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Predicting Perceived Naturalness of Human Animations Based
on Generative Movement Primitive Models
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We compared the perceptual validity of human avatar walking animations driven by six different representations of human
movement using a graphics Turing test. All six representations are based on movement primitives (MPs), which are predic-
tive models of full-body movement that differ in their complexity and prediction mechanism. Assuming that humans are
experts at perceiving biological movement from noisy sensory signals, it follows that these percepts should be describable
by a suitably constructed Bayesian ideal observer model. We build such models from MPs and investigate if the perceived
naturalness of human animations are predictable from approximate Bayesian model scores of the MPs. We found that cer-
tain MP-based representations are capable of producing movements that are perceptually indistinguishable from natural
movements. Furthermore, approximate Bayesian model scores of these representations can be used to predict perceived nat-
uralness. In particular, we could show that movement dynamics are more important for perceived naturalness of human
animations than single frame poses. This indicates that perception of human animations is highly sensitive to their temporal
coherence. More generally, our results add evidence for a shared MP-representation of action and perception. Even though
the motivation of our work is primarily drawn from neuroscience, we expect that our results will be applicable in virtual and
augmented reality settings, when perceptually plausible human avatar movements are required.
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1 INTRODUCTION

The perception of biological movement! is of paramount importance for humans: in many situations, in real life
as well as in virtual reality, it is necessary to predict internal states and goals of other actors from observed body
movements. Such predictions are facilitated by a model of relevant degrees of freedom (DOF), and the abstrac-
tion of redundant ones. Strong evidence for the existence of such a model from a neuroscientific perspective
is provided by the point-light walker experiments of Johansson (1994): just a few dots resembling the human
body’s spatial configuration and dynamics are enough for robust detection of activities like walking, dancing,
and the like. Practical evidence is given by the everlasting struggle of animators to produce perceptually valid
human animations (without relying on motion captured data).

A related abstraction problem must be solved in motor production: our bodies have many more DOFs than
needed for any given movement (Bernstein 1967); hence, the redundant DOFs need to be bound or remain un-
controlled. One way to bind these DOFs is via movement primitives (MPs) or synergies, as predicted by optimal
control feedback theory (Todorov and Jordan 2003).

This relationship between movement perception and production suggests that a shared representation might
be used to address them both, as proposed by the common coding hypothesis and the theory of event coding
(Friston 2010; Hommel et al. 2001; Prinz 1997; Shin et al. 2010; Wolpert et al. 2003). However, this hypothesis
does not specify the level of representation on which the common coding happens. We therefore investigate
whether MPs are candidates for such a shared representation. Their suitability for complex movement production
has already been demonstrated (Clever et al. 2017; Giszter 2015; Ijspeert et al. 2013; Omlor and Giese 2011), we
would like to determine how close human perceptual performance is to an “ideal observer” comprised of MPs.

The “ideal observer” assumption is motivated by the apparent ease with which we perceive and interpret our
fellow humans’ movements: we hypothesize that movement perception is another instance where we behave
nearly Bayes-optimally (Knill and Pouget 2004). Hence, human perceptual expectations should be predictable by
Bayesian model comparison between MP models. To test this hypothesis, we trained generative MP models on
kinematic data of walking movements, and compared movements based on these MPs in a Graphics Turing Test.
We are also interested in determining the model scores which are most predictive of human expectations.

2 RELATED WORK

Biological motion perception induced by point-light-stimuli is a related, and heavily investigated research topic
(for an overview, see Troje (2013)): point-light stimuli, first introduced to demonstrate the perceptual binding
of different points to one “Gestalt” (Johansson 1994), they have been used to study the perception of movement
isolated from body shape and other cues (Bertenthal and Pinto 1994; Casile and Giese 2005; Troje 2002; Troje
et al. 2005).

We are not concerned with the shape inference process from point-light-displays or stick figures, therefore
we use 3D avatars, which are closer to natural stimuli. It has been shown that human observers have a higher
sensitivity for detecting differences in movement when using 3D avatars compared to stick figures (Hodgins
et al. 1998).

Motivation to use MPs as perceptual representations of movement is given by an action-perception coupling
on the neural level (Dayan et al. 2007): the famous “2/3 power law”, an obseved invariant in curved drawing
movements, seems to have a perceptual representation in the brain. Parabolic MPs can simultaneously obey the
2/3 power law and minimize jerk, which has been proposed as a control principle for arm movements (Polyakov
et al. 2009). Perceptual experiments investigating the segmentation of taekwondo solo forms imply that higher
order polynomial MPs might be more appropriate perceptual descriptors for full-body movement (Endres et al.
2011).

IThe term “biological motion” has been used to denote a point-light display of (biological) movement. We use the term ‘human animation’
for a 3D-rendered display of movement.
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In an experiment similar to ours, it has been shown that hierarchical Gaussian process dynamical models can
synthesize hand shake movements indistinguishable from natural ones (Taubert et al. 2012). Furthermore, the
perception of emotion based on spatio-temporal MPs has been investigated by Roether et al. (2009) and Chiovetto
et al. (2018). In our study, we are interested in comparing different MP types in a unified Bayesian framework
(Endres et al. 2013) with respect to the perception of naturalness.

3 MODELS AND EXPERIMENTAL METHODS

In this section, we first introduce the investigated MP models, which are used to generate the stimuli for graphics
Turing test (McGuigan 2006). Next, we describe our experiment designed to determine the perceived naturalness
of the generated walking movements. Finally, we explain the data analysis methods used to predict the perceived
naturalness from approximate Bayesian model scores.

3.1 Movement Primitives

MPs refer to building blocks of complex movements, but there is little consensus on an exact definition. Con-
sequently, many different types of MPs have been proposed in literature (Endres et al. 2013). These types can
be classified as spatial (Giszter et al. 1992; Tresch et al. 1999), temporal (Clever et al. 2016; Endres et al. 2013),
spatio-temporal (d’Avella et al. 2003; Omlor and Giese 2011) and dynamical MPs (Ijspeert et al. 2013).

We focus on dynamical and temporal MPs in this study, as we are interested in finding a higher level repre-
sentation suitable for modeling perception, as opposed to spatial MPs, which have been used to model muscle
synergies in the spinal chord (Giszter 2015). Anechoic mixture models have been proposed to enable phase shifted
combinations of MPs (Chiovetto et al. 2018; Omlor and Giese 2011). We do not explicitly test this type of MP
here, since the relative phase shifts the walking movements we studied are negligbile.

We perceptually validate 6 generative MP models: Temporal MPs, Dynamical MPs and 4 flavors of the Gaussian
Process Dynamical Model (GPDM) (Velychko et al. 2018; Wang et al. 2008): GPDM, variational GPDM, coupled
GPDM, and variational coupled GPDM.

In this section, we can only provide a rough overview, just enough to enable readers from different back-
grounds to understand parameters of the stimuli for the psychophysical experiment. Please refer to the cited
papers for detailed information. Velychko et al. (2018) also provide graphical model representations and summa-
rize the features of the MP models presented in this chapter.

3.1.1 Temporal Movement Primitives (TMP) (Clever et al. 2016). Temporal MPs describe the stereotyped tem-
poral patterns of movement parameters (for example EMG, but also joint trajectories as well as endpoint tra-
jectories). A possible biological implementation of temporal MPs might be central pattern generators (CPGs)
(Ivanenko et al. 2004) combined with cortical top-down control. Temporal MPs incorporate a temporal predic-
tive mechanism: the complete time-course of the movement is determined at its onset. This type of MPs allows
for simple concatenation and temporal scaling.

The trajectory xx(t) of a DOF Xj, e.g., a joint angle, is a weighted sum of Q MPs Y, which are functions of
time y4(t). £;(t) ~ N(0, 0;) is Gaussian observation noise:

Q
i (t) = D Wi gtg(t) + €i(0). (1)
q=1

We treat the number of MPs as ideal observer model parameter to be determined. In general, more MPs allow
for more fine-grained temporal structure of the movement, but might lead to over-fitting. To determine the MPs
and their number, we follow the approach of Clever et al. (2016): weights w and MPs Y, have a Gaussian Process
(GP) prior and are learned from the training data by maximizing a variational lower bound on the Bayesian
model evidence (ELBO, evidence lower bound). The ELBO is equal to the negative free energy (Friston 2010). In
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keeping with the free energy/Bayesian brain theory, one would therefore expect that the ELBO should be useful
for selecting the appropriate number of MPs Q for the generation of perceptually valid movements.

3.1.2  Dynamic Movement Primitives (DMP) (Ijspeert et al. 2013). While temporal MPs directly model the move-
ment parameters (e.g., trajectories or muscle activations), DMPs describe the stereotyped elements of movement
as attractors of a dynamical system, thus enabling the prediction of the next state from the previous ones. Build-
ing on the hypothesis of separate brain areas for rhythmic and discrete movements, two kinds of dynamical
systems are common: cyclic oscillators and point attractors (Schaal 2006).

More formally: DMP models represent a movement trajectory xx () obeying a differential equation. They rely
on a damped spring system which forces xx(t) to contract to the specified goal gy, if the dampening factor is
high enough. Through the non-linear forcing function f; (Equation (2)) the trajectories can be modified. This
function is modeled as weighted sum of Gaussian basis functions ¥;(z) (Equation (4)). Time is replaced by z,
which decays exponentially to zero (Equation (3)). DMPs are learned from training data by setting the weights
w; such that the training mean-squared error (MSE) is minimal.

i = @ (Ba(ge — xi) — %¢) + fie(7) @)

T o —T (3)
Zﬁ i (1) Wi, i

filr) = lﬁl—%)"r(gk — x¢(0)). @)

The number of basis functions N is the ideal observer model complexity parameter. It serves a similar role
as the number of MPs in the TMP model: more basis functions allow for more complicated forcing functions,
which enable richer temporal dynamics. The number can, e.g., be selected by cross-validation, we investigate if
N reflects the perceived naturalness.

3.1.3  Gaussian Process Dynamical Model (GPDM) (Wang et al. 2008). Learnable dynamical systems for move-
ment representation have been proposed in the context of computer graphics: the GPDM is a state-space model,
which learns a dynamical mapping in a latent space of the whole-body movement. Such a model is also phys-
iologically attractive, because it is able to reflect the dynamic nature of the environment and the body itself,
without explicit assumptions of their form (Shenoy et al. 2013; Sussillo et al. 2015).

In contrast to DMPs, GPDMs learn a full dynamical model of latent variables Y in discrete time, which are
mapped onto the observed DOFs Xj. Both the dynamics mapping f () (Equation (5)), as well as the mapping from
latent to observed space g() (Equation (6)) are drawn from Gaussian process priors, hence the name. dt denotes
the time discretization step-size:

y(t) = f(y(t —dt)) + ey, )
Xk (t) = g (y(t)) + éx,1. (6)

There are two main drawbacks which make the GPDM unlikely as a perceptual MP model: (1) there is no
(obvious) way of a recombination operation that would make GPDMs modular. Modularity here refers to the
possibility of generating a large repertoire of movements from the recombination of a small number of MPs.
(2) Due to the non-parametric GPs prior, the movements are the movement representation, which is not compact.

A further consequence of this non-parametric prior is no explicit ideal observer model complexity parameter.
Therefore, we compare the GPDM estimated by maximum a-posterioriinference (MAP) with the other movement
primitive representations. The GPDM can also be trained by variational inference, giving rise to the vGPDM. This
is a special case of the variational coupled GPDM described in 3.1.5.

3.1.4 Coupled Gaussian Process Dynamical Model (cGPDM) (Velychko et al. 2014). The cGPDM was proposed
to make GPDMs modular. Here, one learns different dynamical models for different body parts. Each body part is
described by a GPDM, where the latent variables predict not only the next time-step of their associated body part,
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but also the temporal evolution of other body parts via coupling functions. This way, flexible coupling between
body parts is possible. The vCGPDM can be regarded as a middle ground between DMPs encoding single DOFs,
and the monolithic GPDM. The latent dynamical systems can thus be thought of as flexibly coupled CPGs routing
commands to the muscles.

As with the MAP-trained GPDM introduced in the previous section, there is no explicit ideal observer model
complexity parameter in the MAP-trained cGPDM.

3.1.5  Variational (Coupled) Gaussian Process Dynamical Model (v(C)GPDM) (Velychko et al. 2018). The vCG-
PDM compresses the movement representation of cGPDMs by introducing sparse variational approximations
with a deterministic learning scheme. Here, each MP is parameterized by a small set of inducing points (IPs)
and associated inducing values (IVs), leading to a compact representation with constant storage requirements.
Flexible recombination of these IPs/IVs for each body part enables the required modularity. The initial choice of
IPs/IVs is the only remaining source of stochasticity in the training process. It may have measurable effects, as
we will show below. We use IPs for both mappings, seving as ideal observer model parameters: “dynamics” IPs
for the dynamical model mapping, and “pose” IPs for the latent-to-observed variable mapping. More dynamics
IPs allow for richer dynamics (similar to the parameters of DMP and TMP), while more pose IPs will allow for
more (spatial) variability of poses.

An IP/IV pair might be thought of as a prototypical example for the mappings drawn from their associated
Gaussian process. They thus provide some abstraction from the observed movement and might be implemented
by small neuronal populations. Similar to the TMP, the vCGPDM is trained by maximizing an ELBO. The ELBO
can be decomposed into one summand per part that describes the quality of the latent-to-observed mapping
(“pose ELBO”) and one summand for the dynamics mapping (“dynamics ELBO”).

In our experiments, we set the number of body parts to M = 2 with one part corresponding to the upper body
and one to the lower. By setting M = 1, we recover a variational version of the GPDM, denoted vGPDM.

3.2 Experiment

Our experiment was split in two parts, with the second part’s parameter choices based on the results of the first
part. Next, we describe the participants, the generation of stimuli, and then we detail the experimental paradigm.

3.2.1 Participants. We invited 31 participants to participate in the first part of the experiment via our par-
ticipant management system (SONA System) and the university’s mailing list. Due to technical problems, we
excluded one participant from the analysis. The remaining 21 female and 9 male participants were between 19
and 44 years old (¢ = 24.7a, 0 = 5.8a). Based on the results of this first part, we invited 26 participants to perform
the second part of the experiment (19 female, age between 19 and 37 years, u = 23.9a, o = 4.2a). All participants
had normal or corrected-to-normal vision and received course credit or financial compensation (8€/h) for partic-
ipation. The experimental procedures were approved by the local ethics committee and the study was conducted
in accordance with the Declaration of Helsinki. Informed written consent was given by all participants prior to
the experiment.

3.2.2 Stimuli. We employed a 10-camera PhaseSpace Impulse motion capture system to capture walking
movements of an actor, and used our skeleton estimation software (Velychko and Endres 2017) to estimate a
skeleton geometry with 18 joints, pose (Euler angles of each bone relative to the corresponding parental bone)
and position and rotation of the pelvis bone. The results were stored in the Biovision Hierarchical Data format
(bvh). From these data, we selected 49 sequences containing 3 gait cycles.

We used all 49 walking sequences to render the natural stimuli. Using the trained models, we generated 1,758
movement sequences (see next subsection), which served as artificial stimuli. Given the natural and generated
bvh-files, we used Autodesk MotionBuilder to animate a gray avatar (see Figure 1) with body size and shape
similar to the actor. We then rendered these animations into the videos used as stimuli. All resulting stimuli have

ACM Transactions on Applied Perception, Vol. 16, No. 3, Article 15. Publication date: September 2019.



15:6 « B. Knopp et al.

35s

Auf welcher Seite haben Sie die

natiirlichere Bewegung until response

wahrgenommen?
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A

Fig. 1. llustration of experimental procedure. Each trial begun with a fixation period of 0.75s. Then, participants watched
simultaneous replays of natural and generated movements for 3.5s. After the presentation the participants were asked “On
which side did you perceive the more natural movement?” and responded using the arrow keys of an keyboard.

alength of 3.5s with 60 frames per second. We supplied a demo video of some example trials in the supplementary
material to give the reader a good impression of the stimuli and the task.

3.2.3  Stimulus Generation. We trained each MP model on nine gait sequences, and used the trained model to
predict a tenth sequence. This enabled us to compute a leave-one-out cross-validation score for each model. Fur-
thermore, the predicted sequence of joint angles was used for stimulus generation, as described above. Dynamical
models were initialized with starting conditions taken from the training data. Sometimes the training procedure
failed, because it is dependent on random initial values of the optimization algorithm. We hand-labeled obvious
failures (e.g., sliding, limping, jerking, (see suppl. mat. first trial for an example)), excluding them from the data
analysis, but retaining them to enable us to check the attention of the participants. Tables 1 and 2 summarize
the tested models and ideal observer parameters. A more detailed description of the training procedure can be
found in Velychko et al. (2018). We trained each model until the training target (ELBO or training MSE) did not
change within machine precision anymore, but at most for one day. Most models were done training in a much
shorter time.

3.24 Procedure. Participants were asked to distinguish between natural and generated movements in a two-
alternative forced-choice task. For this, we designed an experiment using PsychoPy (Peirce 2009). During the ex-
periment, participants were sitting in front of a 24-inch computer screen. After reading the written instructions,
each trial proceeded as follows: (1) a fixation cross appeared for 0.75s, (2) followed by simultaneous side-by-side
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presentation of generated and natural stimuli for 3.5s, and (3) finally collecting the participant’s response, in-
dicating on which side the more natural stimulus was perceived. Participants were instructed to use the arrow
keys of a standard computer keyboard to submit their answer. They used the left index finger for the left arrow
key, and the right index finger for the right arrow key. Both avatars were walking in the same direction, which
was drawn randomly for each trial (see Figure 1).

Each participant of the first part of the experiment carried out 643 trials in four blocks, which took approx-
imately 90 minutes. With these 643 trials, 119 models were evaluated: each participant rated 1 to 10 artificial
stimuli randomly drawn from the total set of 10 artificial stimuli for each model. These were tested against a
randomized repetition of 44 natural stimuli. To test whether participants simply memorized the natural stimuli
during the experiment, we added 6 catch trials in the last quarter of the experiment where previously unused
natural movements were tested against the known natural stimuli.

For the second part of the experiment, we split the total number of 629 trials into two conditions with 314
and 315 trials, allowing the participants to participate in one or both at their convenience. Participants were
distributed equally among both conditions. Each condition was split into 7 blocks, with 30s pauses in between.
After the first part of the experiment, we determined that memorization effects could be disregarded. Hence, we
decided not to use catch trials in the second part. Sixty-seven models were tested in each condition. The available
artificial stimuli for each model were distributed equally between conditions, and presented randomized for each
participant.

3.3 Data Analysis

The rationale of the experiment is as follows: after simultaneous presentation of artificial and natural (motion-
capture-based) human animations, the participant is forced to choose the one perceived as more natural. The
answer is communicated via key press. In each trial i, we compute a random variable R; from the key press,
which assumes the value r; = 1 if the participant was fooled by the artificially generated stimulus, and r; = 0
otherwise. Thus, R; is a Bernoulli distributed random variable. We assume the confusion rate p; to be dependent
on only the ideal observer parameters of the generated stimulus, such as number of basis-functions/MPs/IPs or
model scores (see Section 3.1):

i 1-r;
pRi=r)=p;'(1—p;)' " (7)
We assume a conjugate p(oste)rior on the confusion rate p;, i.e., a beta distribution, and compute error bars
on p; under this assumption. Please note that we decided to report the confusion rate as “success”-measure from

the perspective of the model, which we want to evaluate, instead of reporting the discrimination ability of the
participant 1 — p that is frequently used in the psychophysics literature.

Power Analysis. We would like to determine if the confusion rate of an artificial stimulus with a natural stim-
ulus is less than chance. More precisely, denote hypothesis HO: p; € [0.45,0.55] and H1: p; ¢ [0.45,0.55]. We
choose the number of trials such that the falsehood of HO is discovered with power 0.8 when H1 is true, i.e.,
1 — P(Hy|H;) = 0.8. This yields a number of N = 158 trials for each parameter combination. Considering this
number and our goal to test a wide range of parameter combinations (120 in total), the resulting number of trials
is too large for a single participant. We therefore distribute the necessary trials across participants, excluding
the possibility of inter-participant comparisons.

Logistic Regression. Each stimulus parameter combination is associated with scores S; measuring the quality of
the generated movement after training: the predictive mean squared error (MSE) for all models, ELBO for TMP,
and v(c)GPDM models and dynamics- and pose-ELBO only for the v(c)GPDM models. We use logistic regression
to find the relation between these model scores and the confusion rate:

c
pi

(8)

- 1+ exp(wg + w1 S;),
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where ¢ € [0, 0.5] reflects our assumption that the confusion rate can at best approach chance level. Assuming
independence across N trials, we can compute the log-likelihood of all trials:

N
p(ri, ..., rnlwo, wi) = log (l_[P(ri)) )
N - N
= > rilog(pi) + ) (1 =) log(1 - py). (10)
i=1 i=1

We now learn the weights (w;", w') by maximizing the log-likelihood function using the scipy.optimize.
fmin_1_bfgs_b routine (Jones etal. 2001). The gradients required for this optimizer are computed with autograd
in Python 3.6.

Cross-Validation. We test the predictive capabilities of the different regressors S; using n-fold cross-validation:
the data set is split into n blocks, then weights are learned using n-1 blocks, and the log-likelihood of the left-out
block is computed. This procedure is repeated n times, and the average left-out log-likelihood is used as score.

Logarithmic Likelihood-Ratio. We compare the predictive power of the different regressors against the null
hypothesis: p; is independent of S;. We can now compute the cross-validatory log(likelihood-ratio) to evaluate the
evidence for the statement “Model score S; is more predictive of perceived naturalness than the best constant p;”.

4 RESULTS

We present the following results: participant evaluation, estimation of interesting parameter regimes, and finally
comparison of model scores regarding their predictive power.

4.1 Evaluation of Participants

Attention Checks. During all parts of the experiment, we presented participants with attention check trials,
where different, clearly unnatural stimuli had to be detected. We measured the detection rate of these stimuli.
There were 17 attention check trials in the first part of the experiment and 15/14 in the second part’s conditions.
Over all trials, the detection rate was 98.0%. Three participants of the experiment had a detection rate of under
85%. These were excluded from further data analysis.

Catch Trials. During the first part of the experiment, we collected data from 162 catch-trials. 72 responses
specified the previously unknown stimulus as more natural (44.4%). The probability that these responses are
random, i.e. that they were generated by a Bernoulli process with p = 0.5 vs. p # 0.5 (p ~ beta(1,1))is = 0.8. We
are therefore fairly certain that the participants did not use memorization strategies for their response.

4.2 Estimating Regions of Interest in Parameter Space

We evaluated the perceived naturalness of 103 models using 976 stimuli during the first experiment (see Table 1).
We collected 16902 trial responses from 27 participants in the first part of the experiment. Each participant
completed 620 trials to estimate the confusion rate of models after exclusion of catch trials and attention checks.
Across all trials, the confusion rate was 0.228. Please check the supplementary material to find a video with some
example trials (with simulated random answers) to get an impression of the visual consequences for different
models.

We used the results of this first part of the experiment to estimate more models of interest. For the TMP
models, we decided after inspection of the confusion rate (Figure 2, left) to increase the number of MPs up to 15.
Interestingly, the confusion rate seems to converge in the slightly hyper-realistic regime at p = 0.55. For the DMP
models, we decided on testing numbers of basis function ranging from 50 to 100 (Figure 2, right). The confusion
rate peaks at 80 basis functions. This does not coincide with the minimal predictive MSE, which is reached with
25 basis functions and increases from there on.
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Table 1. Overview of Generated Trials for Each MP Model Type, Number of
Attention Check Trials, and Number of Tested Parameter Combinations (After
Excluding Attention Check Trials) in the First Part of the Experiment

MP model type # Trials # Att. checks # Parameters combinations

vCGPDM 7,290 108 45
vGPDM 6,156 297 38
TMP 1,458 0 9
DMP 1,296 54

¢GPDM (MAP) 270 0 1
GPDM (MAP) 270 0 1
Total 16,740 459 102

The confusion rates of the vGPDM models peak at (35, 10), (30, 20), (20, 20), (25, 35) (#IP Dynamics, #IPs
pose) parameter combinations. These four parameter combinations are indistinguishable from natural stimuli
(Figure 3, left). We estimated, by visual inspection, the location of the maximal confusion rate assuming that the
confusion rate is described by a concave function of the parameters with additional noise. This yielded (25, 25)
as the location of the global maximum.

The measured confusion rates of the vCGPDM models are equal at (20, 15) and (20, 20). We estimated (25, 20)
to be a global maximum for the vCGPDM, in the same manner as for the vGPDM. Based on our power analysis
and time budget, we decided on testing 67 parameter combinations for vGPDM and vCGPDM each. This way,
we ended up testing 629 additional stimuli for the second part of the experiment (see Figure 4).

We also included GPDM and CGPDM models trained by MAP (maximum a-posteriori) instead of the ELBO.
We measured confusion rates of 0.000 + 0.004 for the MAP-GPDM, and 0.11 + 0.02 for the MAP-CGPDM. These
models were not tested again in the second part of the experiment. All resulting models are summarized in
Table 2.

4.3 Predicting Perceived Naturalness

Using data from both experimental parts, we predicted the confusion rate from model scores via logistic regres-
sion. The results are shown in Figure 5 for TMP and DMP models and in Figure 6 for vGPDM and vCGPDM
models. Depicted are the measured and predicted confusion rates for the tested models (columns), and different
scores (rows). Furthermore, cross-validation results are summarized as log likelihood-ratio “In K” of the predic-
tion of the respective regressors versus the constant prediction (null-) hypothesis above each graph. Each “X”
represents the confusion rate achieved by a unique parameter combination. The regression yields best results for
the TMP models. MSE and ELBO of TMP models have similar predictive capabilities, as they are highly correlated
in the investigated parameter regime. While the MSE also has predictive power for the v(C)GPDM models, the
ELBO is not a suitable regressor. Inspection of the pose and dynamic terms of the ELBO reveals that this is due
to the low score of the pose ELBO: In K ~ —0.7. The dynamic ELBO on the other hand even surpasses the MSE
for the vCGPDM (Figure 6, left). Visual inspection of the logistic regression result for the DMP models shows
that there is no simple sigmoidal relation between the perceptual validity and the DMPs MSE. This corresponds
to the mismatch between MSE and confusion rate reported in Figure 2.

4.4  Comparing Best Models of Each MP-class

We plotted the confusion rate of all MP-models over the MSE in Figure 7. Even though a small MSE indicates
better perceptual performance of the models, the relationship between MSE and confusion rate differs between
the MP-model classes. For example, the vGPDM achieves high confusion rates even with high MSE.
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Fig. 2. Confusion rate, MSE, ELBO (from top to bottom) of TMP (left) and DMP (right) models for investigated model
parameters. Data of first part of the experiment is colored blue, data of the second part is colored red.

For comparison of model performance we chose the best performing model of each MP-class, and computed
the probabilities of all 6! = 720 many possible orderings of the models by confusion rate. We assumed beta(1,1)
priors on the rate and a Bernoulli observation model, as before. The most probable ordering is TMP > vGPDM >
DMP > vCGPDM > CGPDM(MAP) > GPDM(MAP) with a probability of 0.36. We computed marginal confusion
rates and marginal pairwise ordering probabilities, see Figure 8. TMP, vGPDM, and DMP are comparable, while
all other models are clearly worse. We used the same statistical model to test if the TMP’s confusion rate is above
0.5, i.e., whether human participants perceive the model-generated stimulus as more natural than the natural
one. Given our data, we are ~ 0.99 sure of that.

ACM Transactions on Applied Perception, Vol. 16, No. 3, Article 15. Publication date: September 2019.



Naturalness Perception of Movement Primitives « 15:11

vGPDM vCGPDM
0.310.30 0.34 0.150.10

-0.5

0.27 0.21 0.32 0.22 0.06 0.25

0.30 0.30 0.35 0.26 [(0R“E] 0.18

(VN1 0.46 0.46 (UNPAVK)

0.16 0.25 0.02/0.35 0.23 0.28 0.30 0.28 0.23 0.24 0.20

15 20 25 30 35

#IPs Dynamics
Confusion rate

0.1210.33 0.29 0.19 0.01 0.00 0.23 0.21 0.14 0.02 0.13 0.07

10

0.02 0.02 0.13 0.17 0.17 0.21 0.17 0.02

5

1 1 1 1
5 10 15 20 25 30 35 5 10 15 20 25 30 35
#IPs Pose #IPs Pose

Fig. 3. Confusion rate of v(c)GPDM models in first part of experiment: Number of inducing points for the pose mapping on
the x-axis, and for the dynamics mapping on the y-axis. The attention check parameter combinations are indicated by the
white squares, where the model training procedure converged to obviously unnatural movements. Numbers on tiles are the
measured confusion rates.
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Fig. 4. Confusion rate of v(c)GPDM of first and second part of the experiment: Data of second part of the experiment are
clustered around (25, 25) for vVGPDM and (25, 20) for vVCGPDM. Confusion rates are indicated by the same color-map as in
Figure 3.

5 DISCUSSION

The tested MP models incorporate different (perceptual) predictive mechanisms: While TMPs determine the
complete time course, the dynamical models make predictions for each next time-point from previous ones.
The dynamical models therefore have advantages in feedback control applications where perturbations must be
expected. TMPs, on the other hand, make perceptual predictions, as well as planning, easy, as there is no roll-out
necessary to access the end-state of a movement.

The perceptually most valid, even hyper-realistic model is the variationally trained TMP. The shared repre-
sentation between perception and production may therefore be more abstract: one dynamics model paired with
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Table 2. Overview of Generated Trials for Each MP Model Type, Number of
Attention Check Trials, and Number of Tested Parameter Combinations in the
Second Part of the Experiment

MP model type # Trials # Att. checks # Parameters combinations

vCGPDM 4,233 17 25
vGPDM 4,097 476 31
TMP 850 0 5
DMP 1,020 0 6
Total 10,200 493 67
TMP DMP
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Fig. 5. Confusion rate of TMP (left) and DMP (right) models as function of model scores: MSE (top) and ELBO (bottom).
Blue and red ”X”s show confusion rates for model-parameters measured during experiment one and two. Green lines are
predictions of the confusion rate (perceived naturalness) from the logistic regression using the regressor corresponding the
abscissa label. Results of the cross-validation are summarized as log likelihood-ratio In K in the top left corner of each plot,
with the text color visualizing low (red) to strong (green) evidence in favour of the regressor being a good predictor of
naturalness perception. See 3.3 for more detail.

a corresponding TMP model that encodes typical (unperturbed) solutions of the dynamics model, for fast per-
ceptual predictions (Giese and Poggio 2000). Currently, we are preparing an experiment to compare TMP and
dynamical MP models regarding their specific predictive mechanism employed in movement perception.

The vGPDM is still comparable to the TMP and the DMP, but that might change with more data. All other
models are clearly worse. However, we are almost certain that the variationally approximated models are better
than their MAP counterparts, which highlights the advantages of sparse variational posterior parametrizations.

We showed that approximate Bayesian model scores (ELBO, held-out MSE) can be used to predict the perceived
naturalness of human animations. Assuming that humans are experts (i.e., nearly ideal observers) at perceiving
their conspecifics’ movements from noisy sensory input, it follows that their movement recognition performance
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Fig. 6. Confusion rate of vVCGPDM (left) and vGPDM (right) models as function of model scores: MSE, Total-, Dynamics-,
Pose-ELBO (from top to bottom). Symbols have the same meaning as in Figure 5. See 3.3 for more detail.
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Fig. 7. Confusion rate of all models vs. test MSE and prediction learned over all models. Same data as in the first rows of
Figures 5 and 6 plus cGPDM (MAP) and GPDM(MAP). Error bars denote beta standard deviation of the confusion rate.

should be near-Bayesian in general. Therefore, in particular, the perceived naturalness of a movement is expected
to be predictable by approximate Bayesian model scores of the MPs. Our confirmation of this prediction adds
evidence to the claim that human perception is nearly Bayes-optimal in many instances.

Comparison of total, dynamics, and pose ELBO as predictor for perceived naturalness of the v(C)GPDM models
yields an interesting result: total ELBO is not a good predictor, because terms related to the latent-to-observed
(pose) mapping apparently have no relevance for the perception of human animations. In contrast, dynamics
ELBO scores indicate that a faithful dynamical mapping is more important than the pose mapping.

These computational level predictions might therefore also provide some insight into the perception of hu-
man animations on a algorithmic/mechanistic level: A feed-forward neural model (Giese and Poggio 2003) has
been proposed arguing for the existence of separate motion and form pathways, where the motion pathway
is performing a form of sequence recognition. Our results can thus be interpreted as additional evidence for
importance of dynamics for perceiving human animations. Similar results have been derived from classical ex-
aminations of point light walkers (for a review, see Giese 2014): While local motion features form the simpler
explanation for the perception of point light stimuli as biological motion than form features (Casile and Giese
2005), it has also been shown that biological motion perception can be induced in absence of local motion fea-
tures (Beintema and Lappe 2002). For discrimination tasks, the information contained in the dynamics of the
movement is more important than posture (Troje 2002).

Even though DMP models can generate highly realistic movement, a disadvantage is the unclear relation be-
tween MSE and perceptual validity. This finding demonstrates that the predictive MSE is not a sufficient indicator
for perceptual performance: it is highly implausible that naturalness of a movement is evaluated by computing
its point-wise deviation from an internal prototype for this movement.

The vGPDM performs comparable to the DMP, whereas the additional modular flexibility of the vCGPDM
does not seem to be needed for our dataset: its best confusion rate is probably (86%) lower than that of the
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Parameter Confusion Error

rate
TMP 14 0.64 +0.04
vGPDM (22,28) 0.55 +0.07
DMP 80 0.54 +0.04
vCGPDM (20,20) 0.46 +0.04
cGPDM (MAP) - 0.11 +0.02
GPDM (MAP) - 0.00 +0.00

TMP -

vGPDM
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Fig. 8. Comparison of best models: (Top) Table of best models with corresponding parameter(-combinations), confusion rate
and standard errors of beta posteriors. (Bottom) Bayesian ordering tests: probabilities that the best parameter combination
of the models in the rows yields a higher confusion rate than the models in the columns. For example, the best TMP model
(row) achieves a higher confusion rate than the best vGPDM model (column) with 87% certainty given our data.

vGPDM. This might also be due to the stochasticity in the training procedure: reachable optima depend on the
random initial values of the optimization. Thus, the determined number of IPs where we suspected the perceptual
optimum did not yield reliably high confusion rates or model scores for the second part of our experiment.

In our study, we only validated perceived naturalness of walking movements. We chose walking movements,
because they are comparatively easy to model, yet highly important especially for animators. We are currently
extending our investigation towards other, more complex movements, such as handling objects. Our hypothesis is
that the main result-the Bayesian model score predicts naturalness perception-will generalize to these different
movements as well, because at no point did we rely on features specific to walking.?

2The only exception is the specification of the DMP’s attractor model, which is not important for our main results.
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In our experimental paradigm we chose simultaneous side-by-side presentation of generated and natural
movement videos. Simultanous presentation has two advantages: At any point in time there is a base-line for
the participants. Presenting one after another would double the time of an already lengthy experiment. Still, the
presentation time is short, thus the participants had to distribute their fixations across the two simultaneously
presented videos. We will test and consider alternative paradigms, e.g., let participants rate naturalness on a scale.
The gain of information per trial might be great enough to sacrifice the indistinguishability criterion. This might
also enable inter-participant analysis, which is not possible in our paradigm, as described in 3.3 (Power Analysis).

6 CONCLUSIONS

Our study shows that MP models are capable of producing perceptually valid movements and we demonstrated
that the prediction of naturalness is possible from model scores. These results add evidence for a shared MP-
representation of action and perception and indicates the possibility of cheap, automated, and perceptually valid
model selection for applications, e.g., in virtual reality. Finding a shared representation of MPs for perception
and action could also provide a tool to study imitation learning in robots (Schaal 1999).

Congruent with previous studies, we found that parameters connected to dynamics are more relevant for
perception than those connected with pose. This result could be useful to further improve generative models
like the vCGPDM, and highlights the importance of prediction in the perception of human animations. While
the Graphics Turing Test is a suitable tool for the estimation of perceived naturalness of movement, an analysis
fixation data could shed some light on the features that drive this perception. Also, it would be interesting to
determine what causes the hyper-realism of the TMP model.

Given that temporal and dynamical MP models have different advantages in movement planning and produc-
tion, one of our current research directions is integrating such models into sensorimotor primitives, which are
joint models of movement production and perception, with the aim of a computationally feasible instantiation of
the common coding hypothesis. Sensory prediction during movement might not only be reflected in the move-
ment itself, but also retrieved by an observer of biological movement, e.g., mime art. Applying such sensorimotor
primitives to computer animation would enable a much more flexible interaction with avatars in virtual reality:
Perceptually valid primitives could incorporate environmental constraints as well as the VR users movements,
and be composed to form complex responsive behaviour of the avatar.

ACKNOWLEDGMENTS
We thank Olaf Haag for help with rendering of the stimuli and collecting data.

REFERENCES

Jaap Beintema and Markus Lappe. 2002. Perception of biological motion without local image motion. Proceedings of the National Academy of
Sciences 99, 8 (April 2002), 5661-5663. DOI : https://doi.org/10.1073/pnas.082483699

Nikolai Bernstein. 1967. The Co-ordination and Regulation of Movements. Pergamon-Press. https://books.google.de/books?id=
kX50AQAATAA]

Bennett Bertenthal and Jeannine Pinto. 1994. Global processing of biological motions. Psychological Science 5, 4 (1994), 221-225. DOI : https:
//doi.org/10.1111/j.1467-9280.1994.tb00504.x

Antonino Casile and Martin A. Giese. 2005. Critical features for the recognition of biological motion. Journal of Vision 5, 4 (April 2005), 6—6.
DOI : https://doi.org/10.1167/5.4.6

Enrico Chiovetto, Cristébal Curio, Dominik Endres, and Martin A. Giese. 2018. Perceptual integration of kinematic components in the
recognition of emotional facial expressions. Journal of Vision 18, 4 (April 2018), 13-13. DOI : https://doi.org/10.1167/18.4.13

Debora Clever, Monika Harant, Henning Koch, Katja Mombaur, and Dominik Endres. 2016. A novel approach for the generation of complex
humanoid walking sequences based on a combination of optimal control and learning of movement primitives. Robotics and Autonomous
Systems 83 (Sept. 2016), 287-298. DOI : https://doi.org/10.1016/j.robot.2016.06.001

Debora Clever, Monika Harant, Katja Mombaur, Maximilien Naveau, Olivier Stasse, and Dominik Endres. 2017. COCoMoPL: A novel ap-
proach for humanoid walking generation combining optimal control, movement primitives and learning and its transfer to the real robot
HRP-2. [EEE Robotics and Automation Letters 2, 2 (2017), 977-984. DOI : https://doi.org/10.1109/LRA.2017.2657000

ACM Transactions on Applied Perception, Vol. 16, No. 3, Article 15. Publication date: September 2019.


https://doi.org/10.1073/pnas.082483699
https://books.google.de/books?id$=$kX5OAQAAIAAJ
https://books.google.de/books?id$=$kX5OAQAAIAAJ
https://doi.org/10.1111/j.1467-9280.1994.tb00504.x
https://doi.org/10.1111/j.1467-9280.1994.tb00504.x
https://doi.org/10.1167/5.4.6
https://doi.org/10.1167/18.4.13
https://doi.org/10.1016/j.robot.2016.06.001
https://doi.org/10.1109/LRA.2017.2657000

Naturalness Perception of Movement Primitives « 15:17

Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi. 2003. Combinations of muscle synergies in the construction of a natural motor behavior.
Nature Neuroscience 6, 3 (March 2003), 300-308. DOI : https://doi.org/10.1038/nn1010

Eran Dayan, Antonino Casile, Nava Levit-Binnun, Martin A. Giese, Talma Hendler, and Tamar Flash. 2007. Neural representations of kine-
matic laws of motion: Evidence for action-perception coupling. Proceedings of the National Academy of Sciences 104, 51 (Dec. 2007),
20582-20587. DOI : https://doi.org/10.1073/pnas.0710033104

Dominik Endres, Enrico Chiovetto, and Martin A. Giese. 2013. Model selection for the extraction of movement primitives. Frontiers in Com-
putational Neuroscience 7 (2013), 185. DOI : https://doi.org/10.3389/fncom.2013.00185

Dominik Endres, Andrea Christensen, Lars Omlor, and Martin A. Giese. 2011. Emulating human observers with Bayesian binning: Segmen-
tation of action streams. ACM Transactions on Applied Perception (TAP) 8, 3 (2011), 16:1-12.

Karl Friston. 2010. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 11, 2 (February 2010), 127-138. DOI:
https://doi.org/10.1038/nrn2787

Martin A. Giese. 2014. Biological and body motion perception. The Oxford Handbook of Perceptual Organization. DOI : https://doi.org/10.1093/
oxfordhb/9780199686858.013.008

Martin A. Giese and Tomaso Poggio. 2000. Morphable models for the analysis and synthesis of complex motion patterns. International Journal
of Computer Vision 38 (June 2000), 59-73. DOI : https://doi.org/10.1023/A:1008118801668

Martin A. Giese and Tomaso Poggio. 2003. Neural mechanisms for the recognition of biological movements: Cognitive neuroscience. Nature
Reviews Neuroscience 4, 3 (March 2003), 179-192. DOI : https://doi.org/10.1038/nrn1057

Simon Giszter. 2015. Motor primitives-New data and future questions. Current Opinion in Neurobiology 33 (Aug. 2015), 156-165. DOI:
https://doi.org/10.1016/j.conb.2015.04.004

Simon Giszter, Emilio Bizzi, and Ferdinando A. Mussa-Ivaldi. 1992. Motor organization in the frog’s spinal cord. In Analysis and Modeling of
Neural Systems, Frank H. Eeckman (Ed.). Springer US, Boston, MA, 377-392. DOI : https://doi.org/10.1007/978-1-4615-4010-6_38

Jessica K. Hodgins, James F. O’Brien, and Jack Tumblin. 1998. Perception of human motion with different geometric models. 4, 4 (1998),
307-316. DOI: https://doi.org/10.1109/2945.765325

Bernhard Hommel, Jochen Miisseler, Gisa Aschersleben, and Wolfgang Prinz. 2001. The theory of event coding (TEC): A framework for
perception and action planning. Behavioral and Brain Sciences 24 (2001), 849-937.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. 2013. Dynamical movement primitives: Learning attractor
models for motor behaviors. Neural Computation 25, 2 (Feb. 2013), 328-373. DOI : https://doi.org/10.1162/NECO_a_00393

Yuri P. Ivanenko, Richard E. Poppele, and Francesco Lacquaniti. 2004. Five basic muscle activation patterns account for muscle activity during
human locomotion: Basic muscle activation patterns. The Journal of Physiology 556, 1 (April 2004), 267-282. DOI : https://doi.org/10.1113/
jphysiol.2003.057174

Gunnar Johansson. 1994. Visual perception of biological motion and a model for its analysis. Perceiving Events and Objects 14 (1994), 185-207.

Eric Jones, Travis Oliphant, and Pearu Peterson. 2001. SciPy: Open source scientific tools for Python. [Online; accessed 2015-10-09].

David C. Knill and Alexandre Pouget. 2004. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neuro-
science 27 (2004).

Michael D. McGuigan. 2006. Graphics turing test. CoRR abs/cs/0603132 (2006).

Lars Omlor and Martin A. Giese. 2011. Anechoic blind source separation using Wigner marginals. Journal of Machine Learning Research 12
(2011), 1111-1148.

Jonathan W. Peirce. 2009. Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics 2 (2009). DOI : https://doi.org/
10.3389/neuro.11.010.2008

Felix Polyakov, Eran Stark, Rotem Drori, Moshe Abeles, and Tamar Flash. 2009. Parabolic movement primitives and cortical states: Merging
optimality with geometric invariance. Biological Cybernetics 100, 2 (2009), 159.

Wolfgang Prinz. 1997. Perception and action planning. European Journal of Cognitive Psychology 9, 2 (June 1997), 129-154. DOI : https://doi.
org/10.1080/713752551

Claire L. Roether, Lars Omlor, Andrea Christensen, and Martin A. Giese. 2009. Critical features for the perception of emotion from gait.
Journal of Vision 9, 6 (June 2009), 15-15. DOI : https://doi.org/10.1167/9.6.15

Stefan Schaal. 1999. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3, 6 (June 1999), 233-242. DOI:
https://doi.org/10.1016/S1364-6613(99)01327-3

Stefan Schaal. 2006. Dynamic movement primitives—a framework for motor control in humans and humanoid robotics. In Adaptive Motion
of Animals and Machines, Hiroshi Kimura, Kazuo Tsuchiya, Akio Ishiguro, and Hartmut Witte (Eds.). Springer-Verlag, Tokyo, 261-280.
DOI: https://doi.org/10.1007/4-431-31381-8_23

Krishna Shenoy, Maneesh Sahani, and Mark M. Churchland. 2013. Cortical control of arm movements: A dynamical systems perspective. 36,
1(2013), 337-359. DOI : https://doi.org/10.1146/annurev-neuro-062111-150509

Yun Kyoung Shin, Robert W. Proctor, and E. John Capaldi. 2010. A review of contemporary ideomotor theory. Psychological Bulletin 136, 6
(Nov. 2010), 943-974. DOI : https://doi.org/10.1037/a0020541

David Sussillo, Mark M. Churchland, Matthew T. Kaufman, and Krishna V. Shenoy. 2015. A neural network that finds a naturalistic solution
for the production of muscle activity. Nature Neuroscience 18, 7 (2015), 1025.

ACM Transactions on Applied Perception, Vol. 16, No. 3, Article 15. Publication date: September 2019.


https://doi.org/10.1038/nn1010
https://doi.org/10.1073/pnas.0710033104
https://doi.org/10.3389/fncom.2013.00185
https://doi.org/10.1038/nrn2787
https://doi.org/10.1093/oxfordhb/9780199686858.013.008
https://doi.org/10.1093/oxfordhb/9780199686858.013.008
https://doi.org/10.1023/A:1008118801668
https://doi.org/10.1038/nrn1057
https://doi.org/10.1016/j.conb.2015.04.004
https://doi.org/10.1007/978-1-4615-4010-6_38
https://doi.org/10.1109/2945.765325
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1113/jphysiol.2003.057174
https://doi.org/10.1113/jphysiol.2003.057174
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.1080/713752551
https://doi.org/10.1080/713752551
https://doi.org/10.1167/9.6.15
https://doi.org/10.1016/S1364-6613(99)01327-3
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1037/a0020541

15:18 « B. Knopp et al.

Nick Taubert, Andrea Christensen, Dominik Endres, and Martin A. Giese. 2012. Online simulation of emotional interactive behaviors with
hierarchical gaussian process dynamical models. Proceedings of the ACM Symposium on Applied Perception (ACM-SAP 2012) (2012), 25-32.
DOI: https://doi.org/10.1145/2338676.2338682

Emanuel Todorov and Michael I. Jordan. 2003. A minimal intervention principle for coordinated movement. In Advances in Neu-
ral Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer (Eds.). MIT Press, 27-34. http://papers.nips.cc/paper/
2195-a-minimal-intervention-principle-for-coordinated-movement.pdf.

Matthew Tresch, Philippe Saltiel, and Emilio Bizzi. 1999. The construction of movement by the spinal cord. Nature Neuroscience 2, 2 (Feb.
1999), 162-167. DOI : https://doi.org/10.1038/5721

Nikolaus Troje. 2013. What is biological motion? Definition, stimuli, and paradigms. Social Perception: Detection and Interpretation of Animacy,
Agency, and Intention. 13-36. DOI : https://doi.org/10.7551/mitpress/9780262019279.003.0002

Nikolaus F. Troje. 2002. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision
2,5 (Sept. 2002), 2-2. DOI : https://doi.org/10.1167/2.5.2

Nikolaus F. Troje, Cord Westhoff, and Mikhail Lavrov. 2005. Person identification from biological motion: Effects of structural and kinematic
cues. 67, 4 (2005), 667-675. DOI : https://doi.org/10.3758/BF03193523

Dmytro Velychko and Dominik Endres. 2017. A method and algorithm for estimation of pose and skeleton in motion recording systems with
active markers (pending patent).

Dmytro Velychko, Dominik Endres, Nick Taubert, and Martin A. Giese. 2014. Coupling gaussian process dynamical models with product-
of-experts kernels. In Proceedings of the 24th International Conference on Artificial Neural Networks, Lecture Notes in Computer Science,
Vol. 8681. Springer, 603-610.

Dmytro Velychko, Benjamin Knopp, and Dominik Endres. 2018. Making the coupled Gaussian process dynamical model modular and scalable
with variational approximations. Entropy 20, 10 (Sept. 2018), 724. DOI : https://doi.org/10.3390/e20100724

Jack Meng-Chieh Wang, David J. Fleet, and Aaron Hertzmann. 2008. Gaussian process dynamical models for human motion. IEEE Transactions
on Pattern Analysis and Machine Intelligence 30, 2 (Feb. 2008), 283-298. DOI : https://doi.org/10.1109/TPAMI.2007.1167

Daniel M. Wolpert, Kenji Doya, and Mitsuo Kawato. 2003. A unifying computational framework for motor control and social interaction.
Philosophical Transactions of the Royal Society B: Biological Sciences 358, 1431 (March 2003), 593-602. DOI : https://doi.org/10.1098/rstb.
2002.1238

Received July 2019; accepted August 2019

ACM Transactions on Applied Perception, Vol. 16, No. 3, Article 15. Publication date: September 2019.


https://doi.org/10.1145/2338676.2338682
http://papers.nips.cc/paper/2195-a-minimal-intervention-principle-for-coordinated-movement.pdf
http://papers.nips.cc/paper/2195-a-minimal-intervention-principle-for-coordinated-movement.pdf
https://doi.org/10.1038/5721
https://doi.org/10.7551/mitpress/9780262019279.003.0002
https://doi.org/10.1167/2.5.2
https://doi.org/10.3758/BF03193523
https://doi.org/10.3390/e20100724
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/10.1098/rstb.2002.1238
https://doi.org/10.1098/rstb.2002.1238

