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Abstract

Bayesian Binning (BB) is an exact inference technique which was originally de-
veloped for applications in Computational Neuroscience, e.g. modeling spike
count distributions [1] or estimating peri-stimulus time histograms (PSTH) [2].
BB encodes a (conditional) probability distribution (or density) which is piece-
wise constant in the domain of interest. This suggests that BB might be useful for
retrospective temporal segmentation tasks, too. We illustrate the potential useful-
ness of BB for temporal segmentation on two examples. First, we segment neural
spike train data, demonstrating that BB is able to locate change points in the PSTH
correctly. Second, we employ BB for (human) action sequence segmentation. We
show that BB accurately identifies the transition points in the action sequence (e.g.
a change from ’walking’ to ’jumping’).

1 Introduction

Retrospective temporal segmentation, i.e. change point detection after the complete (and possibly
repeated) observation of a time sequence is a traditional way of analyzing neurophysiological spike
train data. A change point of particular interest in Neuroscience is the latency [3], which signals
the beginning of a neural response to an experimentally controlled event, such as a stimulus onset.
While the definition of latency varies substantially between authors, most definitions are based on
the temporal location of a rapid change of the firing rate of the neuron. Thus, to determine latency (or
any other rapid change point in the neural response), it is important to obtain a reliable estimate of
the firing rate, particularly given the considerable amount of noise and uncertainty usually present
in neurophysiological measurements. Recently, there have been several advances in the field of
rate estimation, e.g. [4, 5, 2, 6, 7]. Of these methods, Bayesian binning (BB) [2] is well suited
for retrospective temporal segmentation, since it estimates a peri-stimulus time histogram (PSTH),
whose bin boundaries comprise the desired change points. Moreover, because it avails its user of the
full posterior over the model parameters, it can be employed to compute posterior distribution over
change points, rather than just their expectations. We will demonstrate this in section 2.

BB is not limited to binning neural signals. The main prerequisites for the application of BB are:
the variable to be binned must be totally ordered (e.g. points in time), and there must be a notion of
constancy definable for each bin. In the case of neural signals, the constant quantity is the firing rate.
If we instead tried to segment action sequences, we might be interested in finding time bins within
which the type of action is constant. For example, imagine a person walking into the center of our
view, then jumping about and finally waving us goodbye. We could then segment this sequence into
three bins, and label the bins ’walk’, ’jump’ and ’wave’. We will show how to employ BB to this
end in section 3.
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This contribution is mainly intended to illustrate the usefulness of BB on temporal segmentation
tasks via examples. For more rigorous validations of the method, see [1, 2, 8].

2 Bayesian Binning of neural spike trains
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Figure 1: Left (adapted from [2]): top: A spike train, recorded between times tmin and tmax is
represented by a binary vector ~zi. Bottom: The time span between tmin and tmax is discretized into
T intervals of duration ∆t = (tmax − tmin)/T , such that interval k lasts from k × ∆t + tmin to
(k + 1)×∆t + tmin. ∆t is chosen such that at most one spike is observed per ∆t interval for any
given spike train. Then, we model the firing probabilities P (spike|t) by M + 1 = 4 contiguous,
non-overlapping bins (M is the number of bin boundaries inside the time span [tmin, tmax]), having
inclusive upper boundaries km and P (spike|t ∈ (tmin + ∆t(km−1 + 1), tmin + ∆t km]) = fm.
Right: top: Rastergrams of excitatory responses recorded from a simulated neuron. Each tick mark
represents a spike. Middle: PSTH from Bayesian binning (BB). The thick red line represents the
predictive firing rate, the thin red lines show the predictive firing rate±1 standard deviation. Models
with 3 ≤M ≤ 5 were included, covering≥ 96% of the posterior over the number of bin boundaries
M . The segmentation of the neural response into 4 pieces is clearly visible. The black line shows the
firing rate from which the spike trains in the above rastergrams were generated. The inferred PSTH
follows the generator very closely. Bottom: marginal posterior distributions of the bin boundaries
ki for a model with M = 3, which is the maximum of the M -posterior (shown in the inset). The
dashed vertical lines represent the change points of the spike generator. The marginal bin boundary
posteriors exhibit narrow peaks close to the generating change points, i.e. the spike trains have been
correctly segmented.

We model a PSTH on [tmin, tmax], discretized into T contiguous intervals of duration ∆t = (tmax−
tmin)/T (see fig.1, left). Spike train i can then be represented by a binary vector ~zi of dimensionality
T . The PSTH is modelled using M + 1 contiguous, non-overlapping bins having inclusive upper
boundaries km. The firing probability P (spike|t ∈ (tmin +∆t(km−1 +1), tmin +∆t km]) = fm is
constant within each bin. Note that the firing rate = fm

∆t . M is the number of bin boundaries within
[tmin, tmax]. The probability of a spike train ~zi of independent spikes/gaps is then

P (~zi|{fm}, {km},M) =
M∏

m=0

fs(~zi,m)
m (1− fm)g(~zi,m) (1)

where s(~zi,m) is the number of spikes and g(~zi,m) is the number of non-spikes, or gaps in
spiketrain ~zi in bin m, i.e. between intervals km−1 + 1 and km (both inclusive). This implies
s(~zi,m) + g(~zi,m) = T . In other words, we model spiketrains using an inhomogeneous Bernoulli
process with piecewise constant probabilities. If we observe a multiset {~zi}, we compute the joint
likelihood assuming independence between spiketrains given {fm} and {km}.
We make a non-informative prior assumption for p({fm}, {km}), namely

p({fm}, {km}|M) = p({fm}|M)P ({km}|M). (2)

i.e. we have no a priori preferences for the firing rates based on the bin boundary positions (we
assume that the bin boundary positions are independent of the firing rates). Note that the prior of the
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fm, being continuous model parameters, is a density. Given the form of eqn.(1) and the constraint
fm ∈ [0, 1], it is natural to choose a conjugate prior

p({fm}|M) =
M∏

m=0

B(fm;σm, γm). (3)

where the Beta density B(fm;σm, γm) is defined in the usual way (see e.g. [9]).

There are only finitely many configurations of the km. Assuming we have no preferences for any of
them, the prior for the bin boundaries becomes

P ({km}|M) =
1(

T − 1
M

) . (4)

where the denominator is just the number of possibilities in which M ordered bin boundaries can be
distributed across T − 1 places (bin boundary M always occupies position T − 1, see fig.1 , hence
there are only T − 1 positions left).

Having thus completed the model specification, we can now proceed in the standard Bayesian fash-
ion to compute the posterior distribution/density of the model parameters.

P ({fm}, {km}|{~zi},M) =
P ({~zi}|{fm}, {km},M)p({fm}|M)P ({km}|M)

P ({~zi}|M)
(5)

The main computational effort is determined by the evaluation of the normalization constant
P ({~zi}|M) of this posterior, which requires us to integrate/sum over all model parameters. In-
tegrating over the firing probabilities {fm} is straightforward, since we chose a conjugate prior
(eqn.(3)). The reasoning behind the prior over the bin boundaries (eqn.(4)) might suggest a com-
plexity of O(TM ) for the summation over all configurations. However, as demonstrated in [2], we
can devise an algorithm which accomplishes this sum in O(MT 2), i.e. exact inference is feasible.
By a similar algorithm, exact posterior expectations of certain functions of the model parameters
can also be computed [1].

Fig.1, right, shows results on an artificially created set of 30 spike trains (top panel). This number
of repeated trials is typically obtainable from single-cell recordings in high level visual cortex. We
chose to present results on artificial data here, since the ground truth, i.e. the generator of the data
is then known for comparison. The spike rate of the generator, which is comprised of 4 bins (3 bin
boundaries), is shown in the middle panel (black line). Superimposed is the predictive, or expected
firing rate inferred with BB (red line) from the spike trains shown in the top panel. The thin red lines
represent the predictive rate ± one posterior standard deviation. The predictive rate closely follows
the generator. Furthermore, BB has discovered the complexity of the generator, as measured by
the number of bin boundaries M : the inset in the bottom panel shows the posterior distribution of
M , which peaks at M = 3. It therefore comes as no surprise that the marginal posteriors of the
bin boundaries k0, k1 and k2, shown in the bottom panel, are closely concentrated around the bin
boundaries of the generator (dashed vertical lines).

bin boundary location in generator BB posterior expectation ± one standard deviation
k0 80 ms 79.9± 1.9 ms
k1 130 ms 131.9± 9.6 ms
k2 380 ms 376.7± 3.3 ms

Table 1: Bin boundary positions of the generator in fig.1, right and expected bin boundary positions
± one posterior standard deviation as inferred with Bayesian binning (BB).The expected boundaries
are within one standard deviation of the generator’s boundaries.

This observation is confirmed by the comparison shown in table 1: all bin boundary expectations
are within one standard deviation of the generator’s boundaries. In other words, those expectations
can be employed to segment the spiketrain temporally.
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Figure 2: Action segmentation results. Bottom, left and right: the sequence to be segmented con-
tained 3 actions: walk, jump, wave. In the sequence, each action was presented for 28 frames before
switching to the next action. Middle, left: frame-based action classification results. ’Jump’ and
’wave’ are hard to discriminate. We computed the expected action identity (e.g. walk,jump or wave)
at every point in the sequence. Middle, right: action classification with BB. The correct action is
identified with near certainty. Top right: marginal posterior distribution of the bin boundaries k0 and
k1 for a model with M = 2 bin boundaries. M = 2 was the maximum of the M -posterior for the
data on which this graph is based.

3 Segmenting action sequences

In our second example, we show how to find change points between different types of actions in
video sequences. By ’types of action’ we mean e.g. walking, jumping, waving etc.. To employ BB
to this end, we assume that the type of action is constant within contiguous, non-overlapping time
intervals. As a consequence, we model the video data by a sequence of generative classifiers. There
is one classifier per temporal bin. Each classifier is trained on the action types of interest. Since
the classifiers are generative, their marginal probability of the data (i.e. the video sequence within
their respective time bin) can serve as a replacement for the likelihood (eqn.(1)). A particularly
simple example of such a generative classifier is a naive Bayes classifier, which we will use in the
following. Furthermore, we substitute the prior over the classifier’s parameters for the firing rate
prior (eqn.(3)). The prior over the bin boundaries (eqn.(4)) doesn’t need to be altered, since we still
have no a priori preference for the location of the bin boundaries, other than requiring the bins to be
non-overlapping.

We obtained video sequences of different actors performing various actions through [10]. We pre-
processed the videos by computing the optic flow with the neurodynamical model for action segre-
gation described in [11, 12], and down-sampled each frame by a factor 4 in both x and y direction.
To generate sequences of different actions, we concatenated parts of the optic flow sequences for:
walking, jumping in place and waving with both arms. Thus, the final sequences contained 3 actions
each.

Fig.2, right top, shows the marginal posterior distributions of a bin model with M = 2, which is
the location of the maximum of the posterior over the number of bin boundaries. The bin boundary
posteriors are concentrated close to the true change points, indicating that BB is able to identify
the transitions between different actions correctly. Moreover, we can also compute the expected
probability of action identity P (action) (here: walk,jump or wave, fig.2, left middle) as a function
of time. BB identifies the actions (in this example) with near certainty. For comparison, the graph
in the right half of fig.2 shows results obtained with purely frame-based classification: ’jump’ and
’wave’ are hard to discriminate, which highlights the usefulness of BB in this scenario. While the
results of BB on action segmentation are not always as crisp as those depicted in fig.2, we find that
BB gives good results on this task in general.
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4 Conclusion

We demonstrated the usefulness of Bayesian binning for retrospective temporal segmentation on
two examples, spike trains and action sequences. While BB is relatively well established in a Com-
putational Neuroscience context, its application within the domain of Computer Vision is novel and
needs further investigation. For example, the naive Bayes classifiers used here could be replaced
with something more sophisticated, e.g. hidden Markov models (HMM). HMMs would have the
advantage of being able to learn significantly more complex action types than those that can be
discriminated with a naive Bayes classifier trained on optic flow. BB would then model the switch-
ing between HMMs. While HMMs typically need a lot of data to train, BB has the potential of
regularizing the learning problem through binning. This allows for training on smaller data sets.

The core iteration of BB is an instance of the sum-product algorithm [13], which allows for the
evaluation of arbitrary posterior averages subject to the restrictions described in [1]. We used it
here to obtain the marginal distribution of each bin boundary. One could alternatively use a suitably
formulated version of the max-product algorithm [13] to find the joint posterior maximum of the bin
boundaries {km}, and use these {km} as segmentation points.
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