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Schween R, Taylor JA, Hegele M. Plan-based generalization
shapes local implicit adaptation to opposing visuomotor transforma-
tions. J Neurophysiol 120: 2775–2787, 2018. First published Septem-
ber 19, 2018; doi:10.1152/jn.00451.2018.—The human ability to use
different tools demonstrates our capability of forming and maintaining
multiple, context-specific motor memories. Experimentally, this has
been investigated in dual adaptation, where participants adjust their
reaching movements to opposing visuomotor transformations. Adap-
tation in these paradigms occurs by distinct processes, such as strat-
egies for each transformation or the implicit acquisition of distinct
visuomotor mappings. Although distinct, transformation-dependent
aftereffects have been interpreted as support for the latter, they could
reflect adaptation of a single visuomotor map, which is locally
adjusted in different regions of the workspace. Indeed, recent studies
suggest that explicit aiming strategies direct where in the workspace
implicit adaptation occurs, thus potentially serving as a cue to enable
dual adaptation. Disentangling these possibilities is critical to under-
standing how humans acquire and maintain motor memories for
different skills and tools. We therefore investigated generalization of
explicit and implicit adaptation to untrained movement directions
after participants practiced two opposing cursor rotations, which were
associated with the visual display being presented in the left or right
half of the screen. Whereas participants learned to compensate for
opposing rotations by explicit strategies specific to this visual work-
space cue, aftereffects were not cue sensitive. Instead, aftereffects
displayed bimodal generalization patterns that appeared to reflect
locally limited learning of both transformations. By varying target
arrangements and instructions, we show that these patterns are con-
sistent with implicit adaptation that generalizes locally around move-
ment plans associated with opposing visuomotor transformations. Our
findings show that strategies can shape implicit adaptation in a
complex manner.

NEW & NOTEWORTHY Visuomotor dual adaptation experiments
have identified contextual cues that enable learning of separate visuo-
motor mappings, but the underlying representations of learning are
unclear. We report that visual workspace separation as a contextual
cue enables the compensation of opposing cursor rotations by a
combination of explicit and implicit processes: Learners developed
context-dependent explicit aiming strategies, whereas an implicit
visuomotor map represented dual adaptation independent from arbi-
trary context cues by local adaptation around the explicit movement
plan.

dual adaptation; explicit strategies; implicit learning; motor learning;
sensorimotor

INTRODUCTION

Modern tools frequently require their users to operate under
different visuomotor transformations. The most common ex-
ample is a computer mouse, where hand movements are
transformed to cursor movements on a screen. The fact that
humans can switch between different devices, such as track-
pads, phones, and tablets, without apparently having to relearn
each transformation each time has been taken as evidence for
separate memories of different visuomotor transformations that
can be retrieved on the basis of context. This remarkable ability
may have been fundamental to the advancement of our species
(McDougle et al. 2016; Stout et al. 2008; Stout and Chaminade
2007).

Dual-adaptation paradigms have served as a useful tool to
study this ability. In these paradigms, participants learn to
compensate for opposing visuomotor transformations, such as
visuomotor cursor rotations (Cunningham 1989) or force fields
(Shadmehr and Mussa-Ivaldi 1994), in close temporal succes-
sion (Ayala et al. 2015; Bock et al. 2005; Galea and Miall
2006; Hegele and Heuer 2010; Thomas and Bock 2012; van
Dam and Ernst 2015; Woolley et al. 2007, 2011). Whereas
alternating exposure to opposing transformations leads to sub-
stantial interference in many situations (Donchin et al. 2003;
Howard et al. 2013; Sheahan et al. 2016; Woolley et al. 2007),
researchers have identified a limited set of contextual cues that
can enable simultaneous learning of opposing transformations
(Ayala et al. 2015; Heald et al. 2018; Hegele and Heuer 2010;
Howard et al. 2012, 2013; Imamizu et al. 2003; Nozaki et al.
2016; Osu et al. 2004; Sarwary et al. 2015; Seidler et al. 2001;
Sheahan et al. 2016).

When it occurs, dual adaptation has been explained as
contextual cues establishing separate motor memories or visuo-
motor mappings (Ayala et al. 2015; Hirashima and Nozaki
2012; Imamizu et al. 2007; Osu et al. 2004) or as opposite
learning within a single visuomotor map being enabled by
local generalization around different kinematic properties of
the movement, like its trajectory (Gonzalez Castro et al.
2011), the direction of a visual target (Woolley et al. 2007,
2011), or the movement plan (Hirashima and Nozaki 2012;
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Sheahan et al. 2016). Whereas the privileged role attributed
to movement characteristics may be justified by the omni-
presence of these physical cues in natural environments, the
above views can be unified by thinking of the motor memory
that results from learning as a multidimensional state space
that can contain arbitrary psychological and physical cue
dimensions (Howard et al. 2013). Under this view, whether
or not a cue enables dual adaptation depends on whether
different cue characteristics allow for a regional separation
in the state space of memory that is sufficient to reduce the
overlap between local generalization of multiple transfor-
mations and thereby attenuate interference between them.

A level of complexity is added to this by recent views that
propose at least two qualitatively distinct learning mechanisms
in visuomotor adaptation (Huberdeau et al. 2015; McDougle et
al. 2016; Taylor and Ivry 2012, 2014): On one hand, there is an
implicit process, which operates outside of awareness and
learns from sensory-prediction errors (Mazzoni and Krakauer
2006; Morehead et al. 2017; Synofzik et al. 2008). This
implicit learning is thought to reflect cerebellum-dependent
adaptation of internal models (Taylor et al. 2010) and to
dominantly contribute to aftereffects that persist in the absence
of the novel transformation (Heuer and Hegele 2008). On the
other hand, learners can develop conscious aiming strategies to
augment reaching performance, a process referred to as explicit
learning (Heuer and Hegele 2008; Taylor et al. 2014). This
explicit learning appears to be remarkably flexible, is strongly
biased by visual cues and verbal instruction, but does not lead
to aftereffects (Bond and Taylor 2015, 2017; Taylor et al.
2014).

One way to think of explicit and implicit learning mecha-
nisms, in relation to dual adaptation, is that they reflect the
outcome of learning in two different state spaces, each with its
own set of contextual cues. Evidence in favor of such a
distinction comes from findings indicating that explicit and
implicit learning differ with respect to their generalization
properties (Heuer and Hegele 2011; McDougle et al. 2017) and
with respect to the cue characteristics that enable dual adapta-
tion in these two domains (Hegele and Heuer 2010; van Dam
and Ernst 2015). Importantly, recent findings have also pointed
toward an interaction of explicit and implicit learning mecha-
nisms, suggesting that the peak of implicit generalization is
centered around the direction of the explicit movement plan
(Day et al. 2016; McDougle et al. 2017; Morehead et al. 2017).
This provides a potential mechanism through which separate
movement plans may attenuate interference in dual adaptation
by directing local implicit learning to different regions in the
state space. Translated to our framework, this suggests that the
planned movement direction (i.e., the output of the explicit

memory) constitutes a relevant dimension in the state space of
implicit learning. The existence of such a link would be
essential to our understanding of dual adaptation and the
interplay of different learning mechanisms. However, this
plan-based dual adaptation is in direct conflict with previous
accounts that suggested that the visual target (Woolley et al.
2011) or the movement kinematics (Gonzalez Castro et al.
2011) constitute the relevant separating features.

These issues are central to our ability to use tools or different
motor behaviors in different contexts. To gain more insight
into the way explicit strategies and implicit learning interact in
visuomotor dual adaptation, the present study sought to test
whether the direction of explicit movement plans indeed
enables local learning of opposing cursor rotations by sep-
arating generalization and to contrast this possibility with a
previous view under which the direction of the visual target
is the relevant cue (Woolley et al. 2011). We chose visual
workspace as a contextual cue that has been shown to create
separate explicit strategies but not implicit visuomotor maps
(Hegele and Heuer 2010) and tested generalization of ex-
plicit and implicit learning to different directions after
practice. By varying target locations, rotation directions,
and verbal instruction of strategies, we tested whether gen-
eralization centered around the visual target (target-based
generalization; Woolley et al. 2011) or the explicit strategy
(plan-based generalization; Day et al. 2016; McDougle et al.
2017) limits interference within a single, implicit visuomotor
map.

MATERIALS AND METHODS

A total of 94 participants gave written informed consent to partic-
ipate in protocols approved by the local ethics committee of depart-
ment 06 of Justus-Liebig-University, Giessen, Germany (LEK-FB06).
Participants included in the analyses were right-handed and had not
previously participated in a reaching adaptation experiment. Table 1
provides further information on participants and exclusions.

Apparatus

Participants sat 1 m in front of a vertically mounted 22-in. LCD
screen (Samsung 2233RZ) running at 120 Hz (Fig. 1A). Their index
finger was strapped to a plastic sled (50 � 30-mm base, 6-mm height)
that moved with low friction on a horizontal glass surface at table
height. Sled position was tracked at 100 Hz by a trakSTAR sensor
(model M800; Ascension Technology, Burlington, VT) mounted
vertically above the fingertip. Hand vision was occluded by a black
wood panel 25 cm above the surface. With their finger movement,
participants controlled a cursor on the screen (cyan filled circle,
5.6-mm diameter) via a custom script written in MATLAB (RRID:
SCR_001622) with the Psychophysics Toolbox (Brainard 1997;

Table 1. Overview of included and excluded participants and trials for all experiments

Experiment n Analyzed Men Age, yr [mean (min; max)] n Excluded
No. of Exclusions

(movement)
No. of Exclusions

(angle) Total No. of Movements

1 22 7 25 (20; 30) 1a �1b 462 (5.5%) 12 (0.1%) 8,360
2 20 4 21 (19; 30) 0 353 (4.1%) 56 (0.6%) 8,680
3 19 7 24 (19; 29) 1c 401 (4.9%) 152 (1.8%) 8,246
4 21 9 24 (20; 29) 1a �1b�7c 320 (3.5%) 12 (0.1%) 9,114

Reasons for excluding participants: adid not finish testing (because of bug in experimental software or time constraints); bdid not meet inclusion criteria (age,
handedness, metal implants); cfailure to follow instructions (revealed in postexperimental standardized questioning). Individual trials were excluded if no start
could be detected or participants failed to reach target amplitude within the specified time (“movement”) or if the angular cursor error was �120° (“angle”).

2776 PLAN-BASED DUAL ADAPTATION

J Neurophysiol • doi:10.1152/jn.00451.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at UB Marburg (137.248.070.001) on July 19, 2025.



RRID:SCR_002881). On movement practice trials, participants were
instructed to “shoot” the cursor from a visual start (red/green outline
circle, 8-mm diameter) through a target (white filled circle, 4.8-mm
diameter) at 80-mm distance by a fast, uncorrected movement of their
right hand. Cursor feedback was provided concurrently but was frozen
as soon as participants’ hand had passed the radial distance of the
target. The cursor represented the unrotated hand position during all
familiarization and baseline practice trials (phase explanations below).
During rotation practice and maintenance (inserted between posttests),
the cursor was rotated around the start relative to hand position. The
direction of cursor rotation was cued by the location of display on the
screen (see below). On movement test trials, the cursor disappeared
upon leaving the start circle. If participants took longer than 300 ms
from leaving the start circle to reaching target amplitude, the trial was
aborted and an error message was displayed (“Zu langsam!”, i.e.,
“Too slow!”). After the end of the reaching movements, arrows at the
side of the screen guided participants back to the start location without
providing cursor feedback.

Visual Workspace Cue

Throughout the experiment, the start locations of the reaching
movement alternated between the left and right half of the screen
(x-axis shift of ¼ screen width in respective direction). In phases with
cursor rotation, these visual workspaces were associated with visual
rotations in opposite directions. We chose this contextual cue because
previous research had indicated that it successfully cues separate explicit
strategies but not separate implicit visuomotor maps (Hegele and Heuer
2010). Importantly, participants’ actual movements were always con-
ducted in a common physical workspace from a central start location on
the table ~40 cm in front of them.

General Task Protocol

All experiments consisted of familiarization, baseline pretests,
rotation practice, and posttests, with the general logic that posttests
tested generalization of learning induced by rotation practice relative
to baseline pretests. During familiarization, participants performed a
total of 48 movement practice trials, with the visual workspace
alternating between the left and right half of the screen every four
trials. This was followed by pretests intermixed with additional
practice trials: In pretests, we tested generalization of movements to
nine different directions spanning the hemisphere around the practiced
direction by movement test trials without visual feedback. These were
performed in each visual workspace in an alternating, blocked fashion
(Fig. 1B). Each test block contained two (experiment 1) or three
(experiments 2–4) sets of one reaching movement per target direction.
The sequence of targets was randomized within sets. Before each test
block, participants performed four more practice movements with
cursor feedback in each visual workspace, respectively, to maintain
reaching performance on a stable level.

At the end of pretests, we further probed participants’ explicit
knowledge of the cursor rotations for one set of targets in each visual
workspace. On these explicit judgment test trials, participants rested
their hand on their thigh and provided perceptual judgments about the
appropriate aiming direction to reach a specific visual target by
verbally instructing the experimenter to rotate the orientation of a
straight line originating on the start circle (Heuer and Hegele 2008).
They were instructed that the orientation of the line should point in the
aiming direction of their hand movement, which would be required to
move the cursor from the start to the respective target location.

With the start of rotation practice, two oppositely signed cursor
rotations were introduced and participants trained to counteract these

A

B

Fig. 1. A: general setup and visual workspace.
Only 1 start and 1 target location were shown
on a given trial, but all generalization targets
are displayed here for illustrative purposes. In
addition, the actual targets were white. B: ex-
perimental protocol for an exemplary partici-
pant of experiment 1. The start location of the
hand on the table was identical for both visual
workspaces. The presence/absence of the rota-
tion was cued by the color of the start circle and
instructed for both trials with and without feed-
back. Alternation between visual workspaces
was every 4 trials during familiarization and
posttest practice and every 8 trials during rota-
tion practice. Circles represent movement tri-
als; squares are explicit judgment trials, where
participants do not move their arm and verbally
judge required movement direction instead.
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rotations in alternating blocks of 8 trials for a total of 144 trials.
Before this practice phase, participants were instructed that the map-
ping of hand to cursor movement would be changed, that the change
would be tied to the visual workspace, and that its presence would be
signaled by a red (instead of the already encountered green) start
circle. No further information about the nature of the change was
provided.

Posttests were arranged like pretests, with a few exceptions: We
now repeated the movement tests twice, with the first repetition testing
for generalization of implicit aftereffects in the absence of strategies.
This was done by instructing participants before the test session that
the cursor rotation would be removed and that this would be signaled
by a green start circle. The second repetition then tested for general-
ization of total learning, which contains explicit and implicit compo-
nents, by instructing participants that the cursor rotation was present
again (as indicated by the red start circle) and they should move
accordingly.

We conducted posttests for explicit judgments identically to the
pretests for explicit judgments, with the exception that a red start
circle (transformations present) was presented. If participants judged
the rotation to be zero at the first explicit posttest trial, we repeated the

instructions to them, emphasizing that they should consider the red
start circle in their judgment, and asked whether they wanted to
reconsider their explicit judgment. This reminder was provided only
once; thereafter, explicit judgments were recorded as given without
further questioning.

For counterbalancing, each experiment had two groups that dif-
fered in whether they began the experiment with the left or right visual
workspace.

Experimental Protocol

Experiment 1. The goal of experiment 1 was to examine the pattern
of generalization to determine how explicit and implicit processes
enable dual adaptation. Participants practiced reaching movements to
a single target direction at 90° (with 0° corresponding to movements
to the right). Cursor feedback was rotated by 45° around the start
location with a clockwise (CW) rotation in the left and a counter-
clockwise (CCW) rotation in the right visual workspace (Fig. 2A).
Movements thus had a common visual target direction, but the aiming
strategies were separate. Each movement generalization test block
contained two sets of trials to nine equally spaced generalization

Fig. 2. Task and results of experiment 1. All angles are in degrees, with 0° falling on the x-axis and positive direction counterclockwise. Error regions and bars
represent SDs. A: schematic drawing of the practice targets and approximate predictions for cursor and strategy directions (top) and movement directions in the
common hand workspace (bottom) for early (transparent) and late (solid) practice, for left (red) and right (blue) visual workspace. B: mean hand directions (not
baseline corrected) during practice plotted separately by the groups starting with either with left (gray) or right (black) visual workspace. Horizontal dashed lines
indicate ideal compensation of the cursor rotation. On average, participants compensated the rotation well within the first few blocks. C–E: baseline-corrected
average hand directions for left (red) and right (blue) visual workspace on generalization posttests. Darker color indicates the practiced target direction. Horizontal
dashed lines indicate full compensation of the cursor rotation for left (red) and right (blue) visual workspace, respectively. Vertical red and blue lines at x-axis
indicate direction of target (solid) and full compensation (dashed). C: participants’ total learning approached full compensation, was specific to the visual
workspace, and generalized broadly across target directions. D: when tested separately, explicit knowledge reflected this cue-dependent, broadly generalizing
learning. E: aftereffects, on the other hand, appeared independent of the visual workspace cue and exhibited a generalization pattern that was well fit by a sum
of 2 Gaussians (solid blue and dashed red line).
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targets from 0° to 180°. Pretests thus contained 86 trials, including 36
movement test trials, 18 explicit test trials, and a total of 32 movement
practice trials. Similarly, posttests contained 138 trials in total.

Experiment 2. The goal of experiment 2 was to ensure that our
findings from experiment 1 were not solely attributable to biome-
chanical or visual biases independent of learning (Ghilardi et al. 1995;
Morehead and Ivry 2015). To test this possibility, the practice and
generalization targets were moved by 45° CW (i.e., the practice target
was at 45° and generalization targets spanned �45° to 135°; Fig. 3A).
We predicted that if the generalization pattern was solely due to
potential biases, then it would be unchanged. However, if the apparent
generalization function was the result of learning, then it should be
shifted by �45° (i.e., 45° CW) on the generalization direction axis.
Apart from these changes, experiment 2 was like experiment 1, except
that we increased the number of consecutive movement test sets for
each visual workspace and test condition from two to three, thus
increasing the number of pretest trials to 122 and posttest trials to 174.

Experiment 3. To further contrast plan-based and target-based
generalization, we designed a paradigm with separate visual target
locations and cursor rotations, which were arranged in such a way that
the resulting compensation strategy for each target should approxi-
mately point at the respective other target when projected to the
common physical workspace. In this way, plan- and target-based
generalization predict opposite generalization patterns. We therefore
offset targets by 22.5° outward from the center (i.e., to 112.5° in the
left and 67.5° in the right workspace). For rotations, we chose 60°
CCW for the left and CW for the right workspace (Fig. 4A). Since
implicit learning asymptotes at ~10–15° regardless of rotation mag-

nitude (Bond and Taylor 2015; Morehead et al. 2017), we assumed
that strategy magnitude should asymptote around the 45° intertarget
distance, as intended. Otherwise, experiment 3 was identical to ex-
periment 2.

Experiment 4. This experiment intended to facilitate correct aiming
strategies by verbally instructing participants about how to compen-
sate the cursor rotation before practice of the rotations. This was done
by informing participants that they would have to aim roughly toward
1 o’clock in the left workspace and 11 o’clock in the right workspace
to hit the respective practice targets. They were also encouraged to
fine adjust those strategies. We hypothesized that this instruction
should strengthen the contrast we originally hypothesized in experi-
ment 3 (Fig. 4A). To ensure that participants applied nonoverlapping
strategies throughout practice, we asked participants after the exper-
iment where they aimed during early, middle, and late practice in the
left and right workspaces, respectively. However, on the basis of these
postexperiment reports, we excluded seven participants who reported
not using the clock analogy or aiming less than half an hour in the
correct direction away from 12 o’clock for any of those time points
(Table 1).

Data Analysis

Data were analyzed in MATLAB (RRID:SCR_001622), R (R
Project for Statistical Computing, RRID:SCR_001905), and JASP
(JASP, RRID:SCR_015823). Position data were low-pass filtered
with MATLAB’s “filtfilt” command set to a fourth-order Butterworth
filter with 10-Hz cutoff frequency. We separately calculated x- and

Fig. 3. Task and results of experiment 2. A: practice direction was rotated by �45° relative to experiment 1. B–D: participants quickly learned to compensate
the rotation and displayed appropriate total learning and explicit knowledge, as in experiment 1. E: generalization of aftereffects appeared shifted with the practice
location, indicating that bimodal pattern is dominantly an effect of learning, not biases.
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y-velocity with a two-point central difference method and tangential
velocity. Movement start was determined as the first frame where
participants had left the start circle and tangential velocity exceeded
30 mm/s for at least three consecutive frames. For each trial, we
extracted the angular end-point direction as the angle between the
vector from start to target and the vector between the start and the
position where the hand passed the target amplitude. We excluded
trials in which no movement start could be detected or where partic-
ipants failed to reach the target amplitude (see Table 1).

We summarized pre- and posttests separately for each visual
workspace, target direction, type of posttest, and participant by taking
the median over the two (experiment 1) or three (experiments 2–4)
repetitions of each test, respectively (where the explicit judgment tests
always had only 1 repetition). From each of the posttest median
values, we then subtracted its corresponding pretest median value on
an individual participant level to correct for any potential kinematic
biases. For further analyses, including model fits (more details below),
we used the mean across participants separately for each visual
workspace location, target direction, and test.

Our main variables of interest were generalization patterns of
aftereffects, and we limit our analysis on explicit judgments and
total learning to descriptive reporting. In our analysis of implicit
learning, we used two candidate functions to represent our hypoth-
eses for the shape of generalization. The first candidate was a
single Gaussian:

y � a · e
�

(x � b)
2

c2

where y is the aftereffect at test direction x and the three free
parameters are the gain a, the mean b, and the standard deviation c.
We chose a Gaussian as approximation because it closely reflects the
observed generalization function in visuomotor rotations (Krakauer et
al. 2000) and has been related to underlying neural tuning functions
(Tanaka et al. 2009; Thoroughman and Shadmehr 2000).

The second candidate was the sum of two Gaussians, henceforth
referred to as “bimodal Gaussian”:

y � a1 · e
�

�x � b1�2

c2 � a2 · e
�

�x � b2�2

c2

for which we assumed separate amplitudes a1 and a2 and means b1

and b2 but the same standard deviation c for the two modes.
We reasoned that successful learning of separate visuomotor maps

by visual workspace cues should result in separate generalization
curves for the cue conditions where each should resemble a single
Gaussian in a direction appropriate for counteracting the cued rota-
tion. It should be noted that we did not expect such an outcome based
on previous results (Hegele and Heuer 2010). If the cues did not
establish separate visuomotor maps on the other hand, we predicted
either of two patterns for the resulting, common generalization curves.
Depending on whether the centers of local generalization were over-

Fig. 4. Task and results of experiment 3. A: visual target directions were separated by 45° and the cursor rotated outward so that strategies should cross the midline
and point approximately at the other target. The multiple dashed arrows emphasize strategies changing over the course of learning (compared with experiment
4). B: practice performance was more variable compared with experiment 1 (A). C and D: total learning and explicit judgments flipped signs in line with the
reversed cursor rotations cued by the separate visual workspaces. They also appeared more variable but resembled experiment 1 when 5 outliers were removed
(not shown). E: aftereffects appeared dominated by interference, which did not change without the 5 outliers (not shown). Note that the lines indicating full
compensation are outside the y-axis limits.
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lapping or separate, the pattern should be dominated by interference,
which could be fit by either of the functions but with small amplitude
parameters, or by a bimodal generalization pattern with opposing
peaks whose centers and amplitudes would be in line with compen-
sating for opposing cursor rotations. Which scenario would be the
case depends on whether generalization is target based (Woolley et al.
2011) or plan based (Day et al. 2016; McDougle et al. 2017) as well
as on the specific arrangements of plan and strategic solutions in the
different experiments. We could further have included a single Gauss-
ian with an offset parameter in our model comparison but decided
against this option as our focus was to distinguish between types of
dual adaptation rather than to infer its exact shape.

To test our hypotheses, we fit the two candidate models to the nine
across-participant mean data points representing aftereffects to the
nine generalization directions, for each visual workspace, separately,
using MATLAB’s “fmincon” to maximize the joint likelihood of the
residuals. For this, we assumed independent, Gaussian likelihood
functions centered on the predicted curve, whose variance we esti-
mated by the mean of squared residuals. As this fitting procedure
tended to run into local minima, we repeated each fit 100 times from
different starting values selected uniformly from our constraint inter-
vals (constraints were �180° to 180° on a, 0° to 180° on b parameters,
or 135° to �45° for experiment 2, and 0° to 180° on c) and used only
the fit with the highest joint likelihood.

To select the best model, we calculated the Bayesian information
criterion (BIC) as

BIC � ln�n� · k � 2 · ln�lik�

where n is the number of data points, k is the number of free
parameters of the model, and lik is the joint likelihood of the data
under the best fit parameters.

To compare model parameters, we created 10,000 bootstrap sam-
ples by selecting N out of our N single participant data sets randomly
with replacement and taking the mean across participants for each
selection. We then fit our candidate models to each of these means by
the method described above, except that we avoided restarting from
different values and used the best fit values from the original data set
as starting values instead. Because the bimodal Gaussian has two
identical equivalents for each solution, we sorted the resulting param-
eters so that b1 was always larger than b2. This procedure gave us a
distribution for each parameter from which we calculated two-sided
95% confidence intervals by taking the 2.5th and 97.5th percentile
values. We considered parameters significantly different from a hy-
pothesized true mean if the latter was outside their 95% confidence
interval. Similarly, we considered differences between two param-
eters significant if the 95% confidence interval of their differences
within the bootstrap repeats did not include 0. Additionally, we
used t-tests to compare aftereffect magnitudes (of the raw, non-
bootstrapped data) for specific generalization directions against 0
or between groups. To protect ourselves from interpreting differ-
ences between experiments purely based on the absence of an
effect in one and the presence in the other (Nieuwenhuis et al.
2011), we further performed an ANOVA on aftereffect posttests
with the between-participant factor of experiment and the within-
participant factors of visual workspace and target direction, where
we added 45° to the target directions of experiment 2.

RESULTS

We report angles in degrees, with 0° corresponding to the
positive x-axis and higher angles being CCW with respect to
lower ones. Values are reported as means with standard devi-
ation (SD) or with 95% confidence interval.

Experiment 1

Participants appeared overall able to compensate for the two
opposing rotations after few blocks of practice (Fig. 2B).
Posttests for total learning also indicate that participants
learned to compensate for the opposing rotations almost com-
pletely and specific to the visual workspace cue (Fig. 2C), with
mean total learning toward the practiced target location falling
somewhat short of full 45° compensation by compensating 36°
(SD 26) in the left workspace and even slightly exceeding the
full �45° compensation by compensating �47° (SD 16) in the
right workspace. Total learning tested at generalization target
locations tended to generalize broadly, appearing relatively flat
across directions. Explicit learning was also specific to the
workspace, with mean explicit judgments at the practice target
amounting to 23° (SD 9) relative to 45° full compensation for
the left workspace and �28° (SD 9) relative to �45° full
compensation for the right workspace, and tended to display
broad generalization (Fig. 2D).

For aftereffects (Fig. 2E), target-based generalization pre-
dicted separate, single Gaussians with peak directions reflect-
ing learning of the cued workspaces if the visual workspace
cue enabled the formation of separate visuomotor maps; if the
cues failed to enable global dual adaptation, then no clear
peaks would be observed. Plan-based generalization, on the
other hand, predicts a generalization function with two oppo-
site peaks corresponding to participants’ strategic aims.

Model comparison preferred the bimodal Gaussian for char-
acterizing the data, as indicated by differences in BIC �10
(�BIC: 16 for left, 14 for right workspace cue) relative to the
single Gaussian, which is considered “strong” evidence against
the model that has the higher BIC (Kass and Raftery 1995).
The amplitude parameters had opposing signs, and their con-
fidence intervals did not include 0 (left: a1: 14.9° [12.8°;
17.4°], a2: �9.9° [�11.9°; �8.5°]; right: a1: 13.3° [11.2°;
46.8°], a2: �9.2° [�22.0°; �6.6°]). The corresponding means
were located roughly where we would have expected aiming
strategies to lie (left: b1: 122.5° [117.1°; 127.9°], b2: 45.7°
[38.8°; 55.6°]; right: b1: 122.6° [117.0°; 126.3°], b2: 37.1°
[25.7°; 53.4°]; c: left: 36.9° [31.1°; 44.3°]; right: 29.1° [15.9°;
39.3°]), although individual variability and the lack of separate
time series for implicit and explicit learning confined us to
qualitative analyses in this respect. Mean aftereffects at the
practiced target were small, albeit significant [left: 4° (SD 6),
P � 0.002, right: 3° (SD 5), P � 0.02], indicating that
interference dominated here. This finding argues strongly
against target-based generalization.

Importantly, the curves for the left and right workspaces
were almost indistinguishable (Fig. 2) and the confidence
intervals for differences between left and right workspace
parameters all included 0° (�a1: [�33.2°; 4.6°]; �b1: [�6.6°;
7.7°]; �a2: [�3.5°; 10.8°]; �b2: [�6.1°; 22.8°]; �c: [�4.3°;
26.1°]). It therefore appears that visual workspaces did not cue
separate implicit visuomotor maps.

Overall, the observed generalization curves are well in line
with dual adaptation expressed locally around the movement
plan or trajectory but do not support local generalization
around the visual target or separate visuomotor maps estab-
lished based on visual workspace cues.
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Experiment 2

For experiment 2, we predicted a two-peaked generalization
pattern of aftereffects, similar to the one we observed in
experiment 1 but shifted by 45°. That is, if the pattern in
experiment 1 was just biases that did not reflect learning, we
would predict it to be exactly the same as in experiment 1,
whereas if it were a result of learning, we would predict it to be
shifted by �45° on the x-axis, reflecting the �45° shift of the
practice targets.

Practice and posttests again indicated that participants
learned to compensate for the cursor rotation specific to the
visual workspace (Fig. 3, B and C). Total learning tested at the
practice location was 49° (SD 19) in the left workspace and
thus somewhat exceeded full compensation of the �45° cursor
rotation. In the right visual workspace, it fell somewhat short of
fully compensating the �45° cursor rotation, with average
compensation at the practiced target amounting to �28° (SD
40). Explicit judgments were on average 30° (SD 17) relative
to 45° full compensation in the left workspace and �37° (SD
19) relative to �45° full compensation in the right workspace
(Fig. 3D).

Model comparison favored the bimodal Gaussian to charac-
terize the generalization pattern of aftereffects (�BIC: 17 for
left, 19 for right workspace cue). Importantly, the generaliza-
tion curves indeed appeared shifted on the x-axis, with com-
plete interference occurring close to the practice direction (Fig.
3E). For the right workspace, this was reflected in the boot-
strapped distributions of differences between experiment 1 and
experiment 2 mean parameters including �45° (�b1: [�66.6°;
�34.3°], �b2: [�48.9°; 5.7°]) and the difference between
amplitudes including 0 (�a1: [�12.4°; 61.4°], �a2: [�45.4°;
9.9°]). For experiment 2 the right workspace parameters and
confidence intervals were a1: 11.2° [9.4°; 75.6°]; b1: 81.3°
[55.6°; 85.4°]; a2: �6.1° [�55.1°; �3.6°]; b2: 6.9° [�3.9°;
44.7°]; c: 25.8° [7.5°; 49.9°]. For the left visual workspace, the
best fit was achieved by a solution containing two relatively
close peaks with large amplitudes and standard deviations: a1:
162.9° [84.7°; 163.8°]; b1: 49.9° [42.9°; 64.3°]; a2: �159.8°
[�161.0°; �83.2°]; b2: 47.4° [36.0°; 57.5°]; c: 49.9° [37.5°;
63.5°]. This fit produces the visual pattern mainly by interference.
Although this solution was thus not easily comparable to the two
largely separate peaks of experiment 1 and the right workspace,
we note that both amplitudes were still significant in opposite
directions and that the switch between peaks still appeared to be
around the practiced target, with aftereffects at the practiced target
amounting to 3° (SD 6) (P19 � 0.026) in the left and 1° (SD 5)
(P19 � 0.59) in the right visual workspace.

Overall, we conclude from experiment 2 that whereas some
additional biases may contribute to the results observed in
experiment 1, the shape of the generalization curve first and
foremost reflects learning.

Experiment 3

While experiments 1 and 2 already favored plan-based over
target-based generalization, we designed experiment 3 to max-
imize the contrast between the two hypotheses (Fig. 4A). For
this purpose, we had participants practice a 60° cursor rotation
to a target at 112.5° in the left workspace and a �60° cursor
rotation to a target at 67.5° in the right workspace. For this
scenario, target-based generalization predicted a generalization

function for aftereffects with a positive peak at 67.5° and a
negative peak at 112.5°. Plan-based generalization, on the
other hand, should create the opposite result, i.e., a negative
peak close to the 67.5° target direction, reflecting compensa-
tion of the positive rotation experienced with the 112.5° target
and an assumed positive compensation strategy, and a corre-
sponding positive peak close to the 112.5° target direction.

To our surprise, aftereffects no longer displayed a clear
generalization pattern as in the previous experiments but a
pattern that appeared dominated by complete interference
across all directions between the opposing rotations (Fig. 4E).
Accordingly, although mean aftereffects were still best de-
scribed by bimodal Gaussians (�BIC left: 5; right: 4), their
peaks’ locations did not match either of the hypotheses and
associated amplitudes were either positive and small (right
workspace: a1: 3.1° [�29.1°; 38.4°]; b1: 147.3° [111.4°;
180.0°]; a2: 5.3° [3.3°; 175.0°]; b2: 82.6° [71.7°; 178.7°]; c:
19.5° [26.9°; 144.4°]) or excessively large (left workspace: a1:
�125.7° [�180.0°; 124.9°]; b1: 179.5° [95.6°; 180.0°]; a2:
�123.7° [�121.4°; 180.0°]; b2: 176.3° [93.7; 178.7°]; c: 69.6°
[26.9°; 144.4°]). (Note that these fits approached our bounds on
a and b parameters and the amplitude parameters only differed
significantly from 0 for right a2). Overall, the fit appeared
unstable as shown by the histogram of bootstrapped parameter
estimates (see Fig. 6A). The visual impression of aftereffects
did not change even if we removed five participants (by visual
selection) who appeared responsible for the less clearly sepa-
rated patterns of explicit and total learning (Fig. 4, C and D;
data with participants removed are not shown).

How could this absence of a clear generalization pattern be
explained? We hypothesized that the development of aiming
strategies might not have been quick enough to allow local
generalization to occur in sufficiently distinct directions,
thereby creating a generalization pattern that was primarily
governed by interference. An indication that this might be the
case can be seen in Fig. 4B, where mean hand directions during
practice initially fall short of the ideal hand directions, which
indicates poorly developed strategies at this time. If participants
made such strategy errors, then this would cause counteractive
learning under the plan-based generalization hypothesis and there-
fore could explain interference in posttests. To test whether this
was the reason for interference in experiment 3 aftereffects, we
conducted experiment 4, where we provided participants with
ideal aiming strategies at the onset of rotation practice. We
hypothesized that more appropriate strategy application should
alleviate interference and restore the predicted, plan-based gener-
alization pattern if our reasoning was correct.

Experiment 4

Predictions for experiment 4 were the same as they had been
for experiment 3, but here we predict more local, direction-
specific implicit adaptation because participants should have a
more consistent strategy. Indeed, we observed more consistent
performance during initial practice and the restitution of flat
overall learning and explicit judgment patterns, indicating that
participants were able to implement the provided strategy (Fig.
5, B–D). Consistent with our prediction, the resulting general-
ization pattern of implicit learning once again had opposite
peaks (�BIC left: 9; right: 9; Fig. 5E). Parameter histograms
display more confined peaks compared with experiment 3 (Fig.
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6), suggesting that the bimodal Gaussian was more appropriate
here. Importantly, the signs of the amplitude parameters were
in line with the predictions under plan-based generalization and
the confidence intervals on associated amplitude parameters
did not include 0 (left: a1: 6.6° [2.8°; 59°], b1: 112.0° [84.1°;
122.7°], a2: �5.5° [�58.2°; �2.9°], b2: 29.7° [21.8°; 58.1°], c:
25.0° [7.0°; 47.2°]; right: a1: 8.7° [5.1°; 13.0°], b1: 118.4°

[111.6°; 124.8°], a2: �5.7° [�8.3°; �3.5°], b2: 29.1° [20.5°;
39.9°], c: 29.3° [22.3°, 37.6°]). This result is in direct contrast
to target-based generalization. The confidence intervals for
differences between left and right parameters once again in-
cluded 0 (�a1: [�5.2; 49.2]; �b1: [�31.0; 6.5]; �a2: [�52.7;
3.3]; �b2: [�9.8; 28.9]; �c: [�24.8; 18.1]), suggesting no
significant influence of the contextual visual workspace cue.

Fig. 5. Task and results of experiment 4. A: same scenario as experiment 3, but we provided strategies in advance. B: practice performance appeared less variable.
C and D: all participants displayed good total learning and explicit knowledge. E: the bimodal pattern of aftereffects was restored.
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Fig. 6. Histograms of the bootstrapped param-
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(B). The distributed and split peaks in A visu-
alize the unstable fit of the bimodal Gaussian
to the data of experiment 3. The more confined
peaks in B show that the fit is more stable. The
centers of generalization (b1, b2) prefer gen-
eralization centering on the movement plan
rather than the visual target. a, Gain; b, mean;
c, standard deviation.
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In comparison with experiment 3, providing an aiming
strategy at the onset of practice alleviated interference in
implicit learning, which we interpret to reflect better expres-
sion of local generalization due to more appropriate application
of spatially separate explicit strategies.

Across-Experiment Comparison

To ensure that the differences we inferred from generaliza-
tion patterns across experiments were statistically justified, we
performed an ANOVA on aftereffect posttests with the factors
experiment, workspace cue, and target direction. Greenhouse-
Geisser-corrected P values of the ANOVA across experiments
indicated a significant main effect of target (F3.6,207.4 � 40.2, P �
0.001) but no other significant main effects (experiment:
F3,57 � 0.19, P � 0.91; workspace: F1,57 � 1.5, P � 0.23). There
was not a significant twofold interaction involving workspace
(workspace � experiment: F3,57 � 1.1, P � 0.38; workspace �
target: F6.3, 360.9 � 0.93, P � 0.48) but a significant interaction
between experiment and target direction (F10.9, 207.4 � 4.5, P �
0.001). The three-way interaction approached significance
(F19.0, 360.9 � 1.5, P � 0.075). Although admittedly post hoc,
these numbers overall support our interpretation of differences in
generalization to different targets across experiments and further
lend some support to the absence of a relevant influence of visual
workspace cue on aftereffects.

DISCUSSION

Visuomotor dual adaptation has served as a model paradigm
to understand how the brain associates contextual cues with
separate memories and representations (Imamizu et al. 2003;
Wolpert and Kawato 1998). To broaden our understanding of
the underlying constituents of visuomotor dual adaptation, we
investigated generalization and interference of learning when
separate visual workspaces cued alternating, opposing visuo-
motor cursor rotations. By varying rotation size, arrangement
of visual targets, and instructions, we show that implicit dual
adaptation is expressed as a local generalization pattern in this
case. In experiment 1, separate visual workspaces cued sepa-
rate aiming strategies but did not establish separate implicit
visuomotor maps. Instead, opposing rotations were realized by
local changes to a single visuomotor map. In experiment 2, we
changed the practice locations to confirm that this was not a
result of visuomotor biases. Experiment 3 showed that over-
lapping strategies lead to interference, even with separate
visual target locations, and experiment 4 showed that this
interference could be alleviated by providing explicit aiming
strategies to participants from the onset of practice.

All in all, our findings corroborate previous suggestions
based on cerebellar imaging that separate memories for differ-
ent contexts rely on cognitive components (Imamizu et al.
2003). The pattern of implicit dual adaptation we observed can
be explained by generalization occurring locally around the
(explicit) movement plan. Specifically, we observed peak
learning at the approximate locations and in the directions
predicted if we assume that learning generalizes locally around
the aiming strategy, in line with recent findings (Day et al.
2016; McDougle et al. 2017). Furthermore, interference oc-
curred in a scenario where it could be explained by general-
ization centering on the movement plan but not the visual
target (experiment 3).

Within the framework entertained in INTRODUCTION, the ob-
served results strongly suggest that the planned movement
direction, but not the visual workspace, is a relevant dimension
in the implicit processes’ state space. Conversely, the flat
pattern of explicit generalization would indicate that visual
workspace, but not direction (whether plan, movement, or
target), was a relevant dimension in the explicit processes’
state space. Given the high flexibility of human cognition and
explicit learning, we would not expect the latter to be a general
characteristic of explicit learning, though. It seems more plau-
sible that explicit learning can account for contextual cues in
arbitrary dimensions, given that learners become aware of the
relevant contingencies between cues and transformations. For
implicit memory on the other hand, a state space of relatively
fixed low dimensionality would fit well with its overall sim-
plicity, which makes it less flexible (Bond and Taylor 2015;
Mazzoni and Krakauer 2006) but robust to constraints on
cognitive processing (Fernandez-Ruiz et al. 2011; Haith et al.
2015). Which other cues, besides the movement plan, belong to
the implicit state space and whether more extensive practice
can introduce new context dimensions to it, e.g., by associative
learning as suggested previously (Howard et al. 2013), are
interesting topics for future research. A practical implication of
this view would be that “A-B-A” paradigms where participants
learn first one (A), then another (B), and then the first trans-
formation (A) again may be more suited to infer preexisting
context dimensions, as they minimize contrastive exposure to
new contingencies that could be learned associatively. Specific
investigation of the latter, on the other hand, might benefit from
exploiting known characteristics of associative learning.

Plan or Target Based?

Our findings contradict conclusions from an earlier study
that inferred the visual target to be the relevant center of local,
implicit generalization to different directions (Woolley et al.
2011). We explain this contradiction by the fact that this earlier
study only compared the two alternative hypotheses that learn-
ing centers on the visual target or the executed movement but
did not consider the possibility that it centers on the movement
plan. When reinterpreted in light of this new hypothesis, all
results in that study can potentially be explained by plan-based
generalization with separate visual targets cuing separate aim-
ing strategies. Specifically, participants in that study learned to
compensate opposing cursor rotations when visual targets were
separate but ideal physical solutions overlapped. Alternatively
to local generalization centering on the visual target, this can
be explained by different aiming strategies becoming associ-
ated with the separate targets, each of which is less than the
optimal, full rotation (Bond and Taylor 2015) and therefore
does not overlap with the strategy for the opposing cursor
rotation (in contrast to the physical solutions). Similarly, in-
terference scaling inversely with the separation of visual tar-
gets (Woolley et al. 2011) may also be explained by the degree
of overlap between aiming strategies.

It is worth noting that the lack of dual adaptation in an earlier
experiment by Woolley and colleagues (Woolley et al. 2007)
may be attributable to the saliency of the visual cues. In that
study, they found that practice to the same visual target did not
enable dual learning when opposing rotations were cued by
screen background colors, but the task relevance of these cues
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may not have been noticed by the participants. If the partici-
pants did not associate an aiming strategy with the cues, then
it would have not allowed plan-based and directionally depen-
dent implicit adaptation to develop, thus leading to no dual
adaptation.

Plan or Movement Based?

Alternatively to plan-based generalization, our findings
could be explained by learning generalizing around the move-
ment path, as has been found for force field adaptation (Gon-
zalez Castro et al. 2011). These two options are difficult to
tease apart with our current methodology because the strategic
movement plan deviates from the visual target in the same
direction as the movement trajectory, resulting in qualitatively
similar predictions for the two hypotheses. However, a number
of more recent studies have provided convincing evidence in
favor of plan-based generalization over movement-based gener-
alization in visuomotor rotation tasks (Day et al. 2016; McDougle
et al. 2017). Furthermore, a recent study showed that when
participants plan to move two cursors to two separate targets by a
hand movement toward the center between them aftereffects
occur locally around both targets, but interference dominates
when they plan to move to the central target (Parvin et al. 2018).
In force fields, three recent studies showed that interference is
reduced when similar trajectories are associated with different
movement plans while practicing opposing force fields (Hi-
rashima and Nozaki 2012; Sheahan et al. 2016, 2018). Similarly,
opposing force fields were learned with the same trajectory when
participants intended to control different points on a virtual object
(Heald et al. 2018). Finally, irrespective of our reinterpretation
above, Woolley and colleagues’ (Woolley et al. 2011) results
show that local dual adaptation with similar physical movements
is possible, providing further evidence against movement-based
generalization in visuomotor rotation tasks.

Rather than a fixed center of generalization, one might
expect that the brain adaptively exploits the task structure by
linking memory separation to those cues that are sufficiently
distinct. Our data for implicit learning do not support this
possibility, as otherwise we would have expected aftereffects
in experiment 3 to be shaped by learning around the separate
visual targets rather than interference. However, it is still
possible that such a shift in cue relevance may occur under
different circumstances (e.g., longer practice). More generally,
we may ask if local learning of multiple transformations
evolves according to an underlying model that is specifically
adapted to the practice scenario or if it is merely the sum of
single transformation learning. Previous studies have consid-
ered a model-based approach and varied practiced target di-
rections to distinguish between these possibilities (Bedford
1989; Pearson et al. 2010; Woolley et al. 2011). We note that
this approach becomes more difficult under plan-based gener-
alization, since the centers of single adaptation can no longer
be taken to be fixed but depend on flexible cognitive strategies,
thus complicating quantitative inference. As noted above, we
would expect explicit strategies to be in principle highly
adaptable to even complex task structures under the right
circumstances, although some default preferences may exist
(Bedford 1989; Redding and Wallace 2006; van Dam and Ernst
2015), whereas implicit learning is likely more stereotypical.

Relation to Force Field Learning

With respect to the relevance of our findings to visuomotor
transformation learning in general, we need to consider the
possibility that dual adaptation in force fields may differ from
that in cursor rotations. Presumably because of the less trans-
parent nature of the transformation, aiming strategies are
harder to conceptualize in force field learning and may play
less of a role (McDougle et al. 2015). Furthermore, it is
possible that the state space representing implicit internal
models for force compensation incorporates more and different
dimensions than a visuomotor map representing cursor rota-
tions. For example, movement velocity is theoretically relevant
for compensating velocity-dependent force fields but not for
velocity-independent cursor rotations.

These differences may reconcile diverging interpretations
for the role of visual workspace separation as a cue in force
fields and cursor rotations (Hegele and Heuer 2010; Howard et
al. 2013). In force fields, the visual workspace may be part of
the state-space representation of implicit learning, thus en-
abling learners to acquire opposing transformations locally in
this state space when visual workspace locations are separate
(Howard et al. 2013). In cursor rotations on the other hand, the
role of the visual workspace appears confined to being a
contextual cue for explicit strategies (Hegele and Heuer 2010),
as corroborated by our present findings.

Despite these differences, the recent studies showing that
opposing force fields can be learned when different plans are
associated with identical trajectories (Hirashima and Nozaki
2012; Sheahan et al. 2016, 2018) indicate that principles
similar to those we found in this study may apply across
kinematic and dynamic transformations. It should be noted that
our present results extend these findings by showing that the
plan does not need to be tied to a visual target, in line with
learning from sensory prediction errors being independent of
visual target presence (Lee et al. 2018). The extent to which
plan-dependent force compensation can be characterized as
explicit or implicit remains to be clarified.

Relation to Models of Dual Adaptation

A number of models have been proposed to formalize the
underlying computational principles of dual adaptation to op-
posing sensorimotor transformations (Ghahramani and Wolp-
ert 1997; Howard and Franklin 2015, 2016; Lee and
Schweighofer 2009; Lonini et al. 2009; McDougle et al. 2017;
van Dam and Ernst 2015; Wolpert and Kawato 1998). Many of
these models share the common feature that a set of indepen-
dent bases encodes a visuomotor map and that these bases learn
from errors depending on how close the movement was to their
preferred direction in some relevant cue space. Indeed, it has
been suggested that the shape of the neural tuning functions
that give rise to generalization across different target directions
may underlie the pattern of interference observed in dual-
adaptation paradigms (Howard and Franklin 2015, 2016; Sar-
wary et al. 2015). Applying these models to our results, they
can in principle explain the local, implicit generalization phe-
nomena we observed via limited local generalization if we use
the explicit movement plan as the relevant cue. This implies a
serial arrangement where the motor plan feeds into the implicit
adaptation model. A previous model comparison study con-
cluded that distinct motor learning processes are arranged in
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parallel (Lee and Schweighofer 2009). However, they arrived
at this conclusion by sequential comparison of different models
with the underlying assumptions considering neither locally
limited generalization nor specific properties associated with
explicit planning. Therefore, their conclusion may not apply
when these are taken into account.

Implications for Experiments and Real-World Tasks

Irrespective of underlying computations or neural processes,
our results have important consequences for behavioral exper-
iments and their interpretation with respect to real-world be-
havior. Thus our results show that the implicit mechanism that
underlies aftereffects can learn opposing visuomotor transfor-
mations locally for specific parts of the workspace without
forming separate visuomotor maps, provided that contextual
cues allow separate aiming strategies to be associated with
opposing transformations. This finding suggests that observing
dual/opposing aftereffects following training at the same target
locations or even with overlapping hand paths still does not imply
the formation of separate implicit visuomotor maps. Instead,
posttests may be probing local dents within a single visuomotor
map if participants’ aims resemble those during practice. Alter-
natively, when participants are instructed to aim toward the visual
target, aftereffects may be absent because the generalization
function is probed at the point of maximal interference, as in our
experiments 1 and 2. This phenomenon is also likely to explain the
absence of aftereffects in a previous study of ours (Hegele and
Heuer 2010). Overall, researchers need to take into account the
possibility that flexible movement plans form a complex gener-
alization landscape, particularly when learners are practicing mul-
tiple sensorimotor transformations.

With respect to the introductory example, we would expect
the use of different tools to be realized by distinct motor
memories comprising different visuomotor mappings, given
that successful tool use does not appear to be constrained to a
small range of directions, except by biomechanical constraints.
Given our present results and the fact that most studies on dual
adaptation do not differentiate whether learning observed by
them is explicit or implicit and if it occurs locally or in separate
visuomotor maps, we do not currently see compelling evidence
that the mechanism that underlies implicit aftereffects in visuo-
motor dual adaptation is indeed relevant for learning to use
different tools by a priori context inference. Further research is
needed to identify cues that may indeed support separate, implicit
visuomotor maps by this mechanism. Other than identifying
“preexisting” cues, an interesting question is whether such cues to
separate implicit learning may be learned by associations over a
longer timescale, as suggested previously (Howard et al. 2013).
Alternatively, participants could learn these skills by explicit
strategies that become automatized into implicit tendencies for
action selection (Morehead et al. 2015), in line with canonical
theories of motor skill learning (Fitts and Posner 1967). The role
of the process that produces aftereffects, on the other hand, may
be limited to calibrating the system to changes that are more
biologically common, such as muscular fatigue. Such a division of
responsibilities would be reminiscent of the classical distinction
between learning of intrinsic (body) vs. extrinsic (tool) transfor-
mations (Heuer 1983). Our results therefore highlight the impor-
tance of distinguishing between different concepts of dual adap-

tation, i.e., local shaping of a single vs. the formation of separate
visuomotor maps.
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