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Abstract

The special character of certain degrees of freedom in two-layered neural
networks is investigated for on-line learning of realizable rules. Our analysis
shows that the dynamics of these degrees of freedom can be put on a faster
time scale than the remaining, with the profit of speeding up the overall
adaptation process. This is shown for two groups of degrees of freedom:
second layer weights and bias weights. For the former case our analysis
provides a theoretical explanation of phenomenological findings.

PACS.: 87.10+, 02.50-r, 07.05.Kf, 07.05.Mh

Statistical mechanics has deeply contributed to the understanding of adaptive
systems during the past decades. Among such systems are neural networks [1, 3]
which are capable of learning, 7.e. of adapting themselves to a desired state by
means of examples. As learning tasks can be characterized by a certain amount
of inherent randomness and a number of degrees of freedom which is typically
large, physics and in particular statistical mechanics often provides a means to
understand such phenomena. The tools used to analyze such systems, e.g. ther-
modynamic limit [1] and stochastic differential equations [2], allow to describe
learning processes under a variety of circumstances, such as different architec-
tures and training algorithms [1, 3]. In addition, recent contributions [4, 5, 6]
have shown how to compute optimal algorithms starting from first principles.

In this Letter, statistical mechanics is used to analyze learning in specific
two-layered neural networks. Such networks realize an input-output relation

o(&) =Y wig(J;-E+7;), (1)

=1

where g(-) is a sigmoidal function and W = {J;, w;,9;},_, j denotes the set of
weights of the network. The N-dimensional vector J; corresponds to the synaptic
couplings of a first layer branch in a two-layered neural network, while w; denotes
the second layer weights connecting the j-th input branch with the output node.



The weights ¥, are usually referred to as biases. Given an array of N inputs §
the network computes its output o(£€) according to (1).

Two-layered networks of the form (1) can implement any continuous input-
output relation ¢ € RN — 7 € IR [7] if the number of hidden units K is
unrestricted. That is, given a set of training ezamples D = {§(n), 7(n)},_; N
the network can adjust its weights W in order to implement the function 7(§)
as accurate as desired. In learning theory this target function 7(£) is usually
parameterized: 7(£) = Y3, v;9 (B, - € + ;). This function can be viewed to be
represented by a so-called teacher network with weights B = {B;, v;, ¢,;}. The
learning task can then metaphorically be described as follows: A student network
of functional form (1) is trained by means of examples D provided by a teacher
network. The student’s task is to extract the teacher weights B and consequently
the functional relation 7(£) from these examples. This is achieved by means of
a learning algorithm which describes how to use information contained in the
training set in order to adjust the weights W.

Recently, on-line algorithms have attracted considerable attention. For on-
line learning the presentation of examples used in the learning process occurs in
a sequential manner. At presentation of example £(n) each weight W € W is
updated according to

W(n+1)=W(n)+ %Uwfw (W(n),&(n),7(n)). (2)
If one views n as a (discrete) time index Eq. (2) describes the time evolution of
the network weights. The weight function f defines the on-line learning algorithm
which describes how the weights W(n) of the student network ought to be changed
in response to a given example {&(n), 7(n)} at time step n.

Our main focus here is not on a clever choice of the training algorithm, .e.
the functional form of f, but on its proper scaling. In (2) we have separated out
this scaling into the quantity ny, which is usually referred to as learning rate.
The only requirement we impose on f = O(1) is to vanish at the desired solution
W = B. Thus, we only consider perfectly realizable tasks (M = K) here, where
B is a fixed point in the dynamics of W. In addition, we focus on networks having
a finite number of hidden units, i.e. K = O(1), while N is large.

In this Letter, we restrict ourselves to on-line backpropagation [8] since for this
choice of algorithm the mathematical burden reduces significantly. In particular,
averages can be performed analytically [8, 9] if one chooses the network’s transfer
functions g to be the error function g(z) = erf (z/\/i) However, the essential
results of this Letter hold for any adaptive dynamics of type (2). See [11] for
details.

For on-line backpropagation the dynamics of the weights (2) reads

Ji(n+1) = Jin) = V5.eOV,€) = Jin) + o)



win+1) = wi(n) eW, &) = wi(n) + X g(z; + 9,) (r — )

9
9in+1) = 0i(n)—"ﬁ"aﬁ_e(w,g):0i+%"5i (3)

where §; = w;g'(z; + 9;) (1 — o). The quantities z; = J; - € and y; = B; -
& denote the internal fields of student and teacher network, respectively. The
quadratic error measure € (W, €) = 1/2[0(&) — 7(¢)]* quantifies the degree of
disagreement between the student and the rule output for a particular random
input €. Denoting the average over the input distribution by (.. '>§ we define the
generalization error ¢, = (e(W,§)),. It measures the validity of the student’s
hypothesis for the rule 7(&).

The statistical mechanics analysis of on-line learning basically consists of two
steps: the introduction of order parameters and the average over the randomness
of the training examples. This allows to investigate typical behaviour together
with the reduction of an extensive number of degrees of freedom W to a finite
number of meaningful observables. The very property of these order parameters
is to be selfaveraging, i.e. their fluctuations vanish in the thermodynamic limit
N — oo. The practical difficulty, however, consists in finding appropriate or-
der parameters such that the resulting macroscopic equations of motion can be
written in a closed form after averaging over the distribution of inputs.

We exemplify the theoretical analysis of on-line learning for the simplest two-
layer network. This consists of only one hidden unit (K = 1) and no bias weights
(9 =0=¢): 0 =werf (J : 5/\/5) Following the proposal of [10] we choose
R=B-J,Q =J-J, and w as order parameters. The first layer order parameters
R and @ describe the overlaps between the first layer weights of teacher 7 =
verf (B . 5/\/5) and student network, respectively. These are the familiar order
parameters of perceptron learning (see e.g. [1]) and learning in so-called soft
committee machines [8, 9].

For sake of comparison we shortly recall the analysis for the case where both 7,
and 7, are O(1) [10, 11]. Starting from the corresponding microscopic equations
of motion (3) for this simple network, it is straightforward to derive recursion
relations for the mean values of R, ), and w by performing the average over the
latest example input [8, 9]. Since these quantities become selfaveraging in the
thermodynamic limit N — oo the description in terms of their mean values is
sufficient. In the same limit, one can interpret a = n/N as a continuous time and
obtains ordinary differential equations for the evolution of the learning network:

dR dQ _ 2 /5 dw _

Somy), =m e (P), S =mle@) - 0). (4)
The averages are over the two-dimensional Gaussian distribution of the internal
fields {x,y} which is determined through the correlations (z?) = Q, (zry) = R
and (y*) =T.



0.0 ‘
[ Az XZZXZ‘”
70.2? b
—04F A 1 W
g Ay
-0.6 ]
-0.81 \ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 0 20 40 60 80 100
Ny &S

Figure 1: Left: Eigenvalues of the linearization matrix governing the asymptotics
of (4) (\;) and (6) (X;) for T = v = n, = 7, = 1. Right: Generalization error ¢,
for two different types of scaling for the update of the second layer. For the first
type (x) the update of w has been chosen to scale with 1/N while it is of O(1) in
the second case (+). Symbols represent simulations obtained for a system with
N = 100 averaged over 100 runs, lines show the macroscopic equations of motion
(Q(0) =1, w(0) = 0.5, R(0) = O(1/+/N), n; = 2). Errorbars would be smaller

than the symbol size.

The macroscopic equations of motion (4) are easily integrated numerically.
The asymptotic learning behaviour can be obtained analytically by a linearization
of (4) around the fixed point R = @Q = T, w = v. The maximum eigenvalue A,q
of the linearization matrix determines the speed of the exponential convergence
towards the fixed point. Fig. 1 shows the eigenvalue spectrum as a function of
the first layer learning rate ;.

Of particular interest is the critical learning rate n;.. Only for n < ;. does
the student network converge to the teacher network. A detailed analysis shows
that 7. is independent of the second layer learning rate 7,,. Consequently, the
student network can learn the rule 7(&€) perfectly for any value of 7, as long as
ny < NJc-

The fact that convergence will not be destroyed for any choice of 7, leads nat-
urally to the conclusion that one should optimize the speed of convergence with
respect to 1,. One observes that the eigenvalue Ay which dominates the conver-
gence for most 1 < 1y, assumes its optimal value AP as 1, — 00. Obviously,
the divergence of 7, indicates that we should have chosen a different scaling for
the change of the second layer weight w. However, from the above analysis it
is not quite clear what kind of scaling this would be. Therefore we are going to
reanalyze the microscopic dynamics (3).

Without loss of generality we had chosen the component J; of the student’s
weight vector to be O(1/v/N) and the random inputs & = O(1) with zero mean
and unit variance. Together with the choice ¥;, ¢; = O(1) this assures that the
arguments of the transfer function g in (1) are O(1). Moreover, in order to make



the overall outputs o, 7 being O(1) the second layer weights w should be O(1/K),
i.e. w; = O(1) for the networks considered here. Considering the scaling n; we
observe that for n; = O(1) the change of the internal fields z;(n+1) —x;(n) = ns6;
is O(1). Hence, the change of the instantaneous error e per learning step is
O(1). The order of magnitude of this change does not alter if one chooses Aw;,
AY; = O(N™) with m < 0. In the following we will restrict to the largest change
(m = 0) which corresponds to 7, 79y = O(N). This particular scaling of learning
rates leads to the dynamics

Jin+1) = Ji(n)+ ?V—J(;ié(n)
wi(n+1) = wi(n)+ fug(z; + ;) (1 — 0)
Di(n+1) = 9i(n) + pd;, (5)

where we have defined 7, = 7, /N and ny = 7y N.

Defining the time scale &« = n/N as above one immediately notices that the
second layer weights w and the biases 1 change on a much faster time scale than
the first layer weights J. For instance, typically O(N) many learning steps are
necessary in order to achieve a change of J; of order O(1) while for w; typically
only one step is required.

As before we exemplify the analysis of the dynamical system (5) for the sim-
ple two-layered network o = wg (J - £€). The profound difference in time scales
becomes even more clear when we write (5) in terms of the macroscopic degrees

of freedom R and Q:
L R
wn+1) = wn)+iug(@) (r = 0)) = i (vg(y) —wn)g(x)).  (7)

We have to study the combined dynamics of {R, @} and w. As the time scales of
these two processes differ by a factor N we can adiabatically eliminate [12, 13] the
fast variable w in the thermodynamic limit. This basically means that we can act
as if w has reached its stationary distribution for fixed order parameters R and
@ and use this distribution to compute the averages on the right hand sides of
(6). This additional average has been denoted by overbars while the average over
the internal fields z and y is symbolized by (...) as before. Note that in contrast
to the dynamics (2,4) w is not selfaveraging any more for a scaling Aw = O(1).

The equilibrium value w(a) is easily obtained from the equilibrium condition
v (g9(y)) —w(a) (9(x)) = 0 and, hence, depends on R(a) and Q(«) only. Similarly,
one obtains the equilibrium value w?(a) from the corresponding mean dynamics
of w?:

w(n+1) = w?(n) + 27, w(n) (9(@) (r = o)) + i (F*(2) (T —0)*) . (8)



Simulations indicate that the equilibrium distribution of w can be assumed to
be Gaussian (and uncorrelated with z and y) with a good degree of accuracy.
Therefore, W(a) and w?(a) can be used to eliminate all moments of w on the
right hand sides of (6) which then is a coupled system of only two macroscopic
degrees of freedom.

The numerical solution of the remaining equations of motion for R and @ is in
good agreement with simulations, cf. Fig. 1. As before the asymptotic dynamics
is obtained by linearizing the two-dimensional system (6) around the fixed point.
The resulting matrix has the eigenvalue A\J* which is exactly the dominating
eigenvalue of (4) optimized with respect to 7,. (The second eigenvalue \; is 7,-
dependent with A\; — \; as flw — 0.) Thus the divergence of 7, discussed above
indicates that the change of the second layer weight w can be as large as O(1)
and should be larger than O(1/N). As already pointed out this result can be
shown to be independent of the particular choice of learning algorithm (2) [11].

In addition, the result can be easily generalized to two-layer networks with
K = O(1) many hidden units. It provides a theoretical explanation of the phe-
nomenological rule that the change of a weight attached to a certain node in a
multi-layer network should scale with the inverse of the ‘fan-in’, 7.e. the number
of couplings projecting into that node (see e.g. [3] and references therein), that
is AJ ~1/N and Aw ~1/K = O(1) in our case.

Our reasoning that lead to the rescaled update rule (5) suggests that bias
weights should be put on a faster time scale as well. We are going to illustrate this
for simple perceptron learning: A student network o = erf ((J €+ 19)/\/5) is
trained by examples originating from a teacher network of the same architecture,
T = erf ((B €+ @)/\/5% As before, we compare the rescaled backpropragation
dynamics of type (5) with the ‘traditional’ dynamics (3).

Although not all averages with respect to the internal fields z, y can be per-
formed analytically, the macroscopic equations of motion can be easily integrated
numerically for the ‘traditional’ scaling [14]. In this case the dynamics is described
by R, @, and 9, all three of which have the property to be selfaveraging.

In contrast a scaling of type (5) requires an adiabatic elimination of the fast
variable 9. The analysis follows along the same line as before: From the micro-
scopic equations of motion for ¥(n) and ¥?(n) one obtains the equilibrium values
(), 92(a) which we assume to be sufficient to describe the distribution of w at
a given time «. By inserting these equilibrium values into the equations of mo-
tion for R and @ one eliminates the fast variable ) adiabatically. The remaining
two-dimensional system in R and @ can be solved numerically, see Fig. 2.

For the ‘traditional’ update of the bias 19, the analysis is completely equivalent
to the one for the second layer weights. The eigenvalues of the corresponding
linearization matrix show the generic behavior as in Fig. 1: There is a critical
value of ; above which the rule cannot be learned perfectly. This critical learning
rate is independent of the bias’s learning rate 7y. Optimizing the dynamics with
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Figure 2: Left: Generalization error €, for two different types of scaling for the
update of the bias weight (¢ = 1, T =1, n; = ny = 7y = 1, initial values
and symbols as in Fig. 1). Right: Comparison of the generalization error of a
two-layer network with K = 2 hidden units for the two different types of scaling
of the bias weights (B; - B; = 0;j, w; = v; = 1 fixed, ¢; = 1, ny = 0.5 = 7y,

respect to 1y (in the range of n; where ) is dominating) leads to nspt — o0 and

the same dynamics as for the rescaled updating (5) with ny = fyN.

In order to indicate that our results do not just apply to the discussed exam-
ples Fig. 2 shows the evolution of the generalization error for a soft-committee
machine (w; = v;) [9] of type (1) with K = 2 hidden units. Comparison is made
between backpropagation learning of type (3) and the dynamics where the change
of biases weights per learning step is O(1), cf. (5). As can be seen a dynamics of
biases on a faster time scale compared to the weights J; leads to a significantly
faster decay of the generalization error.

In summary, we have shown that putting bias weights and second layer weights
on a faster time scale increases the overall speed of convergence for on-line learn-
ing. However, we did not focus on the optimal choice of this time scale. For
instance a scaling Aw, AY = O(1/+/N) might give rise to even faster conver-
gence. The detailed investigation of such a scaling remains a source for further

research as well as a possible extension of the above analysis to systems where
K = O(N).
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