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Introduction Experiment contd. Previous Exp. Results

The perception of own actions is affected by both vi-
sual information and predictions derived from internal
forward models [1]. The integration of these sources
depends critically on whether visual consequences are
associated with one’s own action (sense of agency) or
with changes in the external world unrelated to the ac-

10 healthy subjects participated in the previous experi-
ment, representative subjects are shown below.
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e 'Hit: no change in action to achieve same successful e Parameters learned over dataset { uf), x$, x® }. 1 .
result with next shot. e Given these parameters, model predicts agency pos- 2 o
e 'Miss’: correction to adapt one’s action with next shot terior. T
(for better result). e Prediction evaluated by comparison with measured %0'6
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§ -—C-cuefusion ~ ~ 7 e If subjects trust only their internal estimate, we ex- e Subject to subject variations in agency attribution
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| agency of sensory consequences to one’s own ac-
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Fig. 4) Causal inference model [2, 3. 6 healthy subjects participated in the experiment, representative subjects are shown below. viations.
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of own actions, we investigated the effect of the consis- | | < 20f < 207 sion of internal estimate and visual feed-
tency between internally predicted and actual sensory back.
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Fig. 10) Subject 1. Fig. 11) Subject 2. Correct prediction of ‘agency’ (belief that
o Different regions with respect to Avis can be identi- e Subject specific bias visible to over- or underestimate observer .Caus ed the visual feedback) by this
fied in the data and model fit: direction X_. model (Fig. 8).
e Outer regions: no influence of X, — no cue fusion. e Identified regions match the subjective attribution of | | 1n conclusion
. 4
e [nner region: strong influence of X, — cue fusion. agency of X, as consequence of self-action.

e Model predicts subject’s posterior agency attribution ¢ SUbjeCtS attr ib.ute dgency of sepsory conse-
correctly. quences to their own motor actions depend-

Mirror © ing on individual parameters.
Avis affects agency attribution.
B _d Subject Q* Q' Width ratio (Pred/Data) d(A) = normalized emp. data of agency posterior Optimal cue fusion is performed within re-
[R | ] ; ZZO;O Sgoﬁo 1929;; p (A) = normalized prediction of agency post. gion of self-attribution and not outside.
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@ 1 799, | 729 166% [d(A)?dA ture underlying model selection.
5 78% | 48% 181% L Jd(A) —p(a)da 5 The presented model correctly predicted

Table 1) Goodness of Fit of agency posterior.
e Quantitative analysis of the prediction quality con- e Width ratio shows a trend of the model to overesti-
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o Offset angles in random order to minimize effects of
trial-by-trial adaptation.




