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ABSTRACT
We investigate the role of prediction in biological movement percep-
tion by comparing different representations of human movement
in a virtual reality (VR) and online experiment. Predicting move-
ment enables quick and appropriate action by both humans and
artificial agents in many situations, e.g. when the interception of
objects is important. We use different predictive movement prim-
itive (MP) models to probe the visual system for the employed
prediction mechanism. We hypothesize that MP-models, originally
devised to address the degrees-of-freedom (DOF) problem in motor
production, might be used for perception as well.

In our study we consider object passing movements. Our para-
digm is a predictive task, where participants need to discriminate
movement continuations generated by MP models from the ground
truth of the natural continuation. This experiment was conducted
first in VR, and later on continued as online experiment. We found
that results transfer from the controlled and immersive VR set-
ting with movements rendered as realistic avatars to a simple and
COVID-19 safe online setting with movements rendered as stick
figures. In the online setting we further investigate the effect of
different occlusion timings. We found that contact events during
the movement might provide segmentation points that render the
lead-in movement independent of the continuation and thereby
make perceptual predictions much harder for subjects. We compare
different MP-models by their capability to produce perceptually
believable movement continuations and their usefulness to predict
this perceptual naturalness.

Our research might provide useful insight for application in
computer animation, by showing how movements can be contin-
ued without violating the expectation of the user. Our results also
contribute towards an efficient method of animating avatars by
combining simple movements into complex movement sequences.
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1 INTRODUCTION
Predictive coding is one of the hot topics in neuroscience [Friston
2010; Hohwy 2013]. In this framework, the brain is viewed as an
engine generating predictions based on previous sensory input.
These predictions are then compared to the current sensory input
to refine a percept. The investigation of the prediction mechanism is
directly relevant for areas of applied perception, such as computer
animation: Generating realistic animation could be achieved in the
most economical manner possible [Sattler et al. 2005].

Ways of economical movement production have also been pro-
posed to facilitate the motor control problem: movement primitives
(MPs) are hypothetical elements used by the central nervous system
to build complex movements. Assuming a common code of action
and perception [Friston 2010; Prinz 1997], MPs might be used in
perception as well. If this would be the case, the MP representation
used by the brain should yield the best animation results. Further-
more, we hypothesize that movement perception is Bayes-optimal
[Knill and Pouget 2004], i.e. we assume that the complexity of
the perceptual representation reflects Bayesian model comparison,
which serves as our ideal observer model with MP-Type specific
complexity parameters as input (see 3.1). The cross-validatory mean
squared error (MSE) as approximate Bayesian model evidence can
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then be used to predict the perceived naturalness of movements
based on MPs (see 3.3.2).

We use a prediction task (adapted from Graf et al. [2007]) to
compare MP representations with different predictive mechanisms.
Participants rate movement continuations generated by MP models
in a two-alternative forced choice task. One trial consists of two se-
quences, each with the same lead-in movement followed by a short
occlusion, but with one sequence showing the generated move-
ment continuation and the other one showing the actual recorded
movement. We implemented this paradigm in VR, as well as a web
browser based online experiment.

The movements we study either contained object contact or not.
We furthermore manipulate the occlusion timing to control the
visibility of the contact event. We can therefore investigate the role
of segmentation by a contact event on the perceptual prediction
[Zacks and Swallow 2007]: we hypothesize that a contact event
breaks the continuity of movement necessary for prediction. A
contact event during occlusion should thus widen the expectation
of possible continuations.

2 RELATEDWORK
This study is inspired by [Knopp et al. 2019], and shares the same as-
sumptions about MPs as possible common representation for action
and perception. While this previous work focused on the percep-
tion of naturalness of movements, the current study addresses the
predictive mechanism inherent in MP models. Similar studies were
also conducted for MP models of emotional handshakes [Taubert
et al. 2012] and facial expressions [Chiovetto et al. 2018].

In our experiments, we investigate the perceptual extrapolation
of a trajectory beyond the actual presented or implied movement
of an object, which is termed representational momentum (RM),
as a part of the visual prediction process [Bertamini 1993; Freyd
and Finke 1984; Thornton and Hayes 2004]. Senior et al. [2000]
reviewed functional magnetic resonance imaging (fMRI) results
and used transcranial magnetic stimulation (TMS) to identify the
middle temporal visual area (V5/MT) as involved in processing RM.
Jarraya et al. [2005] found evidence of RM in memory tasks involv-
ing movements represented in point-dot figures. Brain areas that
process motion, such as V5/MT, respond when motion is implied,
for example in pictures, or occluded [Graf et al. 2007]. Kilner et al.
[2004] found neural oscillations in the motor cortex without actual
motor activity during expectation of a hand movement presentation
prior to its onset, presumably due to visual prediction processes.
These processes are also found in participants observing imitable
actions [Buccino et al. 2004; Wilson and Knoblich 2005] These stud-
ies suggest motor activity, or motor simulation [Stadler et al. 2012]
to be involved in predicting future percepts of movements in real
time, which further supports the functional framework of the mir-
ror neuron system [MNS, Iacoboni and Dapretto 2006; Rizzolatti
and Craighero 2004].

Besides the involvement of the MNS in RM, Graf et al. [2007] also
show that visual movement prediction is a real-time process that
includes effect estimations of motor commands before the motor
action is performed. Visual Movement Prediction also requires prior
information [Schröger et al. 2015], such as visual identifications
of the percepts, therefore making tasks of visual prediction more

difficult compared to sheer tasks of identifying or distinguishing
movements, such as in Knopp et al. [2019]. This is consistent with
the predictive coding framework, which follows from a Bayesian
view of the MNS and also explains how we can infer movement in-
tentions from movement observations [Kilner et al. 2004]. Bayesian
model scores would therefore not only serve to identify the model
with the best prediction performance, but should also be diagnostic
of visual movement prediction performance of humans.

3 MODELS AND METHODS
In this section we shortly review relevant features of the investi-
gated MP model types to make this publication self-contained. We
then describe the experimental paradigm and its implementation as
VR- and web-browser based online experiment. Finally we describe
our methods for data analysis.

3.1 Movement Primitives
MPs refer to building blocks of complex movements, but there is
little consensus on an exact definition. Consequently, many differ-
ent types of MPs have been proposed in literature [Endres et al.
2013]. We focus on dynamical and temporal MPs in this study, as
we are interested in finding a higher level representation suitable
for modeling perception,

We perceptually validate 3 generative MP Types: Temporal MPs,
DynamicalMPs and the coupledGaussian Process DynamicalModel.
Each MP-Type has specific complexity parameters, which should
ideally be selected to maximize the Bayesian model evidence. We
use the cross-validatory MSE as approximation to the model evi-
dence.

In this sectionwe can only provide a rough overview, just enough
to enable readers from different backgrounds to understand param-
eters of the stimuli for the psychophysical experiment. Please refer
to the cited papers for detailed information. Velychko et al. [2018]
also provide graphical model representations and summarize the
features of the MP models presented in this chapter.

3.1.1 Temporal Movement Primitives [TMP, Clever et al. 2016]. Tem-
poral MPs describe the stereotyped temporal patterns of movement
parameters, for example Electromyography (EMG) signals, but also
joint trajectories as well as endpoint trajectories. We refer to all
signals more generally as Degree-of-freedom (DOF). A possible bi-
ological implementation of temporal MPs might be central pattern
generators (CPGs) [Ivanenko et al. 2004] combined with cortical
top-down control. Temporal MPs incorporate a temporal predictive
mechanism: the complete time-course of the movement is deter-
mined at its onset. This type of MPs allows for simple concatenation
and temporal scaling.

The trajectory xk (t) of a DOF, e.g. a joint angle, is a weighted
sum of Q MPs yq (t), which are functions of time. εi (t) ∼ N(0,σi )
is Gaussian observation noise:

xk (t) =

Q∑
q=1

wk,qyq (t) + εi (t) (1)

The posterior distribution of weights and MPs are learned by ap-
proximate Bayesian learning via free energy. We use the number of
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MPsQ = 3 . . . 15 as ideal observer parameter. In general, more MPs
allow for more fine-grained temporal structure of the movement,
but might lead to over-fitting.

3.1.2 Dynamic Movement Primitives [DMP, Ijspeert et al. 2013].
While temporal MPs directly model the movement parameters,
DMPs describe the stereotyped elements of movement as attractors
of a dynamical system, thus enabling the prediction of the next state
from the previous ones. Building on the hypothesis of separate brain
areas for rhythmic and discrete movements, two kinds of dynamical
systems are common: cyclic oscillators and point attractors [Schaal
2006].

More formally: DMP models represent a movement trajectory
xk (t) obeying a differential equation. They rely on a damped spring
system which forces xk (t) to contract to the specified goal дk , if the
dampening factor is high enough. Through the non-linear forcing
function fk (Eq. 2) the trajectories can be modified. This function
is modeled as weighted sum of Gaussian basis functions Ψi (τ ) (Eq.
4). Time is replaced by τ , which decays exponentially to zero (Eq.
3). DMPs are learned from training data by setting the weightswi
such that the training mean-squared error between predicted and
actual movement (MSE) is minimal.

τ Üxk = αz (βz (дk − xk ) − Ûxk ) + fk (τ ) (2)
Ûτ ∝ −τ (3)

fk (τ ) =

∑N
i=1 Ψi (τ )wk,i∑N

i=1 Ψi (τ )
τ (дk − xk (0)) (4)

We investigate N = 10, 20 . . . , 100 basis functions as ideal ob-
server parameters. Basis functions serve a similar role as the number
of MPs in the TMP model: more basis functions allow for more com-
plicated forcing functions, which enable richer temporal dynamics.

3.1.3 Coupled Gaussian Process Dynamical Model [CGPDM, Ve-
lychko et al. 2014]. CGPDMs compose different dynamical models
in a low dimensional latent space forM different body parts. This
model is a generalization of the Gaussian Process Dynamical Model
[GPDM, Wang et al. 2008]: By setting the whole body as one body
part (M = 1) the CGPDM becomes the GPDM. If there are more
than one body parts, each dynamical system predicts not only the
next time-step of their associated body part, but also the temporal
evolution of other body parts via coupling functions. This way,
flexible coupling between body-parts is possible. The CGPDM can
be regarded as a middle ground between DMPs encoding single
DOFs, and the monolithic GPDM. The latent dynamical systems
can thus be thought of as flexibly coupled CPGs routing commands
to the muscles.

In contrast to DMPs, CGPDMs learn a full dynamical model
of latent variables Y in discrete time, which are mapped onto the
observed DOFs X . Both the dynamics mapping f i, j () (Eq. 5) from
the latent space of body part j to body part i (i, j = 1 . . .M), as well
as the mapping from latent to observed space д() (Eq. 6) are drawn
from Gaussian process priors. dt denotes the time discretization
step-size:

Y i (t) = f j,i (Y j (t − dt)) + εiY ,t (5)

X i (t) = дi (Y i (t)) + εiX ,t (6)

The model can be trained in two ways: by maximum-a-posteriori
inference (MAP), or by free energy minimization using variational
approximations (Variational (Coupled) Gaussian Process Dynamical
Model [v(C)GPDM, Velychko et al. 2018]). In our study we useM =
1, 3 body parts and use both trainingmethods: GPDM (M = 1, MAP),
CGPDM (M = 3, MAP), vGPDM (M = 1, variational), vCGPDM
(M = 3, variational).

Without variational approximations, due to the non-parametric
GPs prior, the movements are the movement representation, which
is not compact. Therefore, MAP-trained (C)GPDMs, do not provide
a complexity parameter.

The representation can be compressed by introducing sparse
variational approximations. Now, each v(C)GPDM is parameterized
by a small set of inducing points (IPs) and associated inducing values
(IVs). The initial choice of IPs/IVs is the only remaining source of
stochasticity in the training process. It may have measurable effects
as we will show below.

We use IPs for both mappings, serving as ideal observer model
parameters: “dynamics” IPs for the dynamical model mapping, and
“pose” IPs for the latent-to-observed variable mapping. More dy-
namics IPs allow for richer dynamics (similar to the parameters of
DMP and TMP), while more pose IPs will allow for more (spatial)
variability of poses. An IP/IV pair might be thought of as a pro-
totypical example for the mappings drawn from their associated
Gaussian process. They thus provide some abstraction from the
observed movement and might be implemented by small neuronal
populations.

3.2 Experiments
This study includes two experiments: first, we conducted a highly
controlled and ecologically valid VR-Experiment. Then, we decided
to specifically study effects of contact events on perceptual predic-
tions using the same paradigm with additional occlusion timing
conditions. After we made this decision, the COVID-19 pandemic
forced us to close our VR-Lab. This triggered us to port the VR-
Experiment to an online setting. As benefit we could collect more
data with less effort, but we as drawback we we could not control
the viewing conditions under which participants performed the
experiment. The VR experiment was implemented using Vizard 5
[WorldViz 2019] and the online experiment was implemented using
the javascript library jsPsych [De Leeuw 2015] and webGL. A test
version of the online experiment can be tried online1.

In general, the methods of this work first comprise learning the
recorded movements via extraction of MPs from mocap data, re-
sulting in 3D joint locations and trajectories. The joint locations
of both model-extracted and natural movement data are then con-
nected (rigged) to a digital avatar (VR experiment) or a skeleton
stick figure (online experiment). For the VR experiment, the rigged
avatar, containing both natural and model-generated movements
is then imported in a VR environment. For the online experiment,
the movements are rendered in webGL.
1http://vhrz1092.hrz.uni-marburg.de/javascriptbvh/experiment.html?subject=xyz.

http://vhrz1092.hrz.uni-marburg.de/javascriptbvh/experiment.html?subject=xyz


SAP ’20, September 12–13, 2020, Virtual Event, USA Knopp, Velychko, Dreibrodt, Schütz, Endres

We use this stimulus material for a psychophysical experiment
in the form of a Graphics Turing Test [McGuigan 2006] on human
movement prediction performance. In both experiments, the par-
ticipants execute forced-choice trials, deciding which movement
continuation fits best to a given beginning. The experiments’ data
comprises the relative frequency of a MP model successfully con-
fusing participants to prefer its generated movement to a natural
movement continuation. We call this frequency ’confusion rate’.

3.2.1 Movements. All presented movement consists of putting a
bottle from one side of a table in front of the torso, where the bottle
is passed to the other hand, to the other side of the table while
sitting on a chair. Four kinds of movements are used: Passing the
bottle from the left side to the right side (pass-bottle-movements),
and vice versa (return-bottle- movements), and from the left to
the right side without a pause (pass-bottle-hold-movements) but
instead passing the bottle directly to the right hand, and vice versa
(return-bottle-hold). Motor expertise/experience [Graf et al. 2007;
Stadler et al. 2012] and visual familiarity of the movements to
one’s own movements [Loula et al. 2005] influences prediction
performances. Simple movements of passing a bottle are actions
with a low demand of motor expertise. Therefore, participants are
not expected to strongly differ in their prediction performance due
to expertise or familiarity.

3.2.2 Stimulus Generation. We recorded movements from one ac-
tor for the experiment with a PhaseSpace Impulse X2 System and 44
active LED markers. We inferred skeleton and joint angles from the
recorded C3D-files, which contain marker positions in the recorded
time frames using our own skeleton estimation software. These are
used by computational implementations of the MP models to learn
from five different bottle-passing movements for each movement
type. The models then generate Biovision bvh-files containing joint
locations and their trajectories from 5 different starting positions.

For the VR experiment, the bvh-files are then imported into the
Autodesk MotionBuilder environment, where the bvh-joints are
manually rigged onto a custom skeleton of a gray avatar polygon
mesh. The rigging is adopted for all other bvh files with a custom
script. The rigged avatar is then imported to the Autodesk 3dsMax
environment, where the avatar and the movements were converted
into a cfg-file, containing avatar mesh, skeleton and animation files,
which was then importable for the Vizard 5 software, with which
the experiment was designed.

For the online experiment, we used a simple stick figure to dis-
play the movement 2: the bvh-files produced by the MP-models
are converted into pairs of 3D positions, where each pair is start-
and end-point of a segment specified by the skeleton. Each pair is
then rendered using the GL_LINES OpenGL-primitive. As we have
no control over the setting and state of the subject when she is
running the experiment, we added attention check trials. For this,
we used movements generated by DMP models which obviously
failed, such as avatars floating up from the chair. We excluded ex-
perimental runs where participants failed to correctly identify the
floating movement in more than 40% of attention checks. In the VR
experiment no such attention checks were needed, and we fixed
the avatar’s pelvis to the chair for these movements.

3.2.3 Stimulus Presentation. Elements of the trial structure were
adopted from Sparenberg et al. [2012], who implemented experi-
ments on internal simulation of movement and Graf et al. [2007],
who tested various occlusion times in a psychophysics experiment
of movement prediction performance, where participants were in-
structed to identify 1 of 2 action continuations as the most fitting
to the beginning of the action before the occlusion. The structure
of a trial can be viewed in Figure 1. Textures and objects for the
experiment environment were provided by WorldViz and the web-
site www.sketchfab.com. Presenting the two stimuli sequentially
instead of simultaneously has the advantage of participants not
having to distribute their fixations across the stimuli and instead
could focus each stimulus separately.

3.2.4 Catch Trials. Instead of predicting the correct movement
continuation, participants might instead use the unintended strat-
egy of only distinguishing the first and second movement contin-
uation as more or less natural-looking, ignoring the movement
onset presented before the occlusion. Participants also might be
less attentive to the experiment, resulting in higher confusion rates
on average. To measure these variables, the experiment includes
so-called “catch-trials”, of which 24 were implemented for each
participant in the VR experiment, and 2 for each experimental
run in the online experiment. A catch-trial has the structure of a
standard trial, but replaces the model-generated movement con-
tinuation with the same natural movement continuation as in the
other movement sequence. This catch-continuation sequence will
be time-incoherent to the movement-offset before the occlusion:
catch-movements of the VR experiment start either 400 ms, 700 ms
or 1000 ms (8 trials per participant) before the natural movements
and therefore make the natural movement look as if they skipped
movement frames during the occlusion. Catch-trials measure the
rate of erroneously choosing the time-incoherent action continua-
tion as a natural continuation. Time delays of the catch-trials were
inspired from Graf et al. [2007]. We adapted the skip-timings for
the online experiment slightly to 375 ms, 667 ms and 1000 ms to
increase the range of investigated shifts.

3.2.5 VR Experiment.

Participants: N = 34 participants (23 female, 18-39 years old,
mean age = 22,7 years, SE = 3,3 years) were recruited. As recruit-
ment criteria, participants had to be 18 years or older and had to
have no impaired vision. They also should not suffer from a disease
of the musculoskeletal system, in order to handle HTC Vive con-
trollers for the experiment. Participant recruitment was organized
and promoted with the Sona Systems ® participant management
software. They received financial compensation (8€/h) or course
credits for participation. An ethics application for the experiment
had been approved by the local ethics commission (Ethikantrag
2015-19K). Participants received written information about the
experiment in the participant management software and on the
participant information sheet as well as in an instructional text in
the VR environment. Participants gave their informed consent to
participate.

Experimental Procedure: Participants were asked to sit on the
experiment chair and were instructed to wear the head-mounted
display (HMD) and HTC Vive controllers. As soon as participants
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felt comfortable wearing the HMD, the experiment environment
was loaded and the experiment started with an instructional text
on the trial structure followed by nine familiarization trials where
participants received feedback on their performance after each
trial. After the familiarization trials, participants were additionally
instructed to keep their gaze mainly focused on the avatar and their
arms rested on their laps. Participants then started with the first
of 269 trials. The trial number is derived from 24 catch-trials plus
5 repetitions of all 49 MP models. The trials were separated into
four blocks of each 67 to 68 trials. After each block participants
could take off the HMD and take a break of up to 5 minutes. Both
catch- and normal trials were distributed randomly through all trials.
Whether a trial presents a pass-hold-, pass- or return-movement
was also randomized but is selected for both natural and model-
generated movements presented in it. Each experiment run took
about 70 to 85 minutes including all aforementioned procedures.
Nine participants reported fatigue and one participant reported eye
fatigue. One participant reported a headache after finishing a few
trials of the first experiment block and aborted the experiment.

3.2.6 Online Experiment.

Participants: We collected data from 220 experiment runs of N
= 98 participants using the university’s participant management
system (SONA System). The only metadata collected was a partici-
pant ID assigned by SONA. Participants were psychology students.
They received course credits for participation.

Experimental Procedure: The experimental procedure is similar
that of the VR experiment. We skipped the familiarization trials.
Each experiment had 55 normal trials and two catch trials. This
results in a length of approximately 15 minutes. Trials were sampled
randomly from all possible trials for each experiment. Therefore
each participant was allowed an arbitrary number of repetitions of
the experiment. Each participant has a fixed anonymous ID assigned
by the SONA participant management system. In the advertisement
of the experiment we recommended 6 repetitions, but we did not
control this number.

3.3 Data Analysis
3.3.1 Confusion Rate. Participants were forced to choose one of
the two sequences in each trial. Therefore, in trial i the participant’s
response is ri = 0 if she guessed the wrong sequence and ri = 1
if the participant chose the correct sequence. We pooled across
participants to achieve sufficient statistical power.

The confusion rate (p) is defined as the number of times a par-
ticipant erroneously chooses the sequence containing a model-
generated movement continuation as more fitting to the movement
onset divided by the total number of trials N .

p =
N −

∑
i ri

N
(7)

We assume that p approaches 0.5 if the model perfectly matches
the observers perceptual predictions. The confusion rate measures
the model success while 1 − pi measures human discrimination
ability. We chose to report the confusion rate, as we are interested
in comparing the models.

Each trial is specified by:

Figure 1: Trial structure of the psychophysics experiment.
Each trial consists of two sequences, each beginning with
(A) a red fixation cross appearing for 500ms in front of the
desk for fixating the gaze towards the avatar, followed by (B)
the onset of a natural movement randomly chosen from the
set of 6 pass-hold-, 10 pass- and 9 return-movements, but
based on the model-generated movement type. As soon as
the hand returns to the front of the avatar, (C) an occlusion
is triggered that lasts for 700ms. During the occlusion the
movement is continued. After the occlusion, (D) the move-
ment is continued by either the avatar performing the nat-
ural movement, with which the sequence has started, or an
avatar performing the model-generated movement. The oc-
currence of the natural movement continuation in the first
or second sequence is randomized. The end of themovement
triggers either (E) starting sequence 2 or (F) making the vis-
ible avatar disappear and asking the participant for choos-
ing the sequence with the correct movement continuation:
“Which sequence did you perceive as more natural?”. The
second sensor is activated 300ms after the hand of the avatar
enters it. This ends the movement sequence as soon as the
hand is about to return to a position in front of the avatar.
After choosing a sequence (by pressing the trigger-button
on either the left HTC Vive controller for sequence 1, or the
button on the right HTC Vive controller for sequence 2) the
next trial starts.

• MP type with parameters:
– TMP: Number of MPs Q .
– DMP: Number of basis function N .
– v(C)GPDM: Number of dynamical and pose IPs.
– MAP-GPDM: No parameters.

• Movement: With or without table contact.
• Direction: From left to right, or vice versa.
• Training data set.
• Model scores after training.

In the online experiment there are furthermore three occlusion
conditions:

• Occlusion timing: before, during, or after passing the center
of the table

We assume that confusion rate p depends on a subset of these
parameters. It might also be participant-specific.
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Figure 2: Screenshot of online experiment. The procedure
was the same as described in Fig. 1, but participants respond
by clicking buttons instead of using controllers.

3.3.2 Logistic Regression. We assume that variable ri is Bernoulli
distributed and investigate the effect of cross-validatory test set
mean squared error (MSE), which is a proxy for the Bayesian model
evidence. We obtain this MSE by training the MP models on 4 out of
5 movements, and then compute themean squared residual between
the reconstruction and actual observation of the 5th movement.

We use the centered MSE = MSE − E[MSE] as predictor for the
participants’ responses using a Bayesian logistic regression model:

ri ∼ Bernoulli(pi ) (8)

pi =
1

1 + exp(−(α + β ·MSEi ))
(9)

α , β ∼ N(0, 10) (10)

The participants’ responses are Bernoulli distributed, with pa-
rameter pi being the output of the sigmoid model with parameters
α and β . We set a wide Gaussian prior on these parameters and
compute their posterior using Markov chain Monte Carlo2.

4 RESULTS
First, we compare the results of the VR- and the online experiments
and contrast these with previous findings in a naturalness per-
ception experiment [Knopp et al. 2019]. We demonstrate that our
paradigm works as intended by presenting the catch trial results.
We then show the predictions of logistic regression for different
MP types and finally present results demonstrating the effect of
contact events in our experiments.

4.1 Comparison of Experiments
Figure 3 compares the mean confusion rates over complexity param-
eters of MP-Types of a naturalness perception experiment [Knopp
et al. 2019] with the two experiments described in this study. The

2We use the No-U-Turn Sampler implemented in Python library PyMC3 [Salvatier
et al. 2016].

previous experiment measured confusion rate in a task where par-
ticipants had to choose the more natural one of two walking move-
ments. One of the movements in each trial of that experiment was
MP generated, the other one was a replay of a natural movement
recording.

Considering the differences regarding movement (walking vs.
object-passing), experimental paradigm (prediction vs identifica-
tion), setting (desktop vs. VR vs. web-based), and representation
(full avatar vs. stick-figure), the confusion rates are remarkably
similar.

TMP models consistently perform best. DMP models perform
well in all settings, too. The prediction and identification paradigms
differ very much regarding the training mode of the (C)GPDMs:
MAP training failed to fool subjects to mistake the generated walk-
ing movements in the identification task, but performed on par
with the variationally trained models in the pass-object prediction
task.

We used attention checks in the online experiment (highly unre-
alistic floating movements were shown), to filter experiment runs
with inattentive subjects. Still, there is a slight tendency of slightly
higher confusion rates in the online experiment compared to the
VR setting.

TMP DMP vCGPDM CGPDM vGPDM GPDM
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Figure 3: Confusion rate for MP models in three different
experiments. 1. Previously published desktop experiment, 2.
VR experiment and 3. online experiment from this study. Er-
ror bars depict beta-distributed standard error.

4.2 Catch Trial Results
We recorded participants’ performance of falsely identifying the
discontinuous movement continuation as the one most fitting the
movement onset before the occlusion in 809 catch trials in the VR
experiment, and in 318 catch trials (up to now) in the online experi-
ment. Figure 4 shows the resulting confusion rates. The smallest
shift of 375/400 ms is not detected, as the confusion rate is close
to 0.5. The rate decreases for the conditions with larger shifts. The
decrease is more pronounced for the VR data compared to data
collected by the online experiment.
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Figure 4: Confusion rate for catch trials with different time
shifts for the two experimental conditions. The bars of the
two experiments are shifted relative to each other, because
we changed the shift timings slightly for the online experi-
ment.

Table 1: Mean and standard deviation of posterior samples
of parameters α and β .

VR Online

α

DMP −0.48 ± 0.05 −0.50 ± 0.08
TMP −0.41 ± 0.04 −0.15 ± 0.04
vCGPDM −0.83 ± 0.05 −0.55 ± 0.05
vGPDM −0.89 ± 0.05 −0.78 ± 0.05
β

DMP 0.09 ± 0.14 −0.65 ± 0.18
TMP −1.29 ± 0.16 −0.09 ± 0.21
vCGPDM 0.67 ± 0.54 −3.54 ± 0.95
vGPDM −1.49 ± 0.27 −3.09 ± 0.72

4.3 Predicting Perceptual Predictions from
Centered MSE

We predict the confusion rate, which is our measure for the differ-
ent MP types’ ability to generate movements in line with human
perceptual predictions, from centered MSE using logistic regression
(3.3.2). Figure 5 shows confusion rates of MP models over mean
MSE. In general, lower MSE corresponds to higher confusion rate
(negative slope β). We do not observe this relationship for DMP,
vCGPDM models tested in the VR experiment. TMP models tested
in the online experiment have a near-zero negative slope β . TMP
models of the VR experiment on the other hand show the strongest
dependence of the confusion rate on the MSE, together with vG-
PDM models. We summarize the posterior of parameters in Table
1.
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Figure 5: Confusion rate and logistic regression for different
MP model types for data collected in (A) VR- and (B) online
experiment. Each point shows the mean confusion rate for
a MP model with specific parameters against the centered
MSE (which is the MSE with subtracted mean). Error bars
show the beta distributed standard deviation and the stan-
dard error of the MSE. Lines are predictions of the logistic
regression model with 20 samples of parameters α and β .

4.4 Effect of Contact Event on Perceptual
Predictions

In our online experiment we collected data for movements where a
bottle is passed from one hand to the other either with or without
touching the table. We varied the occlusion timing to investigate
the effect of the table contact on perceptual prediction performance
of MSE: The movement was occluded before, during, or after bottle
was passed. We compare the influence of MSE on the confusion
rates of trials with occlusion during table contact with the rest of
the trials. For this we use logistic regression [3.3]. Here, the slope
β is a measure of influence of MSE on the confusion rate. Given
the posteriors of β we can compute the probability of |βnc | for
trials without occluded contact being greater than |βc | for trials
with occluded contact: p(|βnc | > |βc |) = 0.998. We are thus fairly
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certain that MSE loses predictive capability if object-table contact
is occluded.
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Figure 6: Predictions by logistic regression model for trials
either with or without contact during occlusion, and confu-
sion rate of models plotted against the centered MSE (same
as fig. 5). In case of contact during occlusion, the slope of the
fit is smaller, making MSE less useful predictor.

5 DISCUSSION
We compared 3 different types of MP-models using a predictive
paradigm in two settings: VR and web-browser based. The represen-
tation of the movement was different as well: 3D avatars in the VR-,
and stick figures in the online experiment. We also compared these
results to published data in [Knopp et al. 2019] , which used different
movements, and a non-predictive paradigm. Our results indicate
that measured confusion rates generalize across movements, para-
digm, and rendering specifics. A notable exception is the dramatic
performance increase of MAP-trained (C)GPDMs. We suspect that
the initialization of this model in the previous experiment might
have been unfavorable.

Participants of the online experiment have shown slightly worse
prediction performance. We expect this is due to attentional and
motivational shortcomings of a non-lab environment. Still, consid-
ering the substantially lower effort of running the experiment and
highly increased reach for recruiting participants, this drawback
is more than compensated. Reaching out to many participants is
very important, as our experimental design, even though simple
and elegant, is collecting very little information per trial (1 bit).
Still, a problem remaining are potential inter-individual differences.
Because participants are exhausted very quickly, we can only test a
small subset of all models and conditions. Pooling across partici-
pants while still accounting for inter-individual differences might
be useful and we will explore this in the next study.

Catch trials show decreasing confusion rate for increasing time-
shift of natural movements, which indicates that participants ac-
tually predict the movement, instead of rating the naturalness of
the movement continuation without regard to the lead-in move-
ment. This decrease is less pronounced in the data of the online
experiment.

In our experiments, we found that TMP-models produce the
most realistic movement. This is in line with previous findings
[Knopp et al. 2019]. Therefore, TMPs might be used by the visual
system for perceptual predictions. Dynamical models might still be
involved in movement production because of their ability to handle
perturbations. The shared representation between perception and
production may therefore be more abstract: one dynamics model
paired with a corresponding TMP model that encodes typical (un-
perturbed) solutions of the dynamics model, for fast perceptual
predictions [Giese and Poggio 2000].

We use the centered MSE to predict perceived naturalness by us-
ing a logistic regressionmodel for the confusion rate. The prediction
worked well for TMP and vGPDM models of the VR experiment,
and for vCGPDM and vGPDM of the online experiment. The on-
line experiment might be the decisive bit harder for subjects, such
that many TMP models come close enough to indistinguishabil-
ity, impeding prediction. The vCGPDM has increased number of
IP sets (one set for each body part) compared to the monolithic
vGPDM. This introduces more stochasticity during training, result-
ing in large variation of the MSE. This might explain the different
prediction results of the vCGPDM for the different experiments.
Compared to previous findings [Knopp et al. 2019], the predictions
are less reliable. This is because our experimental design is more
complex, adding different movements and switching to a predictive
sequential task. As previously discussed, more data is required to
disentangle effects of different MP types, movements, and occlusion
conditions.

Contact events are a common heuristic for the task of segment-
ing movements. Yet, there is little psychophysical investigation
measuring the effect of models on segmentation, but see [Endres
et al. 2011]. In our online experiment, we manipulated the occlu-
sion timing to investigate the existence of perceptual segmentations
induced by contact events. We found a higher expected increase
of confusion rate for increasing MSE in trials where table contact
was not occluded, which we interpret as follows: participants, who
expect a contact event based on the previous trajectory, but can not
see it, will have a less precise expectation about the continuation of
the movement, making them less susceptible to higher deviations
from their expectations. This is not the case for participants who
see the contact, and can use frames after contact to build a more
precise expectation.

The current work is the new and unexplored implementation of
a Graphics Turing Test of movement prediction performances. Even
though the structure of the prediction task was mostly adapted from
other works [Graf et al. 2007; Knopp et al. 2019], conducting this
task in the context of a Graphics Turing Test in a VR and web-based
environment is novel and has yet to be established more firmly in
psychophysical research.

6 CONCLUSIONS
The present work created a psychophysical task for visual pre-
diction performances in a VR and web-based environment and
implemented it to gather psychophysical data on six different repre-
sentations of motor actions based on MPs. MP models can be used
to generate natural-appearing novel movements on virtual avatars,
which is important for neuroscientists searching for a common code
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of action and perception and might be applied to build realistic com-
puter animation with less effort in the future. In future studies we
want to validate the assumptions that the influence of different
movement representations (stick-figure vs. 3D avatar) is small and
compare different movements, to investigate the generalizability of
our results.
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