our target is to determine the global minimum of this function f .

This minimum can be found by usual optimization methods. The author cannot recommend gradient
methods in this case, since the target function (dependent on the production program) often is very flat
with several local minima and might be not differentiable at some points. As an example illustrations
of the target function for one and for two coils are shown in figures 9 and 10. Additionally for two coils
the contour lines of the target function are given in figure 11. In this picture the stars mark the global
minima at about 1090 and 919 mm and by symmetry at (919,1090), too. It should be mentioned that
all these plots were made using the software R [2].

600 800 1000 1200

0
5

10
15

20
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30

Trim loss for 1 coil

Coil width
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m 
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Figure 9: Target function for one coil

Computations were carried out using the simplex method of Nelder & Mead [10]. For unfeasible coil
widths, e.g., bi < 0 or bi > 1250 the value of the target function was set to 100%.

Since the simplex method may stop in a local minimum several computations were run using randomly
generated starting values.
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Figure 10: Target function for two coils

Contour lines for 2 coils
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Figure 11: Contour lines of the target function for two coils

The optimal coil widths are found within a few seconds with sufficient precision on a usual personal
computer for the considered production program. Observe that in this case the producer delivers
arbitrary coil widths and takes care about the second part of each standard coil. Observe, that trim
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loss in this case means the unneeded amount or proportion only for the delivered coil.

7 Optimizing coil widths for standard coils

In the preceding section a method is described to determine optimal coil widths without other restric-
tions than bi ≤ 1250 on the widths for a given production program. Now the aim is to find the amount
of increase of the trim loss proportion, if only standard coils are chosen. Subdividing a standard coil
in more than two parts small coils results in small coils which are only usable for a few small sizes of
rounds. Hence we only consider the partition of a standard coil in two parts. A generalization for a
partition in three or more coils is straightforward.
Below we will speak of twin coils if they are both parts of a standard coil.

For k = 1 we just have one standard coil where trim loss can be calculated easily. For an even number
k always two coils must complete to a standard coil, whereas for an odd number k an additional
standard coil is used.

If at most k coils of different widths are desired then (up to renumbering) it holds

bi + bi+[k/2] = 1250 i = 1, . . . ,

[
k

2

]
,

where bj denotes the width of coil j (j = 1, . . . , k).
For odd k additionally bk = 1250 must hold.
Hence we can use the first [k/2] coil widths as variables, while the others are determined according to
the restrictions above.

It seems simple to find the optimal coil width in the same manner as before, e.g. using the simplex
method of Nelder & Mead or other optimization methods. If the restrictions 0 ≤ bi ≤ 1250 (i =
1, . . . , [k/2]) do not hold, the trim loss proportion is set to 100%. Specific cases, e.g. if for an
additional coil the trim loss proportion cannot be reduced, should result e.g. in a solution bi = 1250
and bi+[k/2] = 0 for some i or a solution with two twin coils which are equal to other twin coils.

The straight line in figure 12 represents the points (b1, b2) with b1 + b2 = 1250. We are looking for an
optimum on this straight line. The optimal value is located near the point (345, 905), marked by a
star.

Unfortunately the optimum on this line is not really what we are looking for, because an important
implicit restriction is not taken into account so far. To come upon the problem let us assume as an
example we find the optimal coil widths b1 = 500, b2 = 750 of a twin coil. The value of the target
function f just gives the trim loss proportion, if every round is cut out of ‘its best coil’, that means
out of that coil, where the least trim loss remains. But if we look at the needed lengths of both coils
we may find that we need 10000 metres of the first part of the coil but 20000 metres of the second
one. Hence we will have an increasing amount of remaining coil parts which we do not use.
This means we are actually looking for a solution where twin coils are used in almost identical lengths.

In order to achieve a rather similar use of twin coils the following procedure is suggested:
First, look for the optimal assignment of the rounds to the coils without regarding this restriction as
described above. Then compute the used lengths for each coil according to the production program.
The greater length of twin coils determines the order length hence the unused area of the shorter twin
coil is treated as trim loss (10000 metres for the coil of width 500 mm in the example above) and thus
increases the trim loss proportion.

If twin coils are used in very different lengths it might be better not to cut some rounds out of their
‘best’ coil. The rearrangement of rounds from coils with larger length needed than its twin to other
coils might decrease the total amount of trim loss. Hence, in order to find the minimal trim loss every
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Contour lines for 2 coils
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Figure 12: Contour lines of the target function for two coils

possible assignment of the rounds to the coils might have to be taken into account. For l different
sizes of rounds and k coils kl assignments are possible, a number which is increasing very quickly with
increasing k or l.
Observe, that for our first procedure, which looks for the best coil for each round, just k · l assignments
have to be checked. For l = 20 different rounds and k = 5 coils we have 520 ≈ 1014 possibilities instead
of 5 · 20 = 100 = 102 according to our first procedure.
Since the total amount of trim loss can be calculated only at the end it is not possible to decide in
advance which assignments might be advantageous.
Also observe that all of those assignments must be carried out within every optimization step.

Hence we use the following modification to find a better solution:
We use our first procedure, where every round is assigned to its best coil, as a starting point. Then we
rearrange every round from one coil to another coil in order to decrease the amount (or proportion) of
trim loss. We try one round after the other and start again with the first round unless no rearrangement
of a round to another coil leads to a reduction of the trim loss proportion. Even if this solution must
not be a minimum it certainly gives an upper bound for the trim loss proportion for this production
program when only standard coils are ordered.

8 Some Examples

Let us assume the desired production program in table 2 with l = 20 different rounds. We computed
the optimal coil widths and the amount of trim loss for k = 1, 2, . . . , 5 coils according to the above
mentioned procedure (optimal widths rounded to integer values of milimeters).

‘Case A’ denotes the case, where coil widths can be chosen arbitrarily, whereas ‘case B’ indicates the
case of twin coils. Always 20 vectors of randomly selected starting values for the coil widths were
selected for the calculations. Coils are ordered in increasing lengths.

For k = 1 a coil of width 1106 mm would be optimal. If (case B) a standard coil would be used
the trim loss percentage would increase by about 6 percentage points. For the assumed production
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Table 2: Production program

Round Radius Needed amount Round Radius Needed amount
No i [mm] [pieces] No i [mm] [pieces]

1 50 12000 11 125 65000
2 55 4500 12 130 13500
3 60 6000 13 140 4000
4 70 6500 14 150 24000
5 75 10000 15 160 14000
6 90 2500 16 175 10000
7 100 12000 17 180 2500
8 110 14000 18 200 8000
9 120 110000 19 225 10000

10 122.5 35000 20 250 2000

Table 3: Results for one coil

Case A Case B
k = 1 Coil width Coil area Coil length Coil width Coil area Coil length

[mm] [m2] [m] [mm] [m2] [m]

Coil 1 1106 24181.68 21864.09 1250 26096.92 20877.54

V 20.35 % 26.19 %

program in case B the needed area (and hence the amount of trim loss) would be about 2000 m2

larger.

Table 4: Results for two coils

Case A Case B
k = 2 Coil width Coil area Coil length Coil width Coil area Coil length

[mm] [m2] [m] [mm] [m2] [m]

Coil 1 915 11717.63 12806.15 308 5987.18 19438.89
Coil 2 1095 11768.83 10747.79 942 19270.09 20456.58

V 17.99 % 24.67 %

Using two coils instead of one would allow to reduce the amount of trim loss by more than two
percentage points if no restrictions on the coil widths are made. If a standard coil divided into two
twins of widths 308 mm and 942 mm has to be ordered the trim loss would be about 6.7 percentage
points higher than in the unrestricted case. Nevertheless about 1000 m more are needed from the
wider coil than from the smaller one. But compared to the one-coil case more than 400 m less are
needed in the two-coil case.

Using three coils instead of two in case A the trim loss proportion would be less than 17%, whereas
for two standard coils, one subdivided into twins of widths 308 mm and 942 mm the proportion of
trim loss would increase by nearly 6 percentage points. The used lengths of the twin parts coincide
rather perfectly.

If four coils are used compared to the three coils solution the trim loss proportion could further be
reduced by about 0.7 percentage points. In case B a solution is found where one standard coil should
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Table 5: Results for three coils

Case A Case B
k = 3 Coil width Coil area Coil length Coil width Coil area Coil length

[mm] [m2] [m] [mm] [m2] [m]

Coil 1 915 9936.40 10859.45 308 4558.56 14800.53
Coil 2 970 3861.95 3981.18 942 13936.57 14794.66
Coil 3 1095 9386.91 8572.52 1250 6389.11 5111.29

V 16.92 % 22.61 %

Table 6: Results for four coils

Case A Case B
k = 4 Coil width Coil area Coil length Coil width Coil area Coil length

[mm] [m2] [m] [mm] [m2] [m]

Coil 1 915 7864.01 8594.54 150 278.20 1854.67
Coil 2 975 3862.49 3961.53 307 2089.59 6806.47
Coil 3 1095 9386.91 8572.52 943 6475.22 6866.61
Coil 4 1243 1876.93 1510.00 1100 15427.45 14024.96

V 16.22 % 26.24 %

be subdivided into parts with widths 150 mm and 1100 mm and the second one into twins of widths
307 mm and 943 mm. From the smallest coil almost nothing is used whereas very much is used from
the widest coil. The difference in lengths of about 12 km is treated as trim loss again. The proportion
of trim loss would be about ten percentage points higher than in case A and surprisingly would also
exceed our solution in the three coil case by about 3.6 percentage points. This observation is due to
unfavourable starting values and to the suboptimality of the procedure, too.
For rounds which are assigned to rarely used coils every reassignment of them could not decrease the
amount of trim loss further.
A rearrangement of rounds will not lead to the real optimum in general.
Even if an increase in the number of simulations can help we will describe a simple correction in the
software program to avoid this case in the next section.

Table 7: Results for five coils

Case A Case B
k = 5 Coil width Coil area Coil length Coil width Coil area Coil length

[mm] [m2] [m] [mm] [m2] [m]

Coil 1 850 1929.80 2270.35 154 498.64 3237.90
Coil 2 915 7864.01 8594.54 336 1897.04 5645.95
Coil 3 979 2883.29 2945.14 914 5157.82 5643.13
Coil 4 1000 1236.40 1236.40 1096 3551.21 3240.15
Coil 5 1095 9077.02 8289.52 1250 14072.66 11258.13

V 16.22 % 23.50 %

Using five instead of four coils can not reduce trim loss for arbitrary coil widths in our example. In
case of twin coil widths trim loss proportion can be decreased by nearly 3 percentage points, but still
is more than 7 percentage points higher than in the unrestricted case. Used lengths of twin coils are
nearly identical. But it should be noticed that the result is still worse than in the three coil case,
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which again indicates the suboptimality of the procedure.

9 Some final comments

In order to assess the actually computed trim loss proportion it should be noticed that the minimum
value for an arrangement of circles in the plane would be 1− π

2
√
3
≈ 9.31% (see [9], S. 46). But such a

small value is only possible in practice for very wide coils, very small rounds and very small values of
Rs and Is. For the rounds of the above production program it was never observed a smaller amount
of trim loss than 14.8%.
Even if computations can stop in a local minimum the results will give at least an upper bound of the
increasing amount of trim loss.

Only for an even number of coils we often found that the smallest and the largest twin coils in case B
are used in very different lengths. Hence we would recommend an odd number of coils.

Even if the procedure described above usually shows stable and plausible results, it has to be men-
tioned that especially in the restricted case sometimes only suboptimal solutions have been found as
mentioned above. Therefore, the number of simulations should not be choosen too small.
Furthermore, we recommend calculations for coil numbers 1, 2, . . . up to a maximum number of coils.
In this manner we can recognize also, for which number of coils the proportion of trim loss is decreasing
only a little by using an additional coil but for the enterprise it requires to store this additional coil.

Some simple modifications are recommended for practical use:

To avoid worse results for a greater number of coils, as discovered in the example, it might be possible
– besides the increase of the number of starting values – to use the optimal coil widths for the actual
coil number k as starting values for calculations with the increased coil number k + 1. In case A the
starting value for the additional coil could be 1250 mm. In case B for even k we can also use an
additional coil with width 1250 mm. For odd k the additional coil k+ 1 should be used as twin of the
coil with initial width 1250 mm, what means that its starting width should be set to 0 mm.

Instead of deterministic rearranging of the rounds, where the achievable optimum depends on the
order of the rounds it is possible to rearrange the rounds randomly. This would increase the number
of steps but will provide a more or less high probability of finding the global optimum up to a given
accuracy.

Now let us reconsider our starting question for the enterprise:
Should it accept the offer of the steal producer or not?
For our production program we would conclude that the offer should be accepted if the price reduction
would be at least about 7%.
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