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Adaptive Systems on Di�erent TimeScalesDominik Endres and Peter RieglerInstitut f�ur Theoretische PhysikJulius{Maximilians{Universit�atAm Hubland, D{97074 W�urzburg, GermanyAbstractThe special character of certain degrees of freedom in two-layered neuralnetworks is investigated for on-line learning of realizable rules. Our analysisshows that the dynamics of these degrees of freedom can be put on a fastertime scale than the remaining, with the pro�t of speeding up the overalladaptation process. This is shown for two groups of degrees of freedom:second layer weights and bias weights. For the former case our analysisprovides a theoretical explanation of phenomenological �ndings.PACS.: 87.10+, 02.50-r, 07.05.Kf, 07.05.MhStatistical mechanics has deeply contributed to the understanding of adaptivesystems during the past decades. Among such systems are neural networks [1, 3]which are capable of learning, i.e. of adapting themselves to a desired state bymeans of examples. As learning tasks can be characterized by a certain amountof inherent randomness and a number of degrees of freedom which is typicallylarge, physics and in particular statistical mechanics often provides a means tounderstand such phenomena. The tools used to analyze such systems, e.g. ther-modynamic limit [1] and stochastic di�erential equations [2], allow to describelearning processes under a variety of circumstances, such as di�erent architec-tures and training algorithms [1, 3]. In addition, recent contributions [4, 5, 6]have shown how to compute optimal algorithms starting from �rst principles.In this Letter, statistical mechanics is used to analyze learning in speci�ctwo-layered neural networks. Such networks realize an input-output relation�(�) = KXj=1wjg (Jj � � + #j) ; (1)where g(�) is a sigmoidal function and W = fJj; wj; #jgj=1;:::;K denotes the set ofweights of the network. The N -dimensional vector Jj corresponds to the synapticcouplings of a �rst layer branch in a two-layered neural network, while wj denotesthe second layer weights connecting the j-th input branch with the output node.



The weights #j are usually referred to as biases. Given an array of N inputs �the network computes its output �(�) according to (1).Two-layered networks of the form (1) can implement any continuous input-output relation � 2 IRN ! � 2 IR [7] if the number of hidden units K isunrestricted. That is, given a set of training examples D = f�(n); �(n)gn=1;:::;�Nthe network can adjust its weights W in order to implement the function �(�)as accurate as desired. In learning theory this target function �(�) is usuallyparameterized: �(�) = PMj=1 vjg (Bj � � + 'j). This function can be viewed to berepresented by a so-called teacher network with weights B = fBj; vj; 'jg. Thelearning task can then metaphorically be described as follows: A student networkof functional form (1) is trained by means of examples D provided by a teachernetwork. The student's task is to extract the teacher weights B and consequentlythe functional relation �(�) from these examples. This is achieved by means ofa learning algorithm which describes how to use information contained in thetraining set in order to adjust the weights W.Recently, on-line algorithms have attracted considerable attention. For on-line learning the presentation of examples used in the learning process occurs ina sequential manner. At presentation of example �(n) each weight W 2 W isupdated according toW (n+ 1) =W (n) + 1N �WfW (W(n); �(n); �(n)) : (2)If one views n as a (discrete) time index Eq. (2) describes the time evolution ofthe network weights. The weight function f de�nes the on-line learning algorithmwhich describes how the weightsW(n) of the student network ought to be changedin response to a given example f�(n); �(n)g at time step n.Our main focus here is not on a clever choice of the training algorithm, i.e.the functional form of f , but on its proper scaling. In (2) we have separated outthis scaling into the quantity �W which is usually referred to as learning rate.The only requirement we impose on f = O(1) is to vanish at the desired solutionW = B. Thus, we only consider perfectly realizable tasks (M = K) here, whereB is a �xed point in the dynamics ofW. In addition, we focus on networks havinga �nite number of hidden units, i.e. K = O(1), while N is large.In this Letter, we restrict ourselves to on-line backpropagation [8] since for thischoice of algorithm the mathematical burden reduces signi�cantly. In particular,averages can be performed analytically [8, 9] if one chooses the network's transferfunctions g to be the error function g(z) = erf �z=p2�. However, the essentialresults of this Letter hold for any adaptive dynamics of type (2). See [11] fordetails.For on-line backpropagation the dynamics of the weights (2) readsJi(n+ 1) = Ji(n)� �JN rJi� (W; �) = Ji(n) + �JN �i�(n)2



wi(n+ 1) = wi(n)� �wN @@wi � (W; �) = wi(n) + �wN g(xi + #i) (� � �)#i(n+ 1) = #i(n)� �#N @@#i � (W; �) = #i + �#N �i (3)where �i = wig0(xi + #i) (� � �). The quantities xi = Ji � � and yi = Bi �� denote the internal �elds of student and teacher network, respectively. Thequadratic error measure � (W; �) = 1=2 [�(�)� �(�)]2 quanti�es the degree ofdisagreement between the student and the rule output for a particular randominput �. Denoting the average over the input distribution by h: : :i� we de�ne thegeneralization error �g = h� (W; �)i�. It measures the validity of the student'shypothesis for the rule �(�).The statistical mechanics analysis of on-line learning basically consists of twosteps: the introduction of order parameters and the average over the randomnessof the training examples. This allows to investigate typical behaviour togetherwith the reduction of an extensive number of degrees of freedom W to a �nitenumber of meaningful observables. The very property of these order parametersis to be selfaveraging, i.e. their 
uctuations vanish in the thermodynamic limitN ! 1. The practical di�culty, however, consists in �nding appropriate or-der parameters such that the resulting macroscopic equations of motion can bewritten in a closed form after averaging over the distribution of inputs.We exemplify the theoretical analysis of on-line learning for the simplest two-layer network. This consists of only one hidden unit (K = 1) and no bias weights(# = 0 = '): � = w erf �J � �=p2�. Following the proposal of [10] we chooseR = B �J, Q = J �J, and w as order parameters. The �rst layer order parametersR and Q describe the overlaps between the �rst layer weights of teacher � =v erf �B � �=p2� and student network, respectively. These are the familiar orderparameters of perceptron learning (see e.g. [1]) and learning in so-called softcommittee machines [8, 9].For sake of comparison we shortly recall the analysis for the case where both �Jand �w are O(1) [10, 11]. Starting from the corresponding microscopic equationsof motion (3) for this simple network, it is straightforward to derive recursionrelations for the mean values of R, Q, and w by performing the average over thelatest example input [8, 9]. Since these quantities become selfaveraging in thethermodynamic limit N ! 1 the description in terms of their mean values issu�cient. In the same limit, one can interpret � = n=N as a continuous time andobtains ordinary di�erential equations for the evolution of the learning network:dRd� = �J h�yi ; dQd� = 2�J h�xi+ �2J D�2E ; dwd� = �w hg(x) (� � �)i : (4)The averages are over the two-dimensional Gaussian distribution of the internal�elds fx; yg which is determined through the correlations hx2i = Q, hxyi = Rand hy2i = T . 3



Figure 1: Left: Eigenvalues of the linearization matrix governing the asymptoticsof (4) (�i) and (6) (~�i) for T = v = �w = ~�w = 1. Right: Generalization error �gfor two di�erent types of scaling for the update of the second layer. For the �rsttype (�) the update of w has been chosen to scale with 1=N while it is of O(1) inthe second case (+). Symbols represent simulations obtained for a system withN = 100 averaged over 100 runs, lines show the macroscopic equations of motion(Q(0) = 1, w(0) = 0:5, R(0) = O(1=pN), �J = 2). Errorbars would be smallerthan the symbol size.The macroscopic equations of motion (4) are easily integrated numerically.The asymptotic learning behaviour can be obtained analytically by a linearizationof (4) around the �xed point R = Q = T , w = v. The maximum eigenvalue �maxof the linearization matrix determines the speed of the exponential convergencetowards the �xed point. Fig. 1 shows the eigenvalue spectrum as a function ofthe �rst layer learning rate �J .Of particular interest is the critical learning rate �J;c. Only for � < �J;c doesthe student network converge to the teacher network. A detailed analysis showsthat �J;c is independent of the second layer learning rate �w. Consequently, thestudent network can learn the rule �(�) perfectly for any value of �w as long as�J < �J;c.The fact that convergence will not be destroyed for any choice of �w leads nat-urally to the conclusion that one should optimize the speed of convergence withrespect to �w. One observes that the eigenvalue �2 which dominates the conver-gence for most � < �J;c assumes its optimal value �opt2 as �w ! 1. Obviously,the divergence of �w indicates that we should have chosen a di�erent scaling forthe change of the second layer weight w. However, from the above analysis itis not quite clear what kind of scaling this would be. Therefore we are going toreanalyze the microscopic dynamics (3).Without loss of generality we had chosen the component Ji of the student'sweight vector to be O(1=pN) and the random inputs �i = O(1) with zero meanand unit variance. Together with the choice #i, 'i = O(1) this assures that thearguments of the transfer function g in (1) are O(1). Moreover, in order to make4



the overall outputs �, � being O(1) the second layer weights w should be O(1=K),i.e. wi = O(1) for the networks considered here. Considering the scaling �J weobserve that for �J = O(1) the change of the internal �elds xi(n+1)�xi(n) = �J�iis O(1). Hence, the change of the instantaneous error � per learning step isO(1). The order of magnitude of this change does not alter if one chooses �wi,�#i = O(Nm) with m � 0. In the following we will restrict to the largest change(m = 0) which corresponds to �w, �# = O(N). This particular scaling of learningrates leads to the dynamicsJi(n+ 1) = Ji(n) + �JN �i�(n)wi(n+ 1) = wi(n) + ~�wg(xi + #i)(� � �)#i(n+ 1) = #i(n) + ~�#�i; (5)where we have de�ned �w = ~�wN and �# = ~�#N .De�ning the time scale � = n=N as above one immediately notices that thesecond layer weights w and the biases # change on a much faster time scale thanthe �rst layer weights J. For instance, typically O(N) many learning steps arenecessary in order to achieve a change of Ji of order O(1) while for wi typicallyonly one step is required.As before we exemplify the analysis of the dynamical system (5) for the sim-ple two-layered network � = wg (J � �). The profound di�erence in time scalesbecomes even more clear when we write (5) in terms of the macroscopic degreesof freedom R and Q:dRd� = �Jh�yi , dQd� = 2�Jh�xi + �2Jh�2i (6)w(n+ 1) = w(n) + ~�whg(x) (� � �)i = ~�w Dvg(y)� w(n)g(x)E : (7)We have to study the combined dynamics of fR;Qg and w. As the time scales ofthese two processes di�er by a factor N we can adiabatically eliminate [12, 13] thefast variable w in the thermodynamic limit. This basically means that we can actas if w has reached its stationary distribution for �xed order parameters R andQ and use this distribution to compute the averages on the right hand sides of(6). This additional average has been denoted by overbars while the average overthe internal �elds x and y is symbolized by h: : :i as before. Note that in contrastto the dynamics (2,4) w is not selfaveraging any more for a scaling �w = O(1).The equilibrium value w(�) is easily obtained from the equilibrium conditionv hg(y)i�w(�) hg(x)i = 0 and, hence, depends on R(�) and Q(�) only. Similarly,one obtains the equilibrium value w2(�) from the corresponding mean dynamicsof w2: w2(n+ 1) = w2(n) + 2~�ww(n) hg(x) (� � �)i+ ~�2w Dg2(x)(� � �)2E : (8)5



Simulations indicate that the equilibrium distribution of w can be assumed tobe Gaussian (and uncorrelated with x and y) with a good degree of accuracy.Therefore, w(�) and w2(�) can be used to eliminate all moments of w on theright hand sides of (6) which then is a coupled system of only two macroscopicdegrees of freedom.The numerical solution of the remaining equations of motion for R and Q is ingood agreement with simulations, cf. Fig. 1. As before the asymptotic dynamicsis obtained by linearizing the two-dimensional system (6) around the �xed point.The resulting matrix has the eigenvalue �opt2 which is exactly the dominatingeigenvalue of (4) optimized with respect to �w. (The second eigenvalue ~�1 is ~�w-dependent with ~�1 ! �1 as ~�w ! 0.) Thus the divergence of �w discussed aboveindicates that the change of the second layer weight w can be as large as O(1)and should be larger than O(1=N). As already pointed out this result can beshown to be independent of the particular choice of learning algorithm (2) [11].In addition, the result can be easily generalized to two-layer networks withK = O(1) many hidden units. It provides a theoretical explanation of the phe-nomenological rule that the change of a weight attached to a certain node in amulti-layer network should scale with the inverse of the `fan-in', i.e. the numberof couplings projecting into that node (see e.g. [3] and references therein), thatis �J ' 1=N and �w ' 1=K = O(1) in our case.Our reasoning that lead to the rescaled update rule (5) suggests that biasweights should be put on a faster time scale as well. We are going to illustrate thisfor simple perceptron learning: A student network � = erf �(J � � + #)=p2� istrained by examples originating from a teacher network of the same architecture,� = erf �(B � � + ')=p2�. As before, we compare the rescaled backpropragationdynamics of type (5) with the `traditional' dynamics (3).Although not all averages with respect to the internal �elds x, y can be per-formed analytically, the macroscopic equations of motion can be easily integratednumerically for the `traditional' scaling [14]. In this case the dynamics is describedby R, Q, and #, all three of which have the property to be selfaveraging.In contrast a scaling of type (5) requires an adiabatic elimination of the fastvariable #. The analysis follows along the same line as before: From the micro-scopic equations of motion for #(n) and #2(n) one obtains the equilibrium values#(�), #2(�) which we assume to be su�cient to describe the distribution of w ata given time �. By inserting these equilibrium values into the equations of mo-tion for R and Q one eliminates the fast variable # adiabatically. The remainingtwo-dimensional system in R and Q can be solved numerically, see Fig. 2.For the `traditional' update of the bias #, the analysis is completely equivalentto the one for the second layer weights. The eigenvalues of the correspondinglinearization matrix show the generic behavior as in Fig. 1: There is a criticalvalue of �J above which the rule cannot be learned perfectly. This critical learningrate is independent of the bias's learning rate �#. Optimizing the dynamics with6



Figure 2: Left: Generalization error �g for two di�erent types of scaling for theupdate of the bias weight (' = 1, T = 1, �j = �# = ~�# = 1, initial valuesand symbols as in Fig. 1). Right: Comparison of the generalization error of atwo-layer network with K = 2 hidden units for the two di�erent types of scalingof the bias weights (Bi � Bj = �ij, wi = vi = 1 �xed, 'i = 1, �# = 0:5 = ~�#,�J = 0:8).respect to �# (in the range of �J where �2 is dominating) leads to �opt# !1 andthe same dynamics as for the rescaled updating (5) with �# = ~�#N .In order to indicate that our results do not just apply to the discussed exam-ples Fig. 2 shows the evolution of the generalization error for a soft-committeemachine (wi = vi) [9] of type (1) with K = 2 hidden units. Comparison is madebetween backpropagation learning of type (3) and the dynamics where the changeof biases weights per learning step is O(1), cf. (5). As can be seen a dynamics ofbiases on a faster time scale compared to the weights Ji leads to a signi�cantlyfaster decay of the generalization error.In summary, we have shown that putting bias weights and second layer weightson a faster time scale increases the overall speed of convergence for on-line learn-ing. However, we did not focus on the optimal choice of this time scale. Forinstance a scaling �w, �# = O(1=pN) might give rise to even faster conver-gence. The detailed investigation of such a scaling remains a source for furtherresearch as well as a possible extension of the above analysis to systems whereK = O(N).This work has been supported by the Deutsche Forschungsgemeinschaft. Theauthors acknowledge stimulating discussions with M. Biehl, M. Copelli, G. Reents,and R. Urbanczik.References[1] T.L.H. Watkin, A. Rau, and M. Biehl Rev. Mod. Phys. 65, 499, 19937
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