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We combine optimal control and movement primitive learning in a novel way for the fast generation
of humanoid walking movements and demonstrate our approach at the example of the humanoid robot
HRP-2 with 36 degrees of freedom. The present framework allows for an efficient computation of long
walking sequences consisting of feasible steps of different kind: starting steps from a static posture, cyclic
steps or steps with varying step lengths, and stopping motions back to a static posture. Together with
appropriate sensors and high level decision strategies this approach provides an excellent basis for an
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Humanoid gait generation adaptive walking generation on challenging terrain. Our framework comprises a movement primitive
HRP-2 model learned from a small number of example steps that are dynamically feasible and minimize an

integral mean of squared torques. These training steps are computed by solving three different kinds of
optimal control problems that are restricted by the whole-body dynamics of the robot and the gait cycle.
The movement primitive model decomposes the joint angles, pelvis orientation and ZMP trajectories
in the example data into a small number of primitives, which effectively deals with the redundancy
inherent in highly articulated motion. New steps can be composed by weighted combinations of these
primitives. The mappings from step parameters to weights are learned with a Gaussian process approach,
the contiguity of subsequent steps is promoted by conditioning the beginning of a new step on the end
of the current one. Each step can be generated in less than a second, because the expensive optimal
control computations, which take several hours per step, are shifted to the precomputational off-line
phase. We validate our approach in the virtual robot simulation environment OpenHRP and study the
effects of different kernels and different numbers of primitives. We show that the robot can execute long
walking sequences with varying step lengths without falling, and hence that feasibility is transferred
from optimized to generated motions. Furthermore, we demonstrate that the generated motions are
close to torque optimality on the interior parts of the steps but have higher torques than their optimized
counterparts on the steps boundaries. Having passed the validation in the robot simulator, we plan to
tackle the transfer of this approach to the real platform HRP-2 as a next step.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Animals in general and humans in particular are able to con-
trol, adapt and recognize the movements of their bodies seem-
ingly without much effort, even though biological motion is a con-
tinuous dynamical process in space-time encompassing a large
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number of degrees of freedom. Movement primitives (MP) have
been proposed as a way of simplifying this control problem,
thereby facilitating the planning and execution of movements
[1,2]. MPs form the link between the observable, continuous
motor output and a (hypothetical) discrete internal movement
representation. Another prominent hypothesis for human move-
ment generation is based on optimal control (OC). This hypothe-
sis posits that the human motor system is optimal (or near opti-
mal) in its choice of movements, given the sensory input and goal
specifications [3,4].
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Fig. 1. Methodology. Optimal and dynamically feasible motion trajectories are computed by an optimal control approach. Movement primitives are learned in a Gaussian
process framework. New motions are generated by using a small number of primitives. The resulting motions prove to be sufficiently close to optimality and dynamic
feasibility, validated in the virtual robot simulator OpenHRP. A corresponding video is available online: http://orb.iwr.uni-heidelberg.de/ftp/CleverEtAl_OCMP_OpenHRP

(see also Appendix A).

To generate movements for humanoid robots, both approaches
are very interesting. Their advantages and disadvantages can
be found in two fundamentally opposite directions. Movement
generation with MPs is a fast and efficient approach, applicable in
the framework of on-line control. However, these primitives often
model kinematics only, chosen to be safely feasible for the robot.
Especially in the context of walking motions, this approach results
in a conservative and generally slow motion. On the other hand,
motion generation by solving optimal control problems allows for
movements which exploit the limits of the robot, are dynamically
feasible because they are constrained by the robot mechanics and
can be optimal with respect to a variety of criteria: speed, stability,
integrated torques, etc. Another benefit of OC is that it offers a
natural way to solve the redundancy issue in highly articulated
motions. The major drawback of this approach is the fact that it
requires a high computational simulation effort and hence is only
feasible for off-line use.

We aim to combine the advantages of both approaches: the
fast movement generation ability of movement primitives, and
the optimality and dynamical feasibility of the optimal control
approach, see Fig. 1. This paper substantially extends our own
previous work presented at the IEEE Humanoids conference [5]:
there, we demonstrated that individual movements in form of
cyclic steps based on OC can be represented in a compressed form
by a simple MP model, and that novel movements can be generated
by interpolation in this model. Here, we extend the MP model to
allow for concatenations of steps with varying step lengths into
longer walking sequences. A further novelty is the augmentation
of the training data set. Whereas in [5] it exclusively consists
of periodic steps with an initial velocity, here it also includes
starting steps (from a static posture) and stopping steps (back to
a static posture). This augmentation is essential to transfer the
motions to a real robot. Furthermore, we demonstrate that the
sequences thus generated can be executed by the robot (simulated
by the virtual robot OpenHRP) and that the resulting movements
are near-optimal most of the time. One of the most remarkable
achievements of the present approach is the reduction in on-line
computing time. The generation of almost optimal and feasible
motions, which are executable in OpenHRP takes less than a second
instead of hours (as for the pure OC based approach).

This paper is structured as follows: in Section 2, we give
an overview of common MP models and OC approaches. We
introduce our optimal control movement generation framework
in Section 3.1, and describe the morphable MP model for novel
movement production in Section 3.2. The results obtained with this
combination of approaches are described in Section 4, focusing on
feasibility, optimality and model comparison between MP models
of different complexity. Conclusion and outlook are offered in
Section 5.

2. Related work
2.1. Movement primitives

A plethora of movement primitive (MP) definitions have been
proposed already. In an earlier paper [6], we argued that kinematic
MPs could be grouped into temporal [7-9], spatial [10,11], and
spatio-temporal primitives [2]. Temporal MPs are the ones which
we use in this paper. They are stereotypical time-courses of degrees
of freedom (DOF), e.g. joint angles. To generate complex move-
ments, such as different human gait patterns, these time-courses
are usually superimposed linearly. Modularity is an advantage of
these kinematic primitives [2]: new movements can be obtained
by a weighted recombination of previously learned MPs. This mod-
ularity accounts for the observed variability of human movement
in the theory of MPs. It can e.g. be used to produce movements
with differing styles from a small number of MPs, which has
been demonstrated in computer graphics applications [ 12]. Move-
ment primitives are also an important tool for efficient humanoid
gait generation. In robotics, MPs are often learned from human
motions and transferred to the robot (see e.g. [13]). Due to the
different dynamics of human and humanoids, this approach usu-
ally is not directly applicable in the context of walking motions.
Dynamical movement primitives (DMP) [14], which generate tra-
jectories by transforming the output of a canonical dynamical sys-
tem via a learned kinematics mapping onto the robot, have become
popular tools for motion generation recently. DMPs can be easily
modulated by task demands. The dynamical systems approach fa-
cilitates sequencing of primitives into complex actions [15]. Also,
it was demonstrated in [ 16] that individual DMPs can encode both
transient and rhythmic components of a movement. However, they
are not (yet) modular (but see [17,18]), i.e. one DMP drives all rele-
vant degrees of freedom. Thus, it remains to be shown how learned
DMPs can be recombined into novel motions. Non-modular kine-
matic primitives were used by [19,20] for robotic gait generation.
The lack of modularity results in rather large databases of MPs, con-
taining all possible combinations of walking movements and tran-
sients which one might want to generate. This is in contrast to our
modular approach, which leads to a very compact representation,
as shown below.

2.2. Optimal control

Optimal control problems (OCP) restricted by multi-body
dynamics are an alternative tool for off-line motion generation
in humanoid robotics. They solve the redundancy issue of the
underlying multi body dynamics in an elegant and beneficial way
and allow to include a wide range of complicated constraints on
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kinematics and dynamics. Also for less complex models (e.g. the
linear inverted pendulum [21]), motion generation based on OC
is a beneficial approach. Beside the OC based approach itself,
the solution strategy of the OCPs plays an important role, as it
introduces a limit on the number of degrees of freedom that
can be solved in reasonable time. Common solution methods
can be classified into direct methods (direct discretization of
e.g. the controls) or indirect methods, such as the Pontryagin’s
Maximum Principle, see e.g. [22]. Efficient solution strategies for
the involved infinite dimensional state systems are based on
numerical algorithms, as for example multiple shooting (e.g. [23])
or collocation methods (e.g. [24]).

A review on physics-based modeling and simulation of human
walking, also including optimization-based approaches is given
in [25]. Optimal control based studies on human and humanoid
walking using a 3D template model are presented in [26,27]. Earlier
works on whole body human and humanoid gait generation based
on optimal control have been conducted by e.g. Roussel et al.
in [28], Schultz and Mombaur in [29] and Erez and Todorov in [30].
The stack of tasks [31] is a whole body dynamics humanoid motion
generation method with task prioritization.

Our optimal control approach goes further than many existing
ones by including a detailed dynamic whole body model and the
description of the gait cycle with varying contact set as constraints
into the OCP.

2.3. Combining movement primitives and optimal control

As the three topics optimal control, movement primitives and
learning are mostly considered by disjoint communities there is
only little research on their combination, especially in the context
of humanoid walking motions. In [32] a state machine based
approach for humanoid gait generation using dynamic walking
primitives with an optimal parametric set has been developed and
successfully tested on the humanoid robot Roboray. Even though
the mechanics of the system is taken into account, it is much
simpler than the one used in this paper as it is modeled by lower
body dynamics only. Furthermore, optimization is performed on
a reduced space with less then 10 variables. Research on optimal
control based movement primitives has also been done by Denk
and Schmidt in [20]. Their approach is based on collocation and
tailored for the humanoid Johnnie, described by 12 driven joints.
However, as discussed before, those approaches are not modular
and therefore require a large set of training data.

The novelty of the present approach lies in the elaborate
combination of the three fields optimal control, movement
primitives and learning and the use of very detailed and realistic
models. This allows for a modular generation of highly dynamic
walking motions with a small set of training data, that robustly
get through the validation steps in the virtual robot simulator
OpenHRP. Having passed those tests, there is a high probability that
the motions are executable on the real platform as well.

3. The combined OC-MP framework

In the following section, we introduce the two main compo-
nents of the present approach in more detail, which is the opti-
mal control based movement generation on the one hand and the
learning of a morphable movement primitive model on the other
hand. As presented in Fig. 1, the present framework starts with the
off-line optimal control based generation of dynamically feasible
walking motions. From this training data, robot control relevant
quantities are extracted and handed over to the learning process of
the movement primitive model. Using a suitable number of prim-
itives, whole body walking motions of several steps with varying
step size are generated by a Gaussian Process driven morphing be-
tween primitive weights.

Fig. 3. Lead in motion, starting from a static posture and leading to the initial
configuration of a cyclic step (see Fig. 2).

Fig. 4. Lead out motion, consisting of two sequential steps starting from a cyclic
motion (see Fig. 2) and leading back to a static posture.

3.1. Optimal control based movement generation

The training data for the movement primitive mode are
generated off-line as solutions of an optimal control problem
(OCP). The objective of the OCPs in this example is to minimize
an integral mean of the squares of the torques in the actuated
joints. However, also any other objective function or combinations
of objective functions could be used. The constraints of the OCP are
specified by the robot’s dynamics and additional restrictions that
describe e.g. the gait cycle. In the present work, we formulate three
different kinds of OCPs. The first OCP generates torque optimal
steps of a cyclic motion with constant and predefined step length,
see Fig. 2.

The second OCP generates torque optimal leading in motions,
that start at the classic static posture of HRP-2 with both feet
next to each other, perform one step and end at a configuration
that coincides on position, velocity and force level with the initial
configuration of the cyclic steps, see Fig. 3.

The third OCP generates torque optimal leading out motions,
that start at the final configuration of the cyclic steps with a
predefined step length (again on position, velocity and force level),
perform two steps, and finally stop at a static posture with both
feed next to each other, see Fig. 4.

The robot is modeled with a set of coordinates that would
represent minimal coordinates in a situation without any contacts.
The model consists of 36 degrees of freedom (DOF): 6 DOFs
to describe the free motion of the base segment (the pelvis)
in the global reference frame and 30 DOFs for its internal
branched tree structure. Furthermore, we include 4 additional
variables to describe the elasticity in the ankle, resulting in a
sum of 40 computational variables. This coordinate configuration
is preserved throughout a complete motion, where each step
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consists of two phases with varying contact sets (single and double
support) and one discontinuity between them (touch down). Phase
transitions are defined implicitly to allow for a free phase timing
of the motion. The resulting equation of motion is a system of
hybrid differential algebraic equations (DAE) of index three which
for computational efficiency is reformulated as a system of index
one.

Denoting the vector of pelvis position, pelvis orientation, joint
angles and motor angles by g, the corresponding velocities by v, the
acceleration by g, the joint torques by 7, the inertia matrix by M, the
constraint Jacobian by G, the spatial contact constraint forces by A,
non-linear effects by NLE (e.g. Coriolis, centrifugal and gyroscopic
forces), and the contact Hessian by y, the phase-wise defined DAE
is given by

g=v (1)

V=a (2)
M(qg) —G(@T\ (a) _ (—NLE(q,v)+7t 3)
G(q) 0 Ny -y(q,v) )

Discontinuities due to inelastic contact during ground collision of
a foot are defined by the system of linear equations

(M(q) —G(q)T> <v+) _ (M(q)v—) @
G(q) 0 A 0 ’

with the impulse A and the velocities v~ before and v* after the
impact.

The dynamic equations are composed analytically and con-
verted into C-code by the dynamic model builder DYNAMOD based
on 6D spatial geometry [33] and symbolic code generation follow-
ing [34].

To ensure physically meaningful behavior, additional con-
straints with respect to foot clearance, foot contact, self collision,
gait cycle, hardware and control software are defined. Denoting the
dynamics of the robot model by Hx = f;(x, u, p), the constraints by
rj and Ceq/ineq, the state discontinuities by h;, and the current phase
of the gait cycle by j € {0, ..., Ny — 1}, we formulate the gait gen-
erating OCP by

(E‘L,ij,})f (x,u, p) (5)
st. Hx=fi(x, u,p), (6)
rj(x,u,p) =0, (7)
Ceq(X(t0), X(t1) . . ., x(tr), p) = 0, (8)
Cineq (X(t0), X(t1) - . ., X(tr), p) > 0, 9)
X(&) = hi(t7, x(¢7), u(t;]), p), (10)

j=0,...,N,— 1.

For the sake of smoother torque profiles 7, the control function
u:[to, tr] — RM: is defined by the time derivative of the torques
in the actuated joints (U = Taet, T = (Tact, Tpas)s Tpas = 0). The
state function x : [to, tf] — RM consists of pelvis translation,
pelvis orientation, joint angles, all corresponding velocities and the
actuated joint torques (x := (q, v, Tact)). The parameter setp € R
describes model and gait specific quantities, where some of them
are free to be determined by optimization. Finally, the objective |
is defined as

t; NpoF

J(X, u, P) :](q, U, Tact, iactv p) = / Z Tazct’i de + 6.]regs (]])
0 =0

to solve the redundancy issue with respect to torque minimization
in the powered joints. The small regularization J.; is not a
regularization in the strict mathematical sense but rather a
collection of terms taking into account inherent constraints

imposed by the high level control system of the robot. This
formulation guarantees feasibility of the generated motion on the
real robot. For more details, we refer to [35].

For one step of cyclic walking motions and the lead in motions,
the hybrid DAE restricting the corresponding OCP consists of two
phases (single and double support) and one discontinuity between
them (N; = 3). For the lead out motions, which consist of two steps,
the hybrid DAE restricting the corresponding OCP consists of four
phases and two discontinuities after the first and the third phase
(Ns = 6).

To sum up, this results in an optimal control problem with 110
state and 30 control functions. We solve the resulting systems
with a direct approach that is based on a control discretization
with local support functions, a state parameterization by multiple
shooting and a structure exploiting SQP method [36], implemented
in the software package MUSCOD-II [37,38]. For more details on
the dynamic optimal control model of HRP-2, we refer to [23,35].
Technical information about the robot is given in [39].

As the interface to the robot platform HRP-2 takes joint angles,
pelvis orientation and ZMP trajectories as input, we extract those
trajectories from the OCP solutions and include them into the
training data. We consider a parameterization of the different
solutions of each of the three OCPs by the physical length of the
step. Exploiting the symmetry of the robot, we solve the involved
OCPs only for steps where the first support is on the right leg
and mirror the computed solutions for the corresponding OCPs
with exchanged role of legs. In the present work, we precompute
optimal motions for five different step lengths (150 mm, 250 mm,
300 mm, 350 mm, 400 mm) for each of the three different motion
types. Considering right and left steps, the generated training
data consists of two times 15 torque optimal and dynamically
feasible motions, each defined by 30 joint angle trajectories, 3 ZMP
trajectories and 3 trajectories describing the pelvis orientation.
This sums up to a total number of 2 - 15 - (30 + 3 + 3) = 1080
training trajectories.

3.2. The morphable movement primitive model

We learn temporal MPs drawn from a Gaussian Process
(GP) [40], because they are relatively easy to compute and have
controllable smoothness properties. The extra modeling power
of anechoic models [8] is not needed, since we generate the
training data so that it is temporally aligned to the beginning of
a step. Introducing variable delays between MPs might become
interesting when e.g. the upper and lower body engage in different
movements, such as reaching while walking [9], where anechoic
MPs were shown to be superior to synchronous temporal ones.
The smoothness provided by GPs facilitates interpolation to step
parameter values to which the MP model has not been exposed
to during training. Furthermore, we have shown previously [6]
that such GP-MPs are good models for biological gait data, so we
hypothesized that they might be suitable for humanoid robots,
too. The graphical model of our approach is shown in Fig. 5, using
plate notation: we would like to generate K movements, each with
possibly different parameters [, e.g. step size and step type. For
each movement, we need to generate I time series of movement-
related signals X; ;(t), which in our scenario are joint angles, ZMP
coordinates and global pelvis rotation angles. These signals are
drawn from Gaussian distributions with standard deviations o;
and means that are generated by linearly combining S many MPs
Y (t) with weights W; ;(Iy). The weights are influenced by the step
parameters .. Thus

s
P (Xii(t)) = N (Z Wis (L) Ys(t), 0,-2) . (12)

s=1
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Fig. 5. The morphable movement primitive model. The model generates time
series Xy, i(t) of I observable signals by multiplying S many movement primitives
(MP) Y (t) with weights W; ;. There is one weight per signal and primitive. Weights
are controlled by step parameters I, of which there is one instance per trial K.
4% (.,.) indicates a Gaussian process.

As mentioned above, each MP is drawn form a GP. A GP is a prior
distribution on functions f : R? — R, whered = 1 in our
application. The GP for an MP is characterized by a mean function
wu(t) and one kernel function k(t, t') per MP. The latter measures
the covariance between function values at time points t and t':
Cov [Ys(t), Ys(t")] = ks (t, t'). We model the MPs in discrete time.
Lett = (ty, ..., tr) the tuple of time points where we evaluate the
MPs (and signals X, ;(t)), and denote by Y; = (Ys(t), ..., Ys(tr))"
the vector of MP values at these time points. The mean vector is
given by s, = (us(t1), ..., us(tr))T, the T x T kernel matrix K
has entries (Ky);; = ks(t;, tj). We use radial basis function (RBF)
kernels [40] for the MPs («, 8, y > 0):

ki(t,t) = aexp (—Blt — t']°) + ydee (13)
which give rise to smooth, non-linear functions with high
probability if the GP’s mean function is smooth and y is small. We
choose u,(t) = const.

To model the weights, let | = (61, 6,) where 6, is the step type
and 6, is the step length. We draw the weight functions W; s(I) from
GPs with mean functions w;s(I) = const. and experimented with
the RBF, linear and quadratic kernels [40]. Because the MPs and the
weights interact by a product in the likelihood (Eq. (12)), an exact
computation of the posterior processes is intractable. We therefore
resort to approximate Bayesian inference using the variational
free energy approximation [41]. Briefly, given a likelihood model
P(X|H) for observations X and latent variables or parameters H
and a prior P(H), this approximation scheme requires the choice
of a (tractable) approximate posterior Q (H) which is obtained by
maximizing a lower bound on the marginal log-probability of the
data

&L = (log (P(X|H)))qm) — D (Q(H) || P(H))
< log(P(X)) (14)

where the angle brackets denote an expectation under Q (H), and
D (Q(H) || P(H)) = {log(Q(H)))qa — {10g(P(H)))qq) is the Kull-
back-Leibler divergence between posterior and prior [42]. This
approximation scheme has several appealing features (see [41]),
the most important one for our purposes is that £ can be used
for approximate model comparison, which we employ to find the
best number of MPs. To apply this approximation to our data, as-
sume we observed a tensor of signals X with Xy, = Xi(tn)
for all t, € t and associated step parameters l.. Let W;; =
(Wis(l), ..., Wis(Ix))T be the weight vector for signal i and MP
S Xis = Os(), -, X,;s(l,())T the associated mean vector and
R; s the kernel matrices for these weights. Using slice notation
(e.g. Y—(Y1,...,Ys)), the MP model can then be expressed in dis-

crete time as

P(X) = HN(Z(W.S)kws)n, ) (15)

k,i,n

POW.) =[T# (Xis Ris) (16)
P(Y.) = ]_[.N (s, K5) - (17)

The parameters/latent variables H in Eq. (14) are therefore com-
prised of W. . and Y. in our model. For the posterior approximation,
we assume that the distributions of weights and MPs are conjugate
to the prior (i.e. multivariate Gaussians, Egs. (16) and (17)) and fac-
torize between weights and MPs, Q (W. ., Y.) = Q(W..)Q(Y.). Pos-
terior parameters are in the following denoted with a tilde, e.g. X;
is the posterior mean of the weight that connects signal i with MP
s. With these choices, it is straightforward (but tedious) to evalu-
ate the variational lower bound £ (Eq. (14)). Using Eq. (15) and the
conjugacy of the posterior, we find for the expected log-likelihood

K-T
(PX)q = —=—— (1 -log(27) + Zlog(of)>

2
- ZZ 2 (szn Z(XIS)’(("’S )

k,i,n
53 (k] 2

1

ry [ | S
o[]

+tr [f(s] Y= (18)

0j

The first term on the right hand side results from the normalization
constant of the Gaussian, the second term measures the squared
deviation between the data and the expectations of weights and
MPs, and the third term leads to a preference for small posterior
variances and means. The second term required for the evaluation
of £ is given by the well-known formula for the Kullback-Leibler
divergence between multivariate Gaussians [43]:

DN (. K) || ¥ (1, K)
= 3 (er[KK] + G - K = )
— dim{p] + log(K|) — log(IK) ). (19)
In summary, the variational lower bound for our model is given by

£ = (P(X))q ZD(MMS, Ko) || N (ps, Ko))

—ZD(W(x.—,s, Ris) | ¥ (Xis: Ris)) (20)

We learn the model from X by max1m12mg £ with respect to
the posterior parameters ft., l( X...» R.. and the kernel parame-
ters «, B, y. To this end, we use the llmlted memory Broyden-
Fletcher-Goldfarb-Shanno algorithm for constrained optimization
[44] implemented in the SciPy package [45]. Automatic gradi-
ent computation is done with the Theano library [46]. Since £ is
not globally convex, we optimize one group of variables at a time,
and iterate this procedure until convergence. We compute a start-
ing point for the optimization by a singular value decomposition
(SVD) of the data, like we did in [5]. All noise variances 01.2 are set
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to 0.01 times the corresponding signal variance, i.e. we aim for 0.99
variance accounted for (VAF). This level of VAF is necessary for sta-
ble walking motion, see results below. Prior means are initialized
to the average of the posterior means, kernel parameters are ini-
tialized by optimization of the standard marginal probability of a
GP [40], given then p(oste)rior means. There is one set of kernel
parameters per MP and weight function (cf. Fig. 5).

3.2.1. Generating new movements

Once the model has been learned, we use it to generate new
movements. These movements need to fulfill three conditions:
first, they should obey, as closely as possible, a sequence of
provided step parameters. Second, they need to be contiguous so
that the robot can execute them. Third, generation should run
in real time. Fulfillment of the first condition is promoted by
generating weights from the posterior distribution inferred during
the learning process. The second condition is met by conditioning
the beginning of the movement currently generated on the end of
the previous movement (if such exists). We can rephrase these two
conditions by restating inference as an optimization problem, as
we did for learning. To make this optimization problem tractable
in (near) real-time, we can only afford to optimize with respect to a
small set of parameters. We therefore decided to keep the posterior
distributions of the MPs and the weights found during learning
fixed, and optimize only w.r.t. the weight posterior distribution of
the new movement. Denote the weight of source s for signal i of
the new movement by W,‘,S. We assume that the joint variational
posterior of the weights is multivariate Gaussian and factorize it as

Q(VAV:,:v W:,:) = HQ(Wf,S7 Wi,s)

= [ [QWisw; QW) (1)

Since Q (W s) is a multivariate Gaussian parameterized by ¥; , ﬁiﬁs,
a natural choice for Q(W,;S|W,-Ys) is a conditional Gaussian:

Q(Wi,s|wi,s) =N ()zi,s + Mi,swi,57 ki,s) (22)

where the mean j;s + l\A/l,A,SW,A,s is a generalized form of the
mean of a conditional Gaussian (see [43], eqn. (353)) and IAQi,S is

the variance. Note that this expression connects the new Wl—,s
to the previous W;; whose distribution was determined during
learning. The variational posterlor parameters of the new weight’s
distribution are therefore x;, M, s and Rl s, with respect to which
we maximize the variational free energy. To do so, we exploit the
fact that the prior of W;; is a conditional Gaussian, because the
weights are generated by functions drawn from a Gaussian process.
By virtue of eqn. (353) in [43] and the above definition of the kernel
matrices, the conditional prior mean and variance can be written
as follows: denote the parameter of the new step to generate with
I' and let the vector Zi; = (ris(I', L), ..., ris(, I))T. Then the
conditional prior mean and variance are given by

m;s = Xi, s(l/) + Z, K¢ (Wl s Xi,s) (23)
RIS_rlS(III)_ i ,Slz (24)
Furthermore, note that the Kullback-Leibler divergence between
weight posterior and prior can be decomposed as

DQ (W5, Wi) Il P(Wys, Wi))

= <D(Q<W,-,s|wi.s> I P(Wi,slwﬂs”%(w‘ )

+D(Q(Wiys) || P(Wis)) (25)

which follows directly from its definition. The second term on the
right hand side is fixed during movement generation, because we
only optimize with respect to the parameters of Q(VAV,-,S|W1;5). For
the assumed form of the approximating posterior, we define

AMi,s = l\7[1',5 - Mi,s

Axis = Xis+ Mi,sf(,’,s — Xis() = Mis(Xis — Xis)
and find

(D(Q(Wi,awi,s) I PO, W)

113 Ris
=3 R,5+AXISR15 + log R,

— 1+ AM! R AM; (R; s) (26)

1,57°1,8

where M; s = ZLSR{;-

We similarly decompose the likelihood component of the
variational free energy into a part that depends on the W and
a part that does not. The first movement in a sequence has no W;”-
dependent likelihood component, because there is no previous
movement to which it must be connected. For all others, it can be
obtained from Eq. (18) by substituting X ;s with the end of the
previous movement, and the posterior parameters of the training
movements with the posterior parameters of the new movement.

4. Transfer of motions to virtual robot

In this section, we use the developed OC-MP framework to
generate walking sequences for the humanoid robot HRP-2. The
resulting motions are verified by the virtual robot simulator
OpenHRP, which is also the interface to the real robot. While the
transfer of motions to the real robot is the next (immediately
following) step, this paper is devoted to a thorough analysis of the
quality of generated motions and their transferability.

The section is divided into three parts. In the first and second
part we consider walking sequences which consist of a starting
step, two steps of constant step length, and two stopping steps. We
focus on feasibility issues (part one) and quality issues (part two),
to answer the following questions:

e Isit possible to generate feasible walking motions with steps of
a certain length that have not been part of the training data?

e What is a suitable kernel and how many primitives are
necessary to describe the walking motions under investigation?

e How well does the resulting step length (based on the generated
joint angles) correlate to the desired step length?

e Based on torque optimal training data, how optimal are the
generated motions with respect to an integral mean of the sum
of squared torques?

In the third part, we focus on the transferability of the generated
motions to the robot. To this end, we consider motions that consist
of several steps of varying step length, to answer the following
questions:

e Is it possible to generate transitions between steps of different
physical step length leading to feasible walking motions?

e If yes, how do those transitions look like and does this increase
the number of necessary movement primitives?

e Are the resulting contact forces in the range of the robot
bounds?
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Table 1

Relation between kernel type, number of MPs and feasibility. A
motion is defined to be feasible if the walking sequence (1+2 + 2
steps) can be performed by the virtual robot simulator OpenHRP
without a fall. The numbers in the table indicate how many of the
10 performed trials (with different step lengths) have been shown
to be feasible.

#MPs LIN

QUAD RBF

—_
©OoOWVWhOOO
(=)

cCOND U A WN
OO LVOUNO OO

—_ =

4.1. Feasibility of learned motions

To investigate an appropriate kernel and a suitable number
of movement primitives, we generate 210 different walking
sequences, which consist of a starting step on the right leg,
two steps of constant step length (first stance foot left, second
right), and two stopping steps (stance left, stance right). Next to
the five different step lengths that have been considered in the
training data (150 mm, 250 mm, 300 mm, 350 mm, 400 mm), we
investigate the behavior of motions with intermediate step length
175 mm, 225 mm, 275 mm, 325 mm, and 375 mm. For each of
the 10 motions, we investigate three different kinds of kernels for
the GPs: a linear (LIN) one, a quadratic (QUAD) one, and a radial
basis function (RBF) kernel. For each kernel and each step length,
we generate motions that are based on two to eight MPs, inspired
by our previous work, where we found that five MPs are enough to
approximate the cyclic steps [5]. The feasibility of the generated
motions (which are described by joint angles, ZMP trajectories
and pelvis orientation) is verified by the virtual robot simulator
OpenHRP, that reliably simulates the behavior to be expected on
the real platform. We consider a motion to be feasible if it can be
performed by the robot without falling. The number of feasible
motions out of 10 (with different step lengths) for each number
of MPs and each of the three different kernels is presented in
Table 1.

We find that for very small numbers of primitives (2-3) none
of the three approaches leads to feasible motions. The RBF-kernel
based approach works more reliably for smaller numbers of
primitives (4-5) than the others. In these cases (4-5 primitives),
failure is not related to motions with interpolated step lengths but
to motions with longer step lengths as those are very dynamical.
Based on the results in Table 1, we suggest that seven primitives
with RBF-kernel are suitable to describe the motions of interest.

An example for the transition between the lead in motion
and the first step for optimized and generated motions (also for
interpolated step lengths) is presented in Fig. 6.

In addition to the analysis performed above, we evaluate the
variational free energy £ and the variance accounted for (VAF)
in Fig. 7 for the joint angle trajectories. VAF is the fraction of the
variance of the training data which can be explained by a MP
model with a given number of primitives. For all three kernels,
the free energy increases sharply until ~6 primitives, reaching
its maximum at 6/9/11 MPs for the quadratic/linear/RBF kernel,
respectively. Note that these maxima are rather flat, indicating that
a range of MPs should perform similarly well. These observations
are consistent with the feasibility results in Table 1: at >6 MPs, the
number of feasible movements could not increase further. For the
RBF kernel, which performs best in terms of .£ and VAF, the model
comparison based on £ predicts that ~11 MPs should have a slight
advantage over 7 MPs (see also inset in Fig. 7, left). This prediction is
supported by our experiments with long walking sequences below.
VAF expectably keeps increasing with the number of MPs, except
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Fig.6. Comparison of transition from lead-in to step, between optimal control (opt)
and MP-based trajectories for the knee flexion angle. Numbers are planned step
lengths, 1k/rk: left/right knee. The transition point is at T &~ 1.45 s. Note, that the
figure only shows the transition phase and not the complete lead in motion before.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7. Model comparison results. Left: variational free energy £ for different
numbers of MPs and weight morphing kernels (RBF, linear, quadratic). Inset shows
£ for the RBF kernel around its maximum at 11 MPs. Right: variance accounted
for (VAF) as a function of the number of MPs, for the same three weight morphing
kernels as on the left. In line with the experimental results in OpenHRP, the RBF
kernel performs best. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

for the quadratic kernel which shows signs of numerical instability
at higher number of MPs, indicating that the quadratic kernel
is a poor choice for this application. The superior performance
of the RBF kernel, both in the feasibility study (Table 1) and in
the approximate model comparison, indicates a smooth nonlinear
relationship between step parameters and weights that cannot be
modeled with linear or quadratic kernels.

4.2. Quality of learned motions

Based on the results of the previous subsection, we now focus
on motions of the above described type, that are generated with
the RBF-based approach and seven movement primitives. To study
how close to optimality these motions are, we are interested in
the quality of the resulting physical step length with respect to
the desired one and in the resulting integral mean of the sums
of squares of the joint torques, which is the relevant part of the
objective that the training data has been optimized for.

As the physical step length is not an explicit state of the model
but a result of the concatenation of joint angles, it is not even
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Fig. 8. Resulting physical step lengths for computed motions when tested with
OpenHRP. Results of pure OC based motions (training data) are plotted in red, those
of the MP-generated motions (also for interpolated step lengths) in blue. In the ideal
case, the upper right corner of the red bars and the upper left corner of the blue bars
intersect with the bisectrix (black). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

clear, if the optimized motions (training data) result in the desired
step length, when being tested in the virtual robot simulator.
Even more, it is unclear, how well the desired step length is met
for motions with interpolated step length that are based on a
GP morphing between training examples. In Fig. 8, we present
the resulting step lengths of the considered motions, when these
motions are tested in the robot simulator. The resulting step
lengths of motions computed with optimal control are plotted in
red, those resulting from the generated motions (based on the
learned primitives) in blue. Already for the small number of seven
primitives, deviations are between zero and five centimeters,
which is good enough for many applications. If higher precision is
needed (e.g. for a complicated step stone scenario), an increase of
the number of movement primitives is a promising option.

As all motions that have been included in the training data
mainly minimize the integral mean of the sums of squares of the
joint torques

t; NpoF
J= / 3 o2,
0 i=o

it is an important question how well this kind of optimality
transfers to the generated motions—also those with interpolated
step length. Whereas the torques of the generated motions
basically coincide with the optimized motions during the steps, on
the step boundaries (between two steps) the generated motions
result in peak torques, that are increased approximately by a
factor of five. To illustrate this behavior, we split the motion into
the interior parts of a step which take the main portion of the
motion (between 0.75 s and more than 2 s) and the boundary
parts, which are significantly shorter (between 0.05 s and 0.25 s).
Neglecting the regularization (Jreg, Eq. (11)), in Fig. 9 the resulting
objective values for motions generated based on OC are plotted
in red, and the objective values for motions generated based on
MPs in blue. For the interior part (top), we observe a marginal
increase of mean torques for generated steps in comparison to their
optimized counterparts when the motion is tested in OpenHRP. For
interpolated step lengths optimality is almost achieved. This slight
increase of mean torque correlates with the distance of physical
step length to the closest one contained in the training data.
In contrast, the great increase of mean torque for MP-generated
motions on the step boundaries (bottom of Fig. 9) occurs for both
training and interpolated step lengths. So far, we have studied if
an increase of movement primitives would solve the problem. As
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Fig.9. Resulting integral mean of sum of squared torques (objective) for computed
motions when tested with OpenHRP. Top: Values for interior part of steps. We
observe a marginal increase of mean torques for MP-generated steps in comparison
to their OC-based counterparts. For interpolated step lengths, optimality is almost
achieved. Bottom: Values on the boundary of steps. Independently of the fact if
we consider a step length contained in the training data or an interpolated step
length, on step boundaries the mean torques of MP-generated motions increase
approximately by a factor of five. Note, that the mean value of the torques
themselves is given by the root of the present values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

this is not the case, this effect seems to be a result of a sudden
compensation strategy of OpenHRP and further investigations on
its trigger are necessary.

However, taking torque limits into account, all considered
motions are feasible for the robot simulator and hence are likely
to be feasible for the real platform as well.

4.3. Transfer between different steps

In this section, we investigate concatenations of steps with
varying step length (between 150 mm and 400 mm). As the cyclic
motions from the training data do not include transitions between
steps of different physical step length, this is a pure result of the
learning process and a great achievement for the fast generation of
dynamically feasible walking motions.

We study the behavior of three different walking motions,
which consist of 1+6+2 sequential steps of the following step
lengths:

e Motion 1: 225 mm (lead in), 225 mm, 250 mm, 275 mm,
300 mm, 275 mm, 250 mm, 250 mm (lead out),

e Motion 2: 225 mm (lead in), 250 mm, 275 mm, 300 mm,
325 mm, 350 mm, 375 mm, 400 mm (lead out),
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Fig. 10. Generated walking sequence (Motion 1), validated in virtual robot simulator OpenHRP. The screen shots are captured with a frequency of 1 Hz. The purple arrows
on the feet visualize the contact forces. A corresponding video is available online: http://orb.iwr.uni-heidelberg.de/ftp/CleverEtAl_OCMP_OpenHRP (see also Appendix A).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Resulting contact forces (motion 1) when tested in OpenHRP. The resulting
contact forces are below the guideline of 600 N most of the time. It is expected that
the short violations of this guideline do not cause major problems for the transfer
to the real robot.

e Motion 3: 150 mm (lead in), 175 mm, 200 mm, 225 mm,
250 mm, 225 mm, 200 mm, 200 mm (lead out).

Finally, we also consider a very long motion, which consist of
1+20+2 sequential steps of the following step lengths:

e Motion 4: 150 mm (lead in), 175 mm, 200 mm, 225 mm,
250 mm, 275 mm, 300 mm, 325 mm, 350 mm, 375 mm,
400 mm, 375 mm, 350 mm, 325 mm, 300 mm, 275 mm,
250 mm, 225 mm, 200 mm, 175 mm, 150 mm, 150 mm
(lead out).

The first motion represents a symmetric increase and decrease
of step length. The second motion spans a wide range of step
lengths, in particular the ones with large step sizes, which are
the most dynamic ones. The third sequence includes mainly step
lengths that are not part of the training data. They are located in
the gap between 150 and 250 mm. The last motion is by far the
most challenging, as it includes step lengths of the entire range of
physical step lengths and a great variety of different transitions
between them. Note, that the step length parameter of the lead
out motion has to be equal or greater than the last step. Lead
out motions with a step length parameter smaller than the last
step cannot capture the forward motion of the robot and cause a
shaking or even a tipping over.

Using the RBF kernel and seven movement primitives, the
generation attempts for the three shorter sequences (motion 1-3)
all result in a feasible walking motion, that can be executed by the
virtual robot simulator without a fall. See Fig. 10 for a sequence of
screenshots of motion 1 (videos for all three motions are available
on-line, see Appendix A). The purple arrows on the feet visualize
the contact forces. It is preferable that the contact forces do not
exceed the guideline of 600 N for longer periods of time. As can
be seen in Fig. 10, the resulting contact forces are distributed quite
homogeneously and Fig. 11 shows that they stay within the desired
range most of the time. Therefore, we expect a high probability that
the motion is suitable for the real platform as well.

To get an impression of the modifications of joint angle
trajectories when concatenating steps of varying step length,
in Fig. 12 we present the knee flexion angle trajectories for
transitions of optimized motions between steps of equal step
length (300 mm), for transitions of learned motions between steps
of equal step length (300 and 325 mm), and finally for transitions
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Fig. 12. Comparison of transition from step to step of same and different lengths,
between optimal control (opt) and MP-based trajectories for the knee flexion angle.
Numbers are planned step lengths, 1k/rk: left/right knee. The transition point is
at T ~ 2.5 s. Note, that the figure only shows the transition phase and not the
complete motion before.

of learned motions between steps of different step length (300 and
325 mm). Transitions between other steps lengths and for other
joints are comparable.

Finally, the robustness of the novel motion generation method
and the choice of kernel type and number of primitives is validated
by a very long walking sequence (Motion 4) that consists of 20
steps (excluding lead in and lead out) that vary from steps with
a step length of 150 mm to steps with a step length of 400 mm
and finally back to steps with a length of 150 mm. As for the choice
of the RBF kernel and seven MPs, the robot falls down at the very
end of the motion, we computed the motion with 10 MPs. This
modification is enough to result in a feasible motion without fall,
see Fig. 13. As mentioned before, this observation coincides nicely
with the computational result in part one of this section, where
we predicted that for the RBF kernel the quality of the motions
could be further improved, by increasing the number of MPs to
approximately eleven.

5. Conclusions

Our fusion of optimal control and movement primitive
learning combines the best of both worlds: dynamical feasibility
and optimality on the one hand, and compact representation,
fast movement generation and re-use of learned MPs through
modularity on the other. Besides testing our approach on the
real robot, we would like to extend it in several directions:
so far, we can only do open-loop control, for which temporal
MPs are suitable. An advantage of DMP-like primitives with
contracting [ 14] or partially contracting [47], canonical dynamical
systems is their ability to respond on-line to perturbations and
unexpected changes to sensory feedback. We therefore plan to
combine the advantages of modular MPs with those of dynamical
MPs, where (in contrast to the common use of DMPs) we also
include the dynamics (in a mechanical sense) of the whole body
system. Our first steps in this direction are promising [18,48],


http://orb.iwr.uni-heidelberg.de/ftp/CleverEtAl_OCMP_OpenHRP

296 D. Clever et al. / Robotics and Autonomous Systems 83 (2016) 287-298

Fig. 13. Generated walking sequence with 20 + 3 steps of varying physical step length (from 150 mm to 400 mm back to 150 mm), validated in virtual robot OpenHRP. The
screen shots are captured with a frequency of 1 Hz. The purple arrows on the feet visualize the contact forces. A corresponding video is available on-line (see Appendix A).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

but a demonstration of these modular dynamical MPs on large
movement databases is still missing. Another extension direction
is the inclusion of sensory signals for (on-line) planning, e.g. [20].
Here, it might even be useful to use kinematical and dynamical MPs
in parallel: the former for their facilitation of planning, because
movement end points can be determined without the need for
roll-outs; the latter for the aforementioned ability to deal with
perturbations during execution.

It can also be seen, in comparison to our previous work [5], that
the number of necessary movement primitives does not increase
significantly, even though the number of training data trajectories
has been increased from 180 to 1080. Moreover, this number
can be estimated with approximate Bayesian model comparison,
yielding long and stable walking sequences. This motivates future
plans to augment the set of training data by further motion types
(e.g. curve walking) and further optimality criteria (e.g. maximal
walking velocity or maximal efficiency), while still maintaining a
compact MP representation of such data.
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