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Abstract

This is a collection of identities useful for variational inference with
exponential family distributions/densities. All derviations were done by
the authors, unless indicated otherwise. This does not imply that the
results collected here have not appeared in the literature before. DIS-
CLAIMER: this collection is a work in progress. It is certainly in-
complete and probably buggy. Bug-reports and contributions are most
welcome, please email dominik.endres@uni-marburg.de.

1 Exponential family distributions

A distribution is said to belong to the exponential family, if it can be written
in the form [1]:

p(x|η) = h(x)g(η) exp(ηTu(x)) (1)

where the random variates x may be discrete or continuous, the sufficient
statistics u are functions of the x , not necessarily of the same dimensionality.
However, the u need to be linearly independent. The η are the natural param-
eters, one for each sufficient statistic. The function g(η) is the normalization
constant (replace the integral with a sum for discrete x ):

g(η)

∫
dx h(x) exp(ηTu(x)) = 1 (2)

1.1 Moments

Taking the gradient ∇ w.r.t. to η on both sides of equation 2, we find:

(∇g(η))

∫
dx h(x) exp(ηTu(x))︸ ︷︷ ︸

= 1
g(η)

+ g(η)

∫
dx h(x)u(x) exp(ηTu(x))︸ ︷︷ ︸

〈u(x)〉

= 0 (3)

and thus the expectation 〈u(x)〉 is:

〈u(x)〉 = −∇g(η)

g(η)
= −∇ log(g(η)) (4)
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Computing the derivative of the i-th component of the l.h.s. of eqn. 3 w.r.t.

ηj yields (noting that ∂2 log(f(x,y))
∂x∂y = ∂2f(x,y)

∂x∂y
/f(x, y)− ∂f(x,y)

∂x
∂f(x,y)
∂y /f2(x, y)):

∂2g(η)
∂ηi∂ηv

g(η)
−

∂g(η)
∂ηi

∂g(η)
∂ηj

g2(η)
+
∂g(η)

∂ηj

〈ui(x)〉
g(η)

= −g(η)

∫
dx h(x)ui(x)uj(x) exp(ηTu(x))

∂2 log(g(η))

∂ηi∂ηj
− 〈ui(x)〉〈uj(x)〉 = −〈ui(x)uj(x)〉

⇒ 〈ui(x)uj(x)〉 − 〈ui(x)〉〈uj(x)〉 = −∂
2 log(g(η))

∂ηi∂ηj
(5)

Denoting the Hessian by ∇∇, the covariance matrix of u(x) is thus given by

Cov(u(x)) = −∇∇ log(g(η)) (6)

Higher order moments can be computed via higher order derviatives.

1.2 Maximum Likelihood

For maximum-likelihood approximations, we need the gradient of log(p(x|η))
w.r.t. η:

∇ log(p(x|η)) = ∇ log(g(η)) + u(x) = −〈u(x)〉+ u(x). (7)

In other words, maximizing the likelihood (i.e. following the gradient towards
higher likelihood values) amounts to making the expected value of the suffi-
cient statistic more similiar to the actually observed sufficient statistic. For
second-order optimization methods, the Hessian matrix may be needed, which
is given by eqn. 6. For maximum likelihood parameter estimates, assume we
had observed N i.i.d. datapoints xn. The parameter estimate is obtained by
solving

N∑
n=1

∇ log(p(xn|η)) = 0⇒ 〈u(x)〉 =

∑N
i=1 u(xn)

N
(8)

i.e. by setting the data mean of the sufficient statistics equal to the expectation.

1.3 Entropy

The (differential) entropy of x given η is defined as

H(x|η) = −
∫
dx p(x|η) log(p(x|η)). (9)

note that this is not the conditional entropy of x given η . Using the definition
of the exponential family distribution (eqn. 1) , this can be written as

H(x|η) = −
∫
dx p(x|η)

(
log(g(η)) + log(h(x)) + ηTu(x)

)
and thus

H(x|η) = − log(g(η))− 〈log(h(x))〉 − ηT 〈u(x)〉 (10)
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For the gradient of the entropy w.r.t. η we need

∂

∂ηk
ηT 〈u(x)〉 = 〈uk(x)〉+

∑
i

ηi
∂〈ui(x)〉
∂ηk

= 〈uk(x)〉 −
∑
i

ηi
∂2 log(g(η))

∂ηi∂ηk
. (11)

Using eqn. 6, we find

∇ηT 〈u(x)〉 = 〈u(x)〉+ Cov(u(x)) · η (12)

We also need

∂〈log(h(x))〉
∂ηk

=
∂

∂ηk

(
g(η)

∫
dx h(x) log(h(x)) exp(ηTu(x))

)
=

∂g(η)

∂ηk

〈log(h(x))〉
g(η)

+ g(η)

∫
dx h(x) log(h(x))uk(x) exp(ηTu(x))

=
∂ log(g(η))

∂ηk
〈log(h(x))〉+ 〈log(h(x))uk(x)〉

= −〈uk(x)〉〈log(h(x))〉+ 〈log(h(x))uk(x)〉 (13)

and thus

∇〈log(h(x))〉 = −〈log(h(x))〉〈u(x)〉+ 〈log(h(x))u(x)〉 (14)

The gradient of the entropy w.r.t. the η is thus

∇H(x|η) = −∇ log(g(η))︸ ︷︷ ︸
〈u(x)〉

−∇〈log(h(x))〉 − ∇ ηT 〈u(x)〉 (15)

∇H(x|η) = 〈log(h(x))〉〈u(x)〉 − 〈log(h(x))u(x)〉 − Cov(u(x)) · η (16)

1.4 Kullback-Leibler divergence

The KL-divergence of a distribution with parameters η̃ to a distribution with
parameters η is:

D(p(x|η̃)||p(x|η)) =

∫
dx p(x|η̃) log

(
p(x|η̃)

p(x|η)

)
=

∫
dx p(x|η̃) [log (p(x|η̃))− log (p(x|η))]

= −H(x|η̃)−
∫
dx p(x|η̃) log (p(x|η)) (17)

For this, we compute the following expectation under p(x|η̃):∫
dx p(x|η̃) log (p(x|η)) =

∫
dx p(x|η̃)

(
log(g(η)) + log(h(x)) + ηTu(x)

)
= log(g(η)) + 〈log(h(x))〉+ ηT 〈u(x)〉 (18)
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and thus, using eqn. 10:

D(p(x|η̃)||p(x|η)) = log(g(η̃))− log(g(η)) + (η̃T − ηT )〈u(x)〉 (19)

Its gradient w.r.t. η̃ is then (using eqn. 4 and eqn. 6)

∇D(p(x|η̃)||p(x|η)) = ∇ log(g(η̃)) +∇ (η̃T − ηT )〈u(x)〉
= −〈u(x)〉+ 〈u(x)〉+∇〈u(x)〉(η̃ − η) (20)

where ∇〈u(x)〉 acts on u component-wise, yielding a matrix (ij) of deriva-

tives ∂ui(x)
∂η̃j

. Thus

∇D(p(x|η̃)||p(x|η)) = −∇∇ log(g(η̃)) · (η̃ − η) = Cov(u(x))(η̃ − η) (21)

2 Conjugate priors on exponential family distri-
butions

For inference and learning in hierarchical models, conjugate priors on the pa-
rameters η are very useful, because inference/learning with i.i.d. observations
translates into parameter updates (rather than complicated integrals). The
conjugate prior on an exponential family distribution (eqn. 1) is given by

p(η|λ, ν) = f(λ, ν)m(η)g(η)ν exp(νηTλ) (22)

where the λ, ν are the parameters of the p(oste)rior, g(η) is the same function
as above and m(η) is an arbitrary positive function (different from g(η)). To see
that this is a conjugate prior on p(x|η), assume we had observed N datapoints
xn. The posterior of η is then (using eqns. 1 and 22)

p(η|λ, ν,x1:N ) =
p(x1:N ,η|λ, ν)

p(x1:N |λ, ν)

=

∏N
n=1 p(xn|η) p(η|λ, ν)∫

dη
∏N
n=1 p(xn|η) p(η|λ, ν)

=

∏N
n=1 g(η)h(xn) exp(ηTu(xn)) · f(λ, ν)m(η)g(η)ν exp(νηTλ)∫

dη
∏N
n=1 g(η)h(xn) exp(ηTu(xn)) · f(λ, ν)m(η)g(η)ν exp(νηTλ)

=
[
∏
n h(xn)] f(λ, ν)m(η) g(η)ν+N exp

(
ηT (νλ+

∑
n u(xn))

)
[
∏
n h(xn)] f(λ, ν)

∫
dη m(η)g(η)ν+N exp (ηT (νλ+

∑
n u(xn)))

=
m(η)g(η)ν+N exp

(
ηT (νλ+

∑
n u(xn))

)∫
dη m(η)g(η)ν+N exp (ηT (νλ+

∑
n u(xn)))

(23)

Note that this expression depends on the data x1:N only through N and∑
n u(xn). This is why the u(x) are called sufficient statistics: they contain

all the information about η which we need from the data to determine the
parameter posterior. A similar result holds for maximum-likelihood learning,
see [1]. By introducting the
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posterior parameters

ν̃ := ν +N (24)

λ̃ :=
νλ+

∑
n u(xn)

ν̃
(25)

thus, νλ+
∑
N u(xn) = ν̃λ̃. We furthermore identify f(λ, ν) as the normaliza-

tion constant of the p(oste)rior, i.e.

f(λ̃, ν̃) =
1∫

dη m(η) g(η)ν̃ exp
(
ηT ν̃λ̃

)
and finally, plugging these identities back into eqn. 23, we obtain:

p(η|λ, ν,x1:N ) = f(λ̃, ν̃)m(η) g(η)ν̃ exp
(
ηT ν̃λ̃

)
= p(η|λ̃, ν̃). (26)

In other words, given an exponential family observation model, i.i.d. data and
a conjugate prior, we obtain posterior just by replacing the prior parameters
according to eqns. 24 and 25. Furthermore, note that

� According to eqn. 24, ν̃ keeps track of the number of observed data-
points. Since it also contains prior information via ν, it is referred to as a
pseudocount.

� For large enough N , the posterior is unimodal, and the log-posterior is
convex. The width of the maximum is monotonically decreasing in ν̃
(Can be shown by computing the Hessian of the log-posterior). Hence, ν̃
is also called the concentration parameter.

� The posterior λ̃ is just a weighted mean of the prior λ and and the
observed data.

� These posterior updates can be iterated, i.e. the accumulation of the
sufficient statistics can be restarted at any point. The extreme case of
updating after every datapoint, i.e. online learning, boils down to keeping
track of this weighted average datapoint per datapoint.

2.1 Maximum-a-posteriori (MAP) parameter estimates

Instead of working with the full posterior of the natural parameters η (eqn.
26), it is sometimes enough to use the parameter values which maximize the
posterior, i.e. the numerator of eqn. 26 (the denominator does not depend on
η after the integration). Setting the derivative of the log of the numerator to
zero, we find

∇η log(m(η)) + (ν +N) ∇η log(g(η))︸ ︷︷ ︸
−〈u(x)〉,eqn. 4

+(νλ+
∑
n

u(xn))
!
= 0

⇒
νλ+

∑
n u(xn)

N + ν
+
∇η log(m(η))

N + ν

!
= 〈u(x)〉 (27)
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i.e. the posterior maximum is located at a point where the expected value of the
natural parameters is equal to the quotient of the posterior parameters (eqns.
24,25) plus a term depending on m(η). The latter is often zero, since m(η) = 1
for many distributions (see tables in section 4).

2.2 Expectations

Computing parameter expectations (i.e. of η and functions thereof) of a conju-
gate p(oste)rior can be done similar to the expectations of an exponential family
distribution. From the normalization equation

f(λ, ν)

∫
dη m(η) g(η)ν exp

(
νηTλ

)
= 1 (28)

follows

∇λ
[
f(λ, ν)

∫
dη m(η) g(η)ν exp

(
νηTλ

)]
= 0

⇒ ∇λf(λ, ν)

∫
dη m(η) g(η)ν exp

(
νηTλ

)
︸ ︷︷ ︸

f(λ,ν)−1

= −f(λ, ν)

∫
dη m(η) g(η)ν exp

(
νηTλ

)
νη

⇒ ∇λf(λ, ν)

f(λ, ν)
= −ν〈η〉 (29)

and thus

〈η〉 = −∇λ log(f(λ, ν))

ν
(30)

Likewise, from the derivative w.r.t. ν we find, noting that ∂g(η)ν

∂ν = log(g(η))g(η)ν :

〈log(g(η))〉+ λT 〈η〉 = −∂ log(f(λ, ν))

∂ν
(31)

For the second moments, take the derivatives of 〈η〉 (see eqn. 29):

∂〈η〉
∂λj

=
∂

∂λj

[
f(λ, ν)

∫
dη m(η) g(η)ν exp

(
νηTλ

)
η

]
=

∂f(λ, ν)

∂λj

∫
dη m(η) g(η)ν exp

(
νηTλ

)
η︸ ︷︷ ︸

=
〈η〉

f(λ,ν)

+f(λ, ν)

∫
dη m(η) g(η)ν exp

(
νηTλ

)
νηηj

=
∂ log(f(λ, ν))

∂λj
〈η〉+ ν〈ηηj〉

= −ν〈ηj〉〈η〉+ ν〈ηηj〉 (32)

⇒ 1

ν

∂〈ηk〉
∂λj

= 〈ηjηk〉 − 〈ηj〉〈ηk〉 (33)

and thus
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Cov(η) = −∇λ∇λ log(f(λ, ν))

ν2
(34)

Likewise, computing the derivative of eqn. 31 on both sides yields

∂〈log(g(η))〉
∂ν

= −∂
2 log (f(λ, ν)))

∂ν2
− λT ∂〈η〉

∂ν
(35)

where

∂〈log(g(η))〉
∂ν

=
∂ log(f(λ, ν))

∂ν
〈log(g(η))〉+

〈
log(g(η))2

〉
+ λT 〈log(g(η))η〉

=
〈
log(g(η))2

〉
− 〈log(g(η))〉2 + λT 〈log(g(η))η〉 − λT 〈log(g(η))〉 〈η〉

= Var(log(g(η))) + Cov(log(g(η)),λTη)

∂〈ηi〉
∂ν

=
∂ log(f(λ, ν))

∂ν
〈ηi〉+ 〈ηi log(g(η))〉+ λT 〈ηηi〉 (36)

= 〈ηi log(g(η))〉 − 〈ηi〉〈log(g(η))〉+ λT 〈ηηi〉 − λT 〈η〉〈ηi〉
= Cov(log(g(η)), ηi) + Cov(λTη, ηi)

⇒ λT
∂〈η〉
∂ν

= Cov(log(g(η)),λTη) + Var(λTη) (37)

and thus, noting that Var(x+ y) = Var(x) + Var(y) + 2 Cov(x, y):

Var
(

log(g(η)) + λTη
)

= −∂
2 log (f(λ, ν)))

∂ν2
(38)

Another expectation that can be computed from the normalization constant
f(λ, ν) is

〈g(η)k〉 = f(λ, ν)

∫
dη m(η) g(η)ν+k exp

(
νηTλ

)
. (39)

To evaluate the integral, choose new parameters ν′,λ′ such that

ν′ = ν + k (40)

ν′λ′ = νλ⇒ λ′ =
ν

ν′
λ. (41)

With these parameters, the integral is in exponential family normal form, and
thus

〈g(η)k〉 =
f(λ, ν)

f(λ′, ν′)
(42)

〈g(η)〉 =
f(λ, ν)

f( ν
ν+1λ, ν + 1)

(43)

Var(g(η)) =
f(λ, ν)

f( ν
ν+2λ, ν + 2)

−

[
f(λ, ν)

f( ν
ν+1λ, ν + 1)

]2

(44)
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2.3 Predictive distribution, entropy and log-likelihood

Let α > 0. The predictive distribution and related quantities can be derived
from the integral

∫
dη p(x|η)αp(η|λ, ν) = h(x)αf(λ, ν)

∫
dη g(η)α exp

(
αηTu(x)

)
m(η)g(η)ν exp

(
νηTλ

)
= h(x)αf(λ, ν)

∫
dηm(η)g(η)ν+α exp

(
νηTλ+ αηTu(x)

)
= h(x)αf(λ, ν)

∫
dηm(η)g(η)ν+α exp

(
(ν + α)ηT

νλ+ αu(x)

ν + α

)
〈p(x|η)α)〉p(η|λ,ν) = h(x)αf(λ, ν)

1

f
(
νλ+αu(x)

ν+α , ν + α
) (45)

where the last line follows from the normalization equation 28. For α = 1, the
integral on the l.h.s. is the expectation of p(x|η) under the prior:

p(x|λ, ν) = h(x)
f(λ, ν)

f
(
νλ+u(x)
ν+1 , ν + 1

) (46)

Differentiating with respect to α yields:

∂

∂α
〈p(x|η)α)〉p(η|λ,ν) = 〈log(p(x|η))p(x|η)α〉p(η|λ,ν)

= log(h(x)) h(x)α
f(λ, ν)

f
(
νλ+αu(x)

ν+α , ν + α
)

− h(x)αf(λ, ν)

f
(
νλ+αu(x)

ν+α , ν + α
)2 ·

[
ν

(ν + α)2
∇λ′f(λ′, ν′)(u(x)− λ) +

∂f(λ′, ν′)

∂ν′

]

where the derivatives are evaluated at λ′ = νλ+αu(x)
ν+α and ν′ = ν+α. For α = 0,

we obtain the expected log-likelihood, using eqn. 30:

〈log(p(x|η))〉p(η|λ,ν) = log(h(x)) + 〈ηT 〉(u(x)− λ)− ∂ log(f(λ, ν))

∂ν
(47)

For α = 1, we obtain expectations of the form 〈log(p(x|η))p(x|η))〉p(η|λ,ν),
which are the terms required for the computation of the expected entropy of x:

λ′ =
νλ+ u(x)

ν + 1
(48)

ν′ = ν + 1 (49)

〈log(p(x|η))p(x|η)〉p(η|λ,ν) = p(x|λ, ν)
[
log(h(x)) +

ν

ν′
〈ηT 〉λ′,ν′(u(x)− λ)

− ∂ log(f(λ′, ν′))

∂ν′

]
(50)
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2.4 Expected sufficient statistics

The expectations of the sufficient statistics u for fixed natural parameters η is
given by eqn. 4:

〈u(x)〉p(x|η) = −∇ log(g(η)) (51)

If η is drawn from a conjugate prior, the expectation of u(x) under the prior is
given by averaging the r.h.s. over p(η|λ, ν),

〈u(x)〉p(x|η)p(η|λ,ν) = −〈∇ log(g(η))〉p(η|λ,ν) (52)

To compute this expectation, one can use the Divergence Theorem from vec-
tor calculus (Ostrogradsky-Gauss). For a differentiable vector field f(x), this
theorem states that ∫

V

dx ∇ · f(x) =

∮
S

ds f(x) (53)

where S is the surface enclosing the volume V . As a special case, consider the
field f(x) = cz(x), with ~c a constant vector and z(x) a smoothly differentiable

scalar function. Then, using ∇ · cz(x) =
∑
i
∂ciz(x)
∂xi

= cT∇z(x) we find

cT
∫
V

dx ∇z(x) = cT
∮
S

ds z(x) (54)

and since this holds for any c, it follows that∫
V

dx ∇~z(x) =

∮
S

ds z(x) (55)

This identity can be used to compute the expectation on the r.h.s. of eqn.
52 by integrating the gradient of p(η|λ, ν):∫

dη∇ηp(η|λ, ν) = f(λ, ν)

∫
dη∇η

(
m(η)g(η)ν exp

(
νηTλ

))
= f(λ, ν)

∫
dη

(
∇ηm(η)

m(η)
+ ν
∇ηg(η)

g(η)
+ νλ

)
p(η|λ, ν)

= 〈∇η log(m(η))〉p(η|λ,ν) + ν〈∇η log(g(η))〉p(η|λ,ν) + νλ

=

∮
S

ds p(η|λ, ν) (56)

where the surface S encloses the range of η. Hence, the expectation is:

〈u(x)〉p(x|η)p(η|λ,ν) = λ+
〈∇η log(m(η))〉p(η|λ,ν) −

∮
ds p(η|λ, ν)

ν
(57)

If η ∈ RD with no further constraints, then p(η|λ, ν)→ 0 on the surface of the
range of η, since p(η|λ, ν) has to be normalizable. Hence, the surface integral
must be zero. This is e.g. the case for the Multinomial distribution and the
Poisson distribution. Furthermore, if m(η) = const., then the gradient vanishes
(Dirichlet,Gamma, Stick-breaking for ci = 0, see tables in appendix). In those
cases, the above expression simplifies to

9



〈u(x)〉p(x|η)p(η|λ,ν) = λ (58)

The expectation for the multivariate Gaussian is also computable, see ap-
pendix.

2.5 Maximum likelihood

For maximum-likelihood approximations, we need the gradient of log(p(η|λ, ν))
w.r.t. λ and ν:

∇λ log(p(η|λ, ν)) = ∇λ log(f(λ, ν)) + νη

= −ν〈η〉+ νη = ν(η − 〈η〉) (59)

∂

∂ν
log(p(η|λ, ν)) =

∂f(λ, ν)

∂ν
+ log(g(η)) + ηTλ

= (log(g(η))− 〈log(g(η))〉) + λT (η − 〈η〉) (60)

Similar to the gradient of the exponential family distributions, this gradient
points towards the actual value of η and away from the expectation.

2.6 Entropy

The differential entropy (not the conditional entropy) of η given λ and ν is

H(η|λ, ν) = −f(λ, ν)

∫
dη m(η) g(η)ν exp(νηTλ)

[
log(f(λ, ν)) + log(m(η)) + ν log(g(η)) + νηTλ

]
= − log(f(λ, ν))− 〈log(m(η))〉 − ν

[
〈log(g(η))〉+ λT 〈η〉

]
(61)

where the expectations are w.r.t. the p(oste)rior eqn. 22. Using eqn. 31, this
can be rewritten as

H(η|λ, ν) = − log(f(λ, ν))− 〈log(m(η))〉+ ν
∂ log(f(λ, ν))

∂ν
(62)

The derivates of this entropy are therefore:

∂H(η|λ, ν)

∂ν
= ν

∂2 log (f(λ, ν))

∂ν2
− ∂〈log(m(η))〉

∂ν
(63)

and (using eqn. 36 and 30):

∇λH(η|λ, ν) = −∇λ log(f(λ, ν)) + ν∇λ
∂ log(f(λ, ν))

∂ν
−∇λ〈log(m(η))〉

= ν〈η〉+ ν
∂

∂ν
∇λ log(f(λ, ν))−∇λ〈log(m(η))〉

= ν〈η〉 − ν ∂
∂ν
ν〈η〉 − ∇λ〈log(m(η))〉

= ν〈η〉 − ν〈η〉 − ν2 ∂〈η〉
∂ν
−∇λ〈log(m(η))〉

= −ν2
[
Cov(log(g(η)),η) + Cov(λTη,η)

]
−∇λ〈log(m(η))〉
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∇λH(η|λ, ν) = −∇λ log(f(λ, ν)) + ν∇λ
∂ log(f(λ, ν))

∂ν
−∇λ〈log(m(η))〉

(64)

∇λH(η|λ, ν) = −ν2 ∂〈η〉
∂ν
−∇λ〈log(m(η))〉 (65)

2.7 Kullback-Leibler divergence

The KL-divergence of a distribution with parameters λ̃, ν̃ to a distribution with
parameters λ, ν is given by

D(p(η|λ̃, ν̃)||p(η|λ, ν)) =

∫
dη p(η|λ̃, ν̃)

[
log(p(η|λ̃, ν̃))− log(p(η|λ, ν))

]
= −H(η|λ̃, ν̃)−

∫
dη p(η|λ̃, ν̃) log(p(η|λ, ν)) (66)

The second term on the r.h.s. is given by (expectations w.r.t p(η|λ̃, ν̃))∫
dη p(η|λ̃, ν̃) log(p(η|λ, ν)) = log(f(λ, ν))+〈log(m(η))〉+ν〈log(g(η))〉+νλ〈η〉

(67)
and thus, using eqn. 61 and 31 we find

D(p(η|λ̃, ν̃)||p(η|λ, ν)) = log

(
f(λ̃, ν̃)

f(λ, ν)

)
− (ν̃ − ν)

∂ log(f(λ̃, ν̃))

∂ν̃
+ (λ̃

T
− λT )ν〈η〉

(68)
The derivatives are:

∇λ̃D(p(η|λ̃, ν̃)||p(η|λ, ν)) = ∇λ̃ log(f(λ̃, ν̃))− (ν̃ − ν)
∂

∂ν̃
∇λ̃ log(f(λ̃, ν̃))

+ν〈η〉 − ν

ν̃
(λ̃

T
− λT )∇λ̃∇λ̃ log(f(λ̃, ν̃))

= −ν̃〈η〉+ (ν̃ − ν)
∂

∂ν̃
ν̃〈η〉

+ν〈η〉 − ν

ν̃
(λ̃

T
− λT )∇2

λ̃
log(f(λ̃, ν̃))

= ν̃(ν̃ − ν)
∂〈η〉
∂ν̃
− ν

ν̃
(λ̃

T
− λT )∇2

λ̃
log(f(λ̃, ν̃))

= ν̃(ν̃ − ν)
∂〈η〉
∂ν̃

+ ν(λ̃
T
− λT )∇λ̃〈η〉 (69)

∇λ̃D(p(η|λ̃, ν̃)||p(η|λ, ν)) = ν̃(ν̃ − ν)
∂〈η〉
∂ν̃

+ ν(λ̃
T
− λT )∇λ̃〈η〉 (70)

where ∇λ̃〈η〉 is a matrix with entries
(
∇λ̃〈η〉

)
i,j

= ∂〈η〉i
∂λ̃j

. Likewise,

∂

∂ν̃
D(p(η|λ̃, ν̃)||p(η|λ, ν)) = −(ν̃ − ν)

∂2f(λ̃, ν̃)

∂ν̃2
− ν(λ̃

T
− λT )

∂〈η̃〉
∂ν̃

(71)
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3 Variational approximations with exponential
family distributions

3.1 Variational inference with conjugate p(oste)riors

In variational inference, we replace an intractable distribution (or density)
q(X|d) (i.e. one where marginals and conditionals are hard to compute) with
a tractable, factorized approximation q(X). d is the observed data. Strictly
speaking, q(X) = q(X|d) but it is customary to omit writing this condition-
ing, since it is only approximate. The approximation is linked to the correct
distribution via the variational bound also ’evidence lower bound (ELBO)’:

log(q(d)) = log

(∑
x

q(d,x)

)
= log

(∑
x

q(x)p(d|x)
p(x)

p(x)

)

≥
∫
x

q(x) log

(
p(d|x)

p(x)

q(x)

)
= 〈log p(d|x)〉q(X) −D(q(X)||p(X))

⇒ L(q,d) = 〈log p(d|x)〉q(X) −D(q(X)||p(X)) ≤ log(p(d)) (72)

where the second line follows from Jensen’s inequality for convex functions and
the definition of the Kullback-Leibler divergence. L(q,d) is a lower bound on the
log-marginal-likelihood, which we try to maximize w.r.t. q(x). The resulting
q(x) is an approximate version of the correct posterior p(x|d) which will be
exact iff p(x|d) is contained in the class of distributions which can be modeled
by q(x). In that case (and only in that case), the bound will be tight.

In the following, we will derive the posterior update rules for the case p(X)
is conjugate to q(d|X) and both are in the exponential family. We also assume
that q(X) is conjugate to the likelihood, such that posterior updated reduce to
parameter updates, like in section 2. Lastly, assume that the data are comprised
of N i.i.d. observations, i.e. p(d|X) =

∏N
i=1 p(di|X). We use a generalized

version of the ELBO, which has an inverse temperature parameter β ≥ 0:

L(q,d) = 〈log p(d|x)〉q(X) − βD(q(X)||p(X)) ≤ log(P (d)) (73)

β 6= 1 can be used to model deviations from optimal inference, or for stochastic
updating in minibatches etc.. Denote the prior parameters with ν,λ and the
posterior parameters with ν̃, λ̃.

The expected log-likelihood under the posterior 〈log p(d|x)〉q(X) for N dat-

apoints can then be computed from eqn. (47):

〈log(p(d|η))〉q(η|λ̃,ν̃) =

N∑
i=1

log(h(di))+〈ηT 〉(
N∑
i=1

u(di)−N λ̃)−N ∂ log(f(λ̃, ν̃))

∂ν̃

(74)
where 〈ηT 〉 is given by eqn. (30) and the KL-divergence D(q(X)||p(X)) by eqn.
(68). To maximize eqn. (73) w.r.t. the posterior parameters λ̃, ν̃, we will rewrite
the elbo as difference between one part that does not depend on the posterior
parameters, and a KL-divergence between the posterior, and a distribution in
the same exponential family as the posterior that depends on parameters λ′, ν′

Because the KL-divergence is zero exactly if the two distributions that enter it

12



are pointwise equal, we can then compute the maximal ELBO by setting λ̃ = λ′

and ν′ = ν̃.

L(q,d) = 〈log p(d|x)〉q(X) − βD(q(X)||p(X))

=

N∑
i=1

log(h(di)) + 〈ηT 〉

(
N∑
i=1

u(di)−N λ̃

)
−N ∂ log(f(λ̃, ν̃))

∂ν̃

− β

[
log

(
f(λ̃, ν̃)

f(λ, ν)

)
− (ν̃ − ν)

∂ log(f(λ̃, ν̃))

∂ν̃
+ (λ̃

T
− λT )ν〈η〉

]

=

N∑
i=1

log(h(di))− β log

(
f(λ̃, ν̃)

f(λ, ν)

)

+ 〈ηT 〉

(
N∑
i=1

u(di) + βνλ− (N + βν)λ̃

)

− (N + βν − βν̃)
∂ log(f(λ̃, ν̃))

∂ν̃
(75)

Define

Posterior parameters for β-variational update

ν′ =
N

β
+ ν (76)

λ′ =

∑N
i=1 u(di) + βνλ̃

N + βν
=
νλ+

∑N
i=1 u(di)/β

ν′
(77)

and note the similarity of these definitions with the exact posterior updates eqn.
(26) – all data-related quantities have been divided by β. Collecting terms in
the ELBO eqn. (75) and plugging in these definitions, we find

L(q,d) =

N∑
i=1

log(h(di))− β log

(
f(λ̃, ν̃)

f(λ, ν)

)
+ βν′〈ηT 〉

(
λ′ − λ̃

)
− β(ν̃ − ν′)∂ log(f(λ̃, ν̃))

∂ν̃
(78)

Comparing the last two lines to the expression for the KL divergence eqn. (68),

we find that up to a log
(
f(λ̃,ν̃)
f(λ′,ν′)

)
term and a factor β, these lines are a KL-

divergence. Inserting and subtracting this term, we find
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X1 X2

X6 X7

X3
X5X4

X1 X2

X6 X7

X3 X5X4

p(X4|X1) p(X5|X2)p(X3|X1, X2)

p(X6|X4, X3) p(X7|X5, X3)

p(X1) p(X2)

Figure 1: Left: Bayesian network with (undirected) loops. Exact sum-product
can not be run on this graph. Right: corresponding factor graph. For vari-
ational message passing, a node (e.g. X3) needs to receive messages from all
members of its Markov blanket, which are the variables connected to neighbour-
ing factors (for X3: all other nodes). through the connecting factors.

L(q,d) =

N∑
i=1

log(h(di))− β log

(
f(λ̃, ν̃)

f(λ, ν)

)
+ β log

(
f(λ̃, ν̃)

f(λ′, ν′)

)
− βD(q(X|λ̃, ν̃)||p(X|λ′, ν′))

=

N∑
i=1

log(h(di))− β log

(
f(λ′, ν′)

f(λ, ν)

)
(79)

− βD(q(X|λ̃, ν̃)||p(X|λ′, ν′)) (80)

which is maximal if D(q(X|λ̃, ν̃)||p(X|λ′, ν′)) = 0, which happens if and only
if λ̃ = λ′ and ν′ = ν̃. Thus, the maximal ELBO after the posterior update is
given by eqn. (79), which is achieved for the parameters given in eqns. (76).

Now we derive an expression for the expected log-likelihood eqn. (74) that
depends only on the p(oste)rior parameters. This is possible because these
parameters are computed from the sufficient statistics (which are by definition
sufficient to determine the likelihood). Rewrite the posterior parameters as
N = β(ν′ − ν) and β(λ′ν′ − λν) and substitute these expressions into the log-
likelihood, then

〈log(p(d|η))〉q(η|λ̃,ν̃) =

N∑
i=1

log(h(di))+βν〈ηT 〉(λ′−λ)−β(ν′−ν)
∂ log(f(λ′, ν′))

∂ν′

(81)

3.2 Variational message passing

Denote the set of indexes of latent variables by L , the set of indexes of observed
variables with O , and the set of all indexes by N such that L ∩ O = ∅ and

14



L ∪O = N. We consider a fully factorized approximation, i.e. one where the
density of the latent variables

Q(x) =
∏
i∈L

Qi(xi) =
∏
i∈L

Q(xi)

is a product over distributions of individual variables. Strictly speaking, the
notation in the middle is correct because there is one density per variable. We
omit the extra index and assume the reader knows what is meant. Let the
correct density be expressed as a Bayes net,

P (d,x) =
∏
j∈O

P (dj |paXj )
∏
i∈L

P (xi|paXi)

and dj is the observed data at node Xj . Furthermore, to simplify notation, we
introduce the ”sum-product” symbol:∑∏

i∈K

Q(xi) :=
∑

xi:i∈K

∏
i∈K

Q(xi) (82)

The bound then is:

L(Q,d) =
∑
x

∏
i∈L

Q(xi)

∑
j∈O

log(P (dj |paXj )) +
∑
k∈L

log(P (xk|paXk))−
∑
k∈L

log(Q(xk))


=

∑
x

∏
i∈L

Q(xi)

∑
j∈O

log(P (dj |paXj )) +
∑
k∈L

log(P (xk|paXk))


−
∑
i∈L

∑
xi

Q(xi) log(Q(xi))

=
∑
j∈O

∑∏
i∈L∩paXj

Q(xi) log(p(dj |paXj ))

+
∑
k∈L

∑∏
i∈L∩paXk∪{k}

Q(xi) log(P (xk|paXk))

−
∑
i∈L

∑
xi

Q(xi) log(Q(xi)) (83)

To find the Q(x) that maximizes the bound, we take the derivative w.r.t. q(x)
and set it to zero. This is a necessary condition for a maximum, it can be shown
that it is sufficient, too. We furthermore impose the constraint that all q(xi)
have to be distributions, i.e. q(xi) ≥ 0 and

∑
xi
q(xi) = 1. It will turn out that

we do not have to impose the first constraint, we do however need to make sure
the second one is fulfilled. This can be achieved by a Lagrange multiplier for
each distribution. The Lagrangian functional therefore is

L(Q,d) = L(Q,d) +
∑
i∈L

τi

(∑
xi

Q(xi)− 1

)
(84)

A necessary condition for an extemum of L(Q,d) is a stationary point of L(Q,d),
i.e. the derivatives w.r.t. the components of Q(x) have to vanish:
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δL(Q,d)

δQ(Xm)
=

∑
j∈O∩chXm

∑∏
i∈L∩paXj \{m}

Q(xi) log(P (dj |paXj ))

+
∑∏

i∈L∩paXm

Q(xi) log(P (xm|paXm))

+
∑

k∈L∩chXm

∑∏
i∈L∩paXk∪{k}\{m}

Q(xi) log(P (xk|paXk))

− log(Q(xm))− 1 + τm (85)

which we set to 0 and solve for Q(xm) to find the optimal approximate posterior
marginals. To do so, we interpret the terms in eqn. 85 as messages sent to node
Xm on the factor graph corresponding to the Bayesian network (see fig. 1 for
an example).

Define the messages sent a variable node Xm to a neighbouring factor node
f(Xm, . . .) as just the variational posterior marginals for unobserved nodes, and
a 1-or-0 message for observed nodes:

∀m ∈ L : µXm→f(...,Xm,...)(Xm) = Q(Xm) (86)

∀j ∈ O : µXj→f(...,Xj ,...)(Xj) = δxj ,dj (87)

and the messages sent from a factor f(. . . , Xm, . . .) depending on variables with
indices j ∈ F,m ∈ F to a neighbouring variable node as:

µf(...,Xm,...)→Xm(Xm) =
∑∏
j∈F\{m}

Q(xj)f(. . . , xm, . . .) (88)

=
∑∏
j∈F\{m}

f(. . . , xm, . . .)µXj→f(...,Xj ,...)(xj) (89)

i.e. the average over the factor with respect to the posterior of all variables that
connect to it, except for the variable where the message is being sent to. With
these message definitions, eqn. 85 becomes

δL(Q,d)

δQ(Xm)
=

∑
j∈O∩chXm

µlog(P (Xj |paXj ))→Xm(Xm)

+µlog(P (Xm|paXm ))→Xm(Xm)

+
∑

k∈L∩chXm

µlog(P (Xk|paXk ))→Xm(Xm)

− log(Q(xm))− 1 + τm (90)

=
∑

j∈chXm

µlog(P (Xj |paXj ))→Xm(Xm)

+µlog(P (Xm|paXm ))→Xm(Xm)

− log(Q(Xm))− 1 + τm (91)
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Defining exp(τm − 1) = 1
Zm

, we can solve for Q(Xm) now:

Q(Xm) =
1

Zm
exp

 ∑
j∈chXm

µlog(P (Xj |paXj ))→Xm(Xm) + µlog(P (Xm|paXm ))→Xm(Xm)


(92)

In other words, the variational posterior at variable node Xm is computed by
adding up all incoming messages, exponentiating, and normalizing (since Zi is
computed from the Lagrange multiplier which enforces normalization). This
message-passing scheme has to be iterated until convergence, which is guaran-
teed since the bound L(Q,D) is a Lyapunov function of the iteration dynamics.

Another way of deriving this algorithm without computing derivatives is via
the KL divergence D(Q(X)||Q̃(X)). Recall that the KL divergence is positive,
and zero if and only if the distributions are equal everywhere. Assume again we
wanted to maximize eqn. 83 w.r.t. Q(Xk). To carry out this maximization, we
only need to consider terms which depend on Q(Xk), which in turn depend on
the members of Xk’s Markov blanket:

argmax
Q(Xk)

[L(Q,d)] = argmax
Q(Xk)

 ∑
j∈O∩chXk

∑∏
i∈L∩paXj

Q(xi) log(P (dj |paXj ))

+
∑

j∈L∩chXk∪{k}

∑∏
i∈L∩paXj∪{j}

log(P (xj |paXj ))

−
∑
xk

Q(xk) log(Q(xk))

]
(93)

Note that all terms on the r.h.s. include a factor Q(xk) and a summation over
xk. We can therefore pull it out:

argmax
Q(Xk)

[L(Q,d)] = argmax
Q(Xk)

∑
xk

Q(xk)

 ∑
j∈O∩chXk

∑∏
i∈L∩paXj \{k}

Q(xi) log(P (dj |paXj ))

+
∑∏

i∈L∩paXk

log(P (xk|paXk))

+
∑

j∈L∩chXk

∑∏
i∈L∩paXj∪{j}\{k}

log(P (xj |paXj ))− log(Q(xk))


 (94)
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With the message definitions (eqns. 86 – 88) the r.h.s. can be written as

argmax
Q(Xk)

[L(Q,d)] = argmax
Q(Xk)

∑
xk

Q(xk)

 ∑
j∈O∩chXk

µlog(P (dj |paXj ))→Xk(xk)

+µlog(P (Xk|paXk ))→Xk(xk)

+
∑

j∈L∩chXk

µlog(P (Xj |paXj )→Xk(xk)− log(Q(xk))



(95)

i.e. we need the incoming messages from all neighbouring factor nodes to com-
pute this expression. Note that the unions of the index sets of the sums in the
first and the last line are simply the indexes of all children of Xk, whereas the
message on the second line is the incoming message from the parents. Thus,
define

log(U(xk)) =
∑

j∈chXk

µlog(P (dj |paXj ))→Xk(xk) + µlog(P (Xk|paXk→Xk
(xk) (96)

and let
U(xk) = ZkQ̃(xk) (97)

with
∑
xk
Q̃(xk) = 1 and Zk > 0, i.e. Q̃(Xk) is a probability distribution. With

these definition we obtain

argmax
Q(Xk)

[L(Q,d)] = argmax
Q(Xk)

[∑
xk

Q(xk) log(U(xk))− log(Q(xk))

]

= argmax
Q(Xk)

[∑
xk

Q(xk) log(Zk) +
∑
xk

Q(xk) log

(
Q̃(xk)

Q(xk)

)]
= log(Zk)− argmax

Q(Xk)

[
D(Q(Xk)||Q̃(Xk))

]
(98)

Since the KL-divergence is ≥ 0, it follows that the variational bound L(Q,d)
is maximized if Q(Xk) = Q̃(Xk). In other words, to compute the optimal
distribution at a given variable node given the distributions of the variables in
its Markov blanket, do the following:

� sum all incoming messages from neighbouring factor nodes,

� exponentiate,

� normalize.

The factor nodes collect messages from their neighbouring variable nodes, and
compute messages by summing their log-factor over all variables except the one
where the message is being sent to, similar to sum-product message passing.
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Figure 2: Variational approximation of parameter (Θ) learning in a Bayesian
network with a fully factorized approximation. A: fragment of a Bayesian net-
work. paX are the parents of X, which may have parents and other chil-
dren. For learning the parameters Θ, these other children/parents are not rele-
vant. B: corresponding factor graph fragment. The parameters Θ appear only
in the factor connecting X to its parents. C: fully factorized approximation
and D corresponding factor graph. When computing the variational bound,
log(P (X|Θ,paX)) has to be averaged over all variables that appear in it, which
are the neighbours of the factor node P (X|Θ,paX) in B.

3.3 Learning parameters with exponential family distri-
butions

To apply variational message passing, it is necessary to know the factors, which
are the conditional probability distributions in case of a Bayesian network. If
we want to learn these factors from data, then it is useful to have a compact
parametrization of them, which can be done with exponential family distri-
butions and their conjugate p(oste)riors. Consider the network (fragment) in
fig. 2. Assume we wanted to learn the conditional distribution of X given its
parents, and parametrize this distribution by Θ. We lump these parents to-
gether in one supernode. X may be continuous or discrete, but we assume that
the parents of X, paX are discrete (in some special cases, continuous models
are tractable). Also assume that the distribution of X given paX is from the
exponential family, i.e.

p(X|paX ,ηpaX ) = h(x)g(ηpaX ) exp(ηTpaXu(x)) (99)

i.e. there is one parameter vector ηpaX for each value of paX , and Θ is the
concatentation of these parameter vectors. The conjugate prior on each ηpaX
is then

p(ηpaX |λpaX , νpaX ) = f(λpaX , νpaX )g(ηpaX )ν exp(νpaXη
T
paXλpaX ) (100)

Assume now we had observed n = 1, . . . , N datapoints d1:N and computed
the corresponding latent variable distributions Q(Xn), Q(panX). If any of the
nodes are observed, replace the corresponding distribution with a distribution
concentrated at the observed value. Note that in a fully factorized approxi-
mation, each Q(paXn) is a actually a product over the parents, Q(paXn) =
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∏
Y n∈paXn

Q(Y n). Looking at fig. 2, we note that there is exactly one fac-

tor connecting the parameter node to X and paX , and the prior factor for Θ.
Using an approximating posterior for Q(Θ) which has the same form as the
prior (eqn. 100), the summands in the variational bound which depend on the
posterior distribution of Θ are (where yn,y ∈ range(paXn)):

LΘ =

N∑
n=1

∑
xn

∑
yn

Q(xn)Q(yn) 〈log(P (xn|Θ,yn))〉Q(Θ) − βD(Q(Θ)||P (Θ))

=

N∑
n=1

∑
xn

∑
yn

Q(xn)Q(yn)
〈
log(P (xn|ηyn))

〉
Q(ηyn |λ̃yn ,ν̃yn )

−
∑
y

βD(Q(ηy|λ̃y, ν̃y)||P (ηy|λy, νy)) (101)

We rewrite the first term as a sum over the possible values of x and paX :

LΘ =
∑
x

∑
y

〈
log(P (x|ηy))

〉
Q(ηy|λ̃y,ν̃y)

N∑
n=1

Q(Xn = x)Q(paXn = y)

−
∑
y

βD(Q(ηy|λ̃y, ν̃y)||P (ηy|λy, νy)) (102)

and define the ”responsibilities” (because they measure how much a given setting
of the latent variables contributes to explaining a datapoint)

rx,y =

N∑
n=1

Q(Xn = x)Q(paXn = y) (103)

Using the definition of the exponential familiy distribution (eqn. 1), the Kullback-
Leibler divergence between conjugate p(oste)riors (eqn. 68) and denotingQ(ηy) =

Q(ηy|λ̃y, ν̃y), we find

LΘ =
∑
x

∑
y

[
log(h(x)) + 〈log(g(ηy))〉Q(ηy) + u(x)T 〈ηy〉Q(ηy)

]
rx,y

−
∑
y

[
β log

(
f(λ̃y, ν̃y)

f(λy, νy)

)
− β(ν̃y − νy)

∂ log(f(λ̃y, ν̃y))

∂ν̃y
+ β(λ̃

T

y − λ
T
y )νy〈ηy〉Q(ηy)

]
(104)

The expectations 〈log(g(ηy))〉Q(ηy) can be expressed using eqn. 31:

〈log(g(ηy))〉Q(ηy) = −∂ log(f(λ̃y, ν̃y)

∂ν̃y
− λ̃

T

y 〈ηy〉Q(ηy) (105)

Inserting this expression into eqn. 104:
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LΘ =
∑
x

∑
y

[
log(h(x))− ∂ log(f(λ̃y, ν̃y)

∂ν̃y
− λ̃

T

y 〈ηy〉Q(ηy) + u(x)T 〈ηy〉Q(ηy)

]
rx,y

−
∑
y

[
β log

(
f(λ̃y, ν̃y)

f(λy, νy)

)
− β(ν̃y − νy)

∂ log(f(λ̃y, ν̃y))

∂ν̃y
+ β(λ̃

T

y − λ
T
y )νy〈ηy〉Q(ηy)

]
(106)

Collecting terms, we find:

LΘ =
∑
x

∑
y

log(h(x))rx,y −
∑
y

β log

(
f(λ̃y, ν̃y)

f(λy, νy)

)

+
∑
y

∂ log(f(λ̃y, ν̃y)

∂ν̃y

[
β (ν̃y − νy)−

∑
x

rx,y

]

−
∑
y

νy

[
β
(
λ̃
T

y − λ
T
y

)
+ λ̃

T

y

∑
x rx,y
νy

−
∑
x rx,yu(x)T

νy

]
〈ηy〉Q(ηy)

(107)

With the expressions

ν̂y = νy +

∑
x,y rx,y

β
= νy

(
1 +

∑
x rx,y
νyβ

)

λ̂y =
νyλy +

∑
x rx,y
β u(x)

νy +
∑
x rx,y
β

=
νy
ν̂y

λy +

∑
x rx,y
β u(x)

νy

 (108)

and noting that

−βν̂y = −βνy −
∑
x,y

rx,y (109)

νy

[
βλ̃

T

y + λ̃
T

y

∑
x rx,y
νy

]
= βνy

[
λ̃
T

y + λ̃
T

y

∑
x rx,y
νyβ

]
= βνyλ̃

T

y

[
1 +

∑
x rx,y
νyβ

]
= βν̂yλ̃

T

y (110)

νy

[
−βλTy −

∑
x rx,yu(x)T

νy

]
= −νyβ

[
λTy +

∑
x rx,yu(x)T

νyβ

]
= −βν̂yλ̂

T

y (111)

we insert a zero by adding and subtracting the term
∑
y β log

(
f(λ̃y,ν̃y)

f(λ̂y,ν̂y)

)
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and write (using eqn. 68)

LΘ =
∑
x

∑
y

log(h(x))rx,y −
∑
y

β log

(
f(λ̃y, ν̃y)

f(λy, νy)

)

+
∑
y

β log

(
f(λ̃y, ν̃y)

f(λ̂y, ν̂y)

)
−
∑
y

β log

(
f(λ̃y, ν̃y)

f(λ̂y, ν̂y)

)

+
∑
y

∂ log(f(λ̃y, ν̃y)

∂ν̃y
β(ν̃y − ν̂y)

−
∑
y

βν̂y(λ̃
T

y − λ̂
T

y )〈ηy〉Q(ηy) (112)

=
∑
x

∑
y

log(h(x))rx,y −
∑
y

β log

(
f(λ̂y, ν̂y)

f(λy, νy)

)
−
∑
y

βD(Q(ηy|λ̃y, ν̃y)||Q(ηy|λ̂y, ν̂y)) (113)

The first part of this expression is constant w.r.t. to the λ̃y, ν̃y, and the second
part is a sum of KL-divergences. To maximize LΘ, we therefore choose the
posterior parameters so that each KL-divergence is zero, i.e. λ̃y = λ̂y and
ν̃y = ν̂y:

variational posterior parameters

rx,y :=

N∑
n=1

Q(Xn = x)Q(paXn = y) (114)

ν̃y := νy +

∑
x rx,y
β

(115)

λ̃y :=
νyλy +

∑
x rx,y
β u(x)

νy +
∑
x rx,y
β

(116)

Comparing these learning rules to the conjugate update rules (eqns. 24,25),
we see that in the variational framework, a datapoint can be ”shared” between
different values of the latent variables in the model. This sharing comes about
because the responsibilities are (approximate) probability, rather than deter-
ministic 0s or 1s. Otherwise the rules are identical. Note in particular that if
rx,y ∈ {0, 1}, i.e. the variables are known with certainty, then the variational
rules reduce to the exact update rules. Also, the β-variational update rules can
be obtained by dividing all responsibilities by β. Thus, if β > 1, the prior be-
comes ’stiffer’ and tends to ignore the data, whereas for β → 0, we get maximum
likelihood updates.
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4 Frequently used special cases

This section contains frequently used conjugate pairs and relevant quanitities
computed thereof.

4.1 Bernoulli-Beta

For a discrete random variable x ∈ {0; 1}, where 1 is alternatively called ”suc-
cess” (e.g. when betting on coin tosses), is given by

P (x|q) = qx(1− q)(1−x). (117)

Its canonical conjugate prior is a Beta distribution in q with density

p(q|α, β) =
1

B(α, β)
qα−1(1− q)β−1. (118)

To transform these expressions into the exponential family normal form (eqns.
1 and 22), introduce the logit

η = log

(
q

1− q

)
(119)

whence q = 1
1+exp(−η) , 1 − q = 1

1+exp(η) and dq
dη = − exp(−η)

(1+exp(−η))2 = −q(1 − q).
Substitute η in eqn. (117):

P (x|η) = exp (x log(q) + (1− x) log(1− q))

= exp

(
x log

(
q

1− q

)
+ log(1− q)

)
= (1− q) exp(ηx) =

1

1 + exp(η)
exp(ηx) (120)

Hence, h(x) = 1, g(η) = 1
1+exp(η) (cf. eqn. (1)) and

P (x|η) = h(x)g(η) exp(ηx). (121)

To transform the Beta density into exponential family normal form, note that

densities transform like p(η) = p(q(η))
∣∣∣ dqdη ∣∣∣:

p(η|α, β) =
1

B(α, β)
qα−1(1− q)β−1

∣∣∣∣dqdη
∣∣∣∣

=
1

B(α, β)
q−1(1− q)−1 exp (α log(q) + β log(1− q)) q(1− q)

=
1

B(α, β)
exp

(
α log

(
q

1− q

)
+ (α+ β) log(1− q)

)
=

1

B(α, β)

[
1

1 + exp(η)

]α+β

exp (αη) (122)
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Letting ν := α+ β, λ := α
ν , f(λ, ν) = 1

B(νλ,ν(1−λ)) , m(η) = 1 we find

p(η|λ, ν) =
1

B(νλ, ν(1− λ))

[
1

1 + exp(η)

]ν
exp(νλη)

= f(λ, ν)m(η) g(η)ν exp(νλη). (123)

Bernoulli distribution

standard form qx(1− q)1−x

constraints x x ∈ {0, 1}
constraints q q ∈ [0, 1]

u(x) x

η log
(

q
1−q

)
q 1

1+exp(−η)

constraints η η ∈ R
g(η) 1

1+exp(η) = 1− q
h(x) 1
〈u(x)〉 1

1+exp(−η) = q

Var(u(x)) exp(−η)
(1+exp(−η))2 = q(1− q)

Beta distribution

standard form qα−1(1−q)β−1

B(α,β)

constraints α, β α, β ∈ R+

λ α
α+β

ν α+ β
α νλ
β ν(1− λ)

constraints ν ν ∈ R+

constraints λ λ ∈ [0, 1]
f(λ, ν) 1

B(νλ,ν(1−λ))

m(η) 1
〈η〉 ψ(νλ)− ψ(ν(1− λ))

Var(η) ψ(νλ)−ψ(ν(1−λ))
ν2 + ψ′(νλ) + ψ′(ν(1− λ))

∂ log(f(λ,ν))
∂ν ψ(ν)− λψ(νλ)− (1− λ)ψ(ν(1− λ))

∂2 log(f(λ,ν))
∂ν2 ψ′(ν)− λ2ψ′(νλ)− (1− λ)2ψ′(ν(1− λ))

〈g(η)〉 1− λ = β
α+β = 1− 〈q〉

Var(g(η)) (1−λ)λ
ν+1 =

β
α+β

α
α+β

α+β+1

p(x|λ, ν) λx+ (1− λ)(1− x) = x〈q〉+ (1− x)(1− 〈q〉)
〈u(x)〉p(x|λ,ν) λ

Table 1: Bernoulli distribution and conjugate Beta prior

4.2 Multinomial-Dirichlet

The multinomial distribution is the generalization of the Bernoulli distribution
to K possible outcomes. It is convenient to represent multinomial random
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variates x by vectors with K components, such that xk ∈ {0; 1} and
∑K
k=1 xk =

1, whence xK = 1 −
∑K−1
k=1 xk. This is called 1-of-K representation, because

exactly one component of x is 1 and all others are 0. Let q = (q1, . . . , qK) be

the probabilities of the K possible x , such that qK = 1−
∑K−1
k=1 qk. Then, the

multinomial distribution can be written as

P (x|q) =

K−1∏
k=1

qxkk

(
1−

K−1∑
k=1

qk

)xK
(124)

This expression can be transformed into exponential family form via

P (x|q) = exp

(
K−1∑
k=1

xk log(qk) +

(
1−

K−1∑
k=1

xk

)
log

(
1−

K−1∑
k=1

qk

))

=

(
1−

K−1∑
k=1

qk

)
exp

(
K−1∑
k=1

xk log

(
qk

1−
∑K−1
i=1 qi

))
(125)

and by introducing the generalized logit ηk = log
(

qk
1−
∑K−1
i=1 qi

)
we find that

∀k = 1, . . . ,K − 1 : qk =
exp(ηk)

1 +
∑K−1
i=1 exp(ηi)

(126)

qK =
1

1 +
∑K−1
i=1 exp(ηi)

(127)

(alternatively, we could fix ηK = 0, and let q = softmax(η)). Hence, h(x) = 1
(after xk ∈ {0; 1} has been enforced) and

g(η) =

(
1−

K−1∑
k=1

qk

)
= qK =

1

1 +
∑K−1
i=1 exp(ηi)

.
The standard conjugate prior on the multinomial is the Dirichlet distribu-

tion. Let α = (α1, . . . , αK) with αk ≥ 0 and

M =

∏K
k=1 Γ(αk)

Γ(
∑K
k=1 αk)

(128)

then the density of the Dirichlet distribution is

p(q|α) = M

K−1∏
k=1

qαk−1
k

(
1−

K−1∑
k=1

qk

)αK−1

(129)

= M exp

(
K−1∑
k=1

(αk − 1) log(qk) + (αK − 1) log

(
1−

K−1∑
k=1

qk

))

= M

K−1∏
k=1

q−1
k (1−

K−1∑
k=1

qk)−1 exp

(
K−1∑
k=1

αk log

(
qk
qK

)
+

K∑
k=1

αK log(qK)

)

= M q
∑K
k=1 αK

K

K−1∏
k=1

q−1
k (1−

K−1∑
k=1

qk)−1 exp
(
αTη

)
(130)
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To substitute q by η, we need to compute the determinant of the Jacobian dq
dη .

Let Z = 1 +
∑K−1
k=1 exp(ηk), i.e. qk = exp(ηk)

Z . Then

∣∣∣∣dqdη
∣∣∣∣ =

∣∣∣∣∣∣∣


exp(η1)
Z − exp(2η1)

Z2 . . . − exp(η1) exp(ηK)
Z2

. . .

− exp(ηK) exp(η1)
Z2 . . . exp(ηK)

Z − exp(2ηK)
Z2


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
 q1 . . . 0

0
. . . 0

0 . . . qK

−
 q1

...
qK

 (q1 . . . qK)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
 q1 . . . 0

0
. . . 0

0 . . . qK


1K×K −

 1
...
1

 (q1 . . . qK)


∣∣∣∣∣∣∣

=

K−1∏
k=1

qk

(
1−

K−1∑
k=1

qk

)
(131)

And thus

p(η|α) = p(q(η)|α)

∣∣∣∣dqdη
∣∣∣∣

= M

(
1

1 +
∑K−1
i=1 exp(ηi)

)∑K
k=1 αK

exp
(
αTη

)
(132)

With ν =
∑K
k=1 αk, λk = αk

ν , f(λ, ν) = M , m(η) = 1 and g(η) as above, we
find

p(η|λ, ν) = f(λ, ν)m(η)g(η)ν exp(νηλ) (133)
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multinomial distribution

standard form
∏K−1
k=1 qxkk

(
1−

∑K−1
k=1 qk

)xK
constraints x xk ∈ {0, 1},

∑K
k=1 xk = 1

constraints q qk ∈ [0, 1],
∑K−1
k=1 qk ≤ 1

u(x) x

η log
(

q

1−
∑K−1
i=1 qi

)
q exp(η)

1+
∑K−1
i=1 exp(ηi)

constraints η ηk ∈ R
g(η) 1

1+
∑K−1
i=1 exp(ηi)

= 1−
∑K−1
i=1 qi = qK

h(x) 1

〈u(x)〉 exp(η)

1+
∑K−1
i=1 exp(ηi)

= q

Cov(u(x)) Ckl = δkl exp(ηk)

1+
∑K−1
i=1 exp(ηi)

− exp(ηk+ηl)

(1+
∑K−1
i=1 exp(ηi))

2 = δklql − qlqk

Dirichlet distribution

standard form
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∏K−1
k=1 qαk−1

k

(
1−

∑K−1
k=1 qk

)αK−1

constraints α αk ∈ R+

λ ∀k = 1, . . . ,K − 1 : λk = αk∑K
i=1 αi

ν
∑K
i=1 αi

α νλ
constraints ν ν ∈ R+

constraints λ λi ∈ [0, 1],
∑K−1
i=1 λi ≤ 1

f(λ, ν) Γ(ν)

Γ(ν(1−
∑K−1
k=1 λk))

∏K−1
i=1 Γ(νλi)

m(η) 1

〈η〉 ψ(νλ)− ψ
(
ν(1−

∑K−1
i=1 λk)

)
Cov(ηi, ηj) δi,jψ

′(νλi) + ψ′
(
ν(1−

∑K−1
i=1 λk)

)
∂ log(f(λ,ν))

∂ν ψ(ν)− (1−
∑K−1
i=1 λi)ψ

(
ν(1−

∑K−1
i=1 λi)

)
−
∑K−1
i=1 λiψ(νλi)

∂2 log(f(λ,ν))
∂ν2 ψ′(ν)− (1−

∑K−1
i=1 λi)

2ψ′
(
ν(1−

∑K−1
i=1 λi)

)
−
∑K−1
i=1 λ2

iψ
′(νλi)

〈g(η)〉 1−
∑K−1
i=1 λi = αK∑K

i=1 αi
= 〈qK〉

Var(g(η))
(1−

∑K−1
i=1 λi)

∑K−1
i=1 λi

ν+1 = 〈qK〉〈1−qK〉
ν+1

p(x|λ, ν)
∑K−1
i=1 xiλi + xK(1−

∑K−1
i=1 λi) =

∑K
i=1 xi〈qi〉

〈u(x)〉p(x|λ,ν) λ

Table 2: Multiomial distribution and conjugate Dirichlet prior
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4.3 Multinomial-StickBreaking

The stick-breaking construction is another way of parameterizing multinomial
distributions. It has attracted a lot of attention in Machine Learning around
2005, because it is a convenient way of representing infinite multinomials with
a Dirichlet-process prior. To re-parameterize the distribution of a K compo-
nent multinomial variable x (in 1-of-K representation) with probabilities q ,
introduce the variables v = (v1, . . . , vK−1) such that

q1 = v1 (134)

q2 = (1− v1)v2 (135)

q3 = (1− v1)(1− v2)v3 (136)

...

qK−1 = (1− v1)(1− v2) . . . vK−1 (137)

qK = (1− v1)(1− v2) . . . (1− vK−1). (138)

The distribution of x can then be written as

p(x|v) =

K−1∏
i=1

vxii (1− vi)
∑K
j=i+1 xj (139)

We now introduce the sufficient statistics u(x) = (u0, . . . , uK−1)

uk =

K∑
i=k+1

xi (140)

hence u0 = 1. uk = 1 implies that xi = 1 with i > k. Eqn. 139 becomes

p(x|v) =

K−1∏
i=1

v
ui−1−ui
i (1−vi)ui = exp

(
K−1∑
i=1

(ui−1 − ui) log(vi) + ui log(1− vi)

)
(141)

To transform this expression into exponential family normal form, rewrite the
exponent on the r.h.s. as

log(v1) +

K−2∑
i=1

ui log

(
1− vi
vi

vi+1

)
+ uK−1 log

(
1− vK−1

vK−1

)
(142)

and introduce the natural parameters η = (η1, . . . , ηK−1):

ηK−1 = log

(
1− vK−1

vK−1

)
(143)

∀k = K − 2, . . . , 1 : ηk = log

(
1− vk
vk

vk+1

)
(144)
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Solving for v yields

vK−1 =
1

1 + exp(ηK−1)
(145)

vK−2 =
1

1 + exp(ηK−2)(1 + exp(ηK−1))
(146)

...

v1 =
1

1 + exp(η1)(1 + exp(η2)(1 + . . . (1 + exp(ηK−1)) . . .)
(147)

Thus
P (x|η) = v1(η) exp

(
ηTu(x)

)
(148)

which is in exponential family normal form, with h(x) = 1 and g(η) = v1(η).
The conjugate p(oste)rior on v is given by a product of Beta distributions.

Let α,β be the parameters of these Beta distributions, then

p(v|α,β) =
K−1∏
i=1

1

B(αi, βi)
vαi−1
i (1− vi)βi−1 (149)

To derive the corresponding density in η we need the determinant of the

Jacobian
∣∣∣ dvdη ∣∣∣. Note that as a consequence of eqns. 145-147, the Jacobian is an

upper triangular matrix, hence the determinant is given by the product of the
diagonal entries:

dvi
dηi

= − exp(ηi)(1 + exp(ηi+1)...)

(1 + exp(ηi)(1 + exp(ηi+1)(....)))
2 = −vi(1− vi) (150)

⇒
∣∣∣∣dvdη

∣∣∣∣ =

K−1∏
i=1

vi(1− vi). (151)

Now we can rewrite eqn. 149 in exponential form

p(v|α,β) =
K−1∏
i=1

v−1
i (1− vi)−1

B(αi, βi)
exp

(
K−1∑
k=1

αi log(vi) + βi log(1− vi)

)
(152)

and rearrange the exponent as:

K−1∑
k=1

αi log(vi) + βi log(1− vi)

=

K−1∑
k=1

(αi + βi) log(vi) + βi log

(
1− vi
vi

)
(153)

= βK−1 log

(
1− vK−1

vK−1

)
+

K−2∑
i=1

βi log

(
1− vi
vi

vi+1

)

+(α1 + β1) log(v1) +

K−1∑
i=2

(αi + βi − βi−1)︸ ︷︷ ︸
=:ci

log(vi) (154)

= βK−1ηK−1 +

K−2∑
i=1

βiηi + (α1 + β1) log(g(η)) +

K−1∑
i=2

ci log(vi) (155)
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Hence, letting N(α,β) =
∏K−1
i=1 B(αi, βi)

−1 we obtain for the density of η :

p(η|α,β) = p(v(η)|α, β)

∣∣∣∣dvdη
∣∣∣∣ (156)

= N(α,β)

K−1∏
i=2

vi(η)cig(η)α1+β1 exp
(
ηTβ

)
(157)

which is almost in exponential family normal form, except for:

�

∏K−1
i=2 vi(η)ci should be m(η), i.e. it must not depend on the data, hence

the ci need to be constant. Since α and β will be updated on observation,
this requires that ∀i = 2, . . . ,K − 1 : αi = ci − βi + βi−1. This implies
that α is determined by β up to the ci, except for α1.

� ν := α1 + β1 and λi := βi
ν , hence α1 = ν(1− λ1).

� f(λ, ν) = N(α(λ, ν), νλ)

In the standard parametrization of the prior on the stick-breaking construc-
tion (eqn. 149), the αi are the pseudocounts on the number of instances where
xi = 1. To see that our definition

αi := ci − βi + βi−1 (158)

has the same meaning, assume that we had observed N datapoints x1:N and
corresponding sufficient statistics u1:N . Using the exponential family update
rules (eqns. 24 and 25), we find for the posterior parameters

αN1 = ν − βN1 = α1 + β1 +N − β1 −
N∑
n=1

un1

= α1 +N −
N∑
n=1

un1

= α1 +

N∑
n=1

x1 (159)

∀i = 2, . . . ,K − 1 : βNi = βi +

N∑
n=1

uni (160)

αNi = ci − βNi + βNi−1

= ci − βi + βi−1 +

N∑
n=1

(uni−1 − uni )

= ci + βi−1 − βi +

N∑
n=1

xni

= αi +

N∑
n=1

xni (161)

Hence, the meaning of α is preserved.
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In this table, let

γk = 1 + exp(ηk)(1 + exp(ηk+1)(1 + . . . (1 + exp(ηK−1)) . . .))

multinomial stick-breaking distribution

standard form
∏K−1
k=1 vxkk (1− vk)

∑K
i=k+1 xi

constraints x xk ∈ {0, 1},
∑K
k=1 xk = 1

constraints v vk ∈ [0, 1]

u(x) ∀k = 1, . . . ,K − 1 : uk =
∑K
i=k+1 xi

η ηK−1 = log
(

1−vK−1

vK−1

)
, ∀k < K − 1 : ηk = log

(
1−vk
vk

vk+1

)
v vK−1 = 1

1+exp(ηK−1) , ∀k < K − 1 : vi = 1

1+
exp(ηi)

vi+1

constraints η ηk ∈ R
g(η) 1

γ1
= v1

h(x) 1

〈u(x)〉 〈uk〉 =
exp(

∑k
i=1 ηi)γk+1

γ1
=
∏k
i=1(1− vi)

Cov(u(x))
Ckl =

exp
(∑max(k,l)

i=1 ηi
)
γmax(k,l)+1

γ1
− exp(

∑k
i=1 ηi)γk+1 exp(

∑k
i=1 ηi)γl+1

γ2
1

=
∏max(k,l)
i=1 (1− vi)−

∏k
i=1(1− vi)

∏l
j=1(1− vj)

Table 3: The stick-breaking distribution for multinomial variables
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stick-breaking prior

standard form
∏K−1
i=1

1
B(αi,βi)

vαi−1
i (1− vi)βi−1

constraints α,β αk, βk ∈ R+

λ β
ν

ν α1 + β1

constraints c ∀i = 2, . . . ,K − 1 : ci > βi − βi−1

α α1 = ν(1− λ1), ∀i = 2, . . . ,K − 1 : αi = ci − βi + βi−1

constraints ν ν ∈ R+

constraints λ λi ∈ R+

f(λ, ν) Γ(ν)
Γ(νλ1)Γ(ν(1−λ1))

∏K−1
i=2

Γ(ci+νλi−1)
Γ(νλi)Γ(ci−νλi+νλi−1)

m(η)
∏K−1
i=2 vi(η)ci

∀i < K − 1 : 〈ηi〉
ψ (νλi)− ψ (ci − νλi + νλi−1) + ψ (ci+1 − νλi+1 + νλi)− ψ (ci+1 + νλi)

= ψ (βi)− ψ (αi) + ψ (αi+1)− ψ (αi+1 + βi+1)
〈ηK−1〉 ψ (νλi)− ψ (ci − νλi + νλi−1) = ψ (βi)− ψ (αi)

Var(η1)
ψ′ (νλ1) + ψ′ (ν(1− λ1))− ψ′ (c2 + νλ1) + ψ′ (c2 − νλ2 + νλ1)

= ψ′ (β1) + ψ′ (α1)− ψ′ (α2 + β2) + ψ′ (α2)

∀1 < i < K − 1 : Var(ηi)
ψ′ (νλi) + ψ′ (ci − νλi + νλi−1)− ψ′ (ci+1 + νλi) + ψ′ (ci+1 − νλi+1 + νλi)

= ψ′ (βi) + ψ′ (αi)− ψ′ (αi+1 + βi+1) + ψ′ (αi+1)
Cov(ηi, ηi+1) ψ′ (ci+1 − νλi+1 + νλi) = ψ′ (αi+1)
Var(ηK−1) ψ′ (νλK−1) + ψ′ (cK−1 − νλK−1 + νλK−2) = ψ′ (βK−1) + ψ′ (αK−1)

∂ log(f(λ,ν))
∂ν

ψ(ν)− λ1ψ(νλ1)− (1− λ1)ψ (ν(1− λ1))

+
∑K−1
i=2 [λi−1ψ(ci + νλi−1)− λiψ(νλi)− (λi+1 − λi)ψ(ci − νλi + νλi+1)]

∂2 log(f(λ,ν))
∂ν2

ψ′(ν)− λ2
1ψ
′(νλ1)− (1− λ1)2ψ′ (ν(1− λ1))

+
∑K−1
i=2

[
λ2
i−1ψ

′(ci + νλi−1)− λ2
iψ
′(νλi)− (λi+1 − λi)2ψ′(ci − νλi + νλi+1)

]
〈g(η)〉 1− λ1 = α1

ν

Var(g(η)) λ1(1−λ1)
nu+1 = α1β1

ν2(1−ν)

p(x|λ, ν)

x1 = 1 : 1− λ1 = α1

α1+β1

xi∈{2;...;K−2} = 1 : λ1

∏i−1
j=2

νλj
cj+νλj−1

ci−νλi+νλi−1

ci+νλi−1
=
∑i−1
j=1

βj
αj+βj

αi
αj+βj

xK = 1 : λ1

∏K−1
j=2

νλj
cj+νλj−1

=
∏K−1
j=1

βj
αj+βj

Table 4: The conjugate prior on the stick-breaking distribution for multinomial
variables
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4.4 Poisson-Gamma

The Poisson distribution is a distribution over a univariate integer-valued ran-
dom variable x, e.g. spike count or radioactive decay events. In standard form,
it is given by

p(x|r) =
rx exp(−r)

x!
(162)

where r ∈ R+
0 is the rate. Its sufficient statistic and natural parameter are

u(x) = x (163)

η = log(r) (164)

and hence

p(x|η) =
1

Γ(x+ 1)︸ ︷︷ ︸
h(x)

exp(− exp(η))︸ ︷︷ ︸
g(η)

exp(η u(x)). (165)

Note that for x ∈ N, Γ(x + 1) = x!. The conjugate prior on r is a Gamma
distribution with density

p(r|α, S) =
1

Γ(α)Sα
rα−1 exp

(
− r
S

)
(166)

where α ∈ R+
0 is the shape parameter, and S ∈ R+ is the scale. To tranform

this into exponential family form, let

ν =
1

S
λ = αS (167)

and note that
∣∣∣dr(η)
dη

∣∣∣ = exp(η) = r(η). Thus, we find

p(η|ν, λ) =
ννλ

Γ(νλ)
r(η)νλ−1 exp (−νr(η)) r(η)

=
ννλ

Γ(νλ)
exp (νλ log(r(η))) exp (−νr(η))

=
ννλ

Γ(νλ)︸ ︷︷ ︸
f(λ,ν)

exp(− exp(η)))ν︸ ︷︷ ︸
g(η)ν

exp(νλη) (168)

4.5 Multivariate Gaussian with Gauss-Wishart prior

The multivariate Gaussian is widely used, e.g. all finite-sized marginals of a
Gaussian process are Gaussian. But it is also a standard ingredient in parametric
models for regression, e.g. linear or other basis function. In the standard form, a
multivariate Gaussian density of a vector-valued random variable with variates
x, dim(x) = D is parameterized by a mean vector µ and a symmetric, positive
definite covariance matrix Σ:

p(x|µ,Σ) =
1

√
2π

D√|Σ| exp
(
−0.5 · (x− µ)TΣ−1(x− µ)

)
(169)
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Poisson distribution

standard form rx exp(−r)
x!

constraints x ∈ N0, r ∈ R+
0

u(x) x
η log(r)

constraints η η ∈ R
g(η) exp (− exp(η))
h(x) 1

Γ(x+1)

〈u(x)〉 exp(η) = r
Var(u(x)) exp(η) = r

Gamma prior for Poisson-distributed RV

standard form 1
Γ(α)Sα r

α−1 exp
(
− r
S

)
constraints α ∈ R+

0 , S ∈ R+

λ αS
ν 1

S

constraints ν ∈ R+, λ ∈ R+
0

f(λ, ν) ννλ

Γ(νλ)

m(η) 1
〈η〉 ψ(νλ)− log(ν)

Var(η) ψ′(νλ)
∂ log(f(λ,ν))

∂ν λ (log(ν) + 1− ψ(νλ))
∂2 log(f(λ,ν))

∂ν2 λ
(

1
ν − λψ

′(νλ)
)

〈g(η)〉
(
1 + 1

ν

)−λν
Var(g(η))

(
1 + 2

ν

)−λν − (1 + 1
ν

)−2λν

p(x|λ, ν) Γ(νλ+x)
Γ(νλ)Γ(x+1)

(ν+1)−(νλ+x)

ν−λν

〈u(x)〉p(x|λ,ν) λ

Table 5: Poisson distribution and conjugate Gamma prior

It is often convenient to use the inverse of Σ , called precision matrix P = Σ−1,
which is also symmetric (P = P T ) and positive definite:

p(x|µ,P ) =

√
|P |

√
2π

D
exp

(
−1

2
· (x− µ)TP (x− µ)

)
(170)

To transform the Gaussian into the exponential family normal form, we rewrite
the exponent as

−1

2
· (x− µ)TP (x− µ) = −1

2
xTPx+ µTPx− 1

2
µTPµ (171)

Note that

xTPx =
∑
i

∑
j

xiP i,jxj =
∑
i

P i,ix
2
i + 2

∑
i

∑
j<i

P i,jxixj

µTPx =
∑
i

(Pµ)ixi (172)
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We therefore introduce sufficient statistics and natural parameters comprised of
three parts: first, from the diagonal elements in eqn. 172, the row vectors

ud = (x2
1,x

2
2, . . . ,x

2
D)T (173)

ηd = −1

2
(P 1,1,P 2,2, . . . ,P d,d)

T . (174)

Second, we order the off-diagonal elements (with i < j) in some arbitrary fashion
(e.g. lectically) and construct the vectors

uc = (x2x1,x3x1,x3x2, . . . ,xDxD−1)T = lt(xxT ) (175)

ηc = −(P 2,1,P 3,1,P 3,2, . . . ,PD,D−1)T = −lt(P ) (176)

i.e. ηc contains the lower triangle of P , and the lt() operator extracts the lower
triangle of a matrix, excluding the diagonal. Third, from eqn. 172:

uµ = x (177)

ηµ = Pµ. (178)

We stack these vectors into the total sufficient statistics and natural parameters

u(x) =

 ud
uc
uµ

 (179)

η =

 ηd
ηc
ηµ

 . (180)

Noting that µTPµ = µTP TP−1Pµ = ηTµP
−1ηµ and P = P (η), eqn. 171

can be written as

ηTu(x)− 1

2
µtPµ = ηTd ud + ηTc uc︸ ︷︷ ︸

− 1
2x

TPx

+ηTµuµ︸ ︷︷ ︸
µTPx

−1

2
ηTµP (η)−1ηµ (181)

With these substitutions, the exponential family normal form of the multivariate
Gaussian is therefore

p(x|η) =

√
|P (η)|
√

2π
D

exp

(
−1

2
ηTµP (η)−1ηµ

)
︸ ︷︷ ︸

=:g(η)

exp
(
ηTu(x)

)
(182)

and thus

log(g(η)) = −D
2

log(2π) +
1

2
log (|P (η)|)− 1

2
ηTµP (η)−1ηµ. (183)

To compute moments, we need the gradient of this expression w.r.t. η, whose
components can be computed via the chain rule. Since

∂P i,j

∂(ηd)k
= −2 δi,kδj,k (184)

∂P i,j

∂(ηc)(k,l)
= −δi,kδj,l − δi,lδj,k (185)
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and P does not depend on ηµ, we find

∂ log(g(η))

∂(ηµ)k
= −1

2
· 2(P−1ηµ)k = −µk (186)

∂ log(g(η))

∂(ηd)k
=

∑
i,j

1

2

[
P−1
i,j + P−1ηµη

T
µP
−1
]
· (−2)δi,kδj,k = −P−1

k,k − µ
2
k (187)

∂ log(g(η))

∂(ηc)(k,l)
=

∑
i,j

1

2

[
P−1
i,j + P−1ηµη

T
µP
−1
]
· (−δi,kδj,l − δi,lδj,k) = −P−1

k,l − µkµl

(188)

which implies, by virtue of eqn. 4:

〈uµ(x)〉 = µ (189)

〈ud(x)〉 = −diag(P−1)− µTµ (190)

〈uc(x)(kl)〉 = −P−1
k,l − µkµl (191)

i.e. the well-known expressions for expectations of Gaussians. The second
derivatives (necessary for the evaluation of the gradient of the KL divergence)
are omitted here, they can be computed by automatic differentiation from the
above expressions, e.g. by Theano.

The prior on the parameters of the Gaussian is given by a (multivariate)
Gauss-Wishart distribution [1]. In standard form, it is given by

p(µ,P |β,µ0, γ,V ) = p(µ|β,P )p(P |γ,V ) (192)

p(µ|β,P ) =
β
D
2 |P | 12
√

2π
D

exp

(
−1

2
β(µ− µ0)TP (µ− µ0)

)
(193)

p(P |γ,V ) =
|P |

γ−D−1
2

2
γD
2 |V | γ2 ΓD

(
γ
2

) exp

(
−1

2
tr(V −1P )

)
(194)

where ΓD(x) is the multivariate gamma function [3]:

ΓD(x) = π
D(D−1)

4

D∏
j=1

Γ

(
x+

1− j
2

)
(195)

We reparameterize as follows:

β = ν (196)

γ = ν + α, α > 0 and const. (197)

λµ = µ0 (198)

B = V −1 (199)

(λd)i =

(
Bi,i
ν

+ (µ0)2
i

)
(200)

(λc)(k,l) =
Bk,l
ν

+ (µ0)k(µ0)l =
Bl,k
ν

+ (µ0)k(µ0)l (201)

λ = (λµ,λd,λc)
T

(202)
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Using these substitutions and µTPµ = ηTµP
−1ηµ, the arguments of the expo-

nentials in eqn. 192 can be written as

−ν 1

2
µTPµ+ νµT0 Pµ− ν

1

2
µT0 Pµ0 −

1

2
tr(BP )

= ν

(
−1

2
ηTµP

−1ηµ + ηTµµ0 −
1

2
tr

(
P

(
B

ν
+ µ0µ

T
0

)))
= ν

(
−1

2
ηTµP

−1ηµ + ηTµλµ + ηTd λds+ ηTc λc

)
(203)

Thus eqn. 192 becomes

p(µ,P |ν,µ0,B) =
√

2π
(ν−1)D ν−

D
2 |B(λ)| ν+α2

2
(ν+α)D

2 ΓD
(
ν+α

2

) |P |α−D2
×

(
1

√
2π

D

)ν
|P | ν2 exp

(
−1

2
ηTµP

−1ηµ

)ν
× exp

(
νηTµλµ + νηTd λd + νηTc λc

)
. (204)

To transform this into the desired exponential family form, we need to change
µ,P into the natural parameters of the multivariate Gaussian (see eqns. 174,176,178).
This can be accomplished by multiplying eqn.192 with the determinant of the
Jacobian J of that transformation, which can be constructed as a block matrix
as follows: stack the diagonal elements of P into the vector P d of dimen-
sionality D, the off-diagonal lower triangle into the vector P c of dimensionality

Q = D(D−1)
2 . The Jacobian then has the following structure, which follows from

the definitions in eqns. 174,176,178 (rows and columns labelled with variable
names):

J =

µ1 . . . µD (P d)1 . . . (P d)D (P c)1 . . . (P c)Q

(ηµ)1

... P−1 0 0
(ηµ)D
(ηd)1

... ∂µ
∂ηd

−2 · 1D 0

(ηd)D
(ηc)1

... ∂µ
∂ηc

0 −1Q
(ηc)Q

(205)
By virtue of eqns. 397 and 398 in [2], the absolute value of the determinant of
J is therefore

|J | = 2D|P−1(η)| (206)

Reparameterizing eqn. 204 in terms of η and multiplying with this expression
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yields (cf. eqn. 182 for the definition of g(η)):

p(η|ν,µ0,B) = 2D
√

2π
(ν−1)D ν

D
2 |B(λ)| ν+α2

2
(ν+α)D

2 ΓD
(
ν+α

2

)︸ ︷︷ ︸
=:f(ν,λ)

|P |
α−D

2 −1︸ ︷︷ ︸
=:m(η)

×

(
1

√
2π

D

)ν
|P | ν2 exp

(
−1

2
ηTµP

−1ηµ

)ν
︸ ︷︷ ︸

=g(η)ν

× exp
(
νηTµλµ + νηTd λd + νηTc λc

)
= f(ν,λ)m(η)g(η)ν exp(νηTλ) (207)

which is the exponential family normal form of the Gauss-Wishart prior on the
parameters of the multivariate Gaussian.

To calculate expectations, we need the derivatives of log(f(ν, λ)):

log(f(ν, λ)) = C+
Dν

2
log(2π)+

D

2
log(ν)−log

(
ΓD

(
ν + α

2

))
+
ν + α

2
log(|B(λ)|)

(208)
with C = D log(2)− D

2 log(2π)− αD
2 log(2). Thus

∂f(ν, λ)

∂ν
=
D

2
log(2π) +

D

2ν
− 1

2
ΨD

(
ν + α

2

)
+

1

2
log(|B(λ)|) (209)

where ΨD(x) = ∂ log(ΓD(x))
∂x is the multivariate digamma function. For the

derivatives w.r.t. λ, note that eqns. 196-202 imply Bi,i = ν(2(λd)i − (λmu)2
i

and ∀i > j : Bij = ν((λc)i,j − (λµ)i(λµ)j , ∀j > i : Bij = ν((λc)j,i − (λµ)i(λµ)j ,
hence

∂Bi,j
∂(λµ)k

= −ν((λµ)iδj,k + (λµ)jδi,k) (210)

∂Bi,j
∂(λd)k

= νδi,kδj,k (211)

∂Bi,j
∂(λc)k,l

= ν(δi,kδj,l + δi,lδj,k) (212)

With formula 57 from [2], we therefore find

∂ log(f(ν,λ))

∂(λd)k
=

∑
m,n

ν + α

2

∂ log(|B|)
∂Bm,n

∂Bm,n
∂(λd)k

=
ν(ν + α)

2

∑
m,n

B−1
m,nδm,kδn,k = −ν(ν + α)B−1

k,k (213)

∂ log(f(ν,λ))

∂(λc)k,l
= ν(ν + α)B−1

k,l (214)

∂ log(f(ν,λ))

∂(λµ)k
= −ν (ν + α)

2

∑
m,n

B−1
m,n((λµ)mδn,k + (λµ)nδm,k)

= −ν(ν + α)
∑
n

B−1
k,n(λµ)n (215)
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The expectations of the sufficient statistics of the multivariate Gaussian are thus
(lt(X): vectorized form of lower triangle of X)

〈ηµ〉 = 〈Pµ〉 = (ν + α)B−1(λ)λµ = γV µ0 (216)

〈ηd〉 = −1

2
〈diag(P )〉 = − (ν + α)

2
diag(B−1) (217)

〈ηc〉 = −〈lt(P )〉 = −(ν + α)lt(B−1) (218)

⇒ 〈P 〉 = γV (219)

Second derivatives can be obtained similarly, or more easily by automatic dif-
ferentiation.

The expectation of the sufficient statistics u(x) can be computed from eqn.
57. We already computed λ (eqn. 202). The surface integral vanishes, because
p(x|λ, ν)→ 0 as λµ →∞, since the density must be normalized. Furthermore,
in the subspace where |P | = 0, the density is also zero if γ > D−1. Since m(η)
does not depend on µ0, we see that

〈uµ(x)〉p(x|λ,µ) = λµ = µ0 (220)

For ud, uc, it remains to evaluate the expectation

〈∇η log(m(η))〉p(x|λ,µ) = −2

〈(
α−D

2
− 1

)
P−1

〉
p(x|λ,µ)

= −(α−D − 2)
V −1

ν + α−D − 1
(221)

where the factor −2 results from the differentation of the elements of P w.r.t. η,
see also the Jacobian above. The entries of V −1 have to be suitably rearranged
to match the entries of η. Thus we find

〈ud(x)〉p(x|λ,µ) = diag(µ0µ
T
0 ) +

diag(V −1)

ν
− α−D − 2

ν

diag(V −1)

ν + α−D − 1

= diag(µ0µ
T
0 ) +

ν + 1

ν

diag(V −1)

ν + α−D − 1
(222)

and likewise for uc.

4.5.1 Univariate Gauss-Gauss-Gamma

trivial, see above.

5 Random identities that might be useful

Decomposition of Kullback-Leibler divergence for multivariate Gaussians: let

p(x1,x2|µ1,µ2,K11,K21,K22) = N
(

(x1,x2)|(µ1,µ2),

(
K11 KT

21

K21 K22

))
(223)
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Multivariate Gaussian distribution

standard form 1√
2π
D
√
|Σ|

exp
(
−0.5 · (x− µ)TΣ−1(x− µ)

)
constraints x,µ ∈ RD, Σ positive semidefinite and symmetric
u(x) ud = diag(xxT ),uc = lt(xxT ),uµ = x
η ηd = − 1

2diag(P ), ηc = −lt(P ), ηµ = Pµ

constraints η ηµ ∈ RD, ηd ≤ 0, ηc s.t. P pos.semidef.

g(η)

√
|P (η)|
√

2π
D exp

(
− 1

2η
T
µP (η)−1ηµ

)
h(x) 1

〈u(x)〉 〈uµ〉 = µ, 〈ud〉 = −diag(P−1 + µµT ), 〈uc〉 = −lt(P−1 + µµT )

Gauss-Wishart prior for multivariate Gaussian RV

standard form β
D
2 |P |

1
2

√
2π
D exp

(
− 1

2β(µ− µ0)TP (µ− µ0)
) |P |

γ−D−1
2

2
γD
2 |V |

γ
2 ΓD( γ2 )

exp
(
− 1

2 tr(V −1P )
)

constraints µ,µ0 ∈ RD, P ,V pos.semidef., β > 0,γ > D − 1

λ B = V −1, λd = diag
(
B
ν + µ0µ

T
0

)
, λc = lt

(
B
ν + µ0µ

T
0

)
, λµ = µ0

ν ν = β, γ = ν + α
constraints ν ∈ R+, α const. and s.t. ν + α > D − 1

f(ν,λ) 2
D(1−α)

2
√
π

(ν−1)D ν−
D
2 |B(λ)|

ν+α
2

ΓD( ν+α2 )

m(η) |P (η)|α−D2 −1

〈η〉 〈ηµ〉 = (ν + α)B−1(λ)λµ, 〈ηd〉 = −(ν + α)diag(B−1), 〈ηc〉 = −(ν + α)lt(B−1)
∂ log(f(λ,ν))

∂ν
D
2 log(π)− D

2ν −
1
2ΨD

(
ν+α

2

)
+ 1

2 log(|B(λ)|)

p(x|λ, ν)
ΓD( ν+α+1

2 )
√
πΓD( ν+α2 )

(
ν
ν+1

)D
2 |B(λ)|

ν+α
2

|B( νλ+u(x)
ν+1 )|

ν+α+1
2

〈uµ(x)〉p(x|λ,µ) λu = µ0

〈ud(x)〉p(x|λ,µ) λd − α−D−2
ν

diag(V −1)
ν+α−D−1 = diag(µ0µ

T
0 ) + ν+1

ν diag(V −1)

〈uc(x)〉p(x|λ,µ) λc − α−D−2
ν

lt(V −1)
ν+α−D−1 = lt(µ0µ

T
0 ) + ν+1

ν lt(V −1)

Table 6: Multivariate Gaussian distribution and conjugate Gauss-Wishart prior

be a joint multivariate Gaussian on x1,x2. The conditional distribution of x2

given x1 is then also multivariate Gaussian (see [2]):

M21 = K21K
−1
11 (224)

K2|1 = K22 −M21K
−1
11 M

T
21 (225)

p(x1|x2) = N
(
x2|µ2 +M21(x1 − µ1),K2|1

)
(226)

Assume now we had a variational posterior for x1,x2, which we decompose in
the following way (tilde indicates variational parameters):

q(x1,x2) = q(x2|x1)q(x1) = N
(
x2|µ̃2 + M̃21x1, K̃2|1

)
N
(
x1|µ̃1, K̃1

)
(227)

which is a generalized form of the conditional Gaussian above, because µ̃2|1,M̃21, K̃2|1
are now free variational parameters. Note the following decomposition property
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of the KL-divergence, which follows directly from its definition:

D (q(x1,x2)|p(x1,x2)) = 〈D (q(x2|x1)|p(x2|x1))〉q(x1) +D (q(x1)|p(x1))

(228)
Using the above distributions, the second term on the right hand side is given
by the usual expression for the KL-divergence between multivariate Gaussians:

D (q(x1)|p(x1)) =
1

2

(
tr
[
K−1

1 K̃1

]
+ (µ̃1 − µ1)TK−1

1 (µ̃1 − µ1)

−dim[x1] + log(|K1|)− log(|K̃1|)
)

(229)

and the first term is

〈D (q(x2|x1)|p(x2|x1))〉q(x1)

=
1

2

(
tr
[
K−1

2|1K̃2|1

]
+

+
(
µ̃2 + M̃2|1µ̃1 − (µ2 +M2|1(µ̃1 − µ1))

)T
K−1

1

(
µ̃2 + M̃2|1µ̃1 − (µ2 +M2|1(µ̃1 − µ1))

)
−dim[x2] + log(|K2|1|)− log(|K̃2|1|)

+tr
[
(M̃2|1 −M2|1)TK−1

2|1(M̃2|1 −M2|1)K̃2|1

])
(230)

This expression is zero iff: M̃2|1 = M2|1,K2|1 = K̃2|1, µ̃1 = µ1, µ̃2 = µ2 −
M2|1µ1. Note that a zero expectation can not be achieved if we had made the

Ansatz q(x2|x1) = N
(
x2|µ̃2|1, K̃2|1

)
, because the KL-divergence is positive,

thus for its expectation to be zero, it has to be zero for all values of x1 which
requires an explicit representation of the mean projection matrix M .
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