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Abstract

Statistical Matching (or equivalent data fusion) is the conflation of two original data sets
with different units to a final overall data set. One original data set contains characteristics
X and Z, the other Y and Z. The final data consist of values for X, Y , and Z. The merging
of the input data sets is based on the common characteristic Z. Well-working fusions allow
researchers to combine single databases and discover new relations by applying methods for
complete data. Furthermore, long, expensive, and tiring surveys can be avoided. There are
plenty variants of matching procedures and applications. However, theoretical properties
of fusion data for original samples drawn by more complex sampling schemes, which are
very relevant in practice, remain unclear. Therefore, we consider such more complex input
samples in this article. We mathematically derive the after-fusion density and identify
situations in which the densities before and after fusion are equal. Estimations based
on fusion data are also addressed. Our analytic results are based on some idealizing
assumption. Hence, we finally investigate their stability in simulations. Our findings
sensitize data fusion users that successful fusions depend on quite strong requirements.

Zusammenfassung

Statistisches Matchen, auch Datenfusion genannt, ist das Zusammenfügen von zwei Aus-
gangsdatensätzen mit unterschiedlichen Einheiten zu einem finalen Gesamtdatensatz. Der
eine Ausgangsdatensatz beinhaltet Merkmale X und Z, der andere Y und Z. Der resul-
tierende Gesamtdatensatz besteht aus Werten für X, Y und Z. Die Verschmelzung der
ursprünglichen Datensätze basiert auf dem gemeinsamen Merkmal Z. Funktionierende Fu-
sionen erlauben es Forschern, einzelne Datenbanken zusammenzufügen und neue Beziehun-
gen mit Methoden für vollständige Daten zu suchen. Darüber hinaus, könnte man auf
lange, teure und ermüdende Umfragen verzichten. Es existieren vielfältige Varianten von
Fusionsmethoden und zahlreiche Anwendungen in der Literatur. Jedoch bleiben theo-
retische Eigenschaften von Fusionsdaten bei komplexeren, in der Praxis sehr relevanten
Ziehungsverfahren für die Ausgangsstichproben unklar. Daher betrachten wir solche kom-
plexeren Ausgangsstichproben in diesem Artikel. Wir leiten die Dichte nach der Fusion
mathematisch her und identifizieren Situationen, in denen die Dichten vor und nach der
Fusion übereinstimmen. Die Schätzung aus Fusionsdaten wird ebenfalls adressiert. Unsere
analytischen Resultate basieren auf einer idealisierenden Annahme. Aus diesem Grund un-
tersuchen wir anschließend die Stabilität der Resultate mit Hilfe von Simulationen. Unsere
Erkenntnisse sensibilisieren Nutzer von Datenfusionen dafür, dass erfolgreiche Fusionen von
recht starken Forderungen abhängen.
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1 Introduction

Starting point for statistical matching (also known as data fusion) are two data sets from two inde-
pendent samples. For the first sample, data on characteristics X and Z are gathered while values for
characteristics Y and Z are recorded for the other sample. X, Y , and Z are possibly multivariate. Z is
present in both samples and is called common characteristic. Typically, Z comprises socio-demographic
attributes. For units in the first sample, we have missing values for Y whereas X is unobserved for
units in the second sample. Consequently, we have a special missing data pattern. Notice, according
to the independence of the original samples, the sets of sample units of the first and second data set are
usually different. This distinguishes our situation from a record linkage situation, in which different
information on the same units of a population is available in different data sources like official registers.

Now, statistical matching means to search for each individual in the first sample, a “similar” unit in the
second sample and impute the corresponding Y value to the unit from the first sample. The similarity
is measured via Z or some function of it. In this way, we obtain an overall data set containing values
for all characteristics X, Y , and Z, where the values of X and Z come from the first sample and the
Y values are from the second sample. Hence, statistical matching is the conflation of our two original
data sets into an overall data set. This final data set serves as basis for statistical investigations.
According to the described imputation procedure, the names recipient sample (R sample) and donor
sample (D sample) are often used for the first and second sample, respectively.

Successful fusions enable investigators to combine multiple available databases to one big database,
which can be analyzed by standard complete-data methods. Furthermore, for planned huge surveys,
long and all-embracing interviews can be replaced by multiple surveys with less questions and data
fusion afterwards. This is especially advantageous, because long interviews are expensive and tire the
respondents resulting often in answer refusals.

There are divers variants of fusion methods and evaluations of fusion data in the existing literature.
Sims (1972) remarks the importance of conditional independence of the characteristics not jointly
observed given the common characteristic for a successful fusion. Kadane (1978) considers normally
distributed (X,Y, Z) and suggests to derive the valid values of the covariance of X and Y and base
the fusion on these. In Rodgers (1984), evaluations of statistical matching based on special, fixed data
sets as well as alternatives to statistical matching can be found. Rubin (1986) proposes file concate-
nation with adjusted weights and multiple imputation. Multiple imputation means that matching is
operated under different assumptions to show variability of the results. Goel and Ramalingam (1989)
provide an empirical evaluation of different matching strategies. Kovacevic and Liu (1994) assess fu-
sion methods in simulations, where the effect of auxiliary data is also addressed. Rässler and Fleischer
(1998) address mathematically and in simulations the distribution and distribution parameters after
the fusion for simple random sampling with replacement (SRSWR) for both original samples. Mori-
arity and Scheuren (2001) modify the work of Kadane (1978). Moriarity and Scheuren (2003) show
improvements on Rubin (1986). Rässler (2004) presents a non-iterative Bayesian approach to statisti-
cal matching (NIBAS). Gilula et al. (2006) suggest a direct estimation of the joint distribution of the
not jointly observed characteristics without using a matched data set. Conti et al. (2008) consider a
different data pattern with less variables as well as partly complete data and compare some matching
procedures with imputation techniques which are based on the estimation of the regression function.
Stuart (2010) gives an overview how matching can be used to estimate causal effects. D’Orazio et al.
(2012) compare different matching methods using simulations, in which the sample units of an EU-
SILC survey in Italy are treated as population, one input sample is drawn by stratified simple random
sampling, and stratified one stage cluster sampling is considered for the other input sample. These
comparisons, however, do not involve the estimation quality for the distribution of the characteristics
not jointly observed. Reiter (2012) improves the standard multiple imputation variance estimator for
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the data fusion situation. Conti et al. (2013) measure estimation uncertainty for a statistical matching
situation. For more fusion methods or more details, we refer to the monographs Rässler (2002) and
D’Orazio et al. (2006).

Data fusions are applied in practice in various fields. For instance, in media analysis, data on tele-
vision viewing behavior are often merged with data on purchasing behavior with the aim to locate
the optimal slot for advertisement of a product. For example, in Germany, such fusions are con-
ducted by the institution AGMA. Details on many applications of statistical matching can be found
in the books Rässler (2002, Chapter 3) and D’Orazio et al. (2006, Chapter 7.1). Rässler (2002)
first lists fusions in Europe, afterward, fusions in the USA and Canada are addressed. D’Orazio et
al. (2006) describe a variety of applications in microsimulation, market research, and official statistics.

Although there are a lot of matching schemes and practical matching applications, theoretical prop-
erties of fusion data are insufficiently explored in the literature so far. Indeed, for SRSWR for both
original sample, it is known that conditional independence of X and Y given Z is a central requirement
for a successful fusion (e.g., Rässler and Fleischer (1998), Rässler (2002, Chapter 2.3)). We review
this case in Section 2. However, for other, more complex sampling designs of the original samples,
which are often applied in practice, the distribution after the fusion and criteria under which the
distributions before and after fusion are equal remain unclear.

This article addresses these open points. For more complex sampling schemes of the input samples, we
analytically derive the density after the matching process (Section 3). The after-fusion density consists
of two factors, one depends on the R sample, the other on the D sample. In Section 4, we compare the
density after fusion with the density before the fusion and identify situations in which the densities
before and after matching coincide. In other words, when do fusion data possess a good quality? We
also explain how to estimate from fusion data. For our explicit formulas for the after-matching density,
some idealizing assumption on one original sample is made. For this reason, we eventually analyze
the robustness of our analytic results with respect to this assumption in simulations (Section 5).

2 Some notation and the case of SRSWR for both samples

Let G = {e1, ..., eN} be a finite population of N units, X, Y , and Z possibly multivariate characteris-
tics on this population, as well as xi, yi, and zi (i = 1, ..., N) the ith population unit’s value for X, Y ,
and Z, respectively. We consider two independent samples from G. For the R sample, data on X and
Z are gathered while values for Y and Z are recorded for the D sample. For each individual in the R
sample, we search a unit in the D sample such that the Z values of these two units are identical or at
least closest to each other. If multiple units from the D sample are possible, one of these is selected
randomly. When such a unit from the D sample was detected, we impute the corresponding Y value
to the unit from the R sample.

Let nR and nD be the size of the R and D sample, respectively. Set n = nR +nD for the total sample
size. If nR is fixed, i.e., not random, we define Xi, Yi, Zi, Ui, X̃i, Ỹi, Z̃i for i = 1, ..., nR as follows.
Xi, Yi, and Zi describe the ith R sample unit’s outcome of X, Y , and Z, respectively. Ui ∈ {1, ..., N}
indicates which population unit is selected as ith sample unit in the R sample, e.g., U1 = 105 means
that individual e105 is the first unit in the R sample. Furthermore, X̃i, Ỹi, and Z̃i are random variables
representing the ith data row in the matched data set, that is, X̃i = Xi, Z̃i = Zi, and Ỹi is a Y value
imputed from a donor unit. If nD is also fixed, we additionally introduce random variables Xi, Yi,
Zi, Ui for i = nR + 1, ..., n. Here, XnR+l, YnR+l, and ZnR+l (l = 1, ..., nD) represent the lth D sample
unit’s value of X, Y , and Z, respectively, and UnR+l ∈ {1, ..., N} describes which population unit is
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the lth unit in the D sample.

Densities of attributes on the universe or of random variables are denoted by f with associated index.
Since we consider a finite population, the densities are with respect to the counting measure, but
may be approximated by a continuous one on occasion. E.g., fX,Y (x, y) is the relative frequency how
often (X,Y ) = (x, y) appears in G, fZi(z) is the probability that random variable Zi equals z. An
important task in the matching context is to investigate under which criteria the distribution after
the fusion equals the distribution before the fusion. That is, when does

(X̃i, Ỹi, Z̃i) ∼ (Xi, Yi, Zi) (1)

(i = 1, ..., nR) hold? For the case of SRSWR for both input samples, this question has already
been answered in the literature. E.g., Rässler and Fleischer (1998) comprehensively treat this case
and explicitly derive the distribution and distribution parameters after the fusion for the idealized
situation in which

the distributions of the vector (Y,Z) in the D sample and in the population are equal. (2)

In particular, it can be shown that the vectors (X̃i, Ỹi, Z̃i), i = 1, ..., nR, are iid, and

fX̃i,Ỹi,Z̃i
(x, y, z) = fX,Z(x, z) · fY |Z(y|z) (3)

holds implying that (1) is true if and only if X and Y are conditionally independent given Z. Several

identities on marginal distributions and moments (e.g., fỸi = fYi , E(Ỹi
l
) = E(Y l

i ) for l ∈ N), as well
as

E(Cov(X,Y |Z)) = Cov(X,Y )− Cov(X̃i, Ỹi) (4)

can also be established. Notice, when we apply the symbol E to characteristics on the population, the
corresponding population mean is meant. The mean E(Cov(X,Y |Z)) represents a quality measure for
the fusion, because values near zero indicate that the covariance between X and Y in the population
is close to the covariance after matching. Furthermore, if the reproduction of Cov(X,Y ) by the fusion
is of interest, (4) implies that the requirement that X and Y are on average conditionally uncorrelated
suffices, conditional independence is not necessary. Rässler and Fleischer (1998) also investigate by
simulations the accuracy of estimates (e.g., for means, variances, covariances) computed from the
fusion data set, where nearest neighbor (NN) matching is applied. It turns out that the results for
NN matching match the theoretical results (that is, the results under (2)) quite well.

3 Distribution after fusion for complex sampling

In practice, sampling designs that are more complex than SRSWR are often applied. For this reason,
we derive the after-fusion distribution for other combinations of sampling schemes for the R and D
sample.

3.1 General considerations

For complex sampling schemes, it is often adequate to introduce further characteristics TR and TD
on G being relevant for the sampling procedure of the R sample and D sample, respectively. For
instance, these attributes may describe the stratum a respondent belongs to, the single draw selection
probability, or the inclusion probability. For i = 1, ..., N , the ith population unit’s value of TR and
TD is denoted by tRi and tDi , respectively. Furthermore, let T1, ..., TnR be the values of TR for the
R sample units, i.e., Ti = tRUi

for i = 1, ..., nR. We further introduce the random variables Ti = tDUi

for i = nR + 1, ..., n, that is, these variables describe the values of TD for the units in the D sample.
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Moreover, we define T̃i (i = 1, ..., nR) to be the value of TR corresponding to the ith data row in the
matched data file, where, of course, T̃i = Ti holds. Since we have quite a lot necessary quantities, we
provide an overview in Table 1.

quantities on the population
{e1, ..., eN} population G
x1, ..., xN values of X
y1, ..., yN values of Y
z1, ..., zN values of Z
tR1 , ..., t

R
N values of TR

tD1 , ..., t
D
N values of TD

variables for two original samples
X1 Y1 Z1 U1 T1

...
XnR YnR ZnR UnR TnR

XnR+1 YnR+1 ZnR+1 UnR+1 TnR+1
...

Xn Yn Zn Un Tn
variables for fusion data

X̃1 Ỹ1 Z̃1 T̃1
...

X̃nR ỸnR Z̃nR T̃nR

Table 1: Summary of quantities on the population, random variables for R and D sample, and random
variables representing the data after fusion. Notice, e.g., the density fX,Z can be different from fXi,Zi .

For the distribution after matching, we generally have for i = 1, ..., nR

fX̃i,Ỹi,Z̃i,T̃i
(x, y, z, t) = fX̃i,Z̃i,T̃i

(x, z, t) · fỸi|X̃i,Z̃i,T̃i
(y|x, z, t) = fXi,Zi,Ti(x, z, t) · fỸi|Zi

(y|z), (5)

where the latter equality holds, because the X, Z, and TR values come directly from the R sample
and the fusion is based only on the Z value. To obtain a convenient expression for the second factor
in (5), idealizing assumptions are required. In particular, we will assume that

the distribution of the vector (Y,Z) in the D sample equals its expected distribution. (6)

Notice, for SRSWR, (6) and (2) are equivalent. Typically, assumption (6) implies that exact matches
are possible. Then, fỸi|Zi

(y|z) is the probability to randomly select a unit with Y value y among the
donor sample units with the Z value of the ith R sample unit. Examples for the concrete computation
of the two factors in (5) are given in the next subsections.

3.2 The first factor

The first factor in (5) depends on the sampling scheme for the R sample, but not on the sampling
procedure for the D sample. We consider some concrete sampling methods for the R sample in the
following and compute this factor.

3.2.1 General with-replacement (GWR) sampling for R sample

Here, the nR recipient units are selected with replacement and independent of each other where
we denote the probability that population unit j is selected in the ith draw (i = 1, ..., nR) by pRj
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(pRj ∈ (0, 1),
∑N

j=1 p
R
j = 1). That is, the pRj are single draw selection probabilities and we have

P

(
nR⋂
i=1

{Ui = ji}

)
=

nR∏
i=1

pRji , ji ∈ {1, ..., N}.

Such GWR sampling reduces to SRSWR when every pRj = 1/N . The pRj can be viewed as values of
a characteristics PR. Furthermore, let Pi denote the single draw selection probability of sample unit
i, i.e., Pi = pRUi

for i = 1, ..., nR. Finally, let P̃i (i = 1, ..., nR) be the single draw selection probability

corresponding to the ith row in the matched data set. Notice, PR, Pi and P̃i play the role of TR, Ti,
and T̃i from Subsection 3.1. For the first factor in (5), it is true that

fXi,Zi,Pi(x, z, p) =
N∑
j=1

pRj · 1{(x,z,p)}(xj , zj , pRj ). (7)

3.2.2 Stratified SRSWR for R sample

Stratified sampling means that the universe G is divided into a number of subpopulations (strata)
and a sample is drawn from each subpopulation. With respect to the R sample, say G is divided into
sR strata GR1 , ..., G

R
sR

with GRl having size NR
l (NR

1 + ... + NR
sR

= N). From stratum GRl , a simple
random sample with replacement of size nRl (nR1 + ... + nRsR = nR) is drawn where these sR samples
are independent. Define for l = 1, ..., sR the index set

IRl = {i ∈{1, ..., nR} : sample unit i belongs to stratum l},

i.e., IRl indicates which sample units were drawn from the lth stratum. Let SR be an attribute on the
population G (with possible values 1, ..., sR) representing the stratum an individual belongs to. For
i = 1, ..., nR, let Si denote the stratum the ith sample unit belongs to and define S̃i to be the stratum
associated with the ith data row in the matched data file (S̃i = Si holds). SR, Si, S̃i correspond to
TR, Ti, T̃i from Subsection 3.1. Notice that we have Si = l for i ∈ IRl . Consider an index i ∈ IRl , that
is, we look at an R sample unit selected from stratum GRl and have Si = l. For such i, we have

fXi,Zi,Si(x, z, l) = fXi,Zi(x, z) = fX,Z|SR
(x, z|l). (8)

3.2.3 General without-replacement sampling for R sample

In this subsection, we assume that the R sample is drawn by a without-replacement scheme and that
the sample size nR is fixed, that is, not random. Set πij = P(Ui = j) for i = 1, ..., n and j = 1, ..., N ,
i.e., πij is the probability that the jth population unit is selected in the ith draw. Define πRj to
be the inclusion probability of the jth population unit (j = 1, ..., N) with respect to the R sample.
Consequently, π1j + ...+ πnR,j = πRj holds. To give an example, for simple random sampling without

replacement (SRSWOR), we have πRj = nR/N and πij = 1/N . The πRj are values of a characteristic

ΠR. Set Πi = πRUi
, that is, the random variable Πi represents the inclusion probability for the R sample

of the ith R sample unit. Let Π̃i be the inclusion probability for the R sample corresponding to ith
row in the data set after fusion. Thus, ΠR, Πi, and Π̃i correspond to TR, Ti, and T̃i in Subsection 3.1.
Then, the first factor in (5) equals

fXi,Zi,Πi(x, z, π) =

N∑
j=1

1{(x,z,π)}(xj , zj , π
R
j ) · πij . (9)
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3.3 The second factor

In this subsection, we calculate the second factor from (5) for some concrete sampling schemes for the
D sample.

3.3.1 GWR sampling for D sample

Adapting the notation from Subsection 3.2.1, pDj (j = 1, ..., N) is the single draw selection probability

of population unit j with respect to the D sample and the pDj can be viewed as values of a characteristic
PD. To derive a convenient expression of the second factor in (5), we assume that the distribution of
(Y, Z) in the D sample equals its asymptotic sampling distribution. According to the strong law of
large numbers (SLLN),

n−1
D ·

nR+nD∑
j=nR+1

1{(y,z)}(Yj , Zj)

converges almost surely (a.s.) to

P(YnR+1 = y, ZnR+1 = z) =
N∑
j=1

pDj · 1{(y,z)}(yj , zj)

as nD → ∞, that is, the SLLN guarantees at least an approximate validity of this assumption for a
large D sample. This assumption is equivalent to (6) and implies that exact matches of recipient and
donor units with respect to the Z value are possible. Then, we obtain

fỸi|Zi
(y|z) =

∑N
j=1 p

D
j · 1{(y,z)}(yj , zj)∑N

j=1 p
D
j · 1{(z)}(zj)

. (10)

3.3.2 D sample stratified by Z

For the D sample, say G consists of sD strata GD1 , ..., G
D
sD

with sizes ND
1 , ..., N

D
sD

. The strata are
defined via outcomes of Z. Let SD be a characteristic on G with values in {1, ..., sD} describing to
which stratum an individual belongs. Consequently, SD is a function of Z. We draw sD independent
simple random samples with replacement from G where the lth subsample is of size nDl and selected
from GDl . We assume (6) implying that exact matches are possible. Consider a value z such that an
individual with Z value equal to z belongs to stratum GDl . Then, for i = 1, ..., nR,

fỸi|Zi
(y|z) = fY |Z,SD

(y|z, l) = fY |Z(y|z) (11)

holds.

3.3.3 D sample stratified by Y

Consider the situation of Subsection 3.3.2 except that SD is now a function of Y and not of Z. We
again assume (6). Consider y corresponding to stratum GDl . This means that an individual having Y
value y belongs to stratum GDl . Then, we have

fỸi|Zi
(y|z) =

nDl · fY,Z|SD
(y, z|l)

nD1 · fZ|SD
(z|1) + ...+ nDsD · fZ|SD

(z|sD)
. (12)
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3.3.4 General without-replacement sampling for D sample

Let us first extend the notation of Subsection 3.2.3. The quantity πDj is the jth population unit’s

inclusion probability for the D sample. The values πDj are outcomes of a characteristic ΠD defined

on G. Moreover, for j = 1, ..., N , let HD
j be a random variable with possible values in {0, 1} where

HD
j = 1 if the jth population unit is selected in the D sample and HD

j = 0 else. Subsequently,
we assume as in (6) that the distribution of (Y,Z) in the D sample equals its expected distribution.
Then, exact matches are possible. For the expected number how often (Y,Z) = (y, z) appears in the
D sample,

E

 N∑
j=1

1{(y,z)}(yj , zj) ·HD
j

 =

N∑
j=1

1{(y,z)}(yj , zj) · πD
j

holds. This implies

fỸi|Zi
(y|z) =

∑N
j=1 1{(y,z)}(yj , zj) · πDj∑N

j=1 1{z}(zj) · πDj
.

4 Comparison of distribution before and after fusion

In this section, we address concrete combinations of sampling schemes for the R and the D sample
and investigate when the distribution before the fusion equals the distribution after the fusion.

4.1 General with-replacement sampling for both samples

We consider the settings of Subsections 3.2.1 and 3.3.1 and assume that

pRj = pDj (=: pj) (13)

holds for j = 1, ..., N , i.e., we have the same single draw selection probabilities for both samples and
PR = PD(=: P ). For instance, in the special case where the single draw selection probabilities are
proportional to some function g of Z (i.e., pps sampling if g(Z) can be interpreted as “size”), (13)
is fulfilled. Then, we have that the vectors (X̃i, Ỹi, Z̃i, P̃i), i = 1, ..., nR, are iid and the density after
fusion is

fX̃1,Ỹ1,Z̃1,P̃1
(x, y, z, p) = fX1,Z1,P1(x, z, p) · fYnR+1|ZnR+1

(y|z)
= fX1,Z1,P1(x, z, p) · fY1|Z1

(y|z)
= fZ1(z) · fX1,P1|Z1

(x, p|z) · fY1|Z1
(y|z).

As a consequence,
fX̃1,Ỹ1,Z̃1,P̃1

(x, y, z, p) = fX1,Y1,Z1,P1(x, y, z, p),

i.e., the densities before and after fusion are equal, if and only if

(X1, P1) and Y1 are independent given Z1. (14)

Under (14), we can unbiasedly estimate the mean of functions of (X,Y, Z) from the fusion data using
the Hansen-Hurwitz estimator. That is, the mean of a characteristic h(X,Y, Z) with a measurable
function h is estimated by
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Ê(h(X,Y, Z)) =
1

nR

nR∑
i=1

h(X̃i, Ỹi, Z̃i)

N · P̃i
(15)

with E(Ê(h(X,Y, Z))) = E(h(X,Y, Z)). We give three examples in which (14) holds:

(i) On the population, X and Y are conditionally independent given Z and, furthermore, P is equal
to 1/N .

(ii) P1 and (X1, Y1, Z1) are independent and X1 and Y1 are independent given Z1.

(iii) P is a function g of Z (that is, pj = g(zj) for j = 1, ..., N) and X and Y are conditionally
independent given Z on the population.

In (i), we have SRSWR. In (i) and (ii), the claim follows by standard calculations with (conditional)
densities. Moreover, regarding (ii) notice if we have on the population that P and (X,Y, Z) are
independent and thatX and Y are independent given Z, this does not automatically imply requirement
on the random variables stated in (ii) due to the GWR sampling scheme. The case (iii) is very
important, because it covers the situation of single draw selection probabilities proportional to some
function of Z (pps sampling). We now proof that the claim follows from (iii). It is true that

fX1,Y1|Z1
(x, y|z) =

∑N
j=1 g(zj) · 1{x}(xj) · 1{y}(yj) · 1{z}(zj)∑N

j=1 g(zj) · 1{z}(zj)

=

∑N
j=1 g(z) · 1{x}(xj) · 1{y}(yj) · 1{z}(zj)∑N

j=1 g(z) · 1{z}(zj)
= fX,Y |Z(x, y|z) = fX|Z(x|z) · fY |Z(y|z). (16)

We can show similarly fX1|Z1
(x|z) = fX|Z(x|z) and fY1|Z1

(y|z) = fY |Z(y|z). For (14), we have to
establish

fX1,P1|Z1
(x, p|z) · fY1|Z1

(y|z) = fX1,P1,Y1|Z1
(x, p, y|z).

For p 6= g(z), both sides of the equation are zero. For p = g(z), this equation reduces to fX1|Z1
(x|z) ·

fY1|Z1
(y|z) = fX1,Y1|Z1

(x, y|z), which is shown above. Thus, the proof is completed.

4.2 SRSWR (R sample) and stratification by Z (D sample)

With Subsection 3.3.2, we have for z such that an individual with Z value equal to z belongs to the
stratum GDl and i = 1, ..., nR,

fX̃i,Ỹi,Z̃i
(x, y, z) = fX,Z(x, z) · fY |Z(y|z).

Hence, for i = 1, ..., nR, the equivalences

(X̃i, Ỹi, Z̃i) ∼ (Xi, Yi, Zi)⇐⇒ (X̃i, Ỹi, Z̃i) ∼ (X,Y, Z)⇐⇒ X and Y are independent given Z

are true. In other words, we have the same condition under which the densities before and after
matching are equal as in Section 2 for twice SRSWR.

4.3 SRSWR (R sample) and stratification by Y (D sample)

With Subsection 3.3.3, we have for y corresponding to stratum GDl

fX̃i,Ỹi,Z̃i
(x, y, z) = fX,Z(x, z) ·

nDl · fY,Z|SD
(y, z|l)

nD1 · fZ|SD
(z|1) + ...+ nDsD · fZ|SD

(z|sD)
.
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For instance, in the special case with

sD = 2, nD1 = nD2 , fSD
(1) = fSD

(2) = 1/2, (17)

the second factor reduces to fY |Z(y|z) and we have:

distribution before and after fusion are equal⇐⇒ X and Y independent given Z. (18)

However, in general, the second factor is unequal to fY |Z(y|z) and equivalence (18) does not hold.

4.4 Stratified SRSWR (R sample) and SRSWR (D sample)

The results from Subsection 3.2.2 are useful here. For i ∈ IRl , that is, for an R sample unit from the lth
stratum, we have Si = l and the density before matching is fXi,Yi,Zi,Si(x, y, z, l) = fXi,Yi,Zi(x, y, z) =
fX,Y,Z|SR

(x, y, z|l) while the density after matching equals

fX̃i,Ỹi,Z̃i,S̃i
(x, y, z, l) = fX,Z|SR

(x, z|l) · fY |Z(y|z).

Thus, we have

fX̃i,Ỹi,Z̃i,S̃i
(x, y, z, l) = fXi,Yi,Zi,Si(x, y, z, l)⇐⇒ (SR, X) and Y independent given Z. (19)

Under (19), the mean of a characteristic h(X,Y, Z) can be estimated without bias from the after-fusion
data by

Ê(h(X,Y, Z)) =

sR∑
l=1

NR
l

N
·

 1

nRl
·
∑
i∈IRl

h(X̃i, Ỹi, Z̃i)

 . (20)

The condition (19) is satisfied if X and Y are conditionally independent given Z and additionally one
of the following cases applies:

(i) SR = 1.

(ii) SR is a function g of Z, i.e., SR = g(Z).

(iii) SR is a function g of X, i.e., SR = g(X).

Case (i) means that we have ordinary SRSWR for the R sample. We are then in the situation of
Section 2. In (ii), we have stratification by Z and (19) follows, because

fSR,X|Z(l, x|z) · fY |Z(y|z) = fSR,X,Y |Z(l, x, y|z)⇐⇒ fX|Z(x|z) · fY |Z(y|z) = fX,Y |Z(x, y|z)

is true for l = g(z). In situation (iii), in which stratification by X is present, (19) can be shown
similarly.

4.5 Stratified SRSWR for both samples

The density before the fusion is for i ∈ IRl

fXi,Yi,Zi,Si(x, y, z, l) = fX,Y,Z|SR
(x, y, z|l).

For the density after matching, we have for i ∈ IRl

fX̃i,Ỹi,Z̃i,S̃i
(x, y, z, l) = fX,Z|SR

(x, z|l) · fỸi|Zi
(y|z).
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Regarding the second factor, let us first consider a D sample stratified by Y . Due to (12), we have

fỸi|Zi
(y|z) =

nDl · fY,Z|SD
(y, z|l)

nD1 · fZ|SD
(z|1) + ...+ nDsD · fZ|SD

(z|sD)
.

For a special case with fỸi|Zi
(y|z) = fY |Z(y|z), for instance, in (17), the distributions of (Xi, Yi, Zi, Si)

and (X̃i, Ỹi, Z̃i, S̃i) are equal if and only if

(SR, X) and Y independent given Z. (21)

The requirement (21) is fulfilled if conditional independence of X and Y given Z and furthermore
SR = 1 or SR = g(Z) (i.e., R sample stratified by Z) or SR = g(X) (i.e., R sample stratified by X)
hold, compare with Subsection 4.4.

Let us now study a D sample stratified by Z. Then, fỸi|Zi
(y|z) = fY |Z(y|z) follows from Subsection

3.3.2 and (X̃i, Ỹi, Z̃i, S̃i) ∼ (Xi, Yi, Zi, Si) is true if and only if (21) holds again.

4.6 SRSWOR (R sample) and inclusion probabilities proportional to g(Z) (D
sample)

We need notation and results from Subsections 3.2.3 and 3.3.4. We have πDj = c ·g(zj) with a constant
c and j = 1, ..., N . That is, we have πps sampling if g(Z) possesses an interpretation as “size”. As a
consequence, we have the simplification

fỸi|Zi
(y|z) = fY |Z(y|z)

and, because ΠR is constant,

fXi,Yi,Zi,Πi(x, y, z, π) = fX̃i,Ỹi,Z̃i,Π̃i
(x, y, z, π)

⇐⇒fX,Y,Z,ΠR
(x, y, z, π) = fX,Z,ΠR

(x, z, π) · fY |Z(y|z)
⇐⇒fX,Y,Z(x, y, z) = fX,Z(x, z) · fY |Z(y|z)

The latter condition is equivalent to conditional independence of X and Y given Z. We remark that
this subsection also covers the case of twice SRSWOR. In this case, we have πDj = nD/N = nD/N ·g(zj)
for the constant function g = 1.

4.7 Inclusion probabilities proportional to g(Z) for both samples

Here, we present approximate considerations. On the one hand, our without-replacement samples are
described by (U1, ..., UnR , UnR+1, ..., Un). On the other hand, we consider with-replacement samples
described by (U∗1 , ..., U

∗
nR
, U∗nR+1, ..., U

∗
n) where we have that U∗1 , ..., U

∗
nR

are independent, UnR+1, ..., Un
are independent, and that

P(U∗i = j) =
πRj
nR

= const. · g(zj), i = 1, ..., nR

P(U∗i = j) =
πDj
nD

= const. · g(zj), i = nR+1, ..., n

When n is small in comparison with N , the properties of the without-replacement situation will often
differ not that much from the properties of the with-replacement setup. For the with-replacement
constellation, we have seen in Subsection 4.1 that the distributions before and after fusion are equal ifX
and Y are independent given Z. Hence, there will often be no large difference between the distribution
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before and after matching for the without-replacement situation if X and Y are independent given Z.
Then, the Horvitz-Thompson estimator based on fusion data

µ̂ =
1

N

nR∑
i=1

h(X̃i, Ỹi, Z̃i)

Π̃i

(22)

will provide at least an approximately unbiased estimation of the mean of the characteristic h(X,Y, Z)
with a measurable function h.

5 Simulations

In Section 4, we have derived conditions under which the distribution before the fusion equals the dis-
tribution after the fusion. These results require the idealizing assumption (6). We will now consider a
more realistic setup without assumption (6) and usually without exact matches. When we can not find
an exact match, the nearest neighbor (NN) method is applied. That is, for every R sample unit, we
search a D sample unit whose Z value is closest to the Z value of the considered individual from the R
sample. If more than one D sample unit possesses the minimum distance in Z to the considered R sam-
ple unit, one of these D sample units is selected randomly. We throughout allow that each D sample
unit can be used any number of times as donor, i.e., we permit “polygamy”. Moreover, we do not in-
troduce a maximum allowed distance in Z of matched units, that is, we have a caliper equal to infinity.

The aim of this section, is to investigate whether the results from Section 4 hold also in the more re-
alistic situation. For this, we consider various concrete specifications for the draw of R and D sample
where we orientate ourselves towards Section 4 and conduct wide simulations using the software “R”
(Version 3.1.3). The sample size of the R sample is always nR = 500 while the D sample comprises
always nD = 1000 units.

Throughout this section, we consider two populations G1 and G2 each of size N = 106. In G1, the
vector (X,Y, Z) is approximately normally distributed withXY

Z

 ∼ N
30

40
50

 ,

 25 −3.2 −10
−3.2 64 32
−10 32 100

 . (23)

In G2, we approximately haveXY
Z

 ∼ N
30

40
50

 ,

 25 30 −10
30 64 32
−10 32 100

 . (24)

For instance, X, Y , and Z could represent the daily duration of watching a certain television program
between 6 pm and 8 pm, the monthly expenditures for a certain product, and the person’s age. For
the normal distribution in (23), we have conditional independence of X and Y given Z, because

Cov(X,Y ) = Cov(X,Z) · Cov(Y, Z)/Cov(Z,Z)

is true. In (24), such conditional independence does not hold. For our simulations, G1 and G2 are
obtained by drawing a sample of size N from the corresponding normal distribution. Since negative
outcomes of X, Y , Z may lead to negative single stage selection probabilities or inclusion probabilities,
such numbers are converted to the absolute value. This is only a tiny modification, because the chance
of obtaining a negative value for above normal distributions is very small.
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By combining a population (G1 or G2) with a scheme for generating the R sample and a sampling
procedure for the D sample, we obtain several constellations. For each constellation, we conduct
1000 simulation replications where each replication proceeds as follows. First, R and D sample are
generated, second, the matched data set is calculated, and third, the matched data set is evaluated
by computing estimates for certain means on the population.

The way how the estimates are calculated depends of the sampling scheme of the R sample. Concerning
this, let us consider the characteristic h(X,Y, Z) with a measurable function h. To estimate the mean
of h(X,Y, Z), we apply the Hansen-Hurwitz estimator (15) for R samples drawn by GWR sampling.
For a stratified R sample, it is appropriate to use (20). For without-replacement sampling for the R
sample, we apply the Horvitz-Thompson estimator (22). The estimators (15), (20), and (22) reduce
to the ordinary mean if we have SRSWR, only one stratum, and SRSWOR, respectively. When 1000
replications were conducted, we have 1000 realizations of each considered estimator, from which we
compute the average estimate and make a comparison with the true mean on the population.

5.1 GWR sampling for both samples

In this subsection, we investigate if the results from Subsection 4.1 remain valid in our current more
realistic situation without assumption (6) and with NN matching rather than exact matching. R and
D sample are drawn by GWR sampling with single draw selection probabilities

pj = pRj = pDj (j = 1, ..., N).

We consider single draw selection probabilities proportional to X, Y , or Z. That is, we have
pj = xj/

∑N
l=1 xl or pj = yj/

∑N
l=1 yl or pj = zj/

∑N
l=1 zl. By combining two populations (G1 or

G2) with three sampling strategies (probabilities proportional to X, Y or Z for both samples), we
obtain six constellations.

The simulation results are given in Table A.1. Let us consider the upper part of this table, which
corresponds to G1, i.e., the population for which conditional independence holds. We first list the
theoretical values which hold for an exact normal distribution and the actual values for G1. Then, we
provide average estimates obtained by our simulations. The lower part of Table A.1 is analogously
arranged where population G2 is considered there. Let us have a look at single stage selection proba-
bilities proportional to Z first (see last column in the table). Here, the average estimates are close to
the actual values for G1. This coincides with Subsection 4.1. For G2, the estimation of E(XY ) fails.
Selection probabilities proportional to Y or X were not treated in Subsection 4.1. In our simulations,
we observe often biased estimates for the case with Y . In the case with X and the universe G1, the
average estimates seem to be as good as those for selection probabilities proportional to Z and G1.

5.2 SRSWR (R sample) and stratification by Z (D sample)

With respect to the D sample, the population is divided into two strata according to the Z values.
Units with Z ≤ 45 belong to stratum 1, other units are assigned to stratum 2. We draw 400 and 600
units from stratum 1 and 2, respectively. Table A.2 shows the simulation results. For universe G1,
that is, for the case with conditional independence, the population means are well reproduced. This
confirms the result of Subsection 4.2. For G2, the estimation of E(XY ) fails. In other words, the
conditional independence can not be relinquished.

5.3 SRSWR (R sample) and stratification by Y (D sample)

Now the D sample is stratified by Y . Units with Y ≤ 40 belong to stratum 1, while Y > 40 holds for
the second stratum. In a first case, we draw 500 units from each stratum. In a second case, we select
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750 and 250 units from stratum 1 and 2, respectively. The results are provided in Table A.3. At least
the estimate for E(XY ) is poor for G2. For G1 and the unequal sample sizes for the D subsamples,
the estimations often involve a massive bias. For G1 and the equal sample sizes nD1 = nD2 = 500, the
considered population means are estimated well. This observation coincides with Subsection 4.3.

5.4 Stratified SRSWR (R sample) and
SRSWR (D sample)

Here, we combine a stratified R sample with SRSWR for the D sample. The R sample consists of a
sample of size nR1 = 200 from stratum 1 and a sample of size nR2 = 300 from stratum 2. In a first case,
units with X ≤ 28 belong to stratum 1 and units with X > 28 are assigned to stratum 2 (stratification
by X). In a second case, we have Z ≤ 45 for the first stratum and Z > 45 for the second stratum
(stratification by Z). The output of the simulations can be found in Table A.4. For the conditional
independence case (that is, for G1), the average estimates are throughout close to the true values.
This could be expected after Subsection 4.4. For the other population G2, the average estimates for
E(XY ) are not close to E(XY ).

5.5 Stratified SRSWR for both samples

In this subsection, the R sample is stratified by X or Z and the D sample is stratified by Y or Z. The
subsample sizes are nR1 = 200 and nR2 = 300 as well as nD1 = nD2 = 500. For an R sample stratified
by X, we have X ≤ 28 for stratum 1. For an R sample stratified by Z, Z ≤ 45 holds in stratum 1.
For a D sample stratified by Y , Y ≤ 40 is true in stratum 1. For a D sample stratified by Z, we have
Z ≤ 52 in the first stratum. According to Table A.5, we have expedient estimations for population
G1. Thus, we find the results from Subsection 4.5 here again. For the other universe, i.e., for G2, the
estimation of E(XY ) does not work.

5.6 SRSWOR (R sample) and Sampford sampling (D sample)

We have without-replacement samples in this subsection. The R sample is generated by SRSWOR.
The D sample is drawn by Sampford sampling with inclusion probabilities proportional to X, Y , or
Z. That is, we have for j = 1, ..., N , the inclusion chances

πDj = nD · xj /
N∑
l=1

xl or (25)

πDj = nD · yj /
N∑
l=1

yl or (26)

πDj = nD · zj /
N∑
l=1

zl. (27)

The simulation results are listed in Table A.6. For G1 and inclusion probabilities for the D sample
proportional to Z, the estimators work confirming the corresponding statement from Subsection 4.6.

5.7 Sampford sampling for both samples

We now analyze Sampford sampling for both samples and consider inclusion probabilities proportional
to X, Y , or Z. Hence, we have (25), (26), or (27) and analog equations for πRj . Table A.7 contains
the simulation output for this subsection. The observations are similar to those of Subsection 5.1,
in which with-replacement samples were addressed. Especially for G1 and inclusion probabilities for
both samples proportional to Z, we have good estimates on average.
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6 Summary and conclusions

In this article, we addressed statistical matching for several combinations of sampling strategies for
the recipient sample and the donor sample. As sampling designs, stratified sampling, general with-
replacement sampling and general without-replacement sampling were incorporated. In a first step, we
have conducted analytical investigations for each considered pair of sampling schemes. In particular,
we first derived the distribution after fusion. Second, we identified situations in which the distribution
after fusion equals the distribution before matching. Third, we stated an estimator that is appropriate
when the after-fusion and before-fusion distributions are equal.

To obtain a convenient expression for the second factor of the after-matching density, we have made an
idealizing assumption. This assumption was that the distribution of the vector (Y,Z) in the D sample
equals its expected distribution. Consequently, our analytic findings on after-fusion distributions
(Section 3) and on criteria for correct after-fusion distributions (Section 4) depend on this requirement.
Mathematically, the idealizing assumption can be written as an event B and in Section 3, we have
actually derived the conditional density fX̃i,Ỹi,Z̃i,T̃i

(x, y, z, t|B). The hope is then that

fX̃i,Ỹi,Z̃i,T̃i
(x, y, z, t) ≈ fX̃i,Ỹi,Z̃i,T̃i

(x, y, z, t|B),

i.e., that conditioning on B does not matter that much. In this case, the criteria from Section 4 would
be robust. To explore this robustness, we have conducted simulations. Joyfully, these simulations
indicate that the analytic results on correct after-fusion distributions from Section 4, which were ob-
tained under the idealizing assumption, remain valid also without this assumption.

From our article, we can conclude the following points regarding the quality of fusion data. Condi-
tional independence of the characteristics not jointly observed given the common characteristic is a
central necessity for a successful fusion. Here, a successful fusion means that the distribution after
matching equals the distribution before matching. However, this conditional independence is often
not sufficient. Instead, stronger or additional requirements are needed (e.g., compare with (14), (17),
(19), (21)).

Another main observation is that identical sampling schemes for both original samples are not neces-
sary to obtain a successful fusion. For example, several combinations of SRSWR and stratification or
a combination of SRSWOR and with-replacement sampling with inclusion probabilities proportional
to some function of the common characteristic work as long as we have conditional independence.

This article does not intend to unrestrictedly advertise data fusions. Instead, the aim is to sensitize
data fusion users that successful fusions depend on certain criteria, typically involving conditional
independence and, for more complex sampling, partly additional or stronger requirements according
to the sampling schemes of the input samples. Already the conditional independence of X and Y
given Z is a quite strong requirement, because this means that there is no influence from Y to X (and
also no influence from X to Y ) when Z is fixed. For example, in the context of television and buying
behavior, this means that we cannot improve the prediction of buying behavior by data on television
watching when we have already conditioned on the common characteristics. As stated, for example,
in Rässler (2002, p. 35), this situation will usually not hold if the common characteristics comprise
only demographic and socio-economic variables. A possible remedy stated in Rässler (2002, p. 35) to
mitigate this problem is that the common characteristics Z should also incorporate some variables on
television and buying behavior.
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Appendix: Simulation outputs

G1

mean average estimates
of theoretical actual ∝ X ∝ Y ∝ Z
X 30.00 29.99 29.99 29.98 29.99
Y 40.00 40.00 39.98 41.37 40.02
Z 50.00 50.00 49.96 50.02 50.00
X2 925.00 924.52 924.96 924.00 924.27
Y 2 1664.00 1663.99 1663.28 1773.15 1665.55
Z2 2600.00 2600.36 2597.60 2602.22 2600.51
XY 1196.80 1196.54 1196.68 1237.54 1197.17
XZ 1490.00 1489.79 1489.51 1490.09 1489.79
Y Z 2032.00 2032.18 2030.59 2100.48 2033.07

G2

X 30 30.01 30.01 30.02 30.01
Y 40.00 40.01 41.11 41.34 39.99
Z 50.00 50.01 50.02 49.99 50.01
X2 925.00 925.42 925.24 925.86 925.51
Y 2 1664.00 1665.23 1752.70 1769.94 1663.49
Z2 2600.00 2600.63 2601.88 2598.63 2601.30
XY 1230.00 1230.75 1230.20 1237.62 1197.04
XZ 1490.00 1490.64 1490.80 1490.46 1490.79
Y Z 2032.00 2033.03 2088.31 2097.06 2032.23

Table A.1: Simulated average estimates for GWR sampling for both samples, see Subsection 5.1.
The column “theoretical” contains theoretical population means which occur for an exact normal
distribution. The column “actual” provides the actual means on the finite population (G1 or G2). For
example, ∝ X means single stage selection probabilities proportional to X.
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population G1 population G2

mean average average
of theoretical actual estimates theoretical actual estimates

X 30.00 29.99 29.99 30.00 30.01 30.01
Y 40.00 40.00 40.00 40.00 40.01 40.00
Z 50.00 50.00 50.01 50.00 50.01 50.01
X2 925.00 924.52 924.18 925.00 925.42 925.35
Y 2 1664.00 1663.99 1663.72 1664.00 1665.23 1663.70
Z2 2600.00 2600.36 2601.58 2600.00 2600.63 2600.96
XY 1196.80 1196.54 1196.19 1230.00 1230.75 1197.04
XZ 1490.00 1489.79 1489.77 1490.00 1490.64 1490.62
Y Z 2032.00 2032.18 2032.32 2032.00 2033.03 2032.06

Table A.2: Simulated average estimates for SRSWR for the R sample and a D sample stratified by Z
in comparison with the actual values, see Subsection 5.2.

population G1 population G2

mean average estimates average estimates
of theoretical actual nD1 = nD2 nD1 6= nD2 theoretical actual nD1 = nD2 nD1 6= nD2
X 30.00 29.99 30.01 29.99 30.00 30.01 30.01 30.01
Y 40.00 40.00 39.98 37.26 40.00 40.01 40.01 37.24
Z 50.00 50.00 49.98 49.99 50.00 50.01 50.02 49.98
X2 925.00 924.52 925.36 924.31 925.00 925.42 925.62 925.77
Y 2 1664.00 1663.99 1661.97 1443.38 1664.00 1665.23 1664.76 1441.80
Z2 2600.00 2600.36 2598.41 2599.09 2600.00 2600.63 2601.87 2598.27
XY 1196.80 1196.54 1196.46 1114.74 1230.00 1230.75 1197.71 1114.81
XZ 1490.00 1489.79 1489.88 1489.43 1490.00 1490.64 1491.13 1490.10
Y Z 2032.00 2032.18 2030.13 1890.61 2032.00 2033.03 2033.05 1889.08

Table A.3: Simulated average estimates for SRSWR for the R sample and a D sample stratified by
Y in comparison with the actual values, see Subsection 5.3. The size of the sample from stratum i is
nDi .

population G1 population G2

mean average estimates average estimates
of theoretical actual X-strat Z-strat theoretical actual X-strat Z-strat

X 30.00 29.99 30.00 29.99 30.00 30.01 30.00 30.01
Y 40.00 40.00 39.99 40.02 40.00 40.01 40.03 40.04
Z 50.00 50.00 50.01 50.03 50.00 50.01 50.01 50.00
X2 925.00 924.52 924.92 924.05 925.00 925.42 925.13 925.42
Y 2 1664.00 1663.99 1663.07 1664.34 1664.00 1665.23 1666.11 1667.17
Z2 2600.00 2600.36 2600.89 2603.09 2600.00 2600.63 2601.40 2599.57
XY 1196.80 1196.54 1196.57 1196.37 1230.00 1230.75 1197.83 1198.07
XZ 1490.00 1489.79 1490.23 1490.29 1490.00 1490.64 1490.68 1490.21
Y Z 2032.00 2032.18 2031.86 2033.46 2032.00 2033.03 2033.96 2033.86

Table A.4: Simulated average estimates for an R sample stratified by X or Z and SRSWR for the D
sample, see Subsection 5.4. E.g., X-strat means an R sample stratified byX.
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mean average estimates
of theoretical actual X/Y -strat Z/Y -strat X/Z-strat Z/Z-strat

G1

X 30.00 29.99 29.99 29.99 29.99 30.01
Y 40.00 40.00 40.00 39.99 40.00 40.01
Z 50.00 50.00 50.01 50.01 50.00 49.99
X2 925.00 924.52 924.31 924.29 924.53 925.56
Y 2 1664.00 1663.99 1663.60 1662.86 1664.14 1664.15
Z2 2600.00 2600.36 2600.91 2601.39 2600.01 2599.48
XY 1196.80 1196.54 1196.12 1196.09 1196.65 1197.48
XZ 1490.00 1489.79 1489.76 1489.86 1489.74 1490.36
Y Z 2032.00 2032.18 2032.05 2031.87 2032.16 2031.92

G2

X 30.00 30.01 30.00 30.00 30.01 30.00
Y 40.00 40.01 40.01 40.01 40.00 40.04
Z 50.00 50.01 50.01 50.01 49.99 50.02
X2 925.00 925.42 925.06 925.01 925.73 924.89
Y 2 1664.00 1665.23 1664.49 1665.10 1663.74 1666.96
Z2 2600.00 2600.63 2600.77 2600.66 2599.46 2602.05
XY 1230.00 1230.75 1197.11 1197.15 1197.21 1197.80
XZ 1490.00 1490.64 1490.40 1490.30 1490.38 1490.42
Y Z 2032.00 2033.03 2032.69 2032.85 2031.52 2034.44

Table A.5: Simulated average estimates for stratified sampling in both samples, see Subsection 5.5.
E.g., X/Y -strat means that the R sample is stratified by X and the D sample is stratified by Y .

mean average estimates
of theoretical actual ∝ X ∝ Y ∝ Z

G1

X 30.00 29.99 29.99 29.99 29.99
Y 40.00 40.00 40.02 41.35 40.00
Z 50.00 50.00 50.01 50.00 50.01
X2 925.00 924.52 924.49 924.54 924.48
Y 2 1664.00 1663.99 1665.11 1771.10 1664.29
Z2 2600.00 2600.36 2601.35 2600.60 2601.52
XY 1196.80 1196.54 1196.96 1237.15 1196.62
XZ 1490.00 1489.79 1490.12 1489.88 1490.14
Y Z 2032.00 2032.18 2033.43 2098.56 2032.71

G2

X 30.00 30.01 30.02 30.01 30.00
Y 40.00 40.01 41.11 41.37 40.03
Z 50.00 50.01 50.01 50.01 49.99
X2 925.00 925.42 926.03 925.42 925.18
Y 2 1664.00 1665.23 1753.13 1772.77 1666.18
Z2 2600.00 2600.63 2601.20 2600.28 2598.89
XY 1230.00 1230.75 1230.85 1238.17 1197.83
XZ 1490.00 1490.64 1491.24 1490.35 1489.91
Y Z 2032.00 2033.03 2088.30 2099.64 2032.87

Table A.6: Simulated average estimates for SRSWOR (R sample) and Sampford sampling (D sample)
see Subsection 5.6. E.g., ∝ X means that we have inclusion probabilities proportional to X for the D
sample.
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mean average estimates
of theoretical actual ∝ X ∝ Y ∝ Z

G1

X 30.00 29.99 29.99 30.00 29.98
Y 40.00 40.00 39.95 41.39 39.98
Z 50.00 50.00 49.93 50.00 50.00
X2 925.00 924.52 925.31 924.64 924.18
Y 2 1664.00 1663.99 1661.10 1773.76 1663.40
Z2 2600.00 2600.36 2595.74 2599.33 2601.50
XY 1196.80 1196.54 1196.18 1238.18 1196.17
XZ 1490.00 1489.79 1488.98 1489.51 1489.96
Y Z 2032.00 2032.18 2028.69 2099.51 2032.14

G2

X 30.00 30.01 30.01 30.00 30.02
Y 40.00 40.01 41.13 41.38 40.02
Z 50.00 50.01 49.97 50.00 50.01
X2 925.00 925.42 925.57 925.34 925.86
Y 2 1664.00 1665.23 1754.81 1773.41 1665.67
Z2 2600.00 2600.63 2598.12 2600.63 2600.23
XY 1230.00 1230.75 1231.29 1238.66 1198.05
XZ 1490.00 1490.64 1490.11 1490.69 1490.89
Y Z 2032.00 2033.03 2088.09 2099.86 2033.07

Table A.7: Simulated average estimates for Sampford sampling for both samples, see Subsection 5.7.
E.g., ∝ X means that we have inclusion probabilities proportional to X for both samples.
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