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Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 14381 “Neural-

Symbolic Learning and Reasoning”, which was held from September 14th to 19th, 2014. This

seminar brought together specialist in machine learning, knowledge representation and reason-

ing, computer vision and image understanding, natural language processing, and cognitive science.

The aim of the seminar was to explore the interface among several fields that contribute to the

effective integration of cognitive abilities such as learning, reasoning, vision and language under-

standing in intelligent and cognitive computational systems. The seminar consisted of contributed

and invited talks, breakout and joint group discussion sessions.
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Neural-symbolic computation aims at building rich computational models and systems

through the integration of connectionist learning and sound symbolic reasoning [1, 2]. Over

the last three decades, neural networks were shown effective in the implementation of

robust large-scale experimental learning applications. Logic-based, symbolic knowledge

representation and reasoning have always been at the core of Artificial Intelligence (AI)

research. More recently, the use of deep learning algorithms have led to notably efficient

applications, with performance comparable to those of humans, in particular in computer

image and vision understanding and natural language processing tasks [3, 4, 5]. Further,

advances in fMRI allow scientists to grasp a better understanding of neural functions, leading

to realistic neural-computational models. Therefore, the gathering of researchers from several
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communities seems fitting at this stage of the research in neural computation and machine

learning, cognitive science, applied logic, and visual information processing. The seminar was

an appropriate meeting for the discussion of relevant issues concerning the development of

rich intelligent systems and models, which can, for instance integrate learning and reasoning

or learning and vision. In addition to foundational methods, algorithms and methodologies

for neural-symbolic integration, the seminar also showcase a number of applications of

neural-symbolic computation.

The meeting also marked the 10th anniversary of the workshop series on neural-symbolic

learning and reasoning (NeSy), held yearly since 2005 at IJCAI, AAAI or ECAI. The NeSy

workshop typically took a day only at these major conferences, and it became then clear

that given that the AI, cognitive science, machine learning, and applied logic communities

share many common goals and aspirations it was necessary to provide an appropriately

longer meeting, spanning over a week. The desire of many at NeSy to go deeper into the

understanding of the main positions and issues, and to collaborate in a truly multidisciplinary

way, using several applications (e. g. natural language processing, ontology reasoning,

computer image and vision understanding, multimodal learning, knowledge representation

and reasoning) towards achieving specific objectives, has prompted us to put together this

Dagstuhl seminar marking the 10th anniversary of the workshop.

Further, neural-symbolic computation brings together an integrated methodological

perspective, as it draws from both neuroscience and cognitive systems. In summary, neural-

symbolic computation is a promising approach, both from a methodological and computational

perspective to answer positively to the need for effective knowledge representation, reason-

ing and learning systems. The representational generality of neural-symbolic integration

(the ability to represent, learn and reason about several symbolic systems) and its learn-

ing robustness provides interesting opportunities leading to adequate forms of knowledge

representation, be they purely symbolic, or hybrid combinations involving probabilistic or

numerical representations.

The seminar tackled diverse applications, in computer vision and image understanding,

natural language processing, semantic web and big data. Novel approaches needed to tackle

such problems, such as lifelong machine learning [6], connectionist applied logics [1, 2], deep

learning [4], relational learning [7] and cognitive computation techniques have also been

extensively analyzed during the seminar. The abstracts, discussions and open problems listed

below briefly summarize a week of intense scientific debate, which illustrate the profitable

atmosphere provided by the Dagstuhl scenery. Finally, a forthcoming article describing

relevant challenges and open problems will be published at the Symposium on Knowledge

Representation and Reasoning: Integrating Symbolic and Neural Approaches at the AAAI

Spring Symposium Series, to be held at Stanford in March 2015 [8]. This article also adds

relevant content and a view of the area, illustrating its richness which may indeed lead to

rich cognitive models integrating learning and reasoning effectively, as foreseen by Valiant [9].

Finally, we see neural-symbolic computation as a research area which reaches out to

distinct communities: computer science, neuroscience, and cognitive science. By seeking

to achieve the fusion of competing views it can benefit from interdisciplinary results. This

contributes to novel ideas and collaboration, opening interesting research avenues which

involve knowledge representation and reasoning, hybrid combinations of probabilistic and

symbolic representations, and several topics in machine learning which can lead to both

the construction of sound intelligent systems and to the understanding and modelling of

cognitive and brain processes.
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3 Overview of Talks

3.1 Symbolic neural networks for cognitive capacities

Tsvi Achler (IBM Almaden Center, US)

License Creative Commons BY 3.0 Unported license
© Tsvi Achler

Main reference T. Achler, “Symbolic neural networks for cognitive capacities,” Biologically Inspired Cognitive
Architectures, 9:71–81, 2014.

URL http://dx.doi.org/10.1016/j.bica.2014.07.001

Pattern recognition (identifying patterns from the environment using those stored in memory)

and recall (describing or predicting the inputs associated with a stored pattern that can be

recognized) are essential for neural-symbolic processing. Without them the brain cannot

interact with the world e. g.: understand the environment, logic, and reason. Neural networks

are efficient, biologically plausible algorithms that can perform large scale recognition.

However, most neural network models of recognition perform recognition but not recall.

It remains difficult to connect models of recognition with models of logic and emulate

fundamental brain functions, because of the symbolic recall limitation. Before discussing

symbolic networks further, one of the important realizations from the Dagstuhl seminar is that

folks that focus on neural networks have a different definition of symbolic (and sub-symbolic)

than folks that focus on logic. This matter was not fully solved. Subsequently I carefully

define symbolic and note that in some literatures this term may be used differently. Here

symbolic (call it “functional” symbolic?) is defined by the relation between input features and

outputs (e. g. zebra has 4 legs). I assume that weights of neurons responsible for zebra demark

mark this in connection weights that do not change. Let me clarify. There are two types of

neural networks in the literature defined by how neurons learn for recognition processing:

localist and globalist. In localist methods only neurons related to the information adjust their

weights based learning on rules quantified within the neuron. Simple Hebbian learning is an

example of this rule. Globalist methods in contrasts may require all neurons (including those

that are not directly responsible) to change their weights to learn a new relation. PDP and

feedforward models are examples of global learning. My symbolic definition is localist because

I assumed the zebra neuron is independent of other neurons in that it does not change if

another neuron is added with another symbolic relation (e. g. there exists another neuron

representing another animal that has 0,4,6,8 or however many legs). Using this definition a

neural network that is symbolic neural network cannot be globalist. A symbolic network also

requires the ability to recall: to be able to derive from the symbol (e. g. zebra) what are

the characteristic components (e. g. 4 legs, stripes etc). Thus the label (e. g. zebra) behaves

as a symbol that encapsulates the components that are associated with it (legs, stripes,

tail, hooves etc). Globalist networks cannot recall and subsequently in some literatures

are called sub-symbolic (e. g. [2, 3]). Fortunately localist networks involve symmetrical

top-down connections (from label to components) and the best example of such networks

are auto-associative networks (e. g. Restricted Boltzmann Machines for Deep Learning).

However auto-associative networks have self-excitatory symmetrical connections (positive

feedback). A property of self-excitatory feedback is that iterative activation of even small

values will lead to the maximal values regardless whether non-binary values are used. This

degrades performance. I introduce a different localist model from auto-associative networks

that uses are self- inhibitory symmetrical connections (negative feedback). The proposed

model can converge to non-binary real-valued activations and is sensitive to real-valued

weights. Moreover the network can be shown mathematically to obtain analogous solutions

14381
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as standard feedforward (globalist) neural networks. Thus we have a model that can be as

powerful as popular globalist neural networks, but is localist and symbolic. It can perform

recall: retrieve the components involved in recognizing the label [1]. I hope to see more focus

on these type of approaches within the neural symbolic community.
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3.2 On extracting Rules for: enriching ontological knowledge bases,
complementing heterogeneous sources of information, empowering
the reasoning process

Claudia d’Amato (University of Bari, IT)
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The Linked Open Data (LOD) cloud, which represents a significant example of Bid Data, could

be seen as a huge portion of assertional knowledge whose intentional part is formally defined

by existing OWL ontologies freely available on the Web. LOD constitutes a tremendous

source of knowledge, that as such needs effective and efficient methods for its management.

Data mining techniques could play a key role with this respect. The focus of the talk is

on the discovery and extraction of knowledge patterns that are hidden in the (often noisy

and inherently incomplete) data. Hidden knowledge patterns are extracted in the form of

(relational) association rules by exploiting the evidence coming from the ontological knowledge

bases [1] and/or from heterogeneous sources of information (i. e. an ontology and a relational

databases referring to the same domain) [2] as well as by exploiting reasoning capabilities.

While using methods at the state of the art, that as such necessarily need a further and

deeper investigation for really scaling on very large data sets, the main focus will be on the

potential that the extracted rules may have for: enriching existing ontological knowledge

bases, for complementing heterogeneous sources of information, and for empowering the

deductive reasoning process.

Particularly, the talk is organized in two parts. In the first one, the focus is on extracting

hidden knowledge patterns from purely ontological knowledge bases. In the second one, the

focus is on extracting hidden knowledge patterns from heterogeneous source of information.

The key observation motivating the first part of the talk is given by the fact that

ontological knowledge bases are often not complete in the sense that missing concept and

role assertions, with respect to the reference domain, can be found, as well as missing

disjointness axioms and/or relationships. In order to cope with this problem, a method for

discovering DL-Safe [4, 5] Relational Association rules, represented with SWRL [3] language,

is presented [1]. This method is intended to discover all possible hidden knowledge patters

that may be used for: a) (semi-)automatizing the completion of the assertional knowledge

(given the pattern in the left hand side of a discovered rule, a new concept/role assertion may
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be induced by the right hand side of the rule); b) straightforwardly extending and enriching

the expressive power of existing ontologies with formal rules, while ensuring and maintaining

the decidability of the reasoning operators (because DL-Safe SWRL rules are extracted [3, 5]);

c) suggesting knew knowledge axioms (induced by the discovered association rules). Inspired

to [11, 12], the proposed method implements a level-wise generate-and-test approach that,

starting with an initial general pattern, i. e. a concept name (jointly with a variable name) or

a role name (jointly with variable names) proceeds, at each level, with generating a number

of specializations by the use of suitable operators defined for the purpose. Each specialized

pattern is then evaluated, on the ground of formally defined conditions, for possible pruning.

This process is iterated until a predefined stopping criterion met. Besides of developing a

scalable algorithm, the experimental evaluation of the developed method represents one of

the most challenging problem since it requires the availability of gold standards (currently

not available) with respect to which assessing the validity of the induced new knowledge. A

possible solution is presented in [6].

As regards the second part of the talk, the motivating observation is given by the fact that

even if available domain ontologies are increasing over the time, there is still a huge amount

of data stored and managed with RDBMS and referring to the same domain. The key idea

is that this complementarity could be exploited for discovering knowledge patterns that are

not formalized within the ontology (or the RDBMS) but that are learnable from the data.

For the purpose, a framework for extracting hidden knowledge patterns across ontologies

and relational DBMS, called Semantically Enriched Association Rules, is illustrated [2, 13].

It is grounded on building an integrated view of (a part of) the RDBM and the ontology

in a tabular representation which allows the exploitation of well know state of the art

algorithms, such as the Apriori algorithm [14], for extracting Association Rules. The

extracted patterns can be used for enriching the available knowledge (in both format) and

for refining existing ontologies. Additionally, the extracted semantically enriched association

rules can be exploited when performing deductive reasoning on an ontological knowledge bases.

Specifically, a modified Tableaux algorithm, that we call Data Driven Tableaux algorithm

is introduced [15, 13]. It is intended as a method for performing automated reasoning on

grounded knowledge bases (i. e. knowledge bases linked to RDBMS data) which combines

logical reasoning and statistical inference (coming from the discovered semantically enriched

association rules) thus making sense of the heterogeneous data sources. The goals of the Data

Driven Tableaux algorithm are twofold. On one hand it aims at reducing the computational

effort for finding a model for a given (satisfiable) concept. On the other hand it aims at

suppling the “most plausible model”, that is the one that best fits the available data, for a

given concept description. The key point of the algorithm is a defined heuristic, exploiting

the semantically enriched association rules, to be used when random choices (e. g. when

processing a concepts disjunction) occur. The proposed framework has to be intended as the

backbone of a mixed models representation and reasoning.

The exploitation of association rules is not new in the Semantic Web context. In [6], a

framework for discovering association rules for predicting new role assertions from an RDF

data source is proposed, but no reasoning capabilities and TBox information are exploited

for the purpose. Additionally, the extracted patterns are not integrated in the considered

source of knowledge. Heterogeneous sources of information have been considered in [7, 8],

where frequent patterns are discovered, respectively in the form of DATALOG clauses, from

an AL-Log knowledge base at different granularity level, and in the form of conjunctive

queries, given a specified objective. Additional usages of association rules have been proposed

in [9], where association rules are learnt from RDF data for inducing a schema ontology, but
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without exploiting any reasoning capabilities and in [10] where association rules are exploited

for performing RDF data compression.
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3.3 Neural-Symbolic Computing, Deep Logic Networks and
Applications

Artur d’Avila Garcez (City University London, GB)
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In this talk I reviewed the work carried out with many collaborators over the past 15 years

in the area of neural-symbolic computing, starting with the CILP system for integrating

logic programming and recurrent neural networks trained with backpropagation [1]. CILP

networks take advantage of background knowledge during learning, which can improve training

performance as shown in power systems and bioinformatics applications [2]. Knowledge

extraction allows CILP networks to be described in symbolic form for the sake of transfer

learning and explanation [3]. Extensions of CILP, including the use of feedback, network

ensembles and nested networks, allows the representation and learning of various forms of

nonclassical reasoning, including modal, temporal and epistemic reasoning [4, 5], as well as

abduction [6]. This has led to a full solution in connectionist form of the so-called muddy

children puzzle in logic [7]. Fibring of CILP networks offers further expressive power by

combining networks of networks for simultaneous learning and reasoning [8]. Applications

have included training and assessment in simulators, normative reasoning and rule learning,

integration of run-time verification and adaptation, action learning and description in videos

[9, 10, 13]. Current developments and efforts have been focused on: fast relational learning

using neural networks (the CILP++ system) [11] and effective knowledge extraction from

large networks, including deep networks and the use of knowledge extraction for transfer

learning [12]. Future applications include the analysis of complex networks, social robotics

and health informatics, and multimodal learning and reasoning combining video and audio

data with metadata.
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3.4 Dreaming and Consciousness in Deep Neural-Symbolic Cognitive
Agents
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Deep Boltzmann Machines (DBM) have been used as a computational cognitive model in

various AI-related research and applications, notably in computational vision and multimodal

fusion. Being regarded as a biological plausible model of the human brain, the DBM is also

becoming a popular instrument to investigate various cortical processes in neuroscience. In

this paper, we describe how a multimodal DBM is implemented as part of a Neural-Symbolic

Cognitive Agent (NSCA) for real-time multimodal fusion and inference of streaming audio

and video data. We describe how this agent can be used to simulate certain neurological

mechanisms related to hallucinations and dreaming and how these mechanisms are beneficial

to the integrity of the DBM. Also we will explain how the NSCA is used to extract multimodal

information from the DBM and provide a compact and practical iconographic temporal logic

formula for complex relations between visual and auditory patterns. Finally we will discuss

the implications of the work in relation to Machine Consciousness.
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3.5 Progress in Probabilistic Logic Programming

Luc De Raedt (KU Leuven, BE)

Probabilistic logic programs combine the power of a programming language with a possible

world semantics, typically based on Sato’s distribution semantics and they have been studied

for over twenty years. In this talk, I introduced the concepts underlying probabilistic

programming, their semantics, different inference and learning mechanisms. I then reported

on recent progress within this paradigm. This was concerned with an extension towards

dealing with continuous distributions as well as coping with dynamics. This is the framework

of distributional clauses that has been applied to several applications in robotics, for tracking

relational worlds in which objects or their properties are occluded in real time. Finally, some

remaining open challenges were discussed.

See also the websites http://dtai.cs.kuleuven.be/problog/ and http://dtai.cs.kuleuven.be/

ml/systems/DC/ for more details and an interactive tutorial on ProbLog.
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3.6 Semantic and Fuzzy Modelling and Recognition of Human
Activities in Smart Spaces. A case study on Ambient Assisted
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Human activity recognition in everyday environments is a critical task in Ambient Intelligence

applications to achieve proper Ambient Assisted Living. Key challenges still remain to be

tackled to achieve robust methods. Our hybrid system allows to model and recognize a set

of complex scenarios where vagueness and uncertainty is inherent to the human nature of

the users that perform it. We provide context meaning to perform sub- activity tracking

and recognition from depth video data. To achieve a more loosely coupled model that lets

flexibility to be part of the recognition process, we validate the advantages of a hybrid

data-driven and knowledge-driven system with a challenging public dataset and achieve an

accuracy of 90.1% and 91.1% respectively for low and high-level activities. The handling of

uncertain, incomplete and vague data (i. e., missing sensor readings or execution variations)

is tackled for first time with a public depth-video dataset taking into account the semantics

of activities, sub-activities and real-time object interaction. This entails an improvement

over both entirely data-driven approaches and merely ontology- based approaches.
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3.7 Making the latent category structure of fMRI data explicit with
Formal Concept Analysis

Dominik Endres (Universität Marburg, DE)
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Understanding how semantic information is represented in the brain has been an important

research focus of Neuroscience in the past few years. The work I presented in this talk is

aimed at extracting concepts and their relationships from brain activity, and to correlate these

concept with behavioral measures. We showed previously (Endres et al 2010) that Formal

Concept Analysis (FCA) can reveal interpretable semantic information (e. g. specialization

hierarchies, or feature-based representations) from electrophysiological data. Unlike other

analysis methods (e. g. hierarchical clustering), FCA does not impose inappropriate structure

on the data. FCA is a mathematical formulation of the explicit coding hypothesis (Foldiak,

2009) Furthermore we (Endres et al 2012) investigated whether similar findings can be

obtained from fMRI BOLD responses recorded from human subjects. While the BOLD

response provides only an indirect measure of neural activity on a much coarser spatio-

temporal scale than electrophysiological recordings, it has the advantage that it can be

recorded from humans, which can be questioned about their perceptions during the experiment.

Furthermore, the BOLD signal can be recorded from the whole brain simultaneously. In

our experiment, a single human subject was scanned while viewing 72 grayscale pictures of

animate and inanimate objects in a target detection task. These pictures comprise the formal

objects for FCA. We computed formal attributes by learning a hierarchical Bayesian classifier,

which maps BOLD responses onto binary features, and these features onto object labels. The

connectivity matrix between the binary features and the object labels can then serve as the

formal context. In a high-level visual cortical area (IT), we found a clear dissociation between

animate and inanimate objects with the inanimate category subdivided between animals

and plants when we increased the number of attributes extracted from the fMRI signal.

The inanimate objects were hierarchically organized into furniture and other common items,

including vehicles. We also used FCA to display organizational differences between high-level

and low-level visual processing areas. For a quantitative validation of that observation, we

show that the attribute structure computed from the IT fMRI signal is highly predictive

of subjective similarity ratings, but we found no such relationship to responses from early

visual cortex. Collaborators: Peter Foldiak, Uta Priss, Ruth Adam, Uta Noppeney
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3.8 Symbolic Data Mining Methods Applied to Human Sleep Records

Jacqueline Fairley (Emory University – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Jacqueline Fairley

Joint work of Fairley, Jacqueline; Georgoulas, George; Karvelis, Petros; Stylios, Chrysostomos; Rye, David;
Bliwise, Donald

Main reference J. A. Fairley, G. Georgoulas, P. Karvelis, C. D. Stylios, D. B. Rye, D. L. Bliwise, “Symbolic
Representation of Human Electromyograms for Automated Detection of Phasic Activity during
Sleep,” 2014.

URL https://www.academia.edu/7659893/SYMBOLIC_REPRESENTATION_OF_HUMAN_
ELECTROMYOGRAMS_FOR_AUTOMATED_DETECTION_OF_PHASIC_ACTIVITY_
DURING_SLEEP

Background: Phasic electromyographic (EMG)/muscle activity in human overnight polysom-

nograms (PSGs) represent a potential indicator/quantitative metric for identifying various

neurodegenerative disorder populations and age-matched controls [1].

Unfortunately, visual labeling of phasic EMG activity is time consuming making this

method unscalable for clinical implementation. Therefore, we propose computerized labeling

of EMG activity in a detection scheme utilizing k-Nearest Neighbor classification and Symbolic

Aggregate approXimation (SAX), a novel algorithm from the field of time series data mining

that transforms a time series, such as EMG, into a string of arbitrary symbols [2]. A primary

advantage of SAX analysis includes access to robust symbolic based data mining algorithms

viable for scalable computing.

Methods: Six male subjects (S001:S006) polysomnograms (PSGs)/sleep data sets were

visually scored, using one second epochs, for phasic and non-phasic left and right leg EMG

activity (sampling rate 200Hz), by the same trained visual scorer. Phasic muscle activity

epochs were characterized by amplitudes visually exceeding four times the surrounding

background activity and having time durations between 100 to 500 msec. SAX was applied

to all EMG records using a one second non-overlapping moving window, four symbol

alphabet, and 1
2

sec frames, followed by translation of the SAX string into an intelligent

icon, a color mapped image representing the frequency of each word in the SAX string.

Results: SAX based classification scheme results, using 10-fold cross validation and k- Nearest

Neighbor Classification (best of k:1:1:7; minimum value:increment value:maximum value),

were compared to visual labeling [3]. Detection of non-phasic EMG activity exceeded 90%

for all six subjects: S001 (98.4), S002 (97.8), S003 (98.1), S004 (93.6), S005 (95.2), and S006

(95.8). Phasic EMG activity detection surpassed 80% for three subjects: S001 (90.5), S004

(81.8), and S006 (87.1). However, phasic EMG activity detection decreased in performance

for S002 (61.0), S003 (53.6) and S005 (68.0).

Conclusions: Detection rates for half of the subjects indicate feasibility of replacing

tedious expert visual scoring with the proposed computational scheme. However, this scheme

lacks robustness across all subjects, and requires refinement of SAX alphabet size and frame

length along with comparison with other classification algorithms such as Support Vector

Machines and Random Forest. Most importantly, efficient fine-tuning of this computational

scheme promises to hasten computerized EMG activity scoring for neurodegenerative disorder

tracking in clinical settings.
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3.9 Affordances, Actionability, and Simulation

Jerry A. Feldman (ICSI – Berkeley, US)
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The notion of affordances depends crucially on the actions available to an agent in context.

When we add the expected utility of these actions in context, the result has been called

actionability. There is increasing evidence that AI and Cognitive Science would benefit from

shifting from a focus on abstract “truth” to treating actionability as the core issue for agents.

Actionability also somewhat changes the traditional concerns of affordances to suggest a

greater emphasis on active perception. An agent should also simulate (compute) the likely

consequences of actions by itself or other agents. In a social situation, communication and

language are important affordances.

3.10 Simulation Semantics and the Rebirth of NLU

Jerry A. Feldman (ICSI – Berkeley, US)
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Natural Language Understanding (NLU) was one of the main original goals of artificial

intelligence and cognitive science. This has proven to be extremely challenging and was nearly

abandoned for decades. We describe an implemented system that supports full NLU for tasks

of moderate complexity. The natural language interface is based on Embodied Construction

Grammar and simulation semantics. The system described here supports dialog with an

agent controlling a simulated robot, but is flexible with respect to both input language and

output task.

3.11 The Neural Binding Problem(s)

Jerry A. Feldman (ICSI – Berkeley, US)
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As with many other “problems” in vision and cognitive science, “the binding problem” has

been used to label a wide range of tasks of radically different behavioral and computational

structure. These include a “hard” version that is currently intractable, a feature-binding
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variant that is productive routine science and a variable-binding case that is unsolved, but

should be solvable. The talk will cover all these and some related problems that seem

intractably hard as well as some that are unsolved, but are being approached with current

and planned experiments.
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Relational learning can be described as the task of learning first-order logic rules from

examples. It has enabled a number of new machine learning applications, e. g. graph

mining and link analysis. We introduce a fast method and system for relational learning,

called CILP++, which handles first-order logic knowledge and have been on several ILP

datasets, comparing results with Aleph. The results show that CILP++ can achieve accuracy

comparable to Aleph, while being generally faster. Several alternative approaches, both for

BCP propositionalization and for CILP++ learning, are also investigated.

3.13 Evolutionary and Swarm Computing for the Semantic Web
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The Semantic Web has become a dynamic and enormous network of typed links between data

sets stored on different machines. These data sets are machine readable and unambiguously

interpretable, thanks to their underlying standard representation languages. The express-

iveness and flexibility of the publication model of Linked Data has led to its widespread

adoption and an ever increasing publication of semantically rich data on the Web. This

success however has started to create serious problems as the scale and complexity of inform-

ation outgrows the current methods in use, which are mostly based on database technology,

expressive knowledge representation formalism and high-performance computing. We argue

that methods from computational intelligence can play an important role in solving these

problems. In this paper we introduce and systemically discuss the typical application prob-

lems on the Semantic Web and argue that the existing approaches to address their underlying

reasoning tasks consistently fail because of the increasing size, dynamicity and complexity

of the data. For each of these primitive reasoning tasks we will discuss possible problem

solving methods grounded in Evolutionary and Swarm computing, with short descriptions of
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existing approaches. Finally, we will discuss two case studies in which we successfully applied

soft computing methods to two of the main reasoning tasks; an evolutionary approach to

querying, and a swarm algorithm for entailment.

3.14 Computer Science for Development

Christophe D. M. Gueret (DANS – Den Hague, NL)
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Main reference World Wide Semantic Web community, “Let’s build a world wide Semantic Web!,” 2011.

URL http://worldwidesemanticweb.org

Data sharing usually focuses on centralized and very powerful solutions centred around

Web hosted servers and (mobile) clients accessing it. As a direct consequence, the usage

of Linked Data technology depends on the availability of a Web infrastructure compassing

data-centres, high speed reliable Internet connection and modern client devices. If any of

this is missing, our community is not able, yet, to provide any Linked Data enabled data

management solution. Still, the digital divide that is currently widely recognized separates

the world into those who have access to Web-based platforms and those who don’t. When

designing Linked Data platforms we tend to forget those 4 Billion persons who don’t have

access to Internet but would benefit from being able to share structured data. We should

keep everyone in mind when we design Linked Data platforms and aim at helping to reduce

this digital divide. We believe that achieving this goal implies working on three aspects

(Infrastructure, Interfaces and Relevancy) around open data.

This problem the Semantic Web community faces doing knowledge representation in

developing countries is only one facet of Computer Science. Many other aspects of it are

also concerned. For instance, Human-Computer Interaction (HCI) need to account for users

that don’t read or write or don’t speak any “common” language, Engineering need to be

performed on smaller scale devices with sparse networkings and Information retrieval need

to be done with a focus on locally relevant information. These many aspects of Computer

Sciences affected by the specific challenges posed by using ICT in the developing world call

for a global study over CS4D where researchers would join in ensuring the technology they

work on is inclusive and usable by everyone world wide.

3.15 Combining Learning and Reasoning for Big Data

Pascal Hitzler (Wright State University – Dayton, US)

License Creative Commons BY 3.0 Unported license
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Reasoning and learning are natural allies. The former provides deductive expert system-

like capabilities for dealing with interpretation of data, while the latter focuses on finding

patterns in data. This perspective suggests a rather obvious workflow in which inductive

and statistical methods analyze data, resulting in metadata which describes higher-level

conceptualizations (metadata) of the data, which in turn enables the use of the data and

metadata in deduction-based systems. However, this apparently obvious pipeline is broken

since the current state of the art leaves gaps which need to be bridged by new innovations.
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In this presentation, we discuss some of the recent work which addresses these gaps, with

the goal of stimulating further research on the interplay between learning and reasoning.
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3.16 From Human Reasoning Episodes to Connectionist Models

Steffen Hölldobler (TU Dresden, DE)
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I present a new approach to model human reasoning based on reasoning towards an appropriate

logical form, weak completion semantics, three-valued Lukasiewicz logic, and an appropriate

semantic operator. The approach admits least models and, hence, reasoning is performed

with respect to least models. After adding abduction the approach can adequately handle

human reasoning episodes like the suppression and the selection task. Moreover, it can be

mapped into a connectionist model using the core method.
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3.17 On Concept Learning as Constructive Reasoning

Francesca Alessandra Lisi (University of Bari, IT)
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In this talk I provided a novel perspective on Concept Learning, which relies on recent results

in the fields of Machine Learning (ML)/Data Mining (DM) and Knowledge Representation

(KR), notably De Raedt et al.’s work on declarative modeling of ML/DM problems [2] and

Colucci et al.’s work on non-standard reasoning in the KR framework of Description Logics

(DLs) [1]. In particular, I provided a formal characterization of Concept Learning which

arises from the observation that the inductive inference deals with finding – or constructing

– a concept. More precisely, non-standard reasoning services which support the inductive

inference can be modeled as constructive reasoning tasks where the solution construction may

be subject to optimality criteria. Under this assumption, I defined a declarative language –

based on second-order DLs – for modeling different variants of the Concept Learning problem

(namely, Concept Induction, Concept Refinement and Concept Formation) [3]. The language

abstracts from the specific algorithms used to solve the Concept Learning problem in hand.

However, as future work, I emphasized the need for an efficient and/or effective solver to

make the proposed language more attractive from a practical point of view.
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3.18 Interactive Intelligent Systems: Scaling Learning with the Expert
in the Loop

Dragos Margineantu (Boeing Research & Technology, US)
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Research in intelligent neural and symbolic systems has made significant advances with

respect to the accuracy of predictions, detections, classifications. However in order to deploy

these algorithms and tools, to execute or assist the execution of real world tasks, in most of
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the cases, these methods require the assistance of an AI expert. A suite of practical tasks

can be addressed optimally at this point in time by a team that combines the expertise of

the user with the strength of automated intelligent systems. Can we develop (or adapt our)

existing algorithms for such tasks? We believe so! By formulating our research questions to

capture the expert-intelligent system goals. This presentation will show how we formulated

the research questions and adapted techniques such as inverse reinforcement learning (IRL)

or active learning for assisting experts in tasks such as detecting abnormal agent behavior,

scene analysis, and estimating intent. We will also outline some open research questions for

usable expert-interactive learning.

3.19 Concepts, Goals and Communication

Vivien Mast (Universität Bremen, DE)
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Much work in computational linguistics and cognitive science implicitly rests on the idea,

dating back to Plato and Aristotle, that there are rational categories which are sets of entities

in the real world, defined by necessary and sufficient properties, and that the power of

linguistic expressions and mental concepts stems from their correspondence to such rational

categories. I will discuss some limitations of a rational notion of concepts and meaning in the

domain of reference, and argue that human concepts should be viewed from the perspective

of actionability, as suggested by Jerry Feldman at this seminar. In particular, I will argue

that concept assignment depends on context and the goals of the conceptualizing agent.

In the standard paradigm of REG (Krahmer & van Deemter, 2012), objects are represented

by attribute-value pairs. The task of REG is defined as finding, for a given target object, a

distinguishing description – a set of attribute-value pairs whose conjunction is true of the

target but not of any of the other objects in the domain. However, research on collaborative

reference has shown that reference ultimately does not rely on truth, but on common ground

and efficient grounding mechanisms (Clark & Bangerter, 2004). I will argue that meta-

knowledge about the potential of conceptual mismatch and miscommunication guide concept

assignment in reference, and I will present the Probabilistic Reference And GRounding

mechanism PRAGR for generating and interpreting referring expressions (Mast et al., 2014;

Mast & Wolter, 2013). PRAGR is geared towards maximizing mutual understanding by

flexibly assigning linguistic concepts to objects, depending on context.
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4 Mast, V. & Wolter, D. A Probabilistic Framework for Object Descriptions in Indoor Route

Instructions.. In Tenbrink, T. and Stell, J. and Galton, A. and Wood, Z. (Ed.), Spatial

Information Theory (Vol. 8116, pp. 185–204). Springer International Publishing, 2013

3.20 Grounding Meaning in Perceptual Representations

Risto Miikkulainen (University of Texas – Austin, US)
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How word meaning may be grounded in perceptual experience is a fundamental problem in

neural-symbolic learning. I will describe an artificial neural network model that shows how

this process may take place through learned associations between visual scenes and linguistic

phrases. I will then describe ongoing work on identifying such associations from fMRI images

of sentence comprehension.

3.21 Mining Graphs from Event Logs

Andrey Mokhov (Newcastle University, GB)
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We introduce a mathematical model for compact representation of large families of (related)

graphs [1], detecting patterns in graphs, and using such compact representations for process

mining [2]. By process mining we mean understanding or explanation of behaviour of complex

systems by observing events occurring in them. These events come in the form of event logs

that record event types, time stamps and other associated metadata. The task of process

mining is to extract useful knowledge from such logs, for example, to explain, predict or

diagnose complex systems. We present graph-theoretic methods that extract information

about concurrency and causality from such logs, and then attempt to represent the result in

the most compact/simple form hopefully amenable to human understanding [3].
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3.22 Learning Compositional Robot Activities from Examples

Bernd Neumann (Universität Hamburg, DE)
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In the KR framework of the EU project RACE, as in many other systems, robot activities

are described by compositional hierarchies connecting activity concepts at higher abstraction

levels with components at lower levels, down to action primitives of the robot platform with

quantitative parameters, and down to percepts at neural level. One way for a service robot

to increase its competence is to learn new activities based on known subactivities and coarse

instructions. Given an initial repertoire of basic operations, such a process can establish

compositional structures at increasingly high levels of abstraction and complexity. In this talk

I describe recent advances in learning compositional structures using a Description Logic (DL)

extended by semantic attachments as formal knowledge representation framework. A learning

curriculum, based on positive examples, is presented where the robot has to determine

autonomously which spatiotemporal conditions must be satisfied for a newly learnt activity.

It is shown that the robot can construct conceptual descriptions from the examples in such

a way that the intended target description is approached with monotonously increasing

generality. The generalization process is realized by aligning concept graphs obtained from

DL representations and merging corresponding nodes by a Good Common Subsumer (GCS).

It is shown that this process can also be used for adapting an existing concept to a new

situation. Examples are presented for a service robot learning waiter activities in a restaurant

domain.

3.23 Neural-Symbolic Runtime Verification

Alan Perotti (University of Turin, IT)
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I introduced RuleRunner, a novel Runtime Verification system for monitoring LTL properties

over finite traces. By exploiting results from the Neural-Symbolic Integration area, a

RuleRunner monitor can be encoded in a recurrent neural network. The results show

that neural networks can perform real-time runtime verification and techniques of parallel

computing can be applied to improve the performance in terms of scalability. Furthermore,

our framework allows for property adaptation by using a standard neural network learning

algorithm.
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3.24 Symbolic Computation, Binding and Constraint Learning in
Bolzmann Machines

Gadi Pinkas (Center for Academic Studies, Or-Yehudah and Bar-Ilan University, IL)
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For a long time, connectionist architectures have been criticized for having propositional fixa-

tion, lack of compositionality and, in general, for their weakness in representing sophisticated

symbolic information, learning it and processing it. This work offers an approach that allows

full integration of symbolic AI with the connectionist paradigm. We show how to encode,

learn and process relational knowledge using attractor based artificial neural networks, such

as Boltzmann Machines. The neural architecture uses a working memory (WM), consisting of

pools of “binders”, and a long-term synaptic-memory (LTM) that can store a large relational

knowledge-base (KB). A compact variable binding mechanism is proposed which dynamically

allocates ensembles of neurons when a query is clamped; retrieving KB items till a solution

emerges in the WM. A general form of the Hebbian learning rule is shown that learns

from constraint violations. The learning rule is applied to High-Order Boltzmann machines

(with sigma-pi connections) and is shown to learn networks with attractors (energy minima)

representing correct symbolic inferences. We illustrate the mechanism using predicate logic

inference problems and planning in block-world.

The mechanism uses a biologically inspired cognitive architecture, which is based on

relatively compact Working Memory and larger synaptic Long-Term-Memory which stores

knowledge that constrains the neural activation of the WM and forms attractors in its

dynamics. In this architecture, knowledge items are retrieved from LTM into the WM only

upon need, and, graph-like structures, that represent solution inferences, emerge at thermal

equilibrium as an activation pattern of the neural units. Our architecture is based on the

fact that Boltzmann Machines may be viewed as performing constraint satisfaction, where,

at equilibrium, fixed-points maximally satisfy a set of weighted constraints. We show how to

encode and bind arbitrary complex graphs as neural activation in WM and how a supervised

learner may use miscalculations to adjust synapses so that constraints are better enforced,

in order to correctly retrieve and process such complex structures. The architecture allows

learning representations as expressive as First-Order-Logic (with bounded proof length), has

no central control and is inherently robust to unit failures. The mechanism is goal directed in

the sense, that the query may drive the processing, as well as the current activation pattern

in the WM. It is universal and has a simple underlying computational principle. As such, it

may be further adapted for applications that combine the advantages of both connectionist

and traditional symbolic AI and may be used in modeling aspects of human’ cognition.
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3.25 Learning Action-oriented Symbols: Abstractions over Decision
Processes

Subramanian Ramamoorthy (University of Edinburgh, GB)
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A key question at the interface between sub-symbolic and symbolic learning and reasoning is

that of how symbols can be acquired from experience, and grounded. Can such symbols be

action-oriented in that they consistently abstract the underlying process?

I discuss two approaches we have recently developed for categorising policies obtained

through processes such as reinforcement learning or motion planning in robots. The goal of

categorisation is to arrive at a set of action- relevant symbols that better enable reasoning

about changes associated with dynamic environments; taking a transfer/lifelong learning

perspective.

The first approach is to cluster decision processes in terms of similarities in the effects of

the actions. We define a novel distance and a clustering algorithm that yields a smaller set

of decision processes that make continual transfer algorithms more effective.

The second approach draws on new mathematical tools from computational topology

to abstract a set of trajectories associated with motion plans, yielding entirely qualitative

descriptions of the underlying domain – which can again be used to separate quantitative

detail from other global structural aspects of the tasks. I end by asking how these principles

can be incorporated with a variety of models being studies by the NeSy community, including

in particular deep networks.
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3.26 Mixing Low-Level and Semantic Features for Image
Interpretation: A framework and a simple case study

Luciano Serafini (Fondazione Bruno Kessler and University of Trento, IT)
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In recent years internet has seen a terrific increase of digital images. Thus the need of

searching for images on the basis of human understandable descriptions, as in the case

of textual documents, is emerging. For this reason, sites as YouTube, Facebook, Flickr,

Grooveshark allow the tagging of the media and support search by keywords and by examples.

Tagging activity is very stressful and often is not well done by users. For this reason automatic

methods able to automatically generate a description of the image content, as in textual

documents, become a real necessity. There are many approaches to image understanding
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which try to generate a high level description of an image by analysing low-level information

(or features), such as colours, texture and contours, thus providing such a high level description

in terms of semantic concepts, or high-level information. This would allow a person to search,

for instance, for an image containing “a man is riding an horse”. The difficulty to find the

correspondence between the low-level features and the human concepts is the main problem in

content-based image retrieval. It is the so-called semantic gap [2]. It’s widely recognised that,

to understand the content of an image, contextual information (aka background knowledge)

is necessary [3]. Background knowledge, relevant to the context of an image, can be expressed

in terms of logical languages in an ontology [4]. In image interpretation ontologies can be

used for two main purposes. First, ontologies allow the expression of a set of constraints on

the possible interpretations which can be constructed by considering only low-level features of

an image. The satisfaction of such constraints can be checked via logical reasoning. Second,

the terminology introduced in the ontology can be used as formal language to describe the

content of the images. This will enable semantic image retrieval using queries expressed in the

language introduced by the ontology. The background knowledge formalizes the semantics of

the human understandable concepts and will provide the set of types of objects that can be

found in a picture (e. g., horse, human, etc.) and the set of relations that can exist between

depicted objects (e. g., rides is a relation between a human and an animal, part-of is a general

relation between physical objects, etc.). Furthermore, the background knowledge provides

constraints on types of objects and relations, e. g. a vehicle has at least two wheels or horses

are animals that can be ridden by men. The advantage of having the tags as concepts coming

from a background knowledge allows to reason over the image. For example the tag “horse”

enables to infer the presence of an animal.

In the present work we adopt the natural idea that, already introduced for instance in

[5, 6, 7] where an interpretation of a picture, in the context of an ontology, is a (partial)

model of the ontology itself that expresses the state of affairs of the world in the precise

moment in which the picture has been taken. We propose to formalize the notion of image

interpretation, w.r.t. an ontology, as a segmented image, where each segment is aligned with

an object of a partial model of the reference ontology. To cope with the fact that a picture

reports only partial information on the state of affairs we use the notion of partial model of

a logical theory [8]; to cope with the possibility of having multiple alternative interpretations

of a picture we introduce the notion of most plausible interpretation an image, which is the

interpretation that maximises some scoring function.

In order to have a preliminary evaluation of our idea, we implemented this framework,

for a specific and limited case. We developed a fully unsupervised method to generate image

interpretations able to infer the presence of complex objects from the parts present in the

picture, thus inferring the relative “part-whole” structure. The method jointly exploits the

constraints on the part-whole relation given by the ontology, and the low-level features of

the objects available in the image. From a preliminary evaluation the presented approach

shows promising results.
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Lifelong Machine Learning (LML) considers systems that learn many tasks over a lifetime,

accurately and efficiently retaining and consolidating the knowledge they have learned and

using that knowledge to more quickly and accurately learn new tasks [2, 1]. Since 1999, I

have investigated aspects of LML for Learning to Classify (L2C) problem domains. In [3] I

provide an overview of prior work in LML, present a framework for LML, and discuss its two

essential ingredients – knowledge retention [4] and transfer learning [1]. Transfer learning is

about using prior knowledge to more accurately develop models for a new task, from fewer

training examples and in shorter periods of time. Knowledge retention is about efficient

and effective methods of storing learned models for use in transfer learning and potentially

reasoning. The proposed research program extends my prior work on LML to the learning of

knowledge for purposes of reasoning. I am motivated by the belief that intelligent agents,

like humans, should develop in their abilities as a function of their experience.

My previous research has focused on the theory and application of transfer learning

and knowledge consolidation. We have published results on functional and representational

knowledge transfer using multiple task learning (MTL), task rehearsal using synthesized

training examples, and selective transfer for classification and regression problems [2]. Most

significantly, we have developed context-sensitive MTL (csMTL); a transfer learning method

that uses an additional context input, rather than an additional output for each new task

[Silver09]. This approach overcomes a number of significant problems of standard MTL when

applied to a LML

Our research has shown that knowledge of a new task can be integrated, or consolidated,

with that of prior tasks in order for a LML solution to overcome the stability-plasticity

problem and scale for practical use [4]. The stability-plasticity problem is the loss of prior

task knowledge in a neural network when learning the examples of a new task [5]. Our work

has demonstrated that MTL and csMTL networks can mitigate this problem by maintaining

functional accuracy of prior tasks (stability) through the relearning, or rehearsal, of prior

task examples while modifying the representation of the network (plasticity) through the

learning new task examples. This can be accomplished using the back-propagation (BP)

algorithm under the conditions described in [4, 5]. Recently, we have shown that a mix of
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proper selection of task rehearsal examples and more advanced methods of regularization

can improve consolidation in csMTL networks.

In 2013, Qiang Yang and I encouraged the machine learning community to move beyond

learning algorithms to systems that are capable of learning, retaining and using knowledge

over a lifetime [3]. ML now has many practical applications of L2C; the next generation of

ML needs to consider the acquisition of knowledge in a form that can be used for more general

AI, such as Learning to Reason (L2R). We argue that opportunities for advances in AI lie at

the locus of machine learning and knowledge representation; specifically, that methods of

knowledge consolidation will provide insights into how to best represent knowledge for use in

future learning and reasoning.

A survey of ML methods that create knowledge representations that can be used for

learning and reasoning revealed three major bodies of work. The first is Neural-Symbolic

Integration (NSI) [6, 8]. NSI research considers the benefits of integrating robust neural

network learning with expressive symbolic reasoning capabilities. Much of NSI work focuses

on the extraction of symbolic rules from trained network weights and the transfer of knowledge

from logical expressions to network weights prior to training. Since the early 2000s, members

of this community have called for a joint treatment of learning and reasoning [7]. At the

IJCAI 2013 NeSy’13 workshop I presented an invited talk on the common ground shared

by LML and NSI. I proposed an integrated framework for NSI and LML and discussed

how the requirement of reasoning with learned knowledge places an additional constraint

on the representational language and search methods used by LML systems. Learning is

necessary to acquire knowledge for reasoning, however, reasoning informs us about the best

ways to store and access knowledge. Thus, learning and reasoning are complimentary and

should be studied together. Recent work at CMU on the NELL system agrees with this

combined view [9]. The second major body of work is Learning to Reason (L2R) [10, 11],

also referred to as Knowledge Infusion [12, 14, 15]. L2R work is not as abundant as that of

NSI; however, it suggests a promising approach to developing is most promising in terms of

our proposed research. The L2R framework is concerned with both learning a knowledge

representation and with it doing deductive reasoning. The perspective is that an agent

only needs to learn the knowledge required to reason in his environment, and to the level

of performance demanded by that environment. Unlike prior approaches to engineering

common knowledge, such as Cyc [16], L2R takes a probabilistic perspective on learning and

reasoning. An L2R agent need not answer all possible knowledge queries, but only those

that are relevant to the environment of the agent in a probably approximately correct (PAC)

sense; that is, assertions can be learned to a desired level of accuracy with a desired level

of confidence [12]. In [10] and [12] both authors show that a L2R framework allows for

efficient learning of Boolean logical assertions in the PAC-sense (polynomial in the number

of variables and training examples). Further to this, they prove that the knowledge learned

can be used to efficiently reason with a similar level of accuracy and confidence. In this

way, L2R agents are robust learners, acquiring most accurately the common knowledge

that they need to reason in accord with their environment [12]. The authors make the

point that traditional artificial intelligence has chosen knowledge representations for their

transparency (e. g. preferring CNF over DNF representations) whereas the L2R framework

chooses knowledge representations because they are learnable and facilitate reasoning. The

third body of work is Deep Learning Architectures (DLA) and includes recent publications

on Semi-supervised Learning [17], Co-training [18], Self-taught Learning [24], Representation

Learning [20, 21], and Deep Learning [25, 26, 28, 22]. All share a common interest with LML

in that they develop knowledge representations of the world from examples that can be used
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for future learning. This fall we are finalizing a survey of transfer learning and consolidation

methods using DLAs.

My future research goals are to (1) develop and test Lifelong Machine Learning and

Reasoning (LMLR) systems that can retain learned knowledge in a form that can be used for

reasoning as well as future learning; and to (2) study the practical benefits and limitations

of a prototype LMLR system applied to real-world problems in data mining and intelligent

agents. To advance on the first goal, we will develop a system that can learn a series of logic

assertions, such as A|B ⇒ C and C ⇒ D, from examples of those expressions. The resulting

knowledge base model can then be used to reason that A ⇒ D by testing the model with

examples. To advance on the second goal, I will scale the system up such that it can learn

to reason from images that encode similar assertions. Such a system could be used by an

intelligent agent to provide recommendations on next best action.

This work will create new theory on the learning and representation of knowledge from

examples acquired from the learner’s environment and methods by which to reason using

that learned knowledge. Finding solutions to consolidating new with prior knowledge from

examples that contain only part of the input space will be a major challenge. The methods

and findings will be of interest to researchers working on machine learning, knowledge

representation, reasoning, and applied areas such as data mining and intelligent agents.
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The recent success of representation learning is built upon the learning of relevant features,

in particular from unlabelled data available in different domains. This raises the question

of how to transfer and reuse such knowledge effectively so that the learning of a new task

can be made easier or be improved. This poses a difficult challenge for the area of transfer
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learning where there is no label in the source data, and no source data is ever transferred

to the target domain. In previous work, the most capable approach has been self- taught

learning which, however, relies heavily upon the compatibility across the domains. In

this talk, I propose a novel transfer learning framework called Adaptive Transferred-profile

Likelihood Learning (aTPL), which performs transformations on the representations to be

transferred, so that they become more compatible with the target domain. At the same time,

it learns supplementary knowledge about the target domain. Experiments on five datasets

demonstrate the effectiveness of the approach in comparison with self- taught learning and

other common feature extraction methods. The results also indicate that the new transfer

method is less reliant on source and target domain similarity, and show how the proposed

form of adaptation can be useful in the case of negative transfer.

3.29 Decoding the Symbols of Life: Learning Cell Types and
Properties from RNA Sequencing Data

Joshua Welch (University of North Carolina – Chapel Hill, US)
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Recent breakthroughs in biochemical techniques for low-input sequencing have enabled

whole-transcriptome quantification (RNA-seq) of single cells. This technology enables

molecular biologists to dissect the relationship between gene expression and cellular function

at unprecedented resolution. In particular, the cell type composition of tissues is now open

to investigation. There is a need for unsupervised learning approaches that can identify cell

types and properties from single-cell RNA sequencing data in a purely unbiased manner,

rather than relying on previously known cell type markers. This task of identifying cell types

and the relationships between them is not unlike recognizing symbols in text or images. An

overview of the relevant biological questions, single-cell RNA sequencing technology, and

existing approaches to solving this problem are presented. The goal of the talk is to initiate

discussion about how neural- symbolic approaches can be used to identify cell types and

their properties from single-cell RNA sequencing data.

4 Working Groups

During the workshop several working groups were formed, and lively discussions on relevant

research challenges took place. Next, we briefly summarize the results and questions raised

during the breakout sessions.

4.1 Consolidation of learned knowledge

This discussion session was related to the concept of Learning to Reason, as investigated by

Valiant, Khardon, Roth and many others. Significant advances in AI lie at the locus of machine

learning and knowledge representation; specifically, methods of knowledge consolidation will

provide insights into how to best represent common knowledge for use in future learning and

reasoning. Knowledge consolidation is about efficient and effective methods of sequentially
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storing knowledge as it is learned. Overcoming the stability-plasticity problem is the main

challenge here. Consolidation in neural networks can occur through a slow process of

interleaved learning of a new and old task examples within a large multiple task learning

(MTL) network. Task rehearsal is one approach to overcoming the stability-plasticity problem

of forgetting of previously learned tasks stored in a MTL network by relearning synthesized

examples of those tasks while simultaneously learning a new task. However this method faces

scaling problems as the number of prior task examples increases. This session discussed new

approaches to overcoming the stability plasticity problem so that knowledge consolidation is

tractable over long sequences of learning.

4.2 Affordabilities and actionability

Inspired by points raised by Feldman, this session started from the ancient idea that the goal

of thought is “truth”, which has been productive, but it is also limiting. There are multiple

reasons to believe that replacing “truth” with “actionability” will be more fruitful and that this

move is necessary for a unified cognitive science. For more on this topic the reader is invited to

the work on affordances by Feldman: ftp://ftp.icsi.berkeley.edu/pub/feldman/affordances.jf.pdf

4.3 Closing the gap in the pipeline: how to use learned knowledge for
reasoning

Deductive and inductive approaches are natural allies. The former uses high-level concep-

tualizations to logically reason over data, while the latter focuses on finding higher-level

patterns in data. This perspective suggests a rather obvious workflow in which inductive and

statistical methods analyze data, resulting in metadata which describes higher level features

of the data, which in turn enables the use of the data in intelligent systems. However, this

apparently obvious pipeline is broken since the current state of the art leaves gaps which

need to be bridged by new innovations. It would be helpful to start establishing the exact

nature of these gaps, and to brainstorm about ways how to address these. Advances on this

topic should provide added value for large-scale data management and analysis.

4.4 What is symbolic, what is sub-symbolic?

An old debate took place: what is the meaning of the terms symbolic and sub-symbolic in

neural computation? Several questions were raised and analyzed. Certain neural networks

are symbolic while others are not. What are factors that determine this? How can recognition

be performed with symbolic networks? How can recall necessary for reasoning be performed

with non-symbolic networks? How can both recognition and recall be achieved with the same

networks?

4.5 How far can nature inspire us?

Among all the nature-inspired computation techniques, neural networks are about the only

ones to have made their way into knowledge representation and reasoning so far. What
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about swarm computing or evolutionary computing? Could they also have a role and a use

for learning and reasoning problems? The conclusion is that this is a discussion we can have

looking at existing prototypes and ongoing research, including recent progress in the area of

autonomous agents and multi-agent systems.

4.6 Demos & Implementation Fest

Finally, a hands on session took place. A lively display of neural-symbolic tools was presented

by a number of the seminar’s participants. The participants had the opportunity to showcase

their NeSy related software and get others to try, evaluate and discuss their work. Future

extensions and integrations of the showcased work were proposed. Most participants had

the opportunity to experiment with existing tools and prototypes that use state-of-the-art

neural-symbolic computation techniques for image, audio, video and multimodal learning

and reasoning.

5 Open Problems

After each discussion session, challenges and open problems were identified. It is clear that a

number of research avenues lay ahead of the communities that participated in the seminar.

The list below reflects, in part, the interdisciplinary nature of the research presented and

the open problems identified at the seminar, leading to interesting future developments and

applications. A companion paper [9] complements the list below and also identifies several

opportunities and challenges for the neural-symbolic community.

Over the last decades, most of the work has been focused on propositional approaches,

which was seen as propositional fixation by McCarthy [1]. However, novel approaches

have significantly contributed to the representation of other logical systems in neural

networks, leading to successful application in temporal specification and synchronization

[2, 3], distributed knowledge representation [4, 5] and even fragments of first-order logic

inference [6]. In order to make progress in this open problem, perhaps one should consider

logics of intermediate expressiveness such as description logics of the Horn family [7].

There remains a number of open issues in knowledge representation and reasoning in

neural networks, in particular with regard to learning. The integration of neural-symbolic

systems and inductive logic programming [8] may also lead to relevant developments.

The companion paper [9] also identifies challenges in this area.

Recently, it has been shown that neural networks are able to learn sequences of actions,

a point raised by Icard during the discussions. Thus, it may well be possible that a

“mental simulation” of some concrete, temporally extended activity can be effected by

connectionist models. Theories of action, based on propositional dynamic logic can thus

be useful. Feldman in [10] has argued that if the brain is not a network of neurons that

represent things, but a network of neurons that do things, action models would probably

be central in this endeavour.

With respect to how the brain actually represents knowledge, perhaps one can draw

inspiration from advances in fMRI. The work of Endres and Foldiak [11] may lead to a

biologically sound model of the brain’s semantic structures. It can also contribute to the

construction of new learning algorithms, by contributing to identifying the functioning of

the brain’s learning mechanisms.
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There is much work to be done with respect to learning to reason (L2R) in neural

networks [12, 13]. A question raised by Silver is how a L2R agent can develop a complete

knowledge-base over time when examples of the logical expressions arrive with values

for only part of the input space. Perhaps a Lifelong Machine Learning (LML) approach

is needed. Such an approach can integrate, or consolidate, the knowledge of individual

examples over many learning episodes [14]. Consolidation of learned knowledge is a

necessary requirement as it facilitates the efficient and effective retention and transfer of

knowledge when learning a new task. It is also a challenge for neural-symbolic integration

because of the computational complexity of knowledge extraction, in general, and the

need for compact representations that would enable efficient reasoning about what has

been learned.

Deep networks represent knowledge at different levels of abstraction in a modular way.

This may be related to the fibring of neural networks and the representation of modal logics

in neural networks, which are intrinsically modular [4, 5] and decidable, offering a sweet

spot in the complexity-expressiveness landscape [15]. Modularity of deep networks seem

suitable to knowledge extraction, which may help reduce the computational complexity

of extraction algorithms [16], contributing to close the gap in the pipeline and leading to

potential advances in lifelong learning, transfer learning, and applications.

Applications: neural-symbolic computation techniques and tools have been applied

effectively to action learning and knowledge description in videos [17, 18], argumentation

learning in AI [19, 20], intelligent transportation systems to reduce CO2 emissions [21], run-

time verification and adaptation [22, 23], hardware/software requirements specification

and verification [3, 22], normative reasoning [24], concept and ontology learning, in

particular considering description logics and the semantic web [25, 26, 27], training and

assessment in driving simulators, action learning and the extraction of descriptions from

videos [17]. The lively demo fest organized at the seminar showed the reach of the field

where promising prototypes and tools were demonstrated.
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