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ABSTRACT

The peristimulus time histogram (PSTH) and the spike density function (SDF) are commonly used in the
analysis of neurophysiological data. The PSTH is usually obtained by binning spike trains, the SDF being a
(Gaussian) kernel smoothed version of the PSTH. While selection of the bin width or kernel size is often
relatively arbitrary there have been recent attempts to remedy this situation (Shimazaki and Shinomoto,
2007c,b,a). We further develop an exact Bayesian generative model approach to estimating PSTHs (End-
res et al.,, 2008) and demonstate its superiority to competing methods using data from early (LGN) and
late (STSa) visual areas. We also highlight the advantages of our scheme’s automatic complexity control
and generation of error bars. Additionally, our approach allows extraction of excitatory and inhibitory
response latency from spike trains in a principled way, both on repeated and single trial data. We show
that the method can be applied to data with high background firing rates and inhibitory responses (LGN)
as well as to data with low firing rate and excitatory responses (STSa). Furthermore, we demonstrate on
simulated data that our latency extraction method works for a range of signal-to-noise ratios and back-
ground firing rates. While further studies are needed to examine the sensitivity of our method to, for
example, gradual changes in firing rate and adaptation, the current results suggest that Bayesian binning
is a powerful method for the estimation of firing rate and the extraction response latency from neuronal

spike trains.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Plotting a peristimulus time histogram (PSTH), or a spike den-
sity function (SDF), from spiketrains evoked by and aligned to the
onset of a stimulus or motor action is often one of the first steps
in the analysis of neurophysiological data. The PSTH and SDF pro-
vide visualisation of characteristics of the neural response, such
as instantaneous firing rates (or firing probabilities), latencies
and response offsets. While there have been more principled ap-
proaches to the problem of determining the appropriate temporal
resolution (Shimazaki and Shinomoto, 2007¢,b,a) the PSTH and
SDF are frequently constructed in an unsystematic manner (e.g.
the choice of time bin size is driven by result expectations -
what looks good - as much as by the data) even though they
implicitly represent a model of the neuron’s response as a func-
tion of time.

In Endres et al. (2008), we developed an exact Bayesian, gener-
ative model approach to estimating PSTHs. Our model encodes a
spike generator described by an inhomogeneous Bernoulli process
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with piecewise constant (in time) firing probabilities. Relevant
marginal distributions, e.g. the posterior distribution of the num-
ber of bins, can be evaluated from the full posterior distribution
over the model parameters efficiently, i.e. in polynomial time. Fur-
thermore, by extension of previous dynamic programming
schemes (Endres and Foldiak, 2005) the expected values, such as
the predictive firing rate and its standard error, are computable
with at most cubic effort.

In the following, after stating the complete model specification,
we extend the performance comparisons in Endres et al. (2008)
and illustrate the usefulness of our method. Next, we demonstrate
how to use this model for principled feature extraction from spike
trains. The features which we are interested in are latencies and fir-
ing rates, since previous studies (Oram et al., 2002) indicate that
much of the stimulus-related information carried by neurons is
contained in these relatively coarse measures. We give a ‘minimal’
definition of latency and show how the latency posterior distribu-
tion and the firing rate posterior density can be evaluated for data
from visual areas LGN, STS and the motor cortex.

Note that we do in no way claim that a PSTH is a complete gen-
erative description of spiking neurons. We are merely concerned
with inferring that part of the generative process which can be de-
scribed by a PSTH in a Bayes-optimal way.
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2. The model
2.1. Traditional approaches

There are, broadly speaking, two traditional approaches to esti-
mating firing probabilities or firing rates from neurophysiological
data: binning procedures and smoothing procedures, producing
PSTHs and SDFs respectively (Richmond and Optican, 1987). Both
are regularisation procedures, attempting to deal with data scar-
city and noise by making various (frequently implicit) assump-
tions. Binning presupposes that the firing probabilities are
constant within each bin, whereas smoothing presupposes that
high-frequency fluctuations are mostly noise. These assumptions
should, however, be evaluated by comparing the predictive perfor-
mances of different types of models on real neurophysiological
data, see Section 4.3, rather than being presupposed.

For an intuitive understanding of the relative merits and draw-
backs of traditional PSTH and SDF procedures, see Fig. 1. The left
panels show data recorded from an STSa neuron (low background,
excitatory response). The right panels show data from an LGN neu-
ron (high background, inhibitory response). The raw data is shown
in rastergram form in the top row. Generation of a PSTH with fixed
bin duration, optimised for the data by the method described in
(Shimazaki and Shinomoto, 2007¢,b), is shown in the 2nd row.
While a bin PSTH could in principle model sharp transients, the
location of the bin boundaries are determined by the constant bin-
width. Therefore, the precise onset of the transient is often not cap-
tured well. In addition, constant bin duration also forces many bins
into time intervals where the spiketrains appears relatively con-
stant, e.g. in [200 ms, 400 ms] of the STSa neuronal response. The
SDF, obtained by smoothing these spiketrains with a Gaussian ker-
nel of 10 ms width, is shown in the third row. Noise in the
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spiketrains is reduced to some degree (e.g. in the interval
[200 ms, 400 ms], left column). However, the sharp transient at re-
sponse onset (indicated by the dashed vertical line in each col-
umn), becomes blurred. Thus, smoothing means that potentially
relevant timing information will be lost. We also note that point
estimates of instantaneous firing rate are frequently extracted
from the PSTH and SDF. Given the limited size of data sets obtained
from neurophysiological experiments, reliable point estimates are
hard to acquire, and measures of posterior uncertainty and vari-
ability should be a part of the estimation procedure.

2.2. Bayesian binning

We propose a compromise, allowing us to put the bin bound-
aries at only those time points where the changes in firing rate
actually happen. In essence we keep the bins to allow for rapid
changes in the instantaneous firing rate, but allow for varying
bin durations to smooth high frequency noise. As a consequence,
time intervals in which the firing rate changes little is modelled
by one (or a few) bins, thereby reducing the risk of overfitting
noise. Uncertainties and variabilities will be computed in an exact
Bayesian fashion. The expectations (e.g. expected firing rates) thus
generated will therefore have a more continuous appearance,
yielding results that are visually similar to a smoothing technique.

We first give a formal definition of our model. We model a PSTH
oN [tmin, tmax), discretised into T contiguous intervals of duration
At = (tmax — tmin)/T (see Fig. 2). We select a discretisation fine en-
ough so that no more than one spike occurs in a At interval for
any given spike train (we simply choose a At shorter than the abso-
lute refractory period of the neuron under investigation, here
At = 1 ms). Spike train i can then be represented by a binary vector
Z' of dimensionality T. The PSTH is modelled using M + 1 contigu-

LGN, inhibitory response
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Fig. 1. Predicting a PSTH/SDF with three different methods. Row A: Rastergrams of excitatory responses recorded from a STSa neuron (left) and inhibitory responses (right)
recorded from a LGN neuron. Each row represents a single stimulus presentation, each tick mark represents the time of a spike relative to stimulus onset (time = 0). Row B: bar
PSTH (solid lines, optimal binsize using Shimazaki and Shinomoto (2007c)), and line PSTH (dashed lines, optimal binsize using Shimazaki and Shinomoto (2007b)). Row C: SDF
obtained by smoothing the spike trains with a 10 ms Gaussian kernel. Row D: PSTH from Bayesian binning (Endres et al., 2008). The thick line represents the predictive firing
rate, the thin lines show the predictive firing rate +1 standard deviation. Models with 4 < M < 12 were included on a risk level of o = 0.1 (see Eq. (13)) for the STSa data, and
2 < M < 4 for the LGN data. The vertical dashed line indicates the mode of the latency posterior (see Section 4.4 and Fig. 5).
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Fig. 2. Top: A spike train, recorded between times t, and ty.x is represented by a
binary vector Z. Bottom: The time span between tu;, and tm.x is discretised into T
intervals of duration At = (tmax —tmin)/T, such that interval k lasts from
k x At + tmin to (k+ 1) x At + tmin. At is chosen such that at most one spike is
observed per At interval for any given spike train. Then, we model the firing
probabilities P(spike|t) by M + 1 =4 contiguous, non-overlapping bins (M is the
number of bin boundaries inside the time span [tmin, tmax]), having inclusive upper
boundaries k, and P(spike|t € (tmin + At(km_1 + 1), tmin + At(km + 1)]) = fin. For
details, see text.

ous, non-overlapping bins having inclusive upper boundaries ki,.
The firing probability P(spike|t € (tmin + At(Km_1 + 1), tmin + At
(km + 1)]) = fin is constant within each bin. The relationship be-
tween the firing probabilities f;, and the instantaneous firing rates
is given by

~ _fm
firing rate = AL (1)

M is the number of bin boundaries within [tmin, tmax)- The prob-
ability of a spike train Z' of independent spikes/gaps is then

M

PE|{fn}, {km}, M) = T f5&™

m=0

(1~ fn)*®™ (2)

where s(Z', m) is the number of spikes and g(Z}, m) is the number of
non-spikes, or gaps in spiketrain Z' in bin m, i.e. between intervals
knm1+1 and k, (both inclusive). This implies s(Z',m)+ g(Z\,m)
= T. In other words, we model spiketrains using an inhomogeneous
Bernoulli process with piecewise constant probabilities. For com-
pleteness, we define k_; = —1 and ky =T — 1. Note that there is
no binomial factor associated with the contribution of each bin, as
there would be if the spike order within a given bin was irrelevant.
However, we do not want to ignore the spike timing information,
but rather, we build a simplified generative model of the spike train
over time. Therefore, the probability of a (multi)set of spiketrains

{ZY =1z, ..., zn), assuming independent generation, is
PUZ (). tknd M) = [T 51— fofem
i=1 m=
M
H FEMA — ) 3)

where s({Z'},m) = -V s(Z,m) and g({Z'},m) = S} ,8(Z, m).

2.3. The priors

We will make a non-informative prior assumption for
p({fm}, {km}), namely

P({fm}, {kn}IM) = p({fm }IM)P({kn}|M) (4)

i.e. we have no a priori preferences for the firing rates based on the
bin boundary positions (we assume that the bin boundary positions
are independent of the firing rates). Note that the prior of the f,
being continuous model parameters, is a density. Given the form

of Eq. (2) and the constraint f; € [0, 1], it is natural to choose a con-
jugate prior

p({fn} M) = H B(fn: Om, V) @)

The Beta density is defined in the usual way (see e.g. Berger,
1985):

[(0+7) o
L(a)I'()

There are only finitely many configurations of the k;,. Assuming
we have no preferences for any of them, the prior for the bin
boundaries becomes

B 1

B (T -1 ) (7)
M

where the denominator is just the number of possibilities in which

M ordered bin boundaries can be distributed across T — 1 places

(bin boundary M always occupies position T — 1, see Fig. 2 , hence
there are only T — 1 positions left).

B(p;o,y) = 1 -py! (6)

P({kn}|M)

2.4. Computing the evidence P({Z'}|M) and other posterior
expectations

To calculate quantities of interest for a given number of bins
(M + 1), e.g. predicted firing probabilities and their variances or ex-
pected bin boundary positions, we need to compute averages over
the posterior

p({Z}, {fn}, {km}|M)
P({Z}}|M)

This requires the evaluation of the evidence, or marginal likeli-
hood of a model with M bins:

p({fm}, {km}IM, {Z'}) = 8)

P{Z}IM) =

T— k-1
Z Y P({ZY{km}, M)P({kn }| M) )
=M ko=0

where the summation boundaries are chosen such that the bins are
non-overlapping and contiguous and

1 1
P({?}Hkm}vM):/(; dfo..-/0 dfuP({Z}{fn}, {kn}, M)D({fn}IM)
(10)

At first glance, computing the sums in Eq. (9) seems computa-
tionally intensive. M sums over O(T) many summands suggest a
computational complexity of O(T™), which is impractical. To
appreciate why, consider the following example: In a typical
neurophysiological experiment, we might want to estimate the
PSTH in a T = 700 ms time window with At = 1 ms. If we tried to
model this distribution by M +1 =11 bins, we would have to

699
check < 10

tribute 10 ordered bin boundaries across 699 places. This is > 10?'.
Even if we checked 10 configurations per microsecond, we would
take more than 20 million years to finish. However, as demon-
strated in Endres et al. (2008), the computational complexity can
be reduced to O(MT?) using dynamic programming. In the above
example, the time to compute the evidence reduces to ~0.5s,
which is fast enough to be useful.

Other posterior expectations, can be evaluated in the same fash-
ion. For example, given the model parameters {ky}, {f} and M, the
predictive firing probability at time index t can formally be written
as

) configurations, i.e. the number of possibilities to dis-
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P(spike|t, {fm}, {km}, M) = XM:fmﬂ/’(t € {km-1+1,kn}) (11)
m=0

where the indicator function 7 (x) = 1 iff x is true and 0 otherwise.
Thus, the sum has exactly one nonzero contribution from that bin
which contains t. Multiplying Eq. (11) with Eq. (8) and marginalis-
ing {fn} and {kn} yields the predictive firing rate at t given M and
the data {Z'}.

3. Model selection vs. model averaging

To choose the best M given {Z'}, or better, a probable range of
Ms, we need to determine the model posterior
P({Z}|M)P(M)

PIMIED = = bz P 1

where P(M) is the prior over M, which we assume to be uniform.
The sum in the denominator runs over all values of m which we
choose to include, at most m < T — 1.

Once P(M|{Z'}) is evaluated, we could select the most probable
M'. However, selecting a single M means ‘contriving’ information,
namely that all of the posterior probability is concentrated at M'.
It is more appropriate to average any predictions over all possible
M, even if evaluating such an average has a computational cost
(cost is of O(T?), since M < T — 1). If the structure of the data allow,
it is possible and indeed useful given a large enough T, to reduce
this cost. We reduce the computational cost by finding a range of
M such that the risk of excluding a model, even though it provides
a good description of the data, is low. In analogy to the significance
levels of orthodox statistics, we shall call this risk «. If the posterior
of M is unimodal (which it has been in most observed cases, see
Fig. 3, for an example), we can then choose the smallest interval
of Ms around the maximum of P(M|{Z'}) such that

P(Myin < M < My [{Z}) > 1 - (13)

and carry out the averages over this range of M after renormalising
the model posterior.

4. Examples and comparison to other methods
4.1. Data acquisition

The experimental protocols used to record data from STSa neu-
rons have been described before (van Rossum et al., 2008). Briefly,

0.1F b

POMI(Z'})

0.05F 1

g 10 %0 30
M

Fig. 3. Model posterior P(M|{Z'}) (see Eq. (12)) computed from the data shown for
the STSa neuron in Fig. 1. The shape is fairly typical for model posteriors computed
from the neural data used in this paper: a sharp rise at a moderately low M followed
by a maximum (here at M = 6) and an approximately exponential decay. Even
though a maximum M of 699 would have been possible, P(M > 23|{Z'}) < 0.001.
Thus, we can accelerate the averaging process for quantities of interest (e.g. the
predictive firing rate) by choosing a moderately small maximum M.

extra-cellular single-unit recordings were made using standard
techniques from the upper and lower banks of the anterior part
of the superior temporal sulcus (STSa) and the inferior temporal
cortex (IT) of two monkeys (Macaca mulatta) performing a visual
fixation task. To measure the effect of contrast on the response,
grey-scale versions of preferred and non-preferred stimuli were
presented for 333 ms followed by an 333 ms inter-stimulus inter-
val. Stimuli at different Michelson contrast levels were presented
in random order. All contrast manipulations were performed after
correcting for the measured gamma function of the display moni-
tor. The anterior-posterior extent of the recorded cells was from
7 mm to 9 mm anterior of the interaural plane consistent with pre-
vious studies showing visual responses to static images in this re-
gion (Bruce et al., 1981; Perrett et al., 1982; Baylis et al., 1987;
Oram and Perrett, 1992). The recorded cells were located in the
upper bank (TAa, TPO), lower bank (TEa, TEm) and fundus (PGa,
[Pa) of STS and in the anterior areas of TE (AIT of (Tanaka et al.,
1991)). These areas are rostral to FST and we collectively call them
the anterior STS (STSa), see Barraclough et al. (2005) for further
discussion. The recorded firing patterns were turned into distinct
samples, each of which contained the spikes from 300 ms before
to 600 ms after the stimulus onset with a temporal resolution of
1 ms.

Recordings from LGN (see Oram et al., 1999) were made using
standard techniques from a rhesus monkey performing a fixation
task. Spike data from single neurons were collected with 1 ms res-
olution. Up to 64 different images were used as stimuli for LGN
recordings: bars at four orientations and dots at four sizes, each
at up to 8 to different contrast levels. Each stimulus was presented
for 300 ms centred on the receptive field. The stimuli covered the
excitatory receptive field and extended into the near surround. Re-
ward was delivered after every 1-4 stimulus presentations if the
monkey maintained fixation within 0.5 degrees. LGN parvo-cellu-
lar neurons were recorded with receptive field centres varying be-
tween 3 and 20 degree eccentricities in the lower contralateral
hemifield.

4.2. Inferring PSTHs

An example of the PSTH generated by our method is given in
Fig. 1. The 32 spiketrains recorded from one neuron in area STSa
to a stimulus are shown in rastergram form in the top left. Spikes
times are relative to the stimulus onset. For the STSa data we dis-
cretised the interval from —100 ms pre-stimulus to 600 ms post-
stimulus into At =1 ms time intervals and computed the model
posterior (Eq. (12)) (see Fig. 4, right). The prior parameters were
equal for all bins and set to o, =1 and y,, = 32, corresponding
to a firing probability of ~30 spikes/s in each 1 ms time interval,
typical for the STSa neurons in this study.' An analogous approach
was used to model the response of one LGN neuron (right column of
Fig. 1), illustrating that the approach applies to inhibitory as well as
excitatory responses.

Models with 4 < M < 12 (expected bin sizes between ~23 ms
and 148 ms) were included on an o = 0.1 risk level Eq. (13) for
the STSa data, and 2 < M < 4 for the LGN data in the subsequent
calculation of the predictive firing rate (i.e. the expected firing rate,
hence the continuous appearance) and standard deviation (Fig. 1,
row D). For comparison, Fig. 1, row B, shows a bar and a line PSTH
computed with the recently developed alternative methods de-
scribed in Shimazaki and Shinomoto (2007c,b). Roughly speaking,
these methods try to optimise a compromise between minimal
within-bin variance and maximal between-bin variance. In this

! Alternatively, one could search for the Om,)n Which maximise of
P{Z}0m. V) = S uP(Z}|M)P(M|Gm, 7,,). where P({Z'}|M) is given by Eq. (9). Using
a uniform P(M|0m, },,), we found o, = 2.3 and 7y,, ~ 37 for the STSa data in Fig. 1.
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Fig. 4. Comparison of Bayesian binning with competing methods by 5-fold
crossvalidation of data sets from STSa (left) and LGN (right). The CV error is the
negative expected log-probability of the test data. The histograms show relative
frequencies of CV error differences between our Bayesian binning approach and a
local likelihood adaptive fit (Loader, 1997, 1999) (top), Shimazaki's and Shinomoto’s
kernel, line and bar methods ((Shimazaki and Shinomoto, 2007a,b), rows 2-4
respectively) and smoothing with a Gaussian kernel of 10 ms width (bottom).

example, the bar PSTH consists of 26 bins. Row C of Fig. 1 depicts a
SDF obtained by smoothing the spiketrains with a 10 ms wide
Gaussian kernel.

All four tested methods produce results which are largely con-
sistent with the spiketrains. However, Bayesian binning is better
suited than Gaussian smoothing to model steep changes, such as
the transient response at ~100ms in the STSa response and
~50 ms in the LGN response. While the binning methods from
Shimazaki and Shinomoto (2007c,b) share this property, visual
inspection of the rastergrams Fig. 1 suggested that they suffer from
two drawbacks: firstly, the evenly spaced bin boundaries means
that predicted transients in the PSTH may not match that in the
data. Secondly, binning methods in which the bin duration is the
only temporal parameter in the model are forced to put many bins
even in intervals where the response seems relatively constant. In
contrast, Bayesian binning can put bin boundaries anywhere in the
time span of interest. Thus, Bayesian binning can model transients
accurately and model the sample period with fewer bins - the
model posterior for the STSa neuron has its maximum at M = 6
(7 bins), whereas the bar PSTH consists of 26 bins - thereby allow-
ing for greater smoothing in periods where the instantaneous rate
is (relatively) stable whilst simultaneously capturing transitions in
firing rate. The impact of variable bin boundaries and bin widths is
even more evident for the data from the LGN neuron where essen-
tially, only three bins are needed.

4.3. Performance comparison

For a quantitative comparison between Bayesian binning and
other methods, we split the data into distinct sets, each of which
contained the responses of a cell to a different stimulus. This pro-
cedure yielded 336 neuron/stimulus combinations from 20 STSa
neurons and 1316 neuron/stimulus combinations from 19 LGN
neurons with at least 20 spiketrains per combination. We then per-
formed 5-fold crossvalidation, the crossvalidation (CV) error given
by the negative logarithm of the data (spike or gap) in the test sets:

CV error = —(log(P(spike|t))) (14)

The CV error indicates how well the PSTHs or SDFs generated
from the sample data predict the test data. We average the CV error
over the five estimates to obtain a single estimate for each of the
neuron/stimulus combinations. In Endres et al. (2008), we already
demonstrated that Bayesian binning outperforms SDFs obtained by
Gaussian smoothing, and the bin and line histogram methods from

Shimazaki and Shinomoto (2007c,b). Here, we also test Bayesian
binning against the kernel smoothing method described in Shima-
zaki and Shinomoto (2007a) and a local likelihood adaptive fit
(Loader, 1999). We calculated the difference in CV error for each
neuron/stimulus combination between Bayesian binning and the
alternative method. A positive value indicates that Bayesian bin-
ning predicts the test data more accurately than the alternative
method. Fig. 4, shows the relative frequencies of CV error differ-
ences between the other methods and our approach. In the large
majority of cases we are at least as good, but frequently better than
the competitors, indicating the general utility of our approach. The
average CV error differences, summarised in Table 1, support this
claim. Note that while the pattern of the CV error differences varies
between STSa and LGN data sets (e.g. Shimazaki and Shinomoto
bar method is relatively accurate on average for the LGN data but
not STSa data), Bayesian binning outperforms all methods for both
the LGN and STSa data.

4.4. Minimal definitions of excitatory and inhibitory response latency

Another frequently used feature for the description of a neu-
ron’s response is response latency. However, a precise definition
of response latency seems less agreed. If one picked neurophysiol-
ogists at random and asked them what exactly latency was, one
would possibly receive rather different answers. One statistical
based approach, e.g. used in Oram and Perrett (1992), Oram and
Perret (1996) and Foldiak et al. (2004), is to smooth the stimu-
lus-aligned spiketrains, then determine a baseline level from a sec-
tion that is believed not to contain a response to the stimulus
under investigation (e.g. the so called pre-stimulus period). Next,
find the first time index after which the SDF is above base-
line + 2.58 x(standard deviation of the baseline period) for at least
25 consecutive time indexes. Others have used variants of this def-
inition with somewhat changed parameters. An alternative defini-
tion is given in Luczak et al. (2007) who used the mean spike time
as a latency measure.

In general, there is some consensus that (excitatory) ‘latency is
where the signal starts’. The issue, however, is how to determine
this point in time. Signal vs. no signal can usually be translated into
firing rate above or below a threshold, which we will call the signal
level (see Fig. 5). We therefore define (excitatory) latency as that
point in time prior to which there was no signal, and after which
there is a signal for at least some duration. This is the ‘minimal’ la-
tency definition which we will employ in the following. Con-
versely, inhibitory latency is that point in time prior to which
there was a signal, and after which there is no signal for at least
some duration.

Table 1

Mean log prediction error results from 5-fold crossvalidation on 336 STSa datasets
and 1316 LGN datasets. A positive value means that our method predicts the data
better than the competitors. S.-S. bar: bar PSTH (Shimazaki and Shinomoto, 2007b),
S.-S. line: line PSTH (Shimazaki and Shinomoto, 2007b), Gauss: SDF computed by
smoothing with a 10 ms wide Gaussian kernel, L.l. fit: local likelihood adaptive fit
(Loader, 1997), S.-S. ker. optimised kernel method from Shimazaki and Shinomoto
(2007a), Bay. bin.: Bayesian binning.

Method CV error difference to Bayesian binning

STSa LGN
S.-S. bar (2.35+£0.23) x 1073 (1.686 £ 0.074) x 1073
S.-S. line (1.2240.10) x 1073 (2.400 + 0.085) x 1073
Gauss (129+0.11) x 1073 (4.73+£0.14) x 104
L1 fit (7.344+0.48) x 1074 (4324+0.16) x 107*
S.-S. ker. (3.14+0.39) x 107* (821+0.26) x 107*
Bay. bin. 0 0
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definitions have two important implications: the latency is at a bin boundary, and there can be at most one latency (possibly none).

With bin boundaries {k,} and firing probabilities {f,}, the la-
tency must be at a bin boundary because firing probabilities are
constant within each bin. Note also that our latency definition im-
plies that there can be at most one (excitatory or inhibitory) la-
tency. Furthermore, if the firing probabilities are below the signal
level in every bin or if the firing rate in the first bin (fy) is already
above the signal level, then there will be no (excitatory) latency.
Likewise, if the firing rate in the first bin is already below the signal
level or if it is above the signal level everywhere, then there will be
no inhibitory latency.

To obtain a latency posterior distribution we formally define the
probability that the latency is at time index t given {kn}, {fn},M
and the signal level S as

P(excitatory latency at t|{kn},{fn},M,S)
1 if3kje{kn}:k+1=t
= andfj > Sand Vi<j:fi<S$S
0 otherwise

(15)

which can be exactly averaged over the posterior Eq. (8) by a dy-
namic programming algorithm similar to that used for the evidence
evaluation. The general framework for computing expectations of
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functions of bin boundaries and firing probabilities is equivalent
to that of Endres and Foldiak (2005). Similarly, define
P(inhibitory latency at t|{kn}, {fn}, M,S)
1 if 3kjefkn}:k+1=t
= and f;<Sand Vi<j:fi>$§
0 otherwise

(16)

and average over the posterior Eq. (8) to obtain the inhibitory la-
tency posterior.

Assuming the data span the response range of the neuron (i.e.
the data contain responses to at least one effective stimulus), one
can determine the signal level S as follows. For a given S, margina-
lise the latency posterior across the time interval of interest, there-
by obtaining the probability Ps that a signal exists at that S. Repeat
this procedure for different S until the maximal Ps is found. Results
obtained by this procedure are shown in Fig. 6.

The latency posterior of an excitatory response from the STSa
neuron/stimulus combination shown in Fig. 1 has two distinct
modes (Fig. 6, left B). The first peak is at ~83 ms, the second peak
~104 ms after stimulus onset. The two peaks can be understood
from the rastergrams (Fig. 6A): there appears to be an earlier re-
sponse onset in some of the trials. The latency posterior of the
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Fig. 6. Left: Excitatory response in STSa. Right: Inhibitory response in LGN. Row A: Each tick mark represents a spike, recorded from (left) the same STSa neuron and (right) the
same LGN neurons as in Fig. 1. Row B: Latency posterior. Left: The main mode of P(latency) of the STSa neuron is at 104 ms after stimulus onset, indicated by the dashed
vertical lines. There is also a smaller mode at 83 ms which is due to an earlier response onset in some trials. The single mode of P(latency) of the LGN neuron is at 43 ms. Row
C: Expected instantaneous firing rates (thick dashed line) plus/minus one standard deviation (thin dashed lines). The signal level S for the latency posterior calculation was
chosen so that the probability for the existence of a signal, Ps, was maximised. This signal level is indicated by the thick horizontal line.
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inhibitory response from the same LGN neuron/stimulus combina-
tion in Fig. 1 is shown in Fig. 6, right B. Here a single distinct peak is
evident, indicating that our Bayesian binning method is capable of
detecting the latency of inhibitory as well as excitatory responses.

4.5. Effects of sample size, background firing rate and signal-to-noise
ration on latency inference

An important aspect of inferring the PSTH and latency from
neuronal data is the sensitivity of the method to the number of tri-
als. Recordings frequently yield limited sample sizes and it is
important that any analysis degrades gracefully as the amount of
available data decreases. We investigated this degradation by
drawing 30 partially overlapping sub-samples containing 1, 3, 10
or 30 trials from the datasets shown in Fig. 6. For each sub-sample,
we either computed the squared difference of the expected latency
(STSa) or the expected inhibitory latency (LGN) to the respective
latency computed from the full dataset. The resulting root-mean-
squared (RMS) deviations are shown in Fig. 7. While the quality
of the latency estimates clearly decreases with the number of tri-
als, they are closer than one would expect by chance for even a sin-
gle trial (assuming uniformly distributed latency guesses in the
interval [0 ms, 200 ms], one would expect a RMS of ~57 ms). The
slower convergence of the STSa latencies with increasing number
of trials can be attributed to the same reason as the bi-modality
of the latency posterior of the full dataset (see Fig. 6, left): this STSa
neuron responded earlier in some of the trials. If a sub-sample con-
tains mostly those early response trials, then the latency posterior
will have a strong early mode, which will increase the RMS.

We also studied the effects of a changing signal-to-noise ratio
(SNR) on the quality of the latency estimates. To vary the SNR,
we simulated neural responses drawn from an inhomogeneous
Bernoulli process with a latency of 80 ms, after which the neuron
fired with a rate of 80 Hz for 50 ms. The baseline firing rate before
the latency was varied between 5 Hz (high SNR) and 50 Hz (low
SNR). The resulting latency posteriors for datasets containing 30
trials are shown in Fig. 8, top half. ‘Per trial’ posteriors are obtained
by calculating a latency posterior from each trial and averaging
them across all trials. Latency posteriors computed from all trials
are concentrated in the vicinity of the generating latency up to a
baseline of 50 Hz. When computing the latency posteriors per trial,

30— T

EHESTSa
251 GC-OLGN —

20— N —

RMS difference [ms]

1 3 10 30
Number of trials

Fig. 7. Effect of sample size on the consistency of latency estimates. For a given
number of trials, we drew 30 random, partially overlapping sub-samples from the
datasets shown in Fig. 6 and computed the expected latencies (for STSa) and the
expected inhibitory latencies (LGN). Root-mean-square (RMS) deviations are
between the sub-sample expectations and the latency expectation calculated from
all trials. For details, see text.

the posterior standard deviations become too large to be useful for
baselines above 30 Hz.

Fig. 8, bottom half, shows the effect of shifting the background
rate and the response, i.e. the firing rate in the first 50 ms after la-
tency is given by (80 Hz + background). While an increased back-
ground rate broadens the latency posterior, a latency is clearly
detectable even in the ‘per trial’ evaluation with a 50 Hz
background.

5. Trial-by-trial latency and firing rate estimation

Most of our previous analyses have assumed that there is a sin-
gle ‘correct’ PSTH from which the data were generated. In other
words, we presupposed that the experimentally controlled param-
eters (e.g. stimulus identity and presentation time) specified the
spike train generating process up to a random element, which is
fully modelled by the firing probability. It is certainly conceivable
that, for example, latencies and firing rates vary between trials.
We show here that our method allows computation of the poster-
ior distributions of these parameters on a trial-by-trial basis. Fig. 9,
left, shows the trial-by-trial latency posterior distribution mar-
ginalised across all trials. The high contrast latency posterior was
calculated on the same data as those used in Fig. 6. While the pos-
terior uncertainty is increased due to the trial-by-trial evaluation,
the bulk of the probability is in the same post-stimulus time range
(~75-110 ms) as before, which indicates the usefulness of our ap-
proach for trial-by-trial evaluations. Moreover, the trial-by-trial la-
tency tends to increase with decreasing stimulus contrast, as
observed using estimates from stimulus based SDFs (Oram et al.,
2002; van Rossum et al., 2008) using a statistical based approach
to latency estimation.

Our trial-by-trial latency estimation method also captures
inhibitory responses seen in the LGN data (Fig. 9, right). Note that
the distribution is centred at the same time as the latency estimate
obtained from assuming a single PSTH for the neuron/stimulus
combination (see Fig. 6). The trial-by-trial latency posterior from
the inhibitory LGN response declines more slowly than observed
for the excitatory STSa responses. This reflects the difficulty in
determining the absence of a response when the likelihood of the
occurrence of a spike is low: you have to wait a long time to be sure
that there isn’t a response, whereas, for excitatory responses, a few
spikes in quick succession are a good indicator of a change in neu-
ronal activity.

6. Summary

We show that our exact Bayesian binning method treats uncer-
tainty - a real problem with neurophysiological datasets — in a
principled fashion, and that it outperforms competing methods
on real neural data. It offers automatic complexity control because
the model posterior can be evaluated. While its computational cost
is significantly higher than that of the methods we compared it to,
it is still fast enough to be useful: evaluating the predictive proba-
bility takes less than 1s on a modern PC,> with a small memory
footprint (<10 MB for 512 spiketrains). A free software implemen-
tation is available at the machine learning open source software
repository.>

We have extended our previous studies (Endres et al., 2008)
to show how our approach allows extraction of characteristic
features of neural responses in a Bayesian way, e.g. excitatory
or inhibitory response latencies. We demonstrated the robust-
ness of our latency estimation method against shifts in the

2 3.2 GHz Intel Xeon™, SuSE Linux 10.1.
3 http://www.mloss.org, package ‘binsdfc’.
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background firing rate and changes of the signal-to-noise ratio.
However, we note that we are not restricted these features:
our method can be used to compute expectations of any function
of the PSTH, subject to the condition that the function depends
on the PSTH in a bin-wise fashion. For example, it is possible
to compute exact (up to roundoff errors) expectations of infor-
mation-theoretic quantities, e.g. mutual informations between
latencies and stimulus contrast.

We note that we can substitute our observation model Eq. (2)
with any other distribution in a straightforward way, as long as
the replacement is also comprised of bins. For example, one might
model each spike train within a bin by a separate Bernoulli process
and mix these with a suitable distribution to capture the inter-trial
differences. Alternatively, one could use a model similar to that of
Shinomoto and Koyama (2007): choose a Gamma process for the
inter-spike intervals and model the time-dependent rate with a
bin model. The relative value of such changes remains to be
investigated.

It is clear that our Bayesian approach outperforms other meth-
ods in terms of capturing the changes in activity in early (LGN) and
late (STSa) areas of the visual pathway, including a range of differ-
ent background activity levels (LGN ~30-50 Hz, STSa ~2-20 Hz)
and for both excitatory and inhibitory responses. However, a num-
ber of features found in neuronal recordings were not examined.
The response onsets of visually responsive neurons are typically ra-
pid, favouring binning over kernel smoothing methods. Neurons in,
for example, the motor cortex have, on average, a relatively gradual
increases in activity prior to muscle activation. Visual inspection of
rastergrams from motor cortical recordings suggests that on indi-
vidual trials the response onset may be brisk but the time of the
onset is only loosely linked to muscle activation. It remains to be
seen how our Bayesian binning method copes with these types of
data and whether we find evidence that the trial-by-trial PSTHs
provide a significantly better fit than assuming a single PSTH appli-
cable to all trials.

While we have shown the advantages of the Bayesian binning
method over other estimation methods with real data from the
visual system, this does not address potential limitations and
the range over which our conclusions are valid. Sensory systems
nearly all show adaptation and, although our method works with
real sensory data, we have not examined specifically how adap-
tation influences the performance. The robustness results in Sec-
tion 4.5 indicate that our approach should be able to deal with
adaptation. Further analysis using artificial data sets from known
generators will allow us to examine the impact of adaptation on
the range of validity and what happens outside the applicable
range. Additionally, we note that there are several other ap-
proaches to PSTH/SDF estimation, the most noteworthy (from a
Bayesian perspective) are (Shinomoto and Koyama, 2007), Bayes-
ian Adaptive Regression Splines (BARS) (Kass et al., 2005) and a
recent Gaussian process model (Cunningham et al., 2008). We
have not yet directly compared our method to either of them,
but (Cunningham et al., 2008) reports that their Gaussian process
model performs frequently better than BARS on both simulated
and real neural data. Thus, comparisons to BARS and the meth-
ods of Cunningham et al. (2008) and Shinomoto and Koyama
(2007) using both real and artificial data will be interesting fu-
ture work.
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