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Abstract

The item count technique (ICT) is a helpful tool to conduct studies on sensitive characteristics
such as tax evasion, corruption, insurance fraud or drug consumption. There have been several
interesting developments on the ICT in recent years. However, some approaches are incomplete
while some research questions can not be tackled by the ICT so far. For these reasons, we broaden
the existing literature in two main directions. First, we generalize the single sample count (SSC)
technique, which is a simplified version of the original ICT, and derive an admissible estimate for
the proportion of persons bearing a stigmatizing attribute. Moreover, we present both a Bayesian
and a covariate extension of the generalized SSC technique. The Bayesian set up allows the in-
corporation of prior information into the estimation and thus can lead to more efficient estimates.
The covariate extension is useful to conduct regression analysis. Second, we establish a new ICT
that is applicable to multicategorical sensitive variables such as the number of times a respondent
has evaded taxes. The estimation of the distribution of such attributes was not at all treated
in the literature on the ICT so far. Therefore, we derive estimates for the marginal distribution
of the sensitive characteristic, Bayesian estimates and regression estimates corresponding to our
multicategorical ICT.

Zusammenfassung

Die Item-Count-Technik (ICT) ist eine hilfreiche Methode zur Durchführung von Studien über sen-
sitive Merkmale wie Steuerhinterziehung, Korruption, Versicherungsbetrug oder Drogenkonsum.
Die Literatur der letzten Jahre brachte einige interessante Entwicklungen bezüglich der ICT her-
vor. Einige Ansätze sind jedoch unvollkommen und manche Forschungsfragen lassen sich bisher
überhaupt nicht mit Hilfe der ICT untersuchen. Daher erweitern wir mit diesem Artikel die vorhan-
dene Literatur in zwei Hauptrichtungen. Zum einen verallgemeinern wir die Single-Sample-Count-
Technik (SSC-Technik), welche eine vereinfachte Version der ursprünglichen ICT darstellt, und
leiten einen zulässigen Schätzer für den Anteil der Leute, die die sensitive Eigenschaft besitzen,
her. Weiterhin präsentieren wir eine Bayes-Erweiterung und eine Kovariablen-Erweiterung der ver-
allgemeinerten SSC-Methode. Die Bayes-Erweiterung ermöglicht die Einbeziehung von Vorwissen
in die Schätzung. Die Kovariablen-Erweiterung ist nützlich für Regressionsanalysen. Zum anderen
entwickeln wir eine ICT, die anwendbar ist für mehrkategoriale Merkmale wie etwa die Anzahl, wie
oft jemand Steuern hinterzogen hat. Bezüglich dieser ICT leiten wir den Likelihood-Schätzer für
die Randverteilung der sensitiven Variable, Bayes-Schätzer und Regressionsschätzer her.

KEYWORDS: Sensitive question; Socially desired answer; Randomized response; Expectation
maximization algorithm; Bayesian inference; Logistic regression

1Philipps-University Marburg, Department for Statistics (Faculty 02), Universitätsstraße 25, 35032 Marburg,
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1 Introduction

The item count technique (ICT) is a method to elicit truthful answers from respondents in surveys
on sensitive topics. The basic idea of the ICT, which was originally proposed in Miller (1984) is
as follows. The interviewees are not requested to answer a sensitive question such as “Have you
ever evaded taxes?” directly. Instead they receive a list consisting of the sensitive question and
some inquiries on nonsensitive items, e.g., “Is your birthday in the first half of the year?”, “Do
you have more than one sibling?” or “Is your telephone number odd?”, and are introduced to
report only the total number of “yes” answers. Replies to individual questions are not revealed.
This scheme protects the interviewees’ privacy and yields increased cooperation compared with di-
rect questioning. In particular, answer refusal and untruthful socially desired responses are reduced.

An ICT approach has been applied in various fields. For example, studies on drug use, theft
by employees, shoplifting, buying stolen goods, attitudes towards immigrants, racism, undeclared
work, voter turnout, and eating disorder are available in the literature. For a detailed list of articles
containing concrete studies conducted with the ICT, we refer, for instance, to Tian and Tang (2014,
p. 12) and Blair and Imai (2012, Section 1).

To estimate the proportion of persons in the population having the sensitive attribute (e.g., having
evaded taxes) from ICT data, the so-called difference-in-means estimator is applied in many arti-
cles. This estimator possesses a simple representation, however, it may fall out the interval [0, 1].
Tsuchiya (2005) considers a discrete onedimensional covariate and derives estimators for the pro-
portion of persons having a sensitive outcome among the persons possessing a certain value of the
covariate. Imai (2011) describes regression analysis for the ICT. In particular, he allows arbitrary
covariates and derives a nonlinear least square estimator and a maximum likelihood (ML) estimator
(MLE). As a specific feature, the estimations in Imai (2011) involve a certain model for the number
of affirmative answers to the nonsensitive questions. Blair and Imai (2012) build upon Imai (2011)
and develop methods to estimate the social desirability bias as function of the covariates, to tackle
multiple sensitive questions, to improve the efficiency, and to detect and correct failures of the
ICT. The work of Imai (2011) is also the fundament for Kuha and Jackson (2013), who propose a
faster algorithm for the ML estimation that additionally delivers an asymptotic variance estima-
tion automatically. Moreover, they suggest further possible specifications for a model regarding the
nonsensitive questions. Trappmann et al. (2014) introduce the item sum technique, which can be
applied to estimate the mean of a quantitative sensitive attribute. The estimation methods in the
articles mentioned above demand to divide the respondents in two groups, a control and a treat-
ment group. Here, the respondents in the treatment group contribute information on the sensitive
characteristic whereas persons in the control group provide only information on the nonsensitive
items. Regarding this, Petroczi et al. (2011) describe a version of the ICT (the so-called single
sample count (SSC) technique) that gets along without control group and can be applied when the
distributions of the nonsensitive items are known.

Despite the interesting developments in recent years, the methodological instruments for the ICT
still need important extensions and improvements. For instance, the SSC approach by Petroczi et
al. (2011) considers only the case of exactly four nonsensitive questions where each nonsensitive
characteristic has a Bernoulli(1/2) distribution. Moreover, they derive an estimator for the pro-
portion of persons bearing the stigmatizing attribute that can attain inadmissible values outside
[0, 1]. These practical problems motivate us to enhance the work of Petroczi et al. (2011) by
dealing with an arbitrary number of innocuous items whose distributions are not restricted to the
Bernoulli(1/2) case, and to develop a feasible estimator in [0, 1]. Here, we show that the occurring
data situation corresponds to a special missing data pattern and apply the expectation maximiza-
tion (EM) algorithm to obtain the valid estimator. We establish bootstrap variance estimates for
our estimator as well as bootstrap confidence intervals. Additionally, we demonstrate the efficiency
gains that can be realized by the ICT without control group. Furthermore, we derive both a
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Bayesian and a covariate extension for the generalized SSC procedure. The Bayesian extension is
motivated by the fact that sometimes prior information (e.g., from a previous study) is available
and should be incorporated into the estimation. The covariate set up enables the researcher to
study the dependence of the sensitive variable on nonsensitive exogenous quantities.

Another problem that has not been addressed in the literature on the ICT so far is the estimation
of the distribution of multichotomous sensitive characteristics such as income (divided in income
classes) or the number how often one has conducted insurance fraud. For this reason, we propose
an extension of the ICT to polychotomous sensitive attributes with an arbitrary number of cate-
gories in the second part of this paper. In this context, we derive estimates for the unconditional
distribution of the sensitive variable, different Bayesian estimates that enable the exploitation of
prior knowledge, and regression estimates that are useful for the investigation of the influence of
nonsensitive explanatory variables on the polychotomous sensitive quantity.

The paper continues with a review of the ICT by Miller (1984) in Section 2. In Section 3, we
present extensions and improvements of the ICT according to Petroczi et al. (2011). In Section
4, we establish an ICT for polychotomous sensitive variables. Finally, concluding remarks are
available in Section 5.

2 Miller’s item count technique

The item count technique according to Miller (1984) is suitable to gather data on a binary sensitive
characteristic. Here, the respondents are randomly divided into a control group and a treatment
group. The respondents in the control group receive a list with J nonsensitive questions and have
to reveal the number how often they would have to give a “yes” response, i.e., they reply a number
between 0 and J . In the treatment group, a list consisting of the same nonsensitive questions
and a sensitive question is presented to the interviewees, who have to provide the total number of
affirmative answers to these J + 1 questions, i.e., a number between 0 and J + 1 must be written
in the questionnaire or told to the interviewer.

Formally, let Uj ∈ {0, 1} (j = 1, ..., J) and Y ∈ {0, 1} be a nonsensitive and sensitive attribute,
respectively. E.g., U1 and U2 may indicate whether a person went to a sporting event in the last
year and has an even telephone number, respectively. Regarding Y , the value 1 typically repre-
sents a stigmatizing attribute (e.g., person has evaded taxes) whereas the value 0 stands for the
corresponding nonstigmatizing inverse (person has never evaded taxes). Define T = 0 if a person
is assigned to the control group and T = 1 if a person belongs to the treatment group. Moreover,
set Z = U1 + ... + UJ . Then, the required answer S of a person in the control group is Z while
interviewees in the treatment group are introduced to give an answer Z + Y . In the control group,
nobody is confronted with any sensitive item so that truthful answers can be supposed. In most
cases, the privacy of the persons in the treatment group is protected and truthful answer can be
expected, because only a total and not the value of Y is reported. Notice, however, that the protec-
tion of the privacy can fail when all nonsensitive items apply (i.e., U1 = ... = UJ = 1). In this case,
an answer J + 1 implies Y = 1. To minimize this “ceiling effect”, one should select nonsensitive
questions for which only few persons would give throughout “yes” answers. Furthermore, if none
of the nonsensitive characteristics applies, Y = 0 follows from an answer 0. However, if Y = 0
represents a nonstigmatizing outcome (e.g., no tax evasion), this “floor effect” is less problematic
than the ceiling effect.

Let us assume that a simple random sample of n persons has been drawn and denote the ith
sample unit’s outcome corresponding to Uj , Y , T , Z, S by Uij , Yi, Ti, Zi, Si, respectively. Further,
denote the proportion of persons in the universe having Y = 1 by π1, set π0 = 1 − π1, and define
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π = (π0, π1)T . To estimate π1, the difference-in-means estimator

P̂(Y = 1) = n−1
T

n∑
i=1

TiSi − n−1
C

n∑
i=1

(1− Ti)Si (with nT =

n∑
i=1

Ti and nC = n− nT ) (1)

is used in many articles. Unfortunately, this estimator can attain negative values and values greater
than one. We remark that an ICT with a slightly different procedure and a corresponding estimator
are proposed by Chaudhuri and Christofides (2007). This modified version of the ICT avoids a
ceiling effect, but also inheres floor effects. Moreover, the estimator in Chaudhuri and Christofides
(2007) can attain values outside [0, 1], too.

3 A simplified item count technique without control group

Regarding the ICT from Section 2, the respondents in the control group do not contribute infor-
mation on the distribution of Y . This fact arises the question if it is possible to get along without
control group. A variant of the ICT without control group was first mentioned in an article by
Petroczi et al. (2011) on a study on Mephedrone use. Petroczi et al. (2011) call their version
of the ICT the single sample count technique. However, these authors consider only the case of
J = 4 nonsensitive items, assume that the distribution of Uj (j = 1, ..., 4) is known and equal to a
Bernoulli distribution with probability of success 1/2, and suggest a moment-based estimator for π1

that can fall out the interval [0, 1]. These practical limitations motivate us to extend the approach
by Petroczi et al. (2011) and develop admissible estimates between 0 and 1 for the proportion π1.
Moreover, we develop Bayesian estimates and present a method that enables regression analysis,
i.e., the investigation of the influence of covariates on the sensitive item.

3.1 General procedure and ML estimation

Let us consider the following general procedure for an ICT without control group. Each interviewee
in the sample is supplied with a list of J (J ∈ N arbitrary) nonsensitive questions supplemented by a
question on a sensitive topic and is instructed to reveal only the total number of affirmative answers.
Continuing the notation from Section 2, each respondent gives the answer S = Z+Y ∈ {0, ..., J+1}.
Compared with Section 2, we now only have a treatment group and every respondent contributes
information on the distribution of Y . We make two assumptions:

the distribution of Z is known and (2)

Z and Y are independent. (3)

We discuss these assumptions in Subsection 3.3. To estimate the marginal distribution of Y , we
propose maximum likelihood estimation rather than moment estimation, because the MLE for π1 is
always admissible, i.e., in [0, 1]. To compute the MLE, the EM algorithm due to Dempster, Laird,
and Rubin (1977) is beneficial. Hereto, note that S = (S1, ..., Sn) describes our observed data while
Y = (Y1, ..., Yn) and Z = (Z1, ..., Zn) are missing values. We denote the proportion of individuals
in the population having Z = i with φi (i = 0, ..., J) and set φ = (φ0, ..., φJ)T , that is, φ is known
due to (2). Further, set λ = (λ0, ..., λJ+1)T where λi is the proportion of units in the population
possessing S = i and assume that the n sample units were drawn by simple random sampling with
replacement (SRSWR). Let s = (s1, ..., sn), y = (y1, ..., yn), and z = (z1, ..., zn) be the realizations
of S, Y, and Z, respectively. The observed data log-likelihood is given by

lobs(π; s) =

n∑
i=1

logP(Si = si) =

n∑
i=1

log [φsi · π0 + φsi−1 · π1]
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with the convention φx = 0 if x /∈ {0, ..., J}. Similar conventions are used permanently in the
paper, either explicitly or implicitly. For the complete data log-likelihood,

lcom(π) = lcom(π;y, z, s) =

n∑
i=1

logP(Yi = yi, Zi = zi, Si = si) =

=

n∑
i=1

logP(Yi = yi) + const. = log π0 ·
n∑
i=1

1{0}(yi) + log π1 ·
n∑
i=1

1{1}(yi) + const.

holds. Applying the EM algorithm to maximize lobs, each iteration consists of an E step and a M

step. When π(t) = (π
(t)
0 , π

(t)
1 )T is available from the preceding iteration t, we calculate an estimated

complete data log-likelihood in the E step of iteration t+ 1 by

l̂com(π) = Et(lcom(π;Y,Z,S) |S = s) = log π0 ·
n∑
i=1

Et(1{0}(Yi)|S = s)

+ log π1 ·
n∑
i=1

Et(1{1}(Yi)|S = s) + const. =: log π0 · v(t)
0 + log π1 · v(t)

1 + const. (4)

where Et and Pt (see below) mean the calculation of expectation and probability assuming π(t) is
the true parameter. We can further compute the expectations

Et(1{j}(Yi)|S = s) = Pt(Yi = j|Si = si) =
φsi−j · π

(t)
j

φsi · π
(t)
0 + φsi−1 · π(t)

1

(j = 0, 1).

Notice, we have the compact representation

(
v

(t)
0

v
(t)
1

)
=

φ .∗




1/λ
(t)
0

...

1/λ
(t)
J+1

 · (π(t)
0 , π

(t)
1 )



T

· nT1 =: P (t) · nT1 . (5)

Here, the entry (i, j) of the 2 × (J + 2) matrix P (t) is equal to Pt(Y = i|S = j) (i = 0, 1;
j = 0, ..., J + 1), the entry (i, j) of the (J + 2)× 2 matrix φ equals φi−j (i = 0, ..., J + 1; j = 0, 1),

λ(t) = (λ
(t)
0 , ..., λ

(t)
J+1)T = φ · π(t), n1 = (n10, ..., n1,J+1) where n1i equals the number how often

answer i occurred in the sample, and .∗ denotes componentwise multiplication. The maximum of
the function l̂com, which is calculated in the M step of iteration t+ 1, is given by

π
(t+1)
0 =

v
(t)
0

v
(t)
0 + v

(t)
1

, π
(t+1)
1 =

v
(t)
1

v
(t)
0 + v

(t)
1

.

After choosing a starting value, e.g., π(0) = (0.5, 0.5)T , we obtain step-by-step a sequence (π(t))t∈N0 ,
for which the corresponding values of the observed data log-likelihood are nondecreasing. When
the variation from π(t) to π(t+1) is small enough, we have found an estimate π̂.

One may think that the EM algorithm is not necessary, because π̂ = 0 could be set if the mo-
ment estimate according to Petroczi et al. (2011) is negative. Then, however, π̂ = 0 is in general
not the MLE. Hereto, let us consider the situation from Petroczi (2011, Table 3), in which Z follows
a Binomial(4, 0.5) distribution and the answer 0, 1, 2, 3, 4, and 5 is observed 15, 64, 89, 51, 16,
and 2 times, respectively. Petroczi et al. (2011) calculate the moment estimate −0.0211 for π1

whereas the MLE equals 0.0632. This example underlines that the EM algorithm is beneficial to
compute the desired MLE.

Since we have no handy analytic representation of π̂, the bootstrap (BS) approach is attractive for
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the computation of standard errors and confidence intervals (CIs). Here, we calculate B bootstrap
replications of π̂, denoted by π̂(b) for b = 1, ..., B. The empirical variance of these replications is
the BS estimate V̂ arBS(π̂) for the variance of π̂. The square roots of the diagonal elements of

V̂ arBS(π̂) represent the BS standard errors of the components of π̂. The empirical α/2 quantile
of the replications of the ith component of π̂ provides a lower bound of a 1− α CI for πi while an
upper bound is given by the 1−α/2 quantile. To obtain one replication π̂(b), we treat π̂ = (π̂0, π̂1)T

as true parameter and simulate new frequencies of the answers 0, ..., J + 1 by

n
(b)
1 = (n

(b)
10 , ..., n

(b)
1,J+1) ∼Multinomial(n, (λ̂0, ..., λ̂J+1)) (6)

where λ̂i = φiπ̂0 + φi−1π̂1. The quantity π̂(b) is then obtained by applying the EM algorithm to

the new frequencies n
(b)
1 .

3.2 Increase of accuracy

We now demonstrate the efficiency gains that can be achieved by using control items with known
distribution and dispensing with the control group. For this purpose, we compare two procedures.
Procedure one is the ICT without control group from Subsection 3.1, for which every respondent
contributes information on Y and π can be estimated via EM algorithm as shown. The second
procedure is the ICT with control group according to Section 2 where we assume that every sample
unit is assigned to the control group with probability 50%. For the second procedure, we can apply
an EM algorithm for the ML estimation, too. This is implicitly contained in Imai (2011). Moreover,
this estimation is a special case of the estimation in Subsection 4.1 (set k = 2, k1 = ... = kJ = 1
in Subsection 4.1). Our comparison is conducted by some simulations, in which we consider π =
(0.8, 0.2)T and three specifications of φ resulting in the cases I-III given in Table 1. In procedure
1, φ is known and in procedure 2, φ is unknown.

case U1 U2 U3 U4 φT

I Ber(0.5) Ber(0.5) Ber(0.5) Ber(0.5) 0.0625 0.2500 0.3750 0.2500 0.0625
II Ber(0.2) Ber(0.2) Ber(0.5) Ber(0.5) 0.1600 0.4000 0.3300 0.1000 0.0100
III Ber(0.2) Ber(0.2) Ber(0.4) Ber(0.5) 0.1920 0.4160 0.3000 0.0840 0.0080

Table 1: The specifications of φ, which represents the distribution of Z. Each φ is obtained
by determining the marginal distributions of Ui and assuming independence of the Ui. Ber(p)
means a Bernoulli distribution with parameter p. The distribution of the sensitive Y is always
π = (0.8, 0.2)T .

For each case and each procedure (ICT without or with control group), we simulate 10000 samples
with sample size 250. For each sample, we calculate the corresponding estimate for π. The 10000
generated realizations of an estimator are used to compute the simulated expectations and MSEs
of the estimator’s components. The results are given in Table 2. We recognize that the simulated
bias of each estimator is close to zero. Moreover, the MSEs show the expected result that the
application of control items with known distribution leads to manifestly more efficient estimates.
As already mentioned, the reason for this effect is that the persons in the control group do not
provide any information on Y .

3.3 Discussion of assumptions

We have required (2) and (3). These assumptions are reasonable when we consider nonsensitive
items such as “Is your birthday in the first quarter of the year?” or “Is the last digit of your best
friend’s telephone number equal to 7, 8, or 9?” For the former, the probability of success can be
assumed to be 1/4. For the latter, the probability of success is 3/10. When more precise values are
available (e.g., from census data), we should apply them. If (2) is not fulfilled, we have to estimate
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ICT without control group ICT with control group

case Ê(π̂0) Ê(π̂1) ˆMSE(π̂0) ˆMSE(π̂1) Ê(π̂0) Ê(π̂1) ˆMSE(π̂0) ˆMSE(π̂1)

I 0.8008 0.1992 0.0040 0.0040 0.7919 0.2081 0.0181 0.0181
II 0.8009 0.1991 0.0037 0.0037 0.7966 0.2034 0.0140 0.0140
III 0.7999 0.2001 0.0038 0.0038 0.7969 0.2031 0.0143 0.0143

Table 2: Simulation results for the comparison between the ICT due to Section 3.1 and an ICT
with control group.

φ, too. The ML estimation for θ = (πT , φT )T can be conducted via EM algorithm. Because the
concrete algorithm needed for this problem is a special case of the EM algorithm for the maximiza-
tion of (11) in Section 4 (set k = 2, k1 = ... = kJ = 1, and t1 = ... = tn = 1 in Subsection 4.1), we
exclude further details on the iterations here.

However, when we conduct a ML estimation for θ = (πT , φT )T for an ICT procedure without
control group, identification problems become manifest, i.e., we have nonunique MLEs. Let us
consider the cases A-C from Table 3 to construct an illustrative example. In each case, the distri-
butions of the Ui and Y are specified. Although these specifications are different, they all lead to
the same distribution of the answers. Now suppose that the absolute frequency of the answer 0,
1, 2, 3 in the sample equals 8, 42, 42, 8, respectively. Then, it is not surprising that each of the
vectors

(0.8, 0.2, 0.1, 0.5, 0.4)T , (0.5, 0.5, 0.16, 0.68, 0.16)T , (0.2, 0.8, 0.4, 0.5, 0.1)T

is a MLE for θ (with log-likelihood value -113.2817). Owing to this identification problem, it is
not recommendable to apply the ICT without control group when φ must be estimated from our
survey data.

case U1 U2 Y φT λT = (λ0, ..., λ3)

A Ber(0.5) Ber(0.8) Ber(0.2) 0.10 0.50 0.40 0.08 0.42 0.42 0.08
B Ber(0.2) Ber(0.8) Ber(0.5) 0.16 0.68 0.16 0.08 0.42 0.42 0.08
C Ber(0.5) Ber(0.2) Ber(0.8) 0.40 0.50 0.10 0.08 0.42 0.42 0.08

Table 3: Three specifications for U1, U2, Y that all result in the same probabilities of the answers
0, 1, 2, 3 (independence of U1, U2, Y is supposed). Ber(p) represents a Bernoulli distribution with
probability of success equal to p.

3.4 Bayesian estimation

Sometimes prior information on the distribution of Y is available, e.g., from an earlier study. By
incorporating prior information into the estimation, we can expect to obtain better, i.e., more
accurate, estimates. Such estimates can be calculated by application of Bayesian methods. In
a Bayesian context, the parameter (π0, π1) is considered to be a realization of a random vector
(Π0,Π1). The investigator has to define a distribution of (Π0,Π1) (the so called prior distribution)
which contains the prior information. For the conditional density of the complete data (Y,S) given
a value of Π0, we set for yi ∈ {0, 1} and si ∈ {0, ..., J + 1}

fY,S |Π0
(y, s |π0) =

n∏
i=1

φ(si, yi) · πyi , (7)

where φ(i, j) is entry (i, j) of matrix φ from (5) and π1 = 1−π0. Consequently, (7) and the prior of
Π0 completely determine the distribution of (Y,S,Π0). Let us suppose an outcome s of S has been
recorded in our survey with the item count technique without control group. Then, the principle
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of Bayes inference is to evaluate the posterior distribution of (Π0,Y) given the observed s. This
results in estimates that base on both the prior information and the information in s from the
current survey. In the sequel, we give more details on the Bayes estimation for the ICT without
control group.

Regarding the prior distribution, we apply the Beta(δ0, δ1) distribution for Π0, that is, we assume
Π0 to have density

fΠ0(π0) = K · πδ0−1
0 · (1− π0)d1−1 · 1[0,1](π0),

where δ0, δ1 > 0 are parameters and the constant K depends on the δi. Clearly, we have the
uniform distribution on [0, 1] for δ0 = δ1 = 1. We consider the Beta distribution, because of the
following properties. First, the Beta prior is interpretable well. In particular, the Beta(δ0, δ1)
distribution contains the same information as (δ0 − 1) + (δ1 − 1) additional observations among
which the outcomes Y = 0 and Y = 1 occur δ0− 1 times and δ1− 1 times, respectively. Second, an

investigator’s guess π̂
(p)
0 for π0, which may be based on a previous study, can be transformed into

a concrete Beta prior so that the certainty about the guess is reflected. For this purpose, let us fix

a proportionality constant d and set δ0 = π̂
(p)
0 · d as well as δ1 = (1− π̂(p)

0 ) · d. Then, the Beta prior
with these parameters δi comprises the same information as d− 2 new observations. Thus, a large

d corresponds to a large certainty of the investigator about the guess π̂
(p)
0 . Third, the Beta prior

allows comparatively comfortable calculations for the EM and data augmentation algorithm (see
below).

We next derive several possibilities to study the posterior distribution of (Π0,Y) given s. We
start with the calculation of the mode of the density fΠ0|S(· | s). We remark that in the case of a
uniform prior, this posterior mode equals the MLE. Dempster, Laird, and Rubin (1977) show for
general missing data constellations that a version of the EM algorithm can be used to detect the
posterior mode. In our situation of the ICT without control group, the posterior mode calculation
adds up to modify the EM algorithm for the MLE from above. In the E step of iteration t+ 1, we
now compute the function

π0 7→ log π0 · v(t)
0 + log(1− π0) · v(t)

1 + log fΠ0(π0) (8)

with v
(t)
i as in (5). Compared with (4), the term log fΠ0(π0) corresponding to the prior distribution

now appears. The maximum of (8) is searched in the M step. It is equal to

π
(t+1)
0 =

v
(t)
0 + δ0 − 1

n+ δ0 + δ1 − 2
.

Beginning with a starting value, this EM procedure produces step-by-step a sequence π
(0)
0 , π

(1)
0 , π

(2)
0 , ...

with fΠ0|S(π
(t+1)
0 | s) ≥ fΠ0|S(π

(t)
0 | s) (cf. Schafer (2000, p. 46) for a general missing data problem) .

Further possibilities to evaluate fΠ0 |S(· | s) are to calculate the expectation, i.e., the posterior
mean, as another point estimate for the true π0 and quantiles as bounds of confidence intervals.
Moreover, we can consider the relative frequency of sample units having the outcome Y = 0, i.e.,
we look at P0 = 1

n

∑n
i=1 1{Yi=0} and compute the expectation and quantiles of the distribution

of P0 given S = s. To detect the mentioned expectations and quantiles, the data augmentation
(DA) algorithm (Tanner and Wong, 1987) is helpful. With this iterative procedure, we obtain a

sequence of realizations (y(t), π
(t)
0 )t∈N of a Markov chain (MC) (Y(t),Π

(t)
0 )t∈N, which converges in

distribution to the distribution given by the conditional density fY,Π0 |S(·, · | s). In particular, in

the I step of iteration t+1 of the DA scheme, we must draw a vector y(t+1) from fY |S,Π0
(· | s, π(t)

0 ).
Regarding this, (7) implies

fY |S,Π0
(y | s, π(t)

0 ) =
n∏
i=1

φ(si, yi) · π(t)
yi

fSi |Π0
(si |π(t)

0 )
,
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where π
(t)
1 = 1 − π(t)

0 and fSi |Π0
(si |π(t)

0 ) equals the entry number si ∈ {0, ..., J + 1} of the vector

φ · (π(t)
0 , π

(t)
1 )T . In the subsequent P step, we generate a new parameter π

(t+1)
0 from the density

fΠ0 |Y,S(· |y(t+1), s). According to (7) and the Beta(δ0, δ1) prior, this density corresponds to a

Beta(m
(t+1)
0 +δ0,m

(t+1)
1 +δ1) distribution. Here, we define m

(t+1)
0 =

∑n
i=1 1{0}(y

(t+1)
i ) and m

(t+1)
1 =

n −m(t+1)
0 where y

(t+1)
i is the ith entry of y(t+1). Due to a strong law of large numbers (SLLN)

for Markov chains (for instance, Schafer (2000), p. 91), we obtain for L → ∞ the almost sure
convergences

p̂L =
1

L

L∑
t=1

Π
(t)
0

a.s.−→ E(Π0 |S = s) and FL(x) =
1

L

L∑
t=1

1{Π(t)
0 ≤x}

a.s.−→ FΠ0|S(x|s),

where FΠ0|S(· | s) is the distribution function of Π0 given s. Accordingly, the quantile functions also
converge, that is, for u ∈ (0, 1), we have

F−1
L (x)

a.s.−→ F−1
Π0 |S(x | s) for L→∞.

It is appealing to use the a.s. limit of p̂L as point estimate for the true π0 while the a.s. limits of
F−1
L (α/2) and F−1

L (1 − α/2) provide a lower and an upper bound of a 1 − α confidence interval
(CI) for the true proportion π0. These limits can be simulated with the help of the DA algorithm
as described above.

Let us now analyze the distribution of P0 given S = s. The values m
(t)
0 (t ≥ 1) can be inter-

preted as multiple imputations (MIs) for
∑n

i=1 1{Yi=0}. Set P
(t)
0 = M

(t)
0 /n where M

(t)
0 is the

random variable that belongs to m
(t)
0 and introduce p̂MI

L = 1
L

∑L
t=1 P

(t)
0 . Then, the Markov chain

SLLN guarantees

p̂MI
L

a.s.−→ E(P0 |S = s) and FMI
L (x) =

1

L

L∑
t=1

1{P (t)
0 ≤x}

a.s.−→ FP0|S(x|s),

where FP0|S(· | s) is the distribution function of P0 given s. When QMI
L represents the quantile

function that belongs to FMI
L , it follows that QMI

L (u)
a.s.−→ F−1

P0|S(u|s) for any u ∈ (0, 1) where the

quantile function F−1
P0|S(·, s) is continuous. The a.s. limit of p̂MI

L is another point estimate for the

true π0 and the a.s. limits of QMI
L (α/2) and QMI

L (1−α/2) deliver CI bounds. These limits can be
detected by DA, too.

We close this subsection with the remark that Bayesian estimation methods established above
concretely address the item count technique without control group. However, for various random-
ized response and nonrandomized response procedures, Bayesian estimates can be derived in a
similar way. In this regard, the interested reader is referred to Groenitz (2013).

3.5 Covariate extension

In this subsection, we present a covariate extension of the ICT without control group, that is, we
develop a method that enables the analysis of the influence of a vector of p nonsensitive covariates
X on the sensitive characteristic Y . Such a technique is helpful, for instance, for the investigation
of the dependence of tax evasion on gender, age, and profession. In this subsection, we again
make the assumption that the distribution of Z in the population is known. We start with the
case of deterministic exogenous variables. Here, the researcher determines values of the covariates.
Subsequently, persons with these covariate values are randomly selected and requested to give an
answer according to the ICT with control group, i.e., each person should reply his or her outcome
of S = Z +Y . Let xij be the ith interviewee’s value of the jth covariate, and set xi = (xi1, ..., xip).
We further suppose
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(D1) Y1, ..., Yn are independent.

(D2) Z1, ..., Zn are independent and identically distributed (iid) with Zi ∼ Z.

(D3) The vectors (Y1, ..., Yn) and (Z1, ..., Zn) are independent.

(D4) There is a β ∈ Rp with P(Yi = 1) = exiβ

1+exiβ
(i = 1, ..., n).

(D1)-(D3) are fulfilled if (Y,X) and Z are independent and if for each covariate level fixed by
the researcher, the interviewees are selected by SRSWR from the population units possessing this
covariate level where the selection for one covariate level is independent of the selection for the
other covariate levels. The assumptions (D1)-(D4) mean that a logistic regression model for the
dependence of the sensitive item on the exogenous characteristics holds. To estimate β via EM
algorithm, we initially notice the observed data log-likelihood

lobs(β) =
n∑
i=1

logP(Si = si) =
n∑
i=1

log

[
φsi ·

1

1 + exiβ
+ φsi−1 ·

exiβ

1 + exiβ

]
(9)

=

R∑
r=1

J+1∑
j=0

n1(r, j) · log

[
φj ·

1

1 + exirβ
+ φj−1 ·

exirβ

1 + exirβ

]
.

Regarding this equality, we assume that R ≤ n different covariate levels are in place, that sample
unit number ir possesses the rth covariate level, and that n1(r, j) is the number how often answer
j occurred among the interviewees with the rth covariate level. We have introduced the quantity
R to hint that the number of computations and hence the elapsed time of the algorithm can be
reduced if the number of different covariate levels is clearly smaller than n. The complete data
log-likelihood is apart from a constant equal to

lcom(β) =
n∑
i=1

(
1{yi=1} · log

exiβ

1 + exiβ
+ 1{yi=0} · log

1

1 + exiβ

)
.

In the E step of iteration t + 1 of the EM algorithm, we obtain an estimated complete data log-
likelihood

l̂com(β) =
n∑
i=1

(
Pt(Yi = 1|Si = si) · log

exiβ

1 + exiβ
+ Pt(Yi = 0|Si = si) · log

1

1 + exiβ

)

=
R∑
r=1

J+1∑
j=0

n1(r, j) ·
[
Pt(Yir = 1|Sir = j) · log

exirβ

1 + exirβ
+ Pt(Yir = 0|Sir = j) · log

1

1 + exirβ

]
.

Here,

Pt(Yir = 1|Sir = j) =
φj−1 · exirβ(t)

φj−1 · exirβ(t) + φj

holds where β(t) is the estimate corresponding to the preceding iteration. In the subsequent M step,
we compute a new estimate β(t+1). This β(t+1) equals the MLE corresponding to a logistic regres-

sion model with data such that for covariate level r, Y = 1 occurs
∑J+1

j=0 n1(r, j)·Pt(Yir = 1|Sir = j)

times and Y = 0 occurs
∑J+1

j=0 n1(r, j) ·Pt(Yir = 0|Sir = j) times (noninteger numbers may appear).
Such an MLE can be obtained by standard software (e.g., in MATLAB, one may apply the function
mnrfit). When the difference between β(t) and β(t+1) is sufficiently small, we stop iterations and

use the last β(t) as estimate β̂.

Estimated standard errors for the components of β̂ can be obtained via the bootstrap approach.
Here, replications β̂(1), ..., β̂(B) are computed and the empirical variance of these replications is the

BS estimate for the variance of β̂. Taking the square roots of the diagonal entries of this matrix
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yields BS standard errors for the components of β̂. To generate β̂(b) (b = 1, ..., B), we draw a
replication for each n1(r, j) by

(n
(b)
1 (r, 0), ..., n

(b)
1 (r, J + 1)) ∼Multinomial(nr, (λ̂r,0, ..., λ̂r,J+1)) (r = 1, ..., R)

where nr is the number of sample units having the rth covariate level and

λ̂r,j = φj ·
1

1 + exir β̂
+ φj−1 ·

exir β̂

1 + exir β̂
.

Then, β̂(b) is the MLE corresponding to the new frequencies n
(b)
1 (r, j) and can be computed as above.

We now switch to stochastic covariates. In this case, each person in the sample is first requested
to reveal his or her outcomes of the nonsensitive covariates, and second to give a reply S = Z + Y
according to the ICT without control group. Let the random variable Xij be the ith sample unit’s
outcome of the jth covariate and define the random vector Xi = (Xi1, ..., Xip). We have to incor-
porate the stochastic character of the covariates into our assumptions. In particular, (D1)-(D4)
change to

(S1) (Y1, X1), ..., (Yn, Xn) are iid.

(S2) Z1, ..., Zn are iid with Zi ∼ Z.

(S3) The two quantities

Y1, X1
...

...
Yn, Xn

 and

Z1
...
Zn

 are independent.

(S4) There is a β ∈ Rp with P(Yi = 1|Xi = xi) = exiβ

1+exiβ
(i = 1, ..., n).

(S1)-(S3) are satisfied if (Y,X) and Z are independent and the respondents are drawn by SRSWR
from the universe. The observed data log-likelihood is given by (a constant is ignored)

lobs(β) =

n∑
i=1

logP(Si = si|Xi = xi) =

n∑
i=1

log

[
φsi ·

1

1 + exiβ
+ φsi−1 ·

exiβ

1 + exiβ

]
. (10)

A comparison with (9) makes clear that the maximum of (10) can be obtained by maximizing an
observed data log-likelihood corresponding to certain data according to the case of deterministic
covariates. How this can be done, is explained above. Estimated standard errors for the components
of β̂ given the observed covariate levels can be calculated by a bootstrap procedure analog to the
case of deterministic exogenous variables.

4 Extension of the ICT to polychotomous sensitive attributes

Sometimes an investigator may be interested in a sensitive characteristic with more than two
categories. Examples for such variables are income (divided in classes) and the number of times a
person has evaded taxes. In this section, let Y be a sensitive attribute with an arbitrary number k
of categories coded with 0, ..., k − 1. As before Uj (j = 1, ..., J) stands for an innocuous attribute,
but we now allow that Uj attains values 0, ..., kj (kj ≥ 1). For instance, we may define U1 ∈ {0, 1, 2}
where U1 = 0 if a person did not visit a foreign country last year, U1 = 1 if a person visited a
foreign country once last year, and U1 = 2 if a person visited a foreign country two or more times
last year. Analog to Sections 2 and 3, we define Z to be the sum of the nonsensitive variables, i.e.,
Z = U1 + ... + UJ . In this section, we investigate the case in which the distribution of Z is not
known and establish an item count technique with control and treatment group that enables the
estimation of the probability masses of the multicategorical Y . A Bayesian extension and regression
analysis are also described.
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4.1 Method and estimation

We divide the interviewees in two groups, one control group and one treatment group where each
respondent has a chance of 50% to be assigned to the treatment group. Each respondent in the
control group is supplied with a questionnaire with the J nonsensitive questions. The interviewee is
introduced to get the outcome for each question straight in his or her mind and reveal only the sum
of the outcomes. In the treatment group, every respondent receives the same nonsensitive questions
and additionally a question concerning the critical Y . In this case, the demanded answer is the
overall sum of outcomes for the nonsensitive variable and the sensitive variable. An example of a
questionnaire for the treatment group is provided in Table 4. Such a table should be accompanied
with the clear instruction that only a total has to be reported. Additionally, an example of an
answer may be helpful.

Question Answer category Answer statement

Did you attend a religious service last month? 0 no
1 once
2 twice or more

Did you visit a foreign country last year? 0 no
1 once
2 twice or more.

Is your telephone number even? 0 no
1 yes

When is your father’s birthday? 0 January - May
1 June - October
2 November
3 December

What is your favourite sport? 0 soccer
1 handball
2 athletics
3 swimming
4 other

Have you evaded taxes last year? 0 I don’t have evaded
taxes.

1 I have evaded taxes,
but not more than
1000 Euro.

2 I have evaded taxes
in an amount of more
than 1000 Euro.

Table 4: Example of a questionnaire for the polychotomous ICT that is shown to the respondents
in the treatment group. The questionnaire should be accompanied with an instruction like “For
each question, please think about your answer category. Subsequently, compute the sum of the
answer categories that apply to you. Report this sum and nothing else.” By deleting the question
on tax evasion, we obtain the questionnaire for persons in the control group.

Contrary to Section 3, we need a treatment indicator for the current setup. Let T ∈ {0, 1} be this
indicator. Then, requested answer is S =

∑J
j=1 Uj+T ·Y = Z+T ·Y . Say Z ∈ {0, ..., kZ−1} where
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kZ − 1 = k1 + ...+ kJ . Consequently, S ∈ {0, ..., kZ + k − 2}, that is, there are kZ + k − 1 answer
categories where the replies kZ , ..., kZ + k − 2 can only emerge in the treatment group. It must
be mentioned that the ceiling effect explained in Section 2 propagates itself to the polychotomous
case. In particular, for a respondent in the treatment group, the answers kZ , ..., kZ + k− 2 restrict
the possible Y-values. E.g., for k = 3 and kZ = 7, we have that S = 8 implies Y = 2 while S = 7
implies Y ≥ 1. To reduce the ceiling effect, it is appealing to select control items where one can
expect only few persons possessing values of Z greater or equal than kZ − k + 1.

Adapting the notation from Sections 2 and 3, we now have π = (π0, ..., πk−1)T and φ = (φ0, ...φkZ−1)T .
We again assume independence of Z and Y and consider SRSWR of size n. We define Ti = 1 if
the ith sample unit belongs to the treatment group and Ti = 0 else. The Ti are collected in
T = (T1, ..., Tn). Furthermore, let ti denote the realization of Ti and set t = (t1, ..., tn). The
observed data log-likelihood in our polychotomous case is given by

lobs(π, φ; s, t) =
n∑
i=1

logP(Si = si|Ti = ti) =
n∑
i=1

log

k−1∑
j=0

φsi−tij · πj

 . (11)

Here, the additive constant
∑n

i=1 logP (Ti = ti) = n · log 0.5 is ignored, since it is irrelevant for
the maximization. At other places in this paper, similar ignorings occur although this may be not
explicitly emphasized. The complete data log-likelihood equals

lcom(π, φ) = lcom(π, φ;y, z, s, t) =
n∑
i=1

logP(Yi = yi) +
n∑
i=1

logP(Zi = zi)

=
k−1∑
j=0

log πj ·
n∑
i=1

1{j}(yi) +

kZ−1∑
j=0

log φj ·
n∑
i=1

1{j}(zi).

The maximization of lobs can again be conducted with the EM algorithm. In the E step of iteration
t+ 1, we estimate the complete data log-likelihood by

l̂com(π, φ) = Et(lcom(π, φ;Y,Z,S,T) |S = s,T = t) =

k−1∑
j=0

log πj ·
n∑
i=1

Et(1{j}(Yi)|S = s,T = t)

+

kZ−1∑
j=0

log φj ·
n∑
i=1

Et(1{j}Zi|S = s,T = t) =:

k−1∑
j=0

log πj · v(t)
j +

kZ−1∑
j=0

log φj · w(t)
j .

Here, for j = 0, ..., k − 1 respectively j = 0, ..., kZ − 1, the identities

Et(1{j}(Yi)|S = s,T = t) = Pt(Yi = j|Si = si, Ti = ti) =
φ

(t)
si−tij · π

(t)
j∑k−1

l=0 φ
(t)
si−til · π

(t)
l

and

Et(1{j}(Zi)|S = s,T = t) =

k−1∑
l=0

1{si−til}(j) · Pt(Yi = l|Si = si, Ti = ti)

hold. In the M step of iteration t + 1, we obtain π(t+1) and φ(t+1) by maximizing l̂com. Here, we
have

π
(t+1)
j =

v
(t)
j

v
(t)
0 + ...+ v

(t)
k−1

, φ
(t+1)
j =

w
(t)
j

w
(t)
0 + ...+ w

(t)
kZ−1

.

This algorithm can be programmed conveniently. For this purpose, we point out that
v

(t)
0
...

v
(t)
k−1

 = nC ·π(t) +

φ(t) .∗




1/λ
(t)
0

...

1/λ
(t)
kZ+k−2

 · (π(t)
0 , ..., π

(t)
k−1)



T

·nT1 =: nC ·π(t) +P
(t)
1 ·n

T
1 (12)
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where nC is the size of the control group, φ(t) is a (kZ + k − 1) × k matrix whose entry (i, j) is

φ
(t)
i−j for i = 0, ..., kZ + k− 2; j = 0, ..., k− 1, and λ(t) = (λ

(t)
0 , ..., λ

(t)
kZ+k−2)T = φ(t) · (π(t)

0 , ..., π
(t)
k−1)T .

Moreover, n1i represents the absolute frequency of answer i among the respondents in the treatment

group and n1 = (n10, ..., n1,kZ+k−2). Regarding the w
(t)
j , we introduce the kZ × (kZ + k− 1) matrix

P̃ (t) whose component (i, j) is equal to entry (j − i, j) of the matrix P
(t)
1 for i = 0, ..., kZ − 1 and

j = 0, ..., kZ + k − 2. Then, it follows

(w
(t)
0 , ..., w

(t)
kZ−1)T = nT0 + P̃ (t) · nT1 (13)

with n0 = (n00, ..., n0,kZ−1) describing the observed answer distribution in the control group, that
is, n0 is the analog of n1 for the control group. As initial values, we may employ π(0) and φ(0) that
each consist of identical entries. The algorithm stops if the deviation between (π(t), φ(t)) and the
successor (π(t+1), φ(t+1)) is sufficiently small. The generated sequence (π(t), φ(t))t∈N0 yields a non-
decreasing sequence (lobs(π

(t), φ(t); s, t))t∈N0 . The last M step delivers the estimate θ̂ = (π̂T , φ̂T )T .

Estimated standard errors of the components of θ̂ and confidence intervals for components of
θ = (πT , φT )T , can be derived similar to Section 3 from B bootstrap replications of θ̂. The bth

reproduction is generated by selecting the size of the control group n
(b)
C ∼ Bin(n, 0.5), draw-

ing new frequencies of the answers in the groups by n
(b)
0 ∼ Multinomial(n

(b)
C , φ̂T ) and n

(b)
1 ∼

Multinomial(n − n(b)
C , (λ̂0, ..., λ̂kZ+k−2)) with λ̂i =

∑k−1
j=0 φ̂i−j · π̂j . Then, θ̂(b) is the MLE corre-

sponding to n
(b)
0 and n

(b)
1 .

4.2 Bayes extension

We establish Bayesian estimates for the polychotomous ICT from Section 4.1 in this subsection.
Here, we modify the considerations from Subsection 3.4. The true π and φ are treated as realiza-
tions of random quantities (Π0, ...,Πk−1)T and (Φ0, ...,ΦkZ−1)T , respectively. As prior density for
(Π0, ...,Πk−2), we set

fΠ0,...,Πk−2
(π0, ..., πk−2) = const. · πδ0−1

0 · · ·πδk−1−1
k−1

for π0, ..., πk−2 ∈ [0, 1], π0 + ... + πk−2 ≤ 1, πk−1 = 1 − π0 − ... − πk−2 and δi > 0, that is, we
have a Dirichlet distribution with parameters δ0, ..., δk−1. The Dirichlet distribution is a multi-
variate extension of the Beta distribution. We also apply the Dirichlet distribution for the prior
of (Φ0, ...,ΦkZ−2), more precisely, we assume (Φ0, ...,ΦkZ−2) to have a Dirichlet distribution with
parameters ε0, ..., εkZ−1. As overall prior density, we use

fΠ0,...,Πk−2,Φ0,...,ΦkZ−2
(π0, ..., πk−2, φ0, ..., φkZ−2) = fΠ0,...,Πk−2

(π0, ..., πk−2) · fΦ0,...,ΦkZ−2
(φ0, ..., φkZ−2).

The advantages of this prior are similar to those of the prior in Subsection 3.4. In particular, the
prior contains information equivalent to δ0 + ...+ δk−1 − k observations on Y where Y = i occurs
δi − 1 times and ε0 + ... + εkZ−1 − kZ additional data on Z among which Z = i appears εi − 1
times. Moreover, a researcher’s guesses for π and φ can be converted into a concrete prior where
the certainty is reflected and the procedures of EM and data augmentation algorithm are relatively
simple. For the density of the complete data given the parameter, we define

fY,S,T |Π0,...,Πk−2,Φ0,...,ΦkZ−2
(y, s, t |π0, ..., πk−2, φ0, ..., φkZ−2) =

n∏
i=1

πyi · φsi−tiyi ·
1

2

where, of course, πk−1 = 1−π0− ...−πk−2 and φkZ−1 = 1−φ0− ...−φkZ−2 hold. Regarding the cal-
culation of the mode of fΠ0,...,Πk−2,Φ0,...,ΦkZ−2 |S,T(π0, ..., πk−2, φ0, ..., φkZ−2 | s, t) via EM algorithm,
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function (8), which corresponds to the E step, changes to

(π0, ..., πk−2, φ0, ..., φkZ−2) 7→
k−1∑
j=0

log πj · v(t)
j +

kZ−1∑
j=0

log φj · w(t)
j

+
k−1∑
j=0

log πj · (δj − 1) +

kZ−1∑
j=0

log φj · (εj − 1) (14)

where the v
(t)
j are from (12) and the w

(t)
j are from (13). Obviously, (14) comprises a part that

corresponds to the estimated complete data log-likelihood for the non-Bayes case and a part that
belongs to the prior.

With the DA algorithm, we obtain realizations (y(t), π
(t)
0 , ..., π

(t)
k−2, φ

(t)
0 , ..., φ

(t)
kZ−2)t≥1 of a Markov

chain (Y(t),Π
(t)
0 , ...,Π

(t)
k−2,Φ

(t)
0 , ...,Φ

(t)
kZ−2)t≥1 that converges in distribution to (Y,Π0, ...,Πk−2,Φ0, ...,ΦkZ−2)

given s and t. In the I step of iteration t+ 1, we generate the vector y(t+1) from

fY |Π0,...,Πk−2,Φ0,...,ΦkZ−2,S,T(y |π(t)
0 , ..., π

(t)
k−2, φ

(t)
0 , ..., φ

(t)
kZ−2, s, t) =

n∏
i=1

π
(t)
yi · φ

(t)
si−tiyi∑k−1

j=0 π
(t)
j · φ

(t)
si−tij

.

In the subsequent posterior step (P step) of iteration t + 1, we draw new parameters from the
distribution of (Π0, ...,Πk−2,Φ0, ...,ΦkZ−2) given Y = y(t+1), S = s, T = t. The density of
this distribution is the product of the density corresponding to a Dirichlet distribution with pa-

rameters m
(t+1)
0 + δ0, ...,m

(t+1)
k−1 + δk−1 and the densitiy of a Dirichlet distribution with parameters

q
(t+1)
0 +ε0, ..., q

(t+1)
kZ−1 +εkZ−1. Here, m

(t+1)
j denotes the number how often the value j appears among

y
(t+1)
1 , ..., y

(t+1)
n and q

(t+1)
j represents the number how often outcome j occurs among z

(t+1)
1 , ..., z

(t+1)
n

where we set z
(t+1)
i = si − tiy(t+1)

i .

With the help of the generated realizations of the Markov chain, we are able to simulate ex-
pectations and quantiles of the distribution of Πi given s and t as well as of Pi given s and t where
Pi = n−1

∑n
j=1 1{Yj=i}. These simulations proceed analog to Subsection 3.4, in which the ICT for

binary target variables without control group is under study. We can also simulate expectations
and quantiles of the distribution of Φi given s and t. However, these quantities are typically of
lower interest, because we are mainly interested in the sensitive variable.

4.3 Regression analysis

Regarding the ICT for binary sensitive variables according to Miller (1984), methods for regression
analysis are proposed e.g. in Imai (2011) and in Kuha and Jackson (2013). An important element of
these methods is that a structure model for the control items has to be specified. In this subsection,
we extend the available literature by techniques that enable the investigation of the influence of
nonsensitive covariates on a multicategorical sensitive item on which data are collected by the ICT
from Subsection 4.1. Let us first consider deterministic covariates. In this case, values of the
covariates are determined by the researcher and persons having these values are searched. Each
person is randomly assigned either to the control or to the treatment group and is requested to
give an answer according to the polychotomous ICT from 4.1. Let xi ∈ R1×p be a vector whose jth
entry represents the ith interviewee’s value of covariate j (i = 1, ..., n; j = 1, ..., p). We suppose:

(D1’) The n vectors (Y1, Z1, T1), ..., (Yn, Zn, Tn) are independent.

(D2’) For all i = 1, ..., n, we have: Ti and (Yi, Zi) are independent and P(Ti = 1) = 1/2.
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(D3’) There is a β = (β(1)T , ..., β(k−1)T )T with β(j) ∈ Rp×1 and

P(Yi = j) =
exiβ

(j)

1 + exiβ
(1)

+ ...+ exiβ
(k−1)

(j = 1, ..., k − 1).

Hence, we are in the situation of a multivariate logistic regression model for the influence of the
exogenous quantities on the stigmatizing variable. The assumptions (D1’) and (D2’) are fulfilled
in the following case: for any covariate level, the respondents are drawn by SRSWR out of the
population units having this covariate level such that the selection is conducted independent of
the selection for other covariate levels; the drawn persons are randomly assigned to a group e.g.
by flipping a fair coin. Notice, we allow dependence between Yi and Zi in this subsection. For
si ∈ {0, ..., kZ + k − 2} and ti ∈ {0, 1}, it is true that

logP(
n⋂
i=1

{Si = si, Ti = ti}) =
n∑
i=1

log

k−1∑
j=0

P(Zi = si − tij |Yi = j) · P(Yi = j)

+ log 0.5

 .

As in Kuha and Jackson (2013) for the binary ICT, we make use of a model for the probabilities
P(Zi = z |Yi = y). In particular, we consider a multinomial logistic regression set up (compare
Appendix A3 in Kuha and Jackson (2013) for the binary ICT). Other modelings lead to similar

estimation steps. Formally, we assume that a ψ = (ψ(1)T , ..., ψ(kZ−1)T )T exists such that

P(Zi = z |Yi = y) =
ev(xi,y)·ψ(z)

1 + ev(xi,y)·ψ(1)
+ ...+ ev(xi,y)·ψ(kZ−1)

(15)

holds for z = 1, ..., kZ − 1. In this equation, v is a map specified by the researcher and the range
of v determines the length of the row vector ψ(l) (l = 1, ..., kZ − 1). We give some examples for
v. For v(x, y) = (x, y) ∈ R1×(p+1), the distribution of Zi depends on the nonsensitive covariates
and the sensitive item. Some authors recommend that the control items should not be totally
unrelated to the sensitive item (e.g., Chaudhuri and Christofides (2007), Section 3). For such a
situation a v with v(x, y) depending on y is helpful. In the case, v(x, y) = x, Zi is independent of
the sensitive characteristic and for v(x, y) = 1, Zi is independent of both the innocent covariates
and the stigmatizing variable. The observed data log-likelihood is given by

lobs(β, ψ) =
n∑
i=1

log

k−1∑
j=0

P(Zi = si − tij |Yi = j) · P(Yi = j)

 (16)

whereas the complete data log-likelihood has the form

lcom(β, ψ) =
n∑
i=1

logP(Yi = yi) +
n∑
i=1

logP(Zi = zi |Yi = yi) =: l1(β) + l2(ψ). (17)

Again, the EM algorithm is beneficial to maximize (16). Let estimates β(t) = (β
(1)T

(t) , ..., β
(k−1)T

(t) )T

and ψ(t) = (ψ
(1)T

(t) , ..., ψ
(kZ−1)T

(t) )T for β and ψ be available from iteration t. In the expectation step

of iteration t+1, l1(β) and l2(ψ) are replaced by certain conditional expectations l
(t)
1 (β) and l

(t)
2 (ψ).

In detail, we have with β(0) being a vector of zeros

l
(t)
1 (β) =

nC∑
i=1

k−1∑
j=0

Pt(Yi = j |Si = si, Ti = 0) · log
exiβ

(j)

1 + exiβ
(1)

+ ...+ exiβ
(k−1)

+

n∑
i=nC+1

k−1∑
j=0

Pt(Yi = j |Si = si, Ti = 1) · log
exiβ

(j)

1 + exiβ
(1)

+ ...+ exiβ
(k−1)

=: l
(t)
10 (β) + l

(t)
11 (β)



Groenitz, Item Count Technique Discussion Paper 4 / 2014 17

where we assume without loss of generality that the sample units i = 1, ..., nC are assigned to the

control group while the units i = nC + 1, ..., n belong to the treatment group. That is, l
(t)
10 (β) and

l
(t)
11 (β) correspond to the control and treatment group, respectively. Further,

l
(t)
10 (β) =

k−1∑
j=0

R0∑
r=1

kZ−1∑
s=0

n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0) · log
exi0rβ

(j)

1 + exi0r
β(1)

+ ...+ exi0r
β(k−1)

(18)

holds. Here, we assume that we have R0 ≤ nC covariate levels for respondents in the control group
and that sample unit i0r ∈ {1, ..., nC} possesses the rth covariate level. Moreover, we denote the
number how often answer s occurs among the respondents in the control group with covariate level
r by n0(r, s). Concerning (18), we have

Pt(Yi0r = j |Si0r = s, Ti0r = 0) =
Pt(Zi0r = s |Yi0r = j) · Pt(Yi0r = j)∑k−1
l=0 Pt(Zi0r = s |Yi0r = l) · Pt(Yi0r = l)

with

Pt(Zi0r = s |Yi0r = l) =
e
v(xi0r ,l)·ψ

(s)

(t)

1 + e
v(xi0r

,l)·ψ(1)

(t) + ...+ e
v(xi0r

,l)·ψ(kZ−1)

(t)

and Pt(Yi0r = l) =
e
xi0rβ

(l)

(t)

1 + e
xi0rβ

(1)

(t) + ...+ e
xi0rβ

(k−1)

(t)

.

For these identities, we define ψ
(0)
(t) and β

(0)
(t) to be vectors consisting only of zeros. For the function

l
(t)
11 , it is true that

l
(t)
11 =

k−1∑
j=0

R1∑
r=1

kZ+k−2∑
s=0

n1(r, s) · Pt(Yi1r = j |Si1r = s, Ti1r = 1) · log
exi1rβ

(j)

1 + exi1rβ
(1)

+ ...+ exi1rβ
(k−1)

where

Pt(Yi1r = j |Si1r = s, Ti1r = 1) =
Pt(Zi1r = s− j |Yi1r = j) · Pt(Yi1r = j)∑k−1
l=0 Pt(Zi1r = s− l |Yi1r = l) · Pt(Yi1r = l)

and the probabilities contained in this fraction come from (15) and (D3’) by working with ψ(t) and
β(t) instead of ψ and β. Additionally, R1 denotes the number of covariate levels in the treatment
group, sample unit i1r ∈ {nC + 1, ..., n} is a person having the rth covariate level, and n1(r, s) is
the absolute frequency of interviewees in the treatment group with covariate level r giving answer
s. Let us now consider l2(ψ). Partitioning the respondents in control and treatment group yields

l2(ψ) =

nC∑
i=1

logP(Zi = zi |Yi = yi) +
n∑

i=nC+1

logP(Zi = zi |Yi = yi) =: l20(ψ) + l21(ψ).

The first summand can be written as

l20(ψ) =

nC∑
i=1

k−1∑
j=0

kZ−1∑
s=0

1{j}(yi) · 1{s}(si) · logP(Zi = s |Yi = j)

while the second summand is equal to

l21(ψ) =
n∑

i=nC+1

k−1∑
j=0

kZ−1∑
s=0

1{j}(yi) · 1{s+j}(si) · logP(Zi = s |Yi = j).

In the E step of iteration t + 1, we substitute l20(ψ) and l21(ψ) by their conditional expectations
given the observed data and calculated under the parameters from iteration t and obtain

l
(t)
20 (ψ) =

k−1∑
j=0

R0∑
r=1

kZ−1∑
s=0

n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0) · logP(Zi0r = s |Yi0r = j)

l
(t)
21 (ψ) =

k−1∑
j=0

R1∑
r=1

kZ−1+j∑
s=j

n1(r, s) · Pt(Yi1r = j |Si1r = s, Ti1r = 1) · logP(Zi1r = s− j |Yi1r = j).
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Notice, the probabilities Pt(Yi0r = j |Si0r = s, Ti0r = 0) and Pt(Yi1r = j |Si1r = s, Ti1r = 1) are

already available from the calculation corresponding to l
(t)
10 (β) and l

(t)
11 (β).

In the M step of iteration t + 1, we maximize l
(t)
1 and l

(t)
2 = l

(t)
20 + l

(t)
21 in β respectively ψ. The

maxima are the new estimates β(t+1) and ψ(t+1). The vector β(t+1) is the MLE for an ordinary
multivariate logistic regression model with the following data situation: There are R0 + R1 co-
variate levels. For covariate level equal to xi0r (r = 1, ..., R0) the outcome Y = j is observed(∑kZ−1

s=0 n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0)
)

times while for value xi1r (r = 1, ..., R1) of the

covariates the value Y = j occurs
(∑kZ+k−2

s=0 n1(r, s) · Pt(Yi1r = j |Si1r = s, Ti1r = 1)
)

times. Thus,

one part of the data corresponds to the control group and the other part corresponds to the treat-
ment group. Since we are working with a standard logistic regression situation (aside from the
fact that noninteger observations appear), β(t+1) can be obtained with standard statistics soft-
ware. The quantity ψ(t+1) can be computed similarly. Referring to this, note that ψ(t+1) is the
MLE for a multivariate logistic regression model with data constellation as follows: The covari-
ate levels for this constellation are given by v(xi0r , j) as well as v(xi1r , j) for j = 0, ..., k − 1 and
r = 1, ..., R0 respectively r = 1, ..., R1. I.e., the sensitive item can play the role of a covari-
ate in this data set up. For the covariate level equal to v(xi0r , j), the outcome Z = s occurs
(n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0)) times. For covariates equal to v(xi1r , j), the value Z = s
appears (n1(r, j + s) · Pt(Yi1r = j |Si1r = j + s, Ti1r = 1)) times (s = 0, ..., kZ−1). Due to this data
constellation, ψ(t+1) can be calculated by standard software, too. After sufficiently many EM algo-

rithm iterations, an estimate (β̂T , ψ̂T )T is present.

Our next aim is a variance estimation for the estimator (β̂T , ψ̂T )T . For this goal, bootstrap resam-
pling is again advantageous. We first remark that the probability of the event {Si = s, Ti = t} can
be estimated by

P̂(Si = s, Ti = t) =
k−1∑
j=0

1

2
· P̂(Zi = s− t · j |Yi = j) · P̂(Yi = j) (19)

where P̂(Zi = s − t · j |Yi = j) is computed by replacing ψ by ψ̂ in (15) and P̂(Yi = j) =
exp(xiβ̂

(j))/(1 + exp(xiβ̂
(1)) + ... + exp(xiβ̂

(k−1))). We obtain the bth (b = 1, ..., B) bootstrap

replication of (β̂T , ψ̂T )T by drawing for i = 1, ..., n a realization (s
(b)
i , t

(b)
i ) according to (19) and

employing the EM algorithm as described above to these new data. From the b resampled versions
of (β̂T , ψ̂T )T , we can calculate an empirical variance matrix. This is the bootstrap estimate for the
variance of (β̂T , ψ̂T )T . By calculating empirical quantiles from the replications, we obtain confi-
dence intervals for the components of (β̂T , ψ̂T )T .

Let us now address stochastic covariates, that is, the values of the exogenous characteristics are
random. The interview procedure is that the sample units report both the outcomes of the co-
variates and an answer according to the item count technique in Subsection 4.1. We introduce the
random row vector Xi whose jth entry describes the ith respondents value of the jth covariate
(i = 1, ..., n; j = 1, ..., p) and make the assumptions:

(S1’) The n vectors (Y1, Z1, T1, X1), ..., (Yn, Zn, Tn, Xn) are iid.

(S2’) For every i = 1, ..., n, we have: Ti and (Yi, Zi, Xi) are independent and P(Ti = 1) = 1/2.

(S3’) A vector β = (β(1)T , ..., β(k−1)T )T with β(j) ∈ Rp×1 exists so that we have for j = 1, ..., k − 1

P(Yi = j |Xi = x) =
exβ

(j)

1 + exβ
(1)

+ ...+ exβ
(k−1)

.
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Consequently, we are in the situation of a multivariate logistic regression model with stochastic
covariates. (S1’) and (S2’) hold when we apply simple random sampling with replacement for
generating the sample and assign each sample unit to the control or treatment group by e.g.
tossing a fair coin. For stochastic covariates the model (15) for the control items now changes to

P(Zi = z |Yi = y,Xi = x) =
ev(x,y)·ψ(z)

1 + ev(x,y)·ψ(1)
+ ...+ ev(x,y)·ψ(kZ−1)

.

Then, the observed data log-likelihood is

lobs(β, ψ) =
n∑
i=1

log

k−1∑
j=0

P(Zi = si − tij |Yi = j,Xi = xi) · P(Yi = j |Xi = xi)

 (20)

where si, ti, and xi are the observed realizations of Si, Ti, and Xi, respectively. This log-likelihood
has the same form as (16). Thus, maximizing (20) is equivalent to the maximization of a log-
likelihood that corresponds to the deterministic case. In other word, we can trace the ML estimation
for stochastic exogenous variables back to the ML estimation for deterministic covariates. We can
obtain the estimator’s variance given the observed covariates by a bootstrap resampling method
that proceeds analog to the case of deterministic covariates.

5 Concluding remarks

When data on sensitive topics are intended to be collected in a survey, direct questions such as
“Have you ever committed tax evasion?” are not advisable. The reason is that they lead to missing
values due to answer refusal or untruthful responses. Hence, ingenious procedures for the survey
are necessary. One such approach is the item count technique. The ICT protects the privacy of the
respondents, because only the overall sum of outcomes of a sensitive characteristic and several in-
nocuous characteristics is revealed. According to this privacy protection, we can expect the ICT to
deliver more trustworthy estimates than direct questioning. To gather data on sensitive attributes,
different alternatives are available in the literature. One of these is the nonrandomized response
(NRR) approach (see e.g. Tian and Tang (2014)). In NRR schemes, the desired scrambled answer
is a function of the sensitive variable and a nonsensitive scrambling variable. Moreover, every re-
spondent gives the same answer if he or she is interviewed repeatedly. In fact, these features of
NRR methods hold also for the ICT without control group from Section 3. In particular, Z plays
the role of a scrambling variable while the scrambled answer is S = Y +Z. Thus, this version of the
ICT can be considered as a special NRR technique. A further approach for gathering sensitive data
are randomized response (RR) techniques (e.g., Chaudhuri (2011)). In comparison with the ICT,
these methods possess, however, the uncomfortable feature that the respondents must accomplish
a random experiment with the help of a randomization device.
Several studies demonstrate that the ICT approach can be successful to gather sensitive data (e.g.,
Tsuchiya et al. (2007), Holbrook and Krosnick (2010), Coutts and Jann (2011), and Trappmann et
al. (2014)). Moreover, a number of useful estimation methods regarding the ICT have been devel-
oped in recent years. Nevertheless, several methodological gaps remained so far. Important gaps
are addressed in this paper. In particular, we have described a generalized ICT without control
group and derived admissible estimators, presented Bayesian inference and established methods for
regression analysis. Furthermore, we have considered the field of multicategorical sensitive charac-
teristics. Here, we have derived a version of the ICT for such attributes including unconditional
MLEs, Bayes estimates, and regression estimates.
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