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Numerous researchers have put forward heuristics as models of human decision-making. However, where such
heuristics come from is still a topic of ongoing debate. In this work, we propose a novel computational model that
advances our understanding of heuristic decision-making by explaining how different heuristics are discovered
and how they are selected. This model—called bounded meta-learned inference (BMI)—is based on the idea that
people make environment-specific inferences about which strategies to use while being efficient in terms of how
they use computational resources. We show that our approach discovers two previously suggested types of
heuristics—one reason decision-making and equal weighting—in specific environments. Furthermore, the
model provides clear and precise predictions about when each heuristic should be applied: Knowing the correct
ranking of attributes leads to one reason decision-making, knowing the directions of the attributes leads to equal
weighting, and not knowing about either leads to strategies that use weighted combinations of multiple attributes.
In three empirical paired comparison studies with continuous features, we verify predictions of our theory and
show that it captures several characteristics of human decision-making not explained by alternative theories.

Keywords: meta-learning, resource rationality, heuristics, strategy selection, strategy discovery

Imagine having to decide which of two movies you are going to
watch tonight: Movie A versus Movie B. Movie A has a higher
average rating on a website that you trust, while Movie B is directed
by a known director and has previously won an Oscar for the best
picture. From past experiences, you know that rating is the best
indicator for a good movie. Whether the movie won an Oscar and
who directed it is less important for how much you normally enjoy
watching a movie. How do people make decisions like this?

The question of how people decide between two options is as
fundamental as its answer is contentious. Indeed, even though we
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make countless such decisions every day, the underlying principles of
these decisions are still debated in psychology (Todd & Gigerenzer,
2000), behavioral economics (Samuels et al., 2012), and neurosci-
ence (Camerer et al., 2005). Traditionally, researchers have ap-
proached this problem by looking at how rational agents decide.
From this ideal observer perspective (Geisler, 1989) it is assumed that
people weigh different attributes of each option appropriately to
combine information from all available sources. Psychologists were
however quick to point out that rational decision-making can be too
burdensome (Simon, 1990b; Tversky & Kahneman, 1974). Instead,
they suggested that human decision-making may be based on a
variety of heuristics, which are simple strategies that ignore part of
the relevant information (Gigerenzer & Todd, 1999; Shah &
Oppenheimer, 2008; Tversky & Kahneman, 1974).

Two common classes of heuristics are one reason decision-making
(Gigerenzer & Goldstein, 1999) and equal weighting (Dawes &
Corrigan, 1974; Einhorn & Hogarth, 1975). One reason decision-
making heuristics are based on the idea that good reasoning often
requires just a single piece of information (Marewski et al., 2010).
Applying such a strategy to the initial example, you would only need
to inspect the most important attribute: The movie rating. Based on
this attribute, you decide to watch Movie A and ignore all other
information about both movies. Equal weighting heuristics on the
other hand completely abstain from differentiating between the
attributes and instead tally all of them together to decide which
option to choose. In our example, Movie B has two attributes in its
favor, while Movie A only has one. Hence, you would decide to watch
Movie B if your decision was based on an equal weighting heuristic.

Even though they are computationally simplistic strategies, heur-
istics can be surprisingly competitive in many real-world bench-
marks (Czerlinski et al., 1999; Lichtenberg & Simgek, 2017). This
observation led different researchers to consider heuristics as


https://orcid.org/0000-0001-8872-8386
https://orcid.org/0000-0002-6546-3298
https://orcid.org/0000-0001-9756-9655
https://github.com/marcelbinz/HeuristicsFromBMLI
https://github.com/marcelbinz/HeuristicsFromBMLI
https://psyarxiv.com/5du2b
https://psyarxiv.com/5du2b
mailto:marcel.binz@tue.mpg.de
mailto:marcel.binz@tue.mpg.de
mailto:marcel.binz@tue.mpg.de
mailto:marcel.binz@tue.mpg.de
https://doi.org/10.1037/rev0000330

S

>
2
<]
e}
=
2
s
g
3}
7]
2
o
9
O
]
S
=
»
=]

erican Psychological Association or one of its allied publishers.

ghted by the Am

This document is copyri
This article is intended solely for the personal use of the individual user

2 BINZ, GERSHMAN, SCHULZ, AND ENDRES

ecologically rational strategies (Gigerenzer & Gaissmaier, 2011;
Gigerenzer & Todd, 1999; Payne et al., 1993), implying that
heuristics are strategies that are particularly well-suited for our
complex and dynamic world. The ecological rationality of heuristics
also makes it appealing to view them as models of human
decision-making. Empirical studies attempting to show that
people apply heuristics have however produced mixed evidence
(Ayal & Hochman, 2009; Broder, 2000; Broder & Gaissmaier,
2007; Glockner & Betsch, 2008; Hilbig, 2010, see also our later
discussion on empirical results).

In this work, we suggest bounded meta-learned inference (BMI)
as a novel computational theory for explaining how people make
decisions. BMI discovers decision-making strategies through a
resource-rational algorithm (Gershman et al., 2015; Lieder &
Griffiths, 2019; Simon, 1990a) that has been adapted to an
environment over time via meta-learning (Bengio et al., 1991;
Schmidhuber et al.,, 1996; Thrun & Pratt, 1998). Like ideal
observer models, BMI attempts to infer optimal decision-making
strategies but does so while taking computational resources into
account. Like heuristics, strategies inferred through BMI are
tailored to a specific environment. However, unlike heuristics,
the inductive biases of such strategies have been meta-learned
through previous interactions with the environment instead of
building them in by design.

Through a series of model simulations, we demonstrate that BMI
discovers several previously suggested heuristics. Specifically, our
results reveal three important classes of environments that lead to
three different strategies. First, if the model knows the correct
ranking of attributes but not their weights, then it learns a strategy
that makes decisions based only on the attribute with the highest
ranking, a form of one reason decision-making. Secondly, if the
model knows that the direction of correlation between attributes and
outcome is positive, then it learns a strategy that makes decisions
based on equal weighting. Finally, if the model does not know either
the ranking or the direction of attributes, it learns to use individual
weights for each attribute. This analysis provides new insights into
the mixed results of prior empirical work on heuristics because it
makes precise predictions about if and when a specific heuristic
should be used. We verity these predictions in three empirical paired
comparison studies and show that the vast majority of participants
apply heuristics whenever they are optimal strategies for the current
environment after considering limited computational resources.

In summary, our work makes the following three main
contributions:

1. We show that heuristics can emerge through BMI,
thereby providing a normative justification for previously
suggested heuristics.

2. We map out which features of an environment lead to
which (heuristic) decision-making strategy, where know-
ing the correct ranking of attributes leads to one reason
decision-making, knowing the directions of the attributes
leads to equal weighting, and not knowing about either
leads to strategies that use weighted combinations of
multiple attributes.

3. We test these predictions empirically in three experiments
and find strong evidence for our theory’s predictions.

The remainder of the article is organized as follows: We first
summarize the relevant literature on heuristic decision-making and
introduce its general terminology. Thereafter, we present formal
models corresponding to different hypotheses considered in our
work. By running simulations on different environments, we gen-
erate several predictions of our theory, which we empirically test in
three new decision-making experiments. Finally, we discuss our
results and connect our theory to related ideas.

Past Research on Heuristic Decision-Making

There has been an extensive amount of past research on heuristic
decision-making. In this section, we describe common heuristics,
summarize empirical and theoretical results regarding their perfor-
mance, and review prior studies with a focus on the evidence they
provide for heuristic decision-making in humans.

Heuristics Toolbox

Even though a mathematically precise definition of what con-
stitutes a heuristic is still a topic of ongoing debates (Chater et al.,
2003; van Rooij et al., 2012), here we adopt the following definition
put forward by Gigerenzer and Gaissmaier (2011): “A heuristic is a
strategy that ignores part of the information, with the goal of making
decisions more quickly, frugally, and/or accurately than more
complex methods.” The collection of different heuristics is often
thought of as an adaptive toolbox from which appropriate decision-
making strategies can be selected as required (Gigerenzer & Selten,
2002). We are primarily interested in heuristics that can be applied to
paired comparison tasks like the aforementioned movie example
(e.g., Martignon & Hoffrage, 2002). In such tasks, a decision-
making agent is asked to judge which of two options is superior
on an unobserved criterion. To aid the decision-making process, the
agent observes multiple attributes of both options, also known as
cues or features in the decision-making literature. Most heuristics
developed for the paired comparison setting make use of binary
features that indicate whether an attribute is present or not.'

Many decision-making strategies are built around the concept of
feature validity (Todd & Dieckmann, 2005). The validity of a binary
feature is the rate at which it allows the agent to make correct
predictions given that the feature is present in one option but not the
other (Lee & Cummins, 2004). For example, the validity of being
directed by a known director for predicting whether you like a movie
could be 0.8, indicating that you would enjoy a movie that is directed
by someone you know over someone you do not know in 80% of the
cases. In general, decision-making strategies for paired comparison
tasks can be divided into two classes: compensatory and noncom-
pensatory strategies. A strategy is compensatory whenever it integrates
information from multiple features, whereas it is noncompensatory
when a feature cannot be outweighed by any combination of less
important features (Rieskamp & Hoffrage, 1999).

A prominent subclass of compensatory strategies are linear-additive
strategies. These strategies compute a weighted sum of features
for each option and decide on the option with the largest sum.

! Note that nonbinary features, like average movie ratings, can always
be dichotomized at a loss of information. In past studies, this has been
frequently done by setting values which were less than the median to 0 and
otherwise to 1.
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They are typically considered the normative standard in the
decision-making literature (Payne et al., 1988). This argument
can be made precise if one weights features by the log-odds of
their validities. The resulting strategy corresponds to an algorithm
known as naive Bayes, which is optimal under the assumption that
features are conditionally independent given the criterion
(Katsikopoulos & Martignon, 2006; Lee & Cummins, 2004). The
weighted additive (WADD) strategy is another popular example of a
linear-additive strategy, which weights features directly by their
validities. In contrast to naive Bayes, however, it is not possible to
interpret WADD as an optimal strategy.

Heuristics are typically much simpler than WADD or naive
Bayes. Equal weighting heuristics, for example, are compensa-
tory, yet simple, decision-making strategies. They do not distin-
guish between how features are weighted and instead use an
identical weighting for all features. The process itself can be
realized by tallying features of both options together and select-
ing the one with the larger sum (Dawes & Corrigan, 1974;
Einhorn & Hogarth, 1975).

The prime example for a noncompensatory strategy is the take-
the-best (TTB) heuristic (Gigerenzer & Goldstein, 1996). TTB
belongs to the family of one reason decision-making heuristics.
It assumes a ranking of features based on their validities and inspects
features in decreasing order until a feature that discriminates
between both options is reached. The final decision is based on
the validity of that feature alone, ignoring all other information. If a
ranking of features is not a priori accessible, then it can either be
estimated from observations or a random ranking can be used. A
TTB strategy using a random ranking of features is referred to as the
Minimalist heuristic (Gigerenzer & Goldstein, 1996).

Ecological Rationality

To seriously consider heuristics as a model of human decision-
making, they should—at the very least—be able to solve the kind of
decision-making problems that people typically encounter. Prior
work demonstrated that heuristics do not only match the perfor-
mance of more complex linear-additive models but even exceed
them on such problems. This finding is also referred to as the less-is-
more effect (Gigerenzer & Todd, 1999). Czerlinski et al. (1999), for
example, compared different heuristics against logistic regression
on 20 real-world decision-making problems and found that averaged
over all tasks TTB and logistic regression performed equally well.
Chater et al. (2003) extended this analysis to additionally include a
feed-forward neural network, two exemplar-based models, and a
decision-tree algorithm. They concluded that the less-is-more effect
is most prevalent when only limited data is available. Later on, it was
highlighted that, although earlier work fitted models on a limited
training set, it evaluated them on the entire data-set (training and test
set). It turned out that, when only out-of-sample predictions were
considered, TTB even exceeded all competing models in terms of
performance (Brighton, 2006; Gigerenzer & Brighton, 2009;
Katsikopoulos et al., 2010). More recently, Lichtenberg and
Simsek (2017) have shown that the less-is-more effect also
extends to situations in which one has to make predictions about
a continuous outcome.

The discovery of the less-is-more effect caused researchers to ask
themselves, why do heuristics perform so well? Eventually, this
cumulated in several conditions that allow us to make claims about

the performance of a heuristic based on the structure of the task it
is applied to (Katsikopoulos, 2011). In the case of binary features,
it has been shown that decisions made by TTB are identical to
those of a linear-additive model if the true feature weights of the
task are noncompensatory, that is, when a more important feature
cannot be overruled by any combination of less important features
(Martignon & Hoffrage, 1999, 2002). A similar result was
obtained by Katsikopoulos and Martignon (2006) under the
assumption that features are conditionally independent given
the criterion. Baucells et al. (2008) described a different task
structure known as cumulative dominance that causes both TTB
and equal weighting to achieve maximum performance across all
strategies. An option cumulatively dominates another option—
under the assumption that features are ordered according to their
importance—if all of its cumulative sums of features are larger
than the ones of the alternative option. Simsek (2013) demon-
strated that both noncompensatoriness and cumulative dominance
are relatively common in many real-world decision-making pro-
blems and therefore provided a justification for the use of
heuristics.

A related line of research has argued that heuristics work well
because they involve fewer parameters, and are hence easier to learn
based on limited or noisy observations. In this context, Hogarth and
Karelaia (2005, 2006, 2007) derived several analytical conditions
under which different heuristics—like TTB and equal weighting—
achieve superior performance compared to a linear-additive model
whose weights are estimated using maximum likelihood estimation.
In particular, they found that both heuristics perform well when the
number of observations used for estimation is small compared to the
number of features. They additionally demonstrated that TTB tends
to perform well when the variability of validities between features is
high, while equal weighting performs well when the variability of
validities is low. Gigerenzer and Brighton (2009) approached the
less-is-more effect from the perspective of the bias-variance trade-
off, which states that the expected generalization error of a model
can be decomposed into the sum of a bias and a variance component.
A model with high bias fails to capture regularities in the data, while
a model with high variance is sensitive to small fluctuations in the
sample. Gigerenzer and Brighton (2009) argued that if observations
are sparse or noisy the variance component will typically dominate
and that heuristics achieve superior performance in such conditions
because they keep this component within acceptable limits. Simsek
and Buckmann (2015) provided additional support for this theory by
showing that building blocks of different heuristics can be learned
efficiently with just a few training samples. Finally, Parpart et al.
(2018) argued that heuristics can also emerge from Bayesian infer-
ence in the limit of infinitely strong priors. Based on this insight,
they identified priors that correspond to both TTB and equal
weighting. Their work indicated that heuristics perform well
because they implement strong priors that approximate the actual
structure of the environment.

Thus far, we have discussed environmental conditions that favor
heuristic decision-making. There exists, however, a complementary
justification for why people should use heuristics: They simply
involve less complicated computations (Payne et al., 1988, 1993).
Shah and Oppenheimer (2008) have advocated for the study of
heuristics in the light of the accuracy-effort trade-off. From their
point of view, heuristics are interpreted as strategies that save effort
at the cost of a potentially reduced accuracy. Resource-rational
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theories of decision-making take this point of view one step further
(Bhui et al., 2021). Instead of only asking how to save computa-
tional resources, resource-rational models identify how to spend a
limited amount of resources optimally in order to maximize accu-
racy. Lieder et al. (2017) applied the framework of rational metar-
easoning to construct resource-rational decision-making strategies.
They showed that TTB can be considered rational if execution time
is limited. We currently know very little about whether common
heuristics can be interpreted as strategies that make optimal use of
limited computational resources beyond the results of Lieder
et al. (2017).

Empirical Studies

The observation that heuristics are computationally efficient and
ecologically rational strategies is often used to justify them as
models of human decision-making (Todd & Gigerenzer, 2007).
However, to truly establish that people use heuristics, proving good
performance in simulation and theory is not sufficient; it also
requires empirical evidence. Many studies have attempted to find
such evidence, yet no consensus for or against heuristics has been
reached. Here, we provide an overview of these studies and attempt
to connect their findings. While we focus on studies in the paired
comparison setting, we also included a few notable exceptions with
more than two choice alternatives.

Evidence for Heuristics

Let us first consider studies that provided evidence for heuristics.
The majority of such evidence comes from studies in which it was
costly to access information about feature values. The Mouselab
paradigm is a process-tracing approach to decision-making, which
requires participants to click or hover over a specific feature to reveal
its value. In studies making use of the paradigm, Rieskamp and Otto
(2006) showed that people’s selection of strategies depended on the
environment they interacted with. Participants in their study had
initial preferences for linear-additive strategies, but then slowly
adopted TTB in a noncompensatory environment and WADD in
a compensatory environment. Mata et al. (2007) confirmed this
general result in a study with participants from different age groups.
They found that across all age groups, participants looked up less
information in an environment with unequal validities compared to
one with equal validities. They also concluded that older adults tend
to select simpler strategies, like TTB, more frequently than their
younger counterparts. Mata et al. (2010) reinforced the hypothesis
that older people tend to apply simpler strategies. In particular, they
demonstrated that older people were more likely to apply equal
weighting—instead of WADD—in a compensatory environment. In
a similar paradigm, Wichary et al. (2016) demonstrated that placing
participants under emotional stress caused them to search for less
information and to apply simpler strategies.

Another way to promote the use of heuristics is to require a
monetary fee to reveal features. In several experiments with mone-
tary fees, Broder (2000) produced evidence in favor of one reason
decision-making heuristics. In his experiments, more participants
were classified as TTB users in a high-cost condition compared to a
low-cost condition. In another study, Broder (2003) manipulated the
payoff structure of the environment while keeping the nominal cost
for obtaining information constant, that is, he considered

environments in which it was advantageous to gather more infor-
mation and those in which it was not. He found that most partici-
pants applied TTB in a noncompensatory environment, whereas
they applied a linear-additive strategy when information was more
valuable. In the latter condition, he also found that the percentage of
non-TTB choices did not increase over time, suggesting that “a
compensatory strategy may be something like a default strategy.”
Dieckmann and Rieskamp (2007) also observed that TTB predicted
more decisions in environments with monetary costs and further-
more demonstrated that participants applied TTB more often when
the redundancy between features was high.

It has also been argued that people rely more on heuristic
decision-making when feature values are not readily available
but have to be retrieved from memory instead. In multiple experi-
ments with memory-based retrieval, Broder et al. demonstrated that
participants became more consistent with TTB when features had to
be retrieved from memory (Broder & Gaissmaier, 2007; Broder &
Schiffer, 2003, 2006). Broder and Schiffer (2003), for example,
classified 72% of participants as TTB users when they were under
high working memory load, but only 56% when they were not.
Persson and Rieskamp (2009) used a similar paradigm but required
participants to learn about the interaction between features and the
criterion based on feedback. They found that most participants
applied TTB when feedback indicated which option was better
on the unobserved criterion. However, when direct feedback about
criterion values was provided, most people applied a linear-additive
strategy instead. In addition, they also included an exemplar-based
approach in their analysis but found little evidence for such a
strategy.

What about situations in which information is freely available?
There exists overall only limited evidence suggesting that people
apply heuristics in such cases. Bergert and Nosofsky (2007) were
among the few who provided support for the idea that people rely on
heuristics even when information is free. In their study, participants
exhibited noncompensatory decision-making patterns, assigning
over half of the total weight to a single feature. They further
strengthened their claim using a novel reaction time method that
allowed them to disentangle predictions of different strategies.

Evidence Against Heuristics

In general, it seems that increasing the costs for utilizing infor-
mation can make human decision-making more consistent with
heuristics. However, even under such supposedly favorable condi-
tions, it is still disputed whether people use heuristics or if they rely
on more complex strategies instead. Newell et al. (2003) demon-
strated that even with large monetary costs and other conditions
favoring one reason decision-making heuristics, not many partici-
pants acted fully in accordance with TTB. When reanalyzing the
data of Rieskamp and Otto (2006), Scheibehenne et al. (2013) found
that people in noncompensatory environments were better described
through a mixture of TTB and WADD, indicating a general
preference for linear-additive strategies. van Ravenzwaaij et al.
(2014) showed that hierarchical models accounting for both search
order and termination provided a better explanation for participants’
choices than TTB and WADD alone. Similarly, S6llner and Broder
(2016) found that people tend to adjust how long then search for
information based on the evidence that they have accumulated so
far. They concluded that this observation is in line with evidence
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accumulation models (Lee & Cummins, 2004), but not with heur-
istics like TTB.

We also have to be cautious to not misinterpret evidence for
heuristics in process tracing studies as a general inability to apply
more complex strategies when information search is not constrained
by the experimental paradigm. In this context, Glockner and Betsch
(2008) argued that process-tracing studies are likely to underesti-
mate the cognitive capacity of participants, as they hinder the
activation of automatic decision-making processes. They verified
this claim by demonstrating that participants were generally able to
combine information from multiple features extremely quickly
when the acquisition of information was not constrained. Further
studies with freely accessible information provided similar results
(Broder, 2000; Heck et al., 2017; Lee & Cummins, 2004; Parpart
et al., 2018), always concluding that few participants made deci-
sions consistent with TTB and that their choices were, in general,
better described through linear-additive strategies. Finally, Newell
and Lee (2011) highlighted large interindividual differences and
presented a sequential sampling model that provided better fits than
TTB, WADD, and a strategy selection model across all participants.

Heuristics in Related Research Areas

There are also a number of research areas that use experimental
paradigms similar to paired comparison studies, which have pro-
duced mixed evidence on whether people rely on heuristic decision-
making or not. In probabilistic category learning (Ashby & Maddox,
2005), participants are asked to classify objects into one of usually
two categories. Thus, similar to paired comparison tasks, partici-
pants learn a mapping between features and a binary outcome.
Juslin, Olsson, et al. (2003) noted that the category learning litera-
ture emphasizes exemplar models, which is in contrast to the linear-
additive models studied in the decision-making literature. Based on
this observation, they investigated which factors modulate a shift
from exemplar models to linear-additive cue-integration models. In a
similar setting, von Helversen et al. (2013) demonstrated that partici-
pants switched from an exemplar-based model to a linear-additive cue-
integration model once information about the direction of features was
available. However, both of these lines of work did not examine the
role of heuristics in the context of category learning. In a later study,
Juslin, Jones, et al. (2003) did consider the possibility for one reason
decision-making heuristics but found little evidence for such strategies,
even after introducing additional time pressure.

Another closely connected paradigm with a long history on its
own is multiple-cue probability learning (MCPL, Brehmer, 1979;
Gluck & Bower, 1988; Hammond, 1955). In MCPL, people have to
learn about a probabilistic relationship between an object described
by multiple features and an outcome. A popular instance of MCPL is
given by the weather prediction task. Here, participants are pre-
sented with a multidimensional stimulus taking the form of tarot
cards and learn based on feedback whether given patterns lead to
sunny or rainy weather. Gluck et al. (2002) conjectured that people
approach this task using three different strategies: (a) an optimal
strategy, which learns about all available features, (b) a one reason
decision-making heuristic, in which decisions are based on a single
feature, and (c) a singleton heuristic, which learns only about the
patterns that have a single feature present. In two studies, they found
that a majority of participants (85% across both studies) was overall
best fit by the singleton heuristic. However, as more data were

observed participants either switched toward the one reason
decision-making heuristic in a more challenging experiment or
the optimal multicue strategy in an easier experiment. In contrast,
Lagnado et al. (2006) concluded that a vast majority of participants
was best described by a strategy that integrated information from all
features (86% across three studies). Newell et al. (2007) reported
similar results, with the additional observation that people switched
toward a more simplistic singleton heuristic if they were put under
working memory load. Finally, it is worth pointing out that equal
weighting also received some attention in the MCPL literature:
When participants were provided with directional information about
features, they switched from a multicue strategy toward equal
weighting (Newell et al., 2009). In the context of this article, this
is an interesting observation, because—as we will show later on—it
is exactly what our model predicts.

Summary

To summarize, many prior studies attempted to produce evidence
for one reason decision-making strategies like TTB, while focusing
less on other heuristics such as equal weighting. They concluded
that such strategies were indeed more apparent when it was costly to
access information about feature values, either in terms of time,
money, or memory. However, when features were freely accessible,
evidence for heuristics in human decision-making remained rare.
Where does that leave us? We argue, following earlier work of
Liederet al. (2017), Payne et al. (1993), and Shah and Oppenheimer
(2008), that examining which strategies are rational after taking
limited computational resources into consideration can help us to
understand why and when people use heuristics. In the next section,
we formalize this idea and present a novel modeling framework that
allows us to determine which strategy is resource-rational for a
particular environment. We then show—with the help of this
framework—that previously suggested heuristics can be interpreted
as resource-rational solutions to paired comparison tasks when
additional information about the ranking or the direction of features
is available. In our experimental studies, we indeed find that people
use their computational resources efficiently, and apply heuristics
when such information is available. This result is amongst the first to
show that people rely heavily on heuristics even in the absence of
time, money, or memory constraints. However, when no side
information is available, we find that it is resource-rational to
make decisions using weighted combinations of features. We
confirmed empirically that under such conditions, people do not
rely on heuristics and instead apply linear-additive strategies. This
result is in agreement with the majority of reviewed studies with
freely accessible feature values.

Computational Models

In this section, we show how recent advances in meta-learning
can be used to construct environment-specific decision-making
algorithms that make optimal use of limited computational re-
sources. Having access to such an algorithm does allow us to
predict if and when people should rely on heuristic decision-making
strategies, assuming that they use available computational resources
efficiently. To test this conjecture, we also introduce several other
computational models of decision-making in paired comparison
tasks. First, we will outline the assumptions about the structure of



S

>
2
<]
e}
=
2
s
g
3}
7]
2
o
9
O
]
S
=
»
=]

erican Psychological Association or one of its allied publishers.

ghted by the Am

This document is copyri
This article is intended solely for the personal use of the individual user

6 BINZ, GERSHMAN, SCHULZ, AND ENDRES

the problem to be solved and define a corresponding ideal observer
model. Then, we introduce probabilistic variants of two popular
heuristics. Both heuristics are considerably simpler than an ideal
observer model regarding their use of available information. Finally,
we describe how we obtain resource-rational algorithms that are
adapted to a particular environment.

The decision-making problems we focus on in this article are
paired comparison tasks with continuous features. In a paired
comparison task an agent—either human or machine—has to decide
which of two options with feature vectors x4 z € R? has the higher
value on an unobserved criterion y, . In our movie example, the
feature vector contains information about whether the movie has
won an Oscar, its average rating on a reviewing website, and so on,
while the unobserved criterion corresponds to your personal rating
of the movie (i.e., how much you would like the movie if you
watched it). We consider the setting where data arrive sequentially,
that is, one at a time, and with feedback that indicates which option
has the higher criterion value. Let x, , and xg_, denote the observed
features at time-step ¢ and let ¢, be a binary variable that takes the
value of 1 if option A has the higher criterion value and 0 otherwise.
For each time-step, the agent first observes both options, then makes
a prediction about ¢, and subsequently receives feedback about
which option had the higher criterion value. Note that learning in
this setting is always based on feedback in the form of ¢, and that the
criteria y4, , and yp_, are never observed directly.

In contrast to most prior work, we investigate paired comparison
tasks with continuous features. In many real-world scenarios,
features are naturally described through continuous values and
thus we believe that the restriction to binary features oversimplifies
a characteristic present in many of the problems people typically
solve. Moving to continuous features also facilitates statistical
analysis as fewer trials are needed to observe expected effects.
For example, it would require over four times more trials to
distinguish an ideal observer model from a single cue heuristic in
environments with dichotomized features instead of continuous
ones (see Appendix A for further details).

Ideal Observer

Ideal observer models are designed to provide a theoretical upper
bound on performance in a specific task. In the following, we
construct an ideal observer model for paired comparison tasks.
For this, we assume that there exists an underlying linear relation-
ship between features and the criterion:

Vo = WTXA + €4
. M
ygp = W' Xp + €,
with feature weights w € R? and independent, additive noise
€4.3~N(0,6%). Based on this assumption, we can express the
probability, that option A has a higher criterion value than
option B as:

P(YA,r > YB,Z‘XA,nXB,nW’m = IO) = P(C, = I‘X,,W,m = IO)
wix )
=d ), 2
(\/50
where @ is the cumulative distribution function of a standard
normal distribution. For ease of notation, we have denoted the

difference between feature vectors as X, = X4, — Xp, , and used the
binary variable C, to indicate which of the two options has a higher
criterion value.

Equation 2 is known in the statistics and machine learning
literature as the probit regression model. The probit regression
model makes it clear that an ideal observer should represent the
probability that one option is better than the other using a weighted
sum of differences between features of the options. Hence, the ideal
observer model is a compensatory decision-making strategy.’

Parameter Estimation

Equation 2 provides an ideal observer model under the assump-
tion that the underlying feature weights w are known. However, we
assume that the weights are not provided in advance to the decision-
maker. Thus, the agent has to infer them based on past observations.
An ideal observer should apply Bayesian inference to infer unob-
served parameters from data in a normative manner. In our setting,
we estimate unobserved parameters by applying Bayesian inference
sequentially. Exact inference is not possible under the above
assumptions and thus we resort to a variational approximation
(Jordan et al., 1999). We approximate the true posterior with a
normal distribution g(w; A,) = N (w; y,, ¥,) and optimize its param-
eters A, = (1, ¥,) through gradient ascent on the evidence lower
bound:

‘C(}\I) = [Ew~q(w;7»,) [Ing(Ct = C,|X,, W)}
— KL[g(w:4,)[lg(w: A1), 3)

where g(w; Ag) corresponds to an initial prior distribution. This kind
of approximation is equivalent to exact inference when the true
posterior is within the considered variational family. We provide
further details on how Equation 3 is optimized in Appendix B.

To make predictions, we average over all plausible parameter
values given by the variational distribution. The resulting predictive
distribution can be expressed in closed form:

P(Crpr = 11X, M) = [P(Ct+1 = 1[X41, W)g(W; A, )dw

T
Hi Xi41

e e “)

1762 4 «T
20° +x,,, ¥/ x4y

We assume, throughout this article, that features weights are
sampled from a standard normal distribution at the beginning of
each task and held constant over its entire duration, which implies
that an ideal observer should use a prior in form of a standard normal
distribution, that is, g(w; Ay) = N (w;0,1).

Heuristics

The two heuristics we consider in our analysis belong to the
categories of one reason decision-making and equal weighting.

2 Note that alternatively, it would have also been possible to assume that
the noise term follows an extreme-value distribution, which would result in a
logistic regression model. We have decided on the probit model instead
because it allows us to compute predictive posterior distributions in closed-
form.
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HEURISTICS FROM BOUNDED META-LEARNED INFERENCE 7

In contrast to traditional heuristics, like TTB, they are probabilistic
decision-making strategies for tasks with continuous features. Both
are obtained through modification of the ideal observer model, such
that either less information is required to make a decision or that
information is combined in a simpler way.

One Reason Decision-Making

In our implementation of one reason decision-making, we modify
Equation 2 and replace it with a model that only takes a single
feature x; into account:

p(ct = 1\x,,w,m=SC) Z(D(M:/{:) (5)

We refer to the resulting strategy (Equation 5) as single cue heuristic.
If a ranking of features is available, decisions are based on the most
predictive feature, otherwise, we select the feature that performed best
on the data so far. In contrast to TTB, the single cue heuristic does not
involve a sequential search over features. However, we assume that
features take continuous values, and hence search is not required as a
feature nearly always discriminates between options (Luan et al., 2014).
‘We have also experimented with a semilexicographic heuristic that uses
a threshold parameter for deciding whether to consider a feature, but
have not found it to explain the empirical data better than the simpler
single cue heuristic. Thus, we decided to focus our analysis on the
simpler implementation that always uses the first or best feature.

Equal Weighting

In our probabilistic version of equal weighting, we replace
Equation 2 with a model that has a single, tied weight for all
features:

. \d )
p(C, = 1x,,w,m = EW) = q>(%). ©)

For w > 0, this equal weighting heuristic (Equation 6) proba-
bilistically selects the option with the larger sum of features. For
w < 0, it becomes more likely to select the option with the smaller
sum (a negative weight is appropriate if most features have negative
correlations with the criterion). Note that the ideal observer model
contains as many free parameters as there are observed features,
while both heuristics have only a single free parameter regardless of
how many features are observed.

Bounded Meta-Learned Inference

Finally, we present BMI as a novel theory for human decision-
making. BMI combines two equally important ideas: meta-learning
and resource rationality. We are going to introduce them one after
the other. First, we describe how meta-learning can produce
decision-making algorithms that infer the optimal strategy for a
particular environment, resulting in a variant without resource
limitations called meta-learned inference (MI). Then, we show
how MI can be extended to BMI by additionally taking limited
computational resources into account. BMI may therefore be
described as a resource-rational decision-making algorithm that
has been adapted to an environment over time via meta-learning.

Meta-Learned Inference

Meta-learning (Bengio et al., 1991; Schmidhuber et al., 1996;
Thrun & Pratt, 1998), also known as learning to learn, is a machine
learning approach to devise learning systems that can rapidly adapt
to new problems. In our work, we will use meta-learning as a purely
methodological tool for constructing resource-rational decision-
making algorithms, that is, we do not attempt to study the process
of meta-learning itself but are only interested in its outcome.

The main idea of our approach is simple: Instead of using
Bayesian (or variational) inference to infer posterior distributions
over probit regression weights, we train a recurrent neural network
to do this inference. In time-step ¢ + 1, the network processes the
previous feature vector X, together with its corresponding target c,,
combines this information with its hidden state, and based on this
estimates the parameters of the posterior distribution A, = {y,, ¥,}.
Finally, it combines the estimated weights with the feature vector
X1 as described in Equation 4 to obtain the predictive posterior
distribution p(C,y; = 1|X,41, A, ©). Figure 1 illustrates graphically
how the network processes a sequence of observations.

Initially, the recurrent network maps a sequence of previously
observed feature-target pairs to a random posterior distribution over
weights. During meta-learning, the system is then trained in an end-
to-end manner to infer statistically optimal predictive posterior
distributions for a distribution over tasks p(X;.7, ¢;.7). We also refer
to this distribution over tasks as the environment. In probabilistic
terms, we can infer statistically optimal predictive posterior dis-
tributions by minimizing their negative log-probabilities on tasks
sampled from the environment:

T-1

L£(O) = Epxirciir) Z —logp(Ciy1 = i1 X141, 1. ©) [, (D)
t=0

where O are parameters of the recurrent network, which we refer to
as meta-parameters in order to distinguish them from the probit
regression weights of Equation 2.

Equation 7 is optimized until convergence using standard opti-
mization techniques. Through repeated encounters with the envi-
ronment, the model is able to adapt to the properties of that specific

Figure 1
Graphical Depiction of MI/BMI

p(Ct+1 = 1‘Xt+1,)\t7 @) = fp(0z+1 = 1|Xt+1>W)(I(W§)\t)dW

/

At = {ﬂt, ‘l’t} Xt+1

o

(¢, cr)

Note. MI = meta-learned inference; BMI = bounded meta-learned inference.
The recurrent neural network sequentially processes examples from a given task.
Through its recurrent activations it combines information from all previous
feature-target pairs to compute a distribution over weights, which is then
combined with the next input to obtain the predictive distribution.
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8 BINZ, GERSHMAN, SCHULZ, AND ENDRES

environment. Once meta-learning has finished, the recurrent net-
work acts as a free-standing decision-making algorithm without
requiring any further optimization. Instead, adaptation to new tasks
is simply implemented in form of forward passes through the
network: We provide the network with a sequence of feature-
target examples and an input that we want to query, and the network
provides us with optimal predictive posterior distributions for that
sequence of observations. We refer to the decision-making algo-
rithm that is implemented by the forward dynamics of the recurrent
network as ML It has been shown in previous work that this meta-
learning approach leads to the emergence of an algorithm that
approximately simulates Bayesian inference (Mikulik et al.,
2020; Ortega et al., 2019; Rabinowitz, 2019). Thus, MI will imple-
ment an algorithm similar to our ideal observer model, assuming that
both of them make identical assumptions about the environment.

Resource Rationality

BMI is an extension to MI that additionally takes limited
computational resources into consideration. More specifically,
BMI controls for how many bits are required to implement the
emerging decision-making algorithm, which is also referred to as
its description length. From a psychological perspective, this may
be interpreted as a cost for storing the algorithm that infers what
decision-making strategies to apply. We will examine how this type
of computational cost relates to other costs commonly used in
cognitive science in the General Discussion.

How can this be formalized mathematically? First, we have to
recognize that controlling the description length of meta-parameters
is equivalent to controlling the description length of the emerging
decision-making algorithm. This is the case because the emerging
decision-making algorithm is fully specified through the meta-
parameters. If we then represent the meta-parameters using a
distribution over their plausible values ¢(@; A), it is possible to
interpret the Kullback—Leibler (KL) divergence between ¢(@; A)
and a prior p(®) as a measure of the meta-parameters’ description
length (Griinwald & Grunwald, 2007; Hinton & Van Camp, 1993).3
In order to find the optimal balance between high performance with
low computational complexity, BMI simply adds a f-weighted KL-
term to the MI objective from Equation 7:

T-1
C(A) = [Ep(XhT,cl;T) [Eq(G);A) Z _IOgP(CtH = Cr1 |Xz+1,7\z7®)
t=0
performance
+ PKL[g(®;A)[|p(®)] . ®)
————

description length

In our later model comparisons, we treat f§ as a free parameter that
is fitted to empirical data. For p = 0, meta-learning with Equation 8
is equivalent to MI. For § > 0, we get a family of decision-making
algorithms that optimally trade-off performance for a shorter
description length. In this article, we focus on the information-
theoretic interpretation of Equation 8. For completeness, it should
be noted that several authors have suggested an alternative inter-
pretation that appeals to Probably Approximately Correct-Bayesian
theory (McAllester, 2013), both in the context of traditional super-
vised learning (Achille & Soatto, 2018, 2019) and meta-learning
(Yin et al., 2020).

We additionally use a sparsity-inducing prior (Kingma et al.,
2015; Molchanov et al., 2017; Tipping, 2001), which means that
under large resource limitations only networks with few nonzero
meta-parameters remain. Thus, resulting algorithms are simple in
terms of their description length and in terms of the number of
remaining meta-parameters. Figure 2 schematically contrasts two
networks obtained from optimization with low and high resource
limitations. In Appendix C we provide a full specification of the
network architecture, meta-learning procedure, and choice of prior.

It also seems sensible to ask: What decision-making strategies can
BMI infer? Both the single cue heuristic and equal weighting are
subsets of the space of all possible weight vectors that can be inferred.
Equal weighting heuristics correspond to uniform vectors (e.g., [1, 1,
1, 1]), while single cue heuristics can be expressed through a vector
with a single nonzero entry (e.g., [1, 0, 0, 0]). BMI could thus—in
principle—discover the two heuristics and select between them
whenever appropriate. MI (or equivalently BMI with § = 0) approxi-
mately simulates an ideal observer, and hence we expect it to infer
strategies that use independent and nonzero weights for all features.
However, as we decrease the description length of the emerging
decision-making algorithm, we expect it to infer simpler strategies like
the single cue or equal weighting heuristic. Importantly, which
strategy BMI infers, and whether it corresponds to a particular
heuristic or not, does not only depend on its complexity but also
on the distribution over tasks that was used for meta-learning.

Model Summary

Let us summarize all outlined models again and contrast the
assumptions they make. The ideal observer model assumes that
everything about the structure of the decision-making environment
is known. In particular, it knows about the linear-Gaussian rela-
tionship. With this knowledge, it is able to compute the optimal
solution by combining information from all features through
weighted sums. Heuristics, like the single cue strategy and equal
weighting, assume that computing weighted sums is too burden-
some and instead bet on simpler ways for making decisions. The
single cue heuristic only inspects a single feature, while the equal
weighting heuristic sums up all features without weighting them.
BMI does not know anything about the structure of the environ-
ment explicitly. Instead, it has acquired a resource-rational algo-
rithm to infer decision-making strategies through repeated
encounters with an environment. Thus, BMI can exploit character-
istics present in that specific environment, while also being efficient
in terms of computational resources.

Model Simulations

Next, we demonstrate through a series of model simulations that
BMI recovers both single cue and equal weighting heuristics in
specific environments. This result implies that both heuristics can
be resource-rational strategies under certain conditions. However,
we also identify circumstances where BMI does not discover any
known heuristic and instead infers strategies that use weighted

3 The formal justification for this is given by the bits-back argument
(Hinton & Van Camp, 1993; Honkela & Valpola, 2004), which allows us to
interpret the KL term as the coding length of meta-parameters when encoded
together with the data.
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Figure 2
Hllustration of Two Optimized Neural Networks With a Sparsity-Inducing Prior and Different
Resource Limitations

(a) Low Resource Limitations (b) High Resource Limitations
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Note. For clarity, we omit recurrent connections and show only the means of g(w; A,) as an output.
(a) Network trained with low resource limitations uses all available connections. (b) Network trained with
high resource limitations uses only the set of connections that are most useful for increasing performance.
Network (b) is much simpler than network (a). See the online article for the color version of this figure.

combinations of all features. Before running these simulations, we
first have to specify the assumptions we make about the environ-
ment and introduce a method for analyzing the emerging
strategies.

Environments

For BMI it is necessary to specify a distribution over tasks p(X;.r,
cy.p) that is used for meta-learning. In general, this distribution
should reflect a participant’s prior experiences in the world and its
expectations about what tasks might be encountered during the
experiment. Here, we make the following assumptions. All tasks
involve two options with four different features, and we concentrate
on tasks with no costs to reveal information about features. In order
to generate a single task, we proceed in three steps:

1. Randomly generate features weights (ref. Equation 1 or 2)
by sampling from a standard normal distribution.

2. Randomly generate features X, ,and X, from a multivariate
normal distribution with zero mean and covariance matrix 3 .

3. Randomly determine which option has the larger criterion
by sampling from a Bernoulli distribution with a success
probability given by Equation 2.

Features weights are held constant over a task but are resampled
between tasks. Importantly, we assume that the decision-making

agent cannot access these weight vectors directly, but instead has to
infer them based on observations.

Both redundancy and uncertainty are crucial factors in many
real-world decision-making problems (Gigerenzer & Gaissmaier,
2011). Thus, we want them to be present in our environments.
Partially redundant features are ensured by drawing separate feature
covariance matrices from a prior with n = 2 (Lewandowski et al.,
2009) for each task. To introduce uncertainty, we use a limited
number of trials in each task (7 = 10) and set the additive noise term
o such that an ideal observer is correct in 85% of the cases in the
tenth trial.

We consider three variations of the previously outlined environ-
ments, that assume (a) known rankings of features, (b) known
directions of features or (c) neither. To provide agents with a
ranking of features, we arrange them in decreasing order according
to the magnitude of their weights. Known directions are ensured by
inverting the sign of a feature if it has a negative correlation with the
criterion, leading to features with only positive directions.* These
environments are used during meta-learning, for the model simula-
tion results presented next, and to generate the tasks for our
empirical studies.

“Tn our ideal observer implementation, we always assume the original
standard normal prior over weights, that is, the prior is not adjusted based on
the additional information about ranking or direction. The fact that the prior
does not reflect side information makes the resulting model slightly less ideal
than a true ideal observer.
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10 BINZ, GERSHMAN, SCHULZ, AND ENDRES

Strategy Analysis

To characterize different decision-making strategies, we adopt a
measure from the economics literature called the Gini coefficient
(Atkinson, 1970). The Gini coefficient was originally intended to
describe income and wealth distributions of countries. Its minimal
value of zero corresponds to a country in which all residents are
equally wealthy, while the maximal value of one corresponds to a
country in which a single person possesses everything.’

The extreme cases of the Gini coefficient also coincide with the two
previously discussed heuristics: Equal weighting heuristics have a
Gini coefficient of zero, while single cue heuristics have a Gini
coefficient close to one. Thus, we can employ the Gini coefficient
to understand how similar estimated regression weights are compared
to both heuristics. In practice, we compute Gini coefficients using
absolute values of weight vectors. Mathematically, the Gini coefficient
of a weight vector w € R? is defined as half of the relative mean
absolute difference, see Equation 9:

d

Gwy=""1 ©)

Zdiw,-
i=1

Throughout this section, we analyzed Gini coefficients for BMI
(with p = 0.01), MI, and IO. If Gini coefficients were consistently
close to zero or one, we deduced that the model has recovered one of
the two heuristics. We additionally evaluated the average KL diver-
gence from the posterior predictive distribution of both heuristics to
the posterior predictive distribution of BMI. This KL divergence can
be interpreted as a difference measure between two models. If it is
significantly lower for one of the two heuristics, this would further
strengthen our claim that BMI has discovered that particular heuristic.

d
[w; — Wj|
=1

BMI Discovers Heuristics

First, we considered an environment with known feature rankings.
For MI and BMI we optimized meta-parameters until convergence in
an environment where features are ordered based on the magnitude for
their associated weight. We then analyzed Gini coefficients of inferred
regression weights after meta-learning is completed. Because MI and
BMI are adapted to the environment, they could exploit the additional
ranking information to adjust how they infer strategies.

Figure 3(a) visualizes Gini coefficients obtained from BMI. We
observe strategies with nearly maximum Gini coefficients, which
correspond to weight vectors that only have a single nonzero compo-
nent. Thus, we conclude that the single cue heuristic emerged as the
resource-rational strategy for an environment with known feature
rankings. Looking at MI in Figure 3(b), we find Gini coefficients
that cover a much wider range of values. Even though there is an initial
tendency toward single cue heuristic, many later decisions are based
on compensatory rules. This indicates that being adapted to the
environment alone is not a sufficient justification for heuristics.
Instead, we need algorithms that are adapted to the environment
and efficient in terms of their computational resources. Decisions
in the ideal observer model are nearly always based on weighted
combinations of multiple features, and hence its Gini coefficients in
Figure 3(c) spread over an even wider range of values. Figure 3(d)
confirms our findings by showing that BMI infers posterior predictive

distributions that are much more similar to the single cue heuristic than
to equal weighting in terms of their KL divergence.

Next, we looked at an environment where feature directions are
known instead of their ranking. For this, we optimized MI and BMI
in an environment with only positive feature directions. The result
here looks very different compared to the ranking condition. Gini
coefficients resulting from BMI, visualized in Figure 4(a), are
consistently close to zero. Low Gini coefficients correspond to
uniform weight vectors and hence in this environment the equal
weighting heuristic turned out to be the resource-rational strategy.
Figure 4(b) confirms earlier results showing that MI only leads
toward an initial tendency toward heuristics. Early strategies are
somewhat similar to equal weighting, but especially as more data is
observed strategies with higher Gini coefficients emerge. The ideal
observer model on the other hand does not exploit the additional
directional information and hence we find no noticeable change in
Gini coefficients compared to an environment with known rankings,
Figure 4(c). Like before, our results are confirmed when looking at
the KL divergence between both heuristics and BMI, which is now
substantially smaller for the equal weighting heuristic as shown in
Figure 4(d).

BMI Does Not Always Discover Heuristics

We have seen that BMI discovered different heuristics in two
classes of environments. Next, we show that there are also environ-
ments where this is not the case. For this, we optimized MI and BMI
such that they adjust to problems without additional information in
the form of ranking or direction. Gini coefficients obtained from
BMl reveal that neither single cue nor equal weighting heuristics are
resource-rational under such circumstances, as shown in Figure 5(a).
Instead, the pattern now looks more similar to one observed in MI and
the ideal observer model, shown in Figure 5(b) and (c), respectively.
In all cases, Gini coefficients cover the full range of possible values,
indicating that inferred weight vectors integrate information from
multiple features to different degrees. This time, we find no difference
in the KL divergence between both heuristics and BMI, ref. Figure 5(d),
which confirms the earlier conclusion that BMI does not recover any
of the two heuristics in an environment without additional informa-
tion about ranking or direction.

Experimental Predictions

BMI discovered both single cue and equal weighting heuristics
when information about ranking and direction was provided, respec-
tively. However, resulting strategies diverged from known heur-
istics whenever such information was not present. Instead, our
simulation results suggest that weighted combinations of multiple
features should be used in such situations. Under the assumption that
people make adaptive and computationally efficient inferences, our
results enable us to make precise predictions about when to expect
heuristics as part of human decision-making and when not: Know-
ing the correct ranking of attributes leads to one reason decision-
making, knowing the directions of the attributes leads to equal
weighting, and not knowing about either leads to strategies that use

> The extreme value of one is only reached in the limit of an infinite
number of residents, otherwise the maximum Gini coefficient for d residents
is1—d.
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Figure 3
Strategy Analysis for an Environment With Known Rankings
(a) BMI (8 = 0.01) (b) MI (c) Ideal Observer
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Note. MI = meta-learned inference; BMI = bounded meta-learned inference; KL. = Kullback-Leibler. (a) to
(c) Gini coefficients for an environment with known rankings. High values indicate similarity to the single cue
heuristic, while low values correspond to equal weighting heuristics. (a) BMI results in Gini coefficients that are
close to the single cue heuristic. (b) MI shows tendencies toward the single cue heuristic, especially with few
observations. (c) Gini coefficients of the ideal observer model cover the whole range of possible values,
indicating that a weighted combination of multiple features is used. (d) Average KL divergence from the
posterior predictive distribution of both heuristics to the posterior predictive distribution of BMI. The KL
divergence is lower for the single cue heuristic, which confirms our results from the Gini coefficient analysis. See
the online article for the color version of this figure.
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weighted combinations of multiple attributes. Below, we present the
results of three paired comparison studies that confirm the predic-
tions made by BMI.

Experiment 1: Known Ranking

In our first study, participants made decisions in multiple paired
comparison tasks while having access to a ranking of features, but
not their underlying weights. Previously, we showed that in envir-
onments with known feature rankings, single cue heuristics are
resource-rational strategies. Hence, we hypothesized that people are
more likely to apply the single cue heuristic in this condition.

Method
Participants

Participants were students from the University of Marburg, taking
part in the study for course credits. Besides course credits, they got a
chance to win a €10 voucher if they made more than 66.6% correct
decisions. The experiment was approved by the local ethics board
(AZ 2020-32k). In total, we collected data from 28 participants (23
female, average age: 22.36 + 5.65). We decided on this number of
participants based on previous studies (Broder & Schiffer, 2003;

Newell et al., 2003). The median time to complete the experiment
was 26.00 min.

Procedure

Each participant performed 30 different paired comparison tasks
that were randomly generated according to the previously described
distribution. Each task consisted of 10 trials. The underlying feature
weights remained fixed within a task but varied between tasks.
Participants were informed about transitions between tasks. Each
participant encountered the same set of paired comparison tasks in a
randomized order.

The problem itself was framed as an alien sports competition on
an unknown planet (see Figure 6). Participants observed four
numerical attributes for two aliens and indicated by a button press
which alien they believed was more likely to win. The alien cover
story was used to keep the meaning of features completely abstract
from the participant’s perspective. Participants did not have access
to the underlying feature weights but instead had to learn about the
importance of features based on experience. Feedback about the
correct choice was provided directly after each decision. For this
condition, features were displayed in descending order based on the
magnitude of their weights. Participants were told that features are
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Figure 4

Strategy Analysis for an Environment With Positive Directions
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(a) to (c) Gini coefficients for an environment with positive directions. High values indicate similarity to
the single cue heuristic, while low values correspond to equal weighting heuristics. (a) BMI results in Gini
coefficients that are close to the equal weighting. (b) MI shows tendencies toward the equal weighting
heuristic, especially with few observations. (c) Gini coefficients of the ideal observer model cover the whole
range of possible values, indicating that a weighted combination of multiple features is used. (d) Average KL
divergence from the posterior predictive distribution of both heuristics to the posterior predictive distribution
of BMI. The KL divergence is lower for the equal weighting heuristic, which confirms our results from the
Gini coefficient analysis. See the online article for the color version of this figure.

arranged from top to bottom according to how well they predict the
winner. Being aware of this additional ranking information allowed
them to apply strategies that are appropriate for this environment.
All participants went through a short tutorial and did a comprehen-
sion check to confirm that they understood the instructions.

Results
Performance

Figure 7 shows the percentage of correct decisions for partici-
pants in our study together with the accuracy of different models.
Participant performance was within the range of the single cue
heuristic but below the ideal observer model. On average, partici-
pants made 68.25% + 7.55% correct choices. For each participant,
we assessed whether or not they chose the better option more
frequently than chance by using an exact binomial test with a
base probability of p = .5 and classifying them as better than chance
if the p value of that test was smaller than .05. This analysis showed
that 26 out of 28 participants chose the better option more frequently
than what would be expected under chance level performance. We
also fitted a mixed-effects logistic regression to investigate partici-
pants’ learning over trials and tasks, using a variable indicating

whether or not participants had chosen the better option on a given
trial as the dependent variable, and adding trial number and task
number as both fixed effects and random effects over participants.
The results of this model showed a significant fixed effect of trial
number (f = 0.12, z = 5.63, p < .001) onto choosing the better
option but not of task number (p = —0.02, z = —-0.66, p = .51).
This means that participants improved over trials within a given task
but did not improve over tasks.

Model Comparison

If people make efficient use of their available computational re-
sources, we expect them to adopt the single cue heuristic in this
experiment. To examine this hypothesis, we performed a Bayesian
model comparison and computed posterior probabilities of different
models given the decisions made by a participant. Appendix D
provides a detailed description of the methods we used for statistical
analysis. In addition to the previously described models, we also
included a simple strategy selection model (ref. Appendix E) and a
feedforward network trained by gradient descent (ref. Appendix F) in
our analysis. Because the single cue heuristic and BMI make redundant
predictions, we decided to split our analysis into two parts. First, we
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Figure 5

Strategy Analysis for an Environment Without Ranking or Direction
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Note. MI = meta-learned inference; BMI = bounded meta-learned inference; KL = Kullback—Leibler. (a) to (c) Gini coefficients for
an environment without ranking or direction. High values indicate similarity to the single cue heuristic, while low values correspond to
equal weighting heuristics. (a) BMI, (b) MI, and (c) ideal observer models result in Gini coefficients that cover the whole range of
possible values, indicating that a weighted combination of multiple features is used. (d) Average KL divergence from the posterior
predictive distribution of both heuristics to the posterior predictive distribution of BMI. The KL divergence is roughly equal for both
heuristics, indicating that neither of the two is particularly similar to BMI. See the online article for the color version of this figure.

analyzed all models except BMI for individual participants. Then, we
compared BMI against the other models on the data of all participants.

We found evidence for the application of the single cue heuristic in
23 out of 28 participants. For all but four of those participants, the

model evidence decisively favored the single cue heuristic (p(m =
SCle®, XM > 0.99). Figure 8(a) summarizes posterior probabili-
ties of different models for all participants. From the participants
not best described by one reason decision-making, two were best
described by guessing, one by the equal weighting heuristic, one

Figure 6 by the ideal observer model, and one by the strategy selection

Graphical Illustration of a Single Trial in the Experiment model. The protected exceedance probability (PXP), which mea-

sures the probability that a particular model is more frequent in

Alien 1 Alien 2 the population than all the other models under consideration

Attribute 1 0.64 -1.59 (Rigoux et al., 2014), favored the single cue heuristic decisively
) (PXP > 0.999).

Attribute 2 0.10 - While our model simulations predicted that participants should

Attribute 3 -0.32 0.65 not change their strategy during a task, our analysis did not rule out

. this possibility so far. It might, for example, be possible that

Attribute 4 -0.97 0.16

F J

Alien 1 gewinnt Alien 2 gewinnt

Note. “Alien X gewinnt” translates to “Alien X wins”

participants did not start a task with the single cue heuristic but
only developed this preference during learning. We tested this
specific model prediction by comparing differences in log-
likelihoods of individual time-steps between different models.
Looking at Figure 8(b), we can see that the single cue heuristic
dominates both equal weighting and the ideal observer model across
all time-steps. This makes it unlikely that participants only applied
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Figure 7
Percentage of Correct Decisions (Averaged Over All Tasks) in the Ranking Condition
Plotted Over the Number of Trials Within a Task
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Note. BMI = bounded meta-learned inference. For human performance shaded contours represent the
standard error of the mean. The left panel shows the ideal observer model and both heuristics, while the
right shows BMI for different values of . For BMI, lower p-values correspond to a less restricted model.
Performance plots for the strategy selection model and feedforward network can be found in Appendices

E and F, respectively. See the online article for the color version of this figure.

the single cue heuristic for a subset of trials, and also validates the
hypothesis that strategies did not switch within a task.

Finally, we compared how well BMI fared against the other
models on the aggregated data. The resulting posterior probabilities
indicated that across all participants BMI offered an even better
explanation for the observed data than the other models (p(m =
BMIJ¢, X) ~ 1). We hypothesized that this is the case because BMI
was able to explain the behavior of participants that used a single
feature (corresponding to higher B-values) and those who used two
or more features (corresponding to lower p-values). There were
overall 12 participants who were better described by BMI than by
the single cue heuristic. We found that the fitted B-values of these
participants were significantly lower than those within the rest of the
population, #(15.4) = —2.78, p = .007, meaning that these partici-
pants acted as if they had access to more resources and therefore
applied more complex strategies. There was furthermore a signifi-
cant rank correlation between f and participants’ response times
(t = -042, z = -2.87, p = .004), indicating that people who were
better described by models with a shorter description length (i.e.,
those with higher p-values) also made quicker decisions.

Discussion

Most empirical evidence for one reason decision-making has
been provided by studies that involved a cost for acquiring
information about features (Broder, 2000; Broder & Gaissmaier,
2007; Rieskamp & Otto, 2006). However, even with an experi-
mental protocol that favored few pieces of information, evidence
for these strategies remained inconclusive (Newell et al., 2003;
Scheibehenne et al., 2013). When information is freely available,
people are often better described through compensatory strategies
such as logistic regression (Broder, 2000; Glockner & Betsch,
2008; Lee & Cummins, 2004; Parpart et al., 2018). Our results are
among the first to decisively show that people’s choices can be
based on a single piece of information, even when such strategies

are not favored by the experimental protocol. This was possible
because we precisely identified conditions under which one reason
decision-making should appear. Nearly all participants in our study
applied strategies that were efficient in terms of resources while
also accounting for environmental characteristics.

Experiment 2: Known Direction

In our second study, we provided no information about ranking
and instead informed participants about feature directions; oth-
erwise, it was identical to the first experiment. In our previous
analysis, we have seen that this modification also caused a change
in what strategy is resource rational. Now, resource-rational
decision-making amounts to the application of equal weighting
heuristics. We, therefore, hypothesized that participants would
become more likely to use such strategies.

Method
Participants

Participants were students from the University of Marburg, taking
part in the study for course credits. Besides course credits, they got a
chance to win a €10 voucher if they made more than 66.6% correct
decisions. The experiment was approved by the local ethics board
(AZ 2020-32k). In total, we collected data from 24 participants (22
female, average age: 22.54 + 3.28). The median time to complete
the experiment was 29.69 min.

Procedure

The design was identical to the first experiment, except that
participants were informed about the presence of positive feature
directions instead of the feature ranking. This was realized by telling
them that higher feature values always made it more probable for an
alien to win the competition.
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Figure 8
Model Comparison in the Ranking Condition

(a) Posterior probabilities for each participant
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Note. BMI = bounded meta-learned inference. (a) Posterior distributions for each participant over different strategies
in the ranking condition. High values indicate that the participant was likely to use the corresponding strategy. (b) Log-
likelihood differences for each time-step averaged across all tasks. The solid blue line shows the average across all
participants, whereas transparent lines correspond to individual participants. The left panel compares the single cue
heuristic to the ideal observer model, the middle panel compares the single cue heuristic to the equal weighting heuristic,
the right panel compares the single cue heuristic to BMI. Positive values indicate evidence for the single cue heuristic.
See the online article for the color version of this figure.
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Results
Performance

Participants made on average 73.85% + 4.53% correct choices,
putting their performance within the range of all models, see
Figure 9. The higher average performance indicates that participants
found it overall easier to process information about direction than
about ranking. We again assessed whether or not individual parti-
cipants chose the better option more frequently than chance by using
an exact binomial test with a base probability of p =.5 and
classifying them as better than chance if the p value of that test
was smaller than .05. This analysis confirmed that all participants
chose the better option more frequently than what would be
expected under chance level performance. We also fitted a
mixed-effects logistic regression to investigate participants’ learning
over trials and tasks as described in the analysis of the previous
study. The results of this model showed a significant fixed effect of
trial number (f = 0.08, z = 3.5, p < .001) onto choosing the better
option but not of task number (p = —0.01,z = —0.4, p = .69). Like
in the previous study, this means that participants improved over
trials within a given task but did not improve over tasks. Partici-
pants’ performance in the initial step turned out to be substantially

higher than the ideal observer model and both heuristics, indicating
that directional information is useful even before making any
observations. This characteristic is also captured in BMI.

Model Comparison

In this condition, equal weighting and BMI made partially
redundant predictions. Thus, we again decided to split our analysis
into two parts. First, we analyzed all models except BMI for
individual participants. Then, we compared BMI against the other
models on the data of all participants.

The posterior probabilities of different models, illustrated in
Figure 10(a), confirmed the prediction of our earlier simulations.
Participants indeed adhered to the resource-rational maxim and
applied equal weighting heuristics. For all participants, equal
weighting provided the best explanation for the observed data
with decisive evidence (p(m = EW|[¢), X)) > 0.99). The proba-
bility that equal weighting was the most frequent model in the
population (PXP > 0.999) supported the conclusion that people, in
general, applied equal weighting heuristics when directional infor-
mation was available. We again inspected per-trial log-likelihoods
to confirm that participants did not change their strategies within a
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Figure 9

Percentage of Correct Decisions (Averaged Over All Tasks) in the Direction Condition Plotted

Over the Number of Trials Within a Task
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Note. BMI = bounded meta-learned inference. For human performance shaded contours represent the
standard error of the mean. The left panel shows the ideal observer model and both heuristics, while the
right shows BMI for different values of . For BMI, lower p-values correspond to a less restricted model.
Performance plots for the strategy selection model and feedforward network can be found in Appendices E
and F, respectively. See the online article for the color version of this figure.

task. Figure 10(b) shows that equal weighting dominated the single
cue heuristic and the ideal observer model across all time-steps,
which again rules out the possibility that participants only applied
equal weighting for a subset of trials.

When additionally comparing BMI against the other models on
the aggregated data of all participants, we found that BMI again
offered an even better explanation than all other models (p(m =
BMI|¢, X) ~ 1). This was the case because BMI was able to capture
participants’ decisions in the initial step, while the equal weighting
heuristic did not. This can be confirmed by inspecting the rightmost
panel of Figure 10(b), which compares per-trial log-likelihoods
between equal weighting and BMI. Here, we find a substantial
difference between how well both strategies matched human choices
in the initial trial, but no differences during later trials. Indeed, if we
look at how well BMI describes participants on an individual level,
we find that it offers a better explanation than equal weighting for all
but four participants. We again found a significant rank correlation
between P and participants’ response times (t = —0.36, z = —2.16,
p = .03), confirming the result from our first study showing that
people who were better described by algorithms with a shorter
description length (i.e., those with higher p-values) also made
quicker decisions.

Discussion

Like in our first study, we found that people apply resource-
rational strategies that are adequate for the given environment.
Participants performed better compared to the first study, indicating
that they found it easier to work with directions than with rankings.
We speculate that one explanation for this observation could be that
positive correlations are more frequently encountered in the world.
Perhaps somewhat surprisingly, there is only limited evidence from
prior decision-making studies showing that people employ equal
weighting heuristics. The present study is amongst the first to show
that people rely heavily on such strategies under the appropriate
conditions. However, there is a result from the MCPL literature that

connects nicely to our result. In this context, Newell et al. (2009)
showed that people also switched to an equal weighting heuristic
when provided with directional information about feature weights.

Experiment 3: Unknown Ranking and Direction

In our final study, we investigated choice behavior in an envi-
ronment that did not provide information about ranking or direction.
In the previous model simulations, we have demonstrated that no
heuristic emerges under such conditions. Instead, BMI discovered
strategies with compensatory weights even under large resource
constraints. Hence, we predicted that people in this condition should
be less reliant on traditional heuristics and instead integrate infor-
mation from multiple features properly. To test this hypothesis, we
initially reiterated the experimental paradigm of our two earlier
studies. However, we found that without the additional information
about ranking or direction, cognitive limitations became a dominat-
ing factor. While some participants still performed well, a substan-
tial number were at or close to chance level. Therefore, we
subsequently decided to conduct a simpler version of our task
which involved only two features. While we focus on the two-
feature study in the main text, the results of the four-feature study are
also reported in Appendix G for completeness.

Method
Participants

Participants were students from the University of Marburg, taking
part in the study for course credits. Besides course credits, they got a
chance to win a €10 voucher if they made more than 66.6% correct
decisions. The experiment was approved by the local ethics board
(AZ 2020-32k). In total, we collected data from 27 participants (22
female, average age: 21.74 + 4.75). The median time to complete
the experiment was 36.35 min.
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Figure 10

Model Comparison in the Direction Condition

(a) Posterior probabilities for each participant
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Note. BMI = bounded meta-learned inference. (a) Posterior distributions for each participant over different
strategies in the direction condition. High values indicate that the participant was likely to use the corresponding
strategy. (b) Log-likelihood differences for each time-step averaged across all tasks. The solid blue line shows the
average across all participants, whereas transparent lines correspond to individual participants. The left panel
compares equal weighting to the ideal observer model, the middle panel compares equal weighting to the single
cue heuristic, the right panel compares equal weighting to BMI. Positive values indicate evidence for the equal
weighting heuristic. See the online article for the color version of this figure.

Procedure

The general design was identical to both previous experiments,
except for two adjustments: Participants only observed two features
for each alien, and they were not provided with information about
the feature ranking and their directions anymore. We additionally
probed participants’ judgments about ranking and direction of
features at the end of each task. In particular, we asked them for
both attributes whether they believe a positive value is advantageous
for winning the competition, and which of the two attributes they
believe is more important for determining the winner. For all
questions, we collected a binary response.

Results
Performance

The average performance of participants was 71.59% =+ 5.68%,
which places them somewhere between the single cue and equal
weighting heuristics (see Figure 11). Like in the two previous
studies, we assessed whether or not individual participants chose

the better option more frequently than chance by using an exact
binomial test with a base probability of p = .5 and classifying them
as better than chance if the p value of that test was smaller than .05.
This analysis indicated that 26 of 27 participants chose the better
option more frequently than what would be expected under chance
level performance. We also repeated the mixed-effects logistic
regression used in the previous two studies to investigate partici-
pants’ learning over trials and tasks. This analysis revealed a
significant fixed effect of trial number (= 0.2, z = 8.83,
p < .001) onto choosing the better option but not of task number
(B =0.05 z=13, p=.19), again meaning that participants
improved over trials within a given task but did not improve
over tasks.

Model Comparison

According to our model simulations, we should expect to find
evidence for models using weighted combinations of multiple
features in this condition. Because no known heuristic emerged
in this environment, we did not split our analysis and already
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Figure 11

Percentage of Correct Decisions (Averaged Over All Tasks) in the Unrestricted Condition
Plotted Over the Number of Trials Within a Task
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Note. BMI = bounded meta-learned inference. For human performance shaded contours represent the
standard error of the mean. The left panel shows the ideal observer model and both heuristics, while the
right shows BMI for different values of . For BMI, lower p-values correspond to a less restricted model.
Performance plots for the strategy selection model and feedforward network can be found in Appendices E
and F, respectively. See the online article for the color version of this figure.

considered BMI on the level of individual participants. Posterior
probabilities obtained from a Bayesian model comparison in
Figure 12(a) confirmed that most participants combined information
from multiple features instead of using heuristics like equal weight-
ing or one reason decision-making. Twenty two out of 27 partici-
pants were best described by BMI; in 16 of those we found decisive
evidence (p(m = BMI|¢?, X)) > 0.99). Amongst the participants
not best described by BMI, three were best described by the ideal
observer model and two by the equal weighting heuristic. We again
found that BMI fared favorably against all other models on the
aggregated data (p(m = BMI|¢, X) ~ 1). The protected exceedance
probability (PXP > 0.999) also supported the conclusion that BMI
was the most frequent explanation for participants in our population.
Looking at per-trial log-likelihoods in Figure 12(b), we see that BMI
dominated all alternative hypotheses on nearly every time-step,
which again confirms that participants did not change their strategies
within a task. Like in the first two studies, there was a significant rank
correlation between f and participants’ response times (t = 0.37,
z = —2.54, p =.01), confirming that people who were better
described by algorithms with a shorter description length (i.e., those
with higher B-values) generally made quicker decisions.

Judgments About Ranking and Direction

What made BMI a better model of human choices than other
compensatory strategies like the ideal observer model? We specu-
lated that this was the case because BMI better reflected human
intuitions about the ranking and direction of features. To test this
hypothesis, we analyzed participants’ judgments about ranking and
direction at the end of each task. For our analysis, we computed
likelihood ratios of human judgments between the two competing
models. The likelihood that model m € {BMI, 10} assigns a positive
direction to feature i is given by p(w; > 0|X;.7, ¢;.7, m), which can
be computed in closed form under our assumption of normal
posterior distributions. The likelihood that model m € {BMI,
IO} evaluates the first feature as more important is given by

p(|wy| > |Wal||Xy.7,¢1.7,m), which we approximated using a
sample-based estimate. While we found no substantial difference
in terms of ranking (BF = 0.41), BMI offered a much better
explanation for the human judgments of directions (BF = 1.4 X
10%*). This suggests that the main advantage of BMI stems from the
fact that it is better at capturing human intuitions about feature
directions.

Discussion

In an environment that did not provide additional information
about ranking or direction, participants’ decision-making again
followed the prediction made by BMI. The majority of participants
applied strategies that involved weighted combinations of features,
as was suggested by our model simulations. We observed an
identical pattern in our initial study with four features, but there
it was less pronounced due to the complexity of the task (see
Appendix G). The general result that most people were able to
quickly combine information from multiple sources if needed is also
consistent with results of prior studies (Broder, 2000; Glockner &
Betsch, 2008; Parpart et al., 2018). Notably, BMI offered a superior
account to alternative compensatory strategies like the ideal
observer model. We believe that part of the explanation for this
result is that BMI aligned better with the subjective judgments about
feature directions than other compensatory strategies. However,
there might be additional factors at play, which our current form
of analysis was not able to capture.

General Discussion

At the core of theories of ecological rationality, researchers have
posited an interaction between cognition and the environment.
Brunswik (1956) argued that human perception cannot be under-
stood in laboratory settings alone, but rather has to be interpreted in
the light of real environments in which real objects are perceived and
acted upon. Simon (1990b) famously highlighted the interaction
between cognition and the environment using an analogy of a pair of
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Figure 12

Model Comparison in the Unrestricted Condition

(a) Posterior probabilities for each participant
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BMI = bounded meta-learned inference. (a) Posterior distributions for each participant over different

strategies in the unrestricted condition. High values indicate that the participant was likely to use the
corresponding strategy. (b) Log-likelihood differences for each time-step averaged across all tasks. The solid
blue line shows the average across all participants, whereas transparent lines correspond to individual participants.
The left panel compares BMI to the ideal observer model, the middle panel compares BMI to equal weighting, the
right panel compares BMI to the single cue heuristic. Positive values indicate evidence for BMI. See the online

article for the color version of this figure.

scissors, with one blade being the structure of the environment and
the other blade the computational capabilities of the subject. This
conceptualization of ecological rationality has strongly influenced
theories of heuristic decision-making. The need to economize
cognitive resources places pressure on the mind to employ heuristics
that work well in specific environments. Nonetheless, how people
pick a particular heuristic for a specific environment and where those
heuristics come from in the first place has remained elusive. The
theoretical picture becomes even more puzzling when looking at the
empirical support for heuristic decision-making. Proponents of
heuristic decision-making acknowledge these problems. For exam-
ple, Gigerenzer (2008) writes: Why do heuristics work? They
exploit evolved capacities that come for free. In addition, they
are tools that have been customized to solve diverse problems.
By understanding the ecological rationality of a heuristic, we can
predict when it fails and succeeds. The systematic study of the
environments in which heuristics work is a fascinating topic and is
still in its infancy. But what does a theory, which can explain how
heuristics emerge and how they are selected, look like? We have put
forward BMI as a theory that makes significant advances on these
questions. Our simulation results show that BMI discovers

previously suggested heuristics. Thus, it provides a normative
justification for heuristic decision-making. Moreover, we find
that different heuristics emerge depending on environmental as-
sumptions. Thus, BMI also explains how decision-making strategies
are selected.

Already early on, researchers working on heuristic decision-
making levied the criticism that simply observing behavioral biases
is not enough, and that in place of plausible heuristics that explain
everything and nothing—not even the conditions that trigger one
heuristic rather than another—we need models that make surprising
(and falsifiable) predictions (Gigerenzer, 1996). However, the very
fact that several heuristic components have been claimed to be part
of a heuristic toolbox without fully specifying how they are selected
and combined, has subjected heuristic theories to a similar line of
criticism: “. .. if one cannot predict which heuristics will be used in
which environments then determining the heuristic that will be
selected from the toolbox for a particular environment becomes
necessarily post hoc and thus the fast-and-frugal approach looks
dangerously like becoming unfalsifiable.” (Newell et al., 2003). In
contrast to these arguments, BMI makes clear, falsifiable, and
surprising predictions about when people should apply which
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heuristic. Specifically, our simulation results show that there are
three important classes of environments triggering three decision-
making strategies. If people know the correct ranking of attributes
but not their weights, then they should exhibit one reason decision-
making. If people know the direction of the attributes but not their
ranking, then they should exhibit equal weighting strategies. Finally,
if people do not know either the ranking or the direction of the
attributes, then they should exhibit strategies that use weighted
combinations of attributes.

We subjected these predictions to a rigorous test in three paired
comparison experiments and found that the vast majority of parti-
cipants applied decision-making strategies as predicted by BMI.
Moreover, BMI captured elements of human decision-making that
could not be explained by traditional heuristics in all three experi-
ments: In the first study, it additionally accounted for the participants
that employed more complex strategies. In the second study, it
provided an explanation for the good initial performance of parti-
cipants. In the third study, it predicted correctly that people make
decision using a weighted combination of all features, and offered a
superior account to alternative compensatory strategies like the ideal
observer model. These results enrich our theoretical and empirical
understanding of ecologically rational decision-making.

Limitations

Gigerenzer and Todd (1999) argue that decision-making under
limited resources cannot be expressed through models that perform
optimization under constraints: Optimization under constraints also
limits search, but does so by computing the optimal stopping point,
that is, when the costs of further search exceed the benefits.
Computing this optimal stopping point can be at least as expensive
as finding the optimal solution; hence it defeats the initial
intention of modeling decision-making under resource limita-
tions (Gigerenzer & Todd, 1999; Scheibehenne & von Helversen,
2009). BMI involves optimization under constraints but impor-
tantly does so at the meta-learning level, which happens on a
much larger time scale (e.g., through evolutionary processes).
Learning within an individual task, on the other hand, is fast as it
does not involve any form of optimization. This perspective of
learning at multiple scales is also at the core of recent theories of
fast and slow reinforcement learning (Botvinick et al., 2019).

BMI assumes that meta-learning happened prior to the experiment,
but it remains agnostic about the exact processes controlling the
acquisition of strategies. BMI could, for example, be acquired through
evolutionary processes, individual experiences, or both. If meta-
learning indeed happened prior to the experiment, we should find
no noticeable improvement in performance throughout our studies. We
find support for this hypothesis when comparing human performance
in the first and second half of our studies as shown in Figure 13(a) and
(b). Furthermore, we evaluated posterior probabilities of different
models for each task as opposed to for each participant, shown in
Figure 13(c), and found that participants did not switch between
different strategies during the experiment. Nonetheless, a valid
criticism of our current work is that it does not address the precise
process of meta-learning and whether this process is rather
shaped by ontogeny, phylogeny, or both. This is indeed an
open problem for all theories of heuristic decision-making, which
at various times have argued that heuristics emerge from evolution-
ary pressures (Hutchinson & Gigerenzer, 2005), developmental

processes (Gigerenzer, 2003), or task-specific adaptations
(Marewski & Schooler, 2011). The time scale of meta-learning,
therefore, remains an open theoretical and empirical question.

We have used a particular model architecture to simulate behavior
in our tasks. In particular, we applied a gated recurrent network and
adapted the meta-parameters through gradient descent on a loss
function that can trade-off between the accuracy of the network and
the description length of its parameters. Thus, a naturally arising
question is how much our results depend on the chosen architecture.
For the sake of the resource-rational argument, we should have used
the architecture that optimally solves the accuracy-effort trade-off.
Because identifying this architecture is not possible, we settled for
the next best option and used an architecture that is known to work
well across a wide range of domains. Theoretically, a resource-
rational algorithm should at least be able to recover optimal decision-
making if there are no resource limitations. Infinitely wide recurrent
neural networks are known to be Turing-complete and hence are in
theory able to implement optimal decision-making (Siegelmann &
Sontag, 1992). Looking at Figure 11, we observe that our networks
are wide enough to closely approximate the ideal observer model.

We have also used a particular distribution over tasks for training
our meta-learning models. Even though we constructed this distri-
bution to reflect real-world decision-making environments, it re-
mains unclear whether our assumptions can be fully justified. This is
a general criticism that rational accounts of decision-making must
face (Binmore, 2007; Brighton & Gigerenzer, 2012; Gigerenzer &
Gaissmaier, 2011; Szollosi & Newell, 2020). For example, Szollosi
and Newell (2020) argued that a fundamental flaw in theories that
rely on the intuitive statistician metaphor [including rational ac-
counts] is that the correspondence problem [i.e., how to develop a
representation of the environment] is solved in advance by the
researcher. However, BMI does not necessarily require a researcher
to specify what the environment should look like. In principle, it
only needs examples of tasks from the environment. Thus, BMI can
sidestep the above criticism by using a meta-learning distribution
that is constructed from actual real-world decision-making tasks.
How to construct such a meta-learning distribution is an interesting
question, which we hope to address in future work. Furthermore, we
only investigated learning over a rather small number of trials per task.
Therefore, we might not have detected all possible learning effects that
could occur with a more prolonged learning phase. For example, we do
not believe people are, in general, unable to perform well in the more
complex, four-feature version of our third study and that increasing the
number of trials per task could facilitate learning to the extent that
people perform adequately at the given task. Finally, it would be
interesting to investigate whether the insights gained from our studies
can be transferred to different task formats, for example, causal
learning (Lagnado et al., 2013; Waldmann & Holyoak, 1992) or active
learning (Gureckis & Markant, 2012; Parpart et al., 2017).

Currently, our approach also does not directly offer a way to
predict which properties of the environment will determine what
type of decision-making strategies are ecologically rational. Instead,
we have to train our meta-learning models in different environments
and then analyze what decision strategies emerge, for example by
analyzing the weights’ Gini coefficient. Looking at a model’s
emerging properties is a common method when neural network
approaches are applied to psychological questions (Ritter et al.,
2017). We believe that this possible weakness can also be a strength,
because it forces researchers to truly study the properties of
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Figure 13

Behavioral Development During the Experiment

(a) Experiment 1: Known Ranking (b) Experiment 2: Known Direction
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(a) and (b) show that the performance of participants did not change over the experiment, indicating that

meta-learning already happened prior to the experiment. Shaded contours represent the standard error. (c) and (d)
confirm this observation by showing that the selection of strategies also did not change during the experiment. High
values indicate that the corresponding strategy was applied with high probability in the given task.

environments, as has been the core proposal of theories of ecological
rationality for decades.

Related Work

To highlight what BMI adds to existing theories, we compare it to
other ideas put forward in previous investigations. In the context of
decision-making, we focus on methods that address how strategies
are selected and how they are discovered. Beyond that, we discuss
how meta-learning and resource rationality have been applied to
understand other phenomena.

Strategy Discovery

There have been some accounts that explain how strategies are
discovered. Schulz et al. (2016) proposed a method for learning
decision-making strategies from small, probabilistic building

blocks. Based on a self-reinforcing sampling scheme, they
were able to build tree-like noncompensatory heuristics. Their
approach can recover TTB on data-sets that have been generated
by the TTB heuristic. However, it is not able to learn about other,
noncompensatory strategies or to make predictions about when
participants would prefer which strategy.

Lieder et al. (2017) suggested a model that composes strategies
from atomic computations. According to their theory, an agent
represents computations as costly actions in a metalevel Markov
decision process. The agent’s goal is to maximize the external
payoff obtained from making correct decisions while accounting for
the computational costs of actions. When they applied their theory
to several decision-making problems, they found that it discovered
two known heuristics—TTB and guessing—as well as a novel
strategy that combined TTB with satisficing (Simon, 1956).

Parpart et al. (2018) showed that heuristics can emerge from
Bayesian inference in the limit of infinitely strong priors. Using this
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idea, they identified priors corresponding to an equal weighting
heuristic. Finding a prior that leads to TTB proved to be more
challenging in the Bayesian framework and was only possible after
introducing an additional decision rule. Instead of relying on the
complexity argument as justification for heuristics, their analysis
suggested that heuristics work well because they implement priors
that reflect the actual structure of the environment.

Theories that build algorithms from simpler computations (Lieder
et al., 2017; Schulz et al., 2016) discover one reason decision-making
heuristics without difficulties, but struggle to account for equal weight-
ing heuristics. Theories based on Bayesian inference (Parpart et al.,
2018) on the other hand have no difficulties with discovering equal
weighting heuristics, but require additional components to find heur-
istics that rely on a single piece of information. We have shown that
people use both classes of strategies and provided a theory that can
discover both of them in an appropriate context.

Strategy Selection

There have also been several theories explaining how strategies are
selected. Rieskamp and Otto (2006) proposed a theory of strategy
selection learning that framed the strategy selection process as a
model-free reinforcement learning problem. Their theory assumes
that people slowly learn how to select the right strategy from a given
repertoire of strategies based on repeated interactions. A key finding
of their experiments was that over time participants learned to select
the best-performing strategy for a particular environment. Their
method requires learning from scratch whenever it encounters novel
problems and hence it does not address how knowledge is transferred
between different environments, and why participants are immedi-
ately able to select appropriate strategies in our experiments.

Lieder and Griffiths (2017) addressed the missing ability to
transfer knowledge between environments through an approach
based on rational metareasoning. Based on properties of the envi-
ronment, they predicted speed and accuracy of different strategies.
They showed that participants selected the strategy that was best for
solving the speed-accuracy trade-off in the current context. In
contrast to their work, we used separate models for each environ-
ment. However, it would be possible to extend our modeling
framework by conditioning the initial state of the recurrent network
on features of an environment.

Marewski and Schooler (2011) postulated a probability landscape
describing an individual’s ability to apply a strategy as a function of
cognitive capabilities and the environment. Their work referred to
situations in which a strategy can be applied as a cognitive niche and
showed that cognitive niches of different strategies are disjoint in
many cases. This greatly simplified the strategy selection problem
and was in line with participants’ behavior across a number of
experiments. We believe that cognitive niches could also be the
result of meta-learning, where an algorithm adapts to a given
characteristic of an environment until it cannot easily be applied
to a vastly different environment anymore.

Previous theories of strategy selection require defining a set of
potential strategies in advance, which can be problematic because it
always comes along with the risk of missing out on the strategy that
is appropriate for solving the problem at hand. In contrast, BMI is
not restricted to predefined sets and instead discovers useful strate-
gies on the fly. While there exist prior approaches that address either
the strategy selection problem or the strategy discovery problem

independently, BMI is also the first to account for both problems
jointly within a unified framework.

Resource Rationality

The space of existing resource-rational models is large and such
models have been applied to study human behavior across a wide
range of contexts (for extended summaries on this topic see Bhui
et al., 2021; Gershman et al., 2015; Lieder & Griffiths, 2019). In this
subsection, we provide a brief review of such models to highlight
how our approach relates to the previous literature. There exist many
conceptualizations of what constitutes a computational resource.
Two of the most common ones are computation time, that is, the
number of steps necessary to solve a problem, and storage space,
that is, the amount of memory required for solving a problem.

Lieder et al. (Lieder & Griffiths, 2017; Lieder et al., 2017, 2018)
proposed to model limited computation time as a form of rational
metareasoning (Russell & Wefald, 1991). They defined the value of
computation as the difference between the utility of a strategy and its
execution time and argued that a resource-rational agent should
maximize this quantity. This approach is extremely general and can
also be applied to costs other than computation time. However, it
requires designing an appropriate cost function for the specific
problem at hand. Another way to restrict computation time is offered
by sampling-based models (Ortega et al., 2015; Sanborn et al.,
2010; Vul et al., 2014). In such models, ideal inference is approxi-
mated through Monte Carlo sampling, and decreasing the number of
samples is interpreted as a reduction in computation time.

Limited storage space, on the other hand, is typically modeled
through methods that appeal to rate-distortion theory (Bates &
Jacobs, 2020; Genewein et al., 2015; Gershman, 2020; Ho et al.,
2020; Sims, 2018; Zaslavsky et al., 2018). In this framework, one
attempts to maximize some measure of performance, while simul-
taneously placing an upper bound on the number of bits required to
store an object of interest. What kind of performance measure is
maximized and what kind of object is stored depends on the specific
model instantiation. Zenon et al. (2019) identified two major classes
of cognitive costs that can be represented using rate-distortion
theory: (a) a perceptual cost for storing representations of stimuli,
and (b) a cost for storing deviations from the default behavior. In our
setting, these two costs translate to a cost for storing a representation
of feature vectors and a cost for storing deviations from the default
decision-making strategy, respectively.

BMI is similar to traditional rate-distortion theory-based ap-
proaches as it also places a cost on storage space. However, it neither
implements a cost for storing feature vectors, nor a cost for storing
deviations from the default strategy. Instead, it places a storage cost on
the algorithm that infers which decision-making strategies to apply. In
some sense, this is similar to the concept of Kolmogorov complexity
(Chaitin, 1969; Kolmogorov, 1965; Solomonoff, 1964), which mea-
sures the size of the shortest computer program that produces an
object of interest. Kolmogorov complexity has previously been
applied to the study of cognition (Chater & Vitanyi, 2003; Gauvrit
et al., 2014, 2017, Griffiths et al., 2018; Zenil et al., 2015). However,
because Kolmogorov complexity is based on universal programming
languages, it comes with the downside of being incomputable in
general. BMI relaxes the assumption of universal programming
languages, and could therefore be viewed as a practical implementa-
tion of Kolmogorov complexity.
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Meta-Learning in the Context of Human Behavior

Brighton (2006) and Chater et al. (2003) considered standard feed-
forward networks trained with backpropagation as models of decision-
making in paired comparison tasks. Their results indicated that, if only
a few examples were used, such models tended to overfit and were
outperformed by much simpler, more robust alternatives. Brighton
(2006) suggested meta-learning as a potential solution to this problem
of overfitting but did not provide a concrete implementation of this
conjecture. BMI is such an implementation that can be applied to
paired comparison tasks with few examples and—crucially—without
showing signs of overfitting. The key to BMIs success is that learning
happens solely in the fully-trained network’s recurrent activations and
not through traditional gradient-based training schemes.

When we look beyond decision-making and paired comparison
tasks, meta-learning has recently received increased attention as an
explanation for human behavior across a variety of cognitive and
neuroscientific questions. For example, meta-learning has been
shown to lead to human-like characteristics in the contexts of
few-shot learning (Santoro et al., 2016), systematic composition-
ality (Lake, 2019), exploration (Binz & Endres, 2019) as well as
one-shot navigation and model-based reasoning (Wang et al.,
2016). Most relevant to our work is the approach of Dasgupta
et al. (2020), who taught neural networks to approximate Bayesian
inference, given some information about an inference problem’s
prior and likelihood. They are able to account for a large number of
cognitive biases, including base rate neglect and conservatism, by
restricting the size of the network. This approach shares its core
principles with our theory: resource rationality and meta-learning.
However, BMI does not approximate Bayesian inference explicitly
as done by Dasgupta et al. (2020). Instead, it attempts to infer
distributions that are optimal for making predictions. In the limit of
no resource limitations, this also leads to algorithms that approxi-
mate Bayesian inference (Ortega et al., 2019). However, when
computational resources are limited, the two approaches will pro-
duce algorithms with distinctive characteristics.

Future Directions

Most computational models in psychology and cognitive science
are confined to idealized settings. BMI on the other hand can—in
principle—scale to much more complex domains (Santoro et al.,
2016; Wang et al., 2016). Having access to such models allows us to
study human behavior under more realistic conditions. In the context
of decision-making, it becomes, for example, possible to investigate
how and why different representational formats influence human
strategies (Broder & Schiffer, 2006) by learning models that directly
process visual representations of the task.

The classical approach to computational modeling is to propose a
model, test its predictions and finally revise the model if required.
However, we can also envision an approach for the revision of
theories that puts the study of environments first. In this framework,
we would ask ourselves what environments can account for
observed behavior assuming that people make ecologically and
resource-rational decisions, instead of revising arbitrary parts of the
model. That this is a promising research direction for building more
human-like agents was shown for example by Hill et al. (2020), who
demonstrated that systematic generalization can be an emergent
property of an agent interacting with a rich environment.

Finally, our theory provides us with a set of predictions about
what should happen when available computational resources are
manipulated. It will be interesting to see whether people follow the
behavioral trajectories stipulated by BMI when put under cognitive
load or whether patients with attention or memory impairment are
better described by models with lower complexity.

Conclusion

The idea that theories of human cognition should consider both the
structure of the environment and the computational capabilities of the
subject has been a central theme in psychology (Simon, 1990b; Todd &
Gigerenzer, 2012). However, actual implementations of this principle
have been lacking so far. BMI provides such an implementation by
combining the ideas of resource rationality and meta-learning. BMI
accounts for two open questions in the decision-making literature
simultaneously, explaining why different strategies emerge and how
appropriate strategies are selected. By mapping out environments that
cause different strategies to be resource-rational, we obtained precise
predictions about when previously suggested heuristics should be used
and when not. We confirmed these predictions in three paired compari-
son experiments. Taken together, we believe that BMI offers a norma-
tive and empirically supported theory of human decision-making.
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Appendix A

Power Analysis

Environments with continuous features can facilitate statisti-
cal analysis as fewer trials are needed to observe expected
effects. To verify this hypothesis, we conducted a power
analysis for an environment with continuous features and one
for an environment, where features are dichotomized based on
their median. The results presented here are based on an
environment with known feature rankings and 7' = 10 decisions
per task.

In both settings, we computed how many tasks are on average
required to distinguish the single cue heuristic (SC) from the ideal
observer model (I0), assuming that decisions are made by the single
cue heuristic. In dichotomized environments, ties between features
of two options are likely, and hence we modified the single cue
heuristic to make decisions based on the first feature that discrimi-
nates between both options. We assumed that decisions are made by
the single cue heuristic and measured the average support for the
single cue heuristic over the ideal observer model on a single task by
computing log-Bayes Factors (Kass & Raftery, 1995) between both
strategies, see Equations Al and A2:

Figure A1

T
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The expectation over tasks was approximated using 10° samples.
Furthermore, we assumed that tasks are sampled independently from
each other, meaning that we can multiply log BF by the total number
of encountered tasks K to get expected log-Bayes Factors for an
experiment with K tasks. Figure A1 shows this analysis for both
continuous and dichotomized environments. We observed that it
requires roughly four times more tasks to distinguish the single cue
heuristic from an ideal observer model in environments with dichot-
omized features compared to one with continuous features.

Power Analysis for Environments With Known Feature Ranking
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Note. The plot illustrates how many tasks are on average required to distinguish the ideal

observer model from the single cue heuristic, assuming that decisions are made by the single cue
heuristic. We show results for both dichotomized environments (dotted) and environments with

continuous features (solid).

(Appendices continue)
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Appendix B

Variational Inference Details

We update posterior distributions over weights after each obser-
vation using variational inference. The true posterior is approxi-
mated with a normal distribution g(w;},) = N (w; p,, ¥,) and its
parameters A, = (p, ¥, are obtained through maximizing the
evidence lower bound:

‘C(}”t) = [Ew~q(w;}»[)[10gp(cr = C,‘X,,W)}
= KL[g(w;2,)[|g(w; 2,1 )]- (BI)

The initial prior is set to a standard normal distribution
q(w; %) = N(0,1). We furthermore employ a mean-field approx-
imation, in which posterior covariance matrices ¥, are restricted
to be diagonal. To ensure positive semidefinite covariance

matrices, we parametrize them with logarithms of their standard
deviations.

Equation B1 is maximized through gradient-based optimization
using AMSGRrAD (Reddi et al., 2019) with a learning rate of 0.1.
Training is stopped once the evidence lower bound function does
not increase anymore over 10 steps or after 1,000 total gradi-
ent steps.

The Kullback—Leibler divergence can be evaluated in closed-
form assuming normal prior and posterior distributions. The
expected log-likelihood term is approximated through 100 sam-
ples and we employ the reparametrization trick (Kingma &
Welling, 2013) to obtain gradients with respect to the variational
parameters A,.

Appendix C

Meta-Learning Details

Architecture

The architecture of meta-learned inference (MI) and bounded
meta-learned inference (BMI) consists of a gated recurrent unit
(GRU, Cho et al., 2014) with a hidden size of 128 units, followed by
two linear transformations projecting to p, and log o,, respectively.
The latter are used to construct diagonal posterior covariance
matrices W, as in the ideal observer model. The exact forward
pass equations are given by Equations C1, C2, C3, C4, C5 and C6:

r, =c(W, [Xn Ct] +W,h,_) (cnH

z, = o(W.[x,¢] + Wy h,_) (c2)
ht = Ztohr—l + (] - Zr) o tanh(vvih [th Ct} +Whh(rto ht—l)) (CS)

M = Wp h, (C4)

logo, = W;h, (&%)

W, = diag(el°2), (Co6)

where ¢ denotes the logistic sigmoid function and © element-wise
multiplication. Together, we denote the set of all model parameters
as @ = {W;, W;,, W;., W;, ., Wy, W,,, W,, W}

Meta-Learning

MI and BMI are obtained by minimizing Equation 8 with the
AmsGrad optimizer (Reddi et al., 2019). During meta-learning, the
expectation of the log-likelihood term is approximated through one
sample from the encoding distribution g(®; A) and we obtain
gradients with respect to A using the reparametrization trick
(Kingma & Welling, 2013). The following pseudocode describes
the meta-learning procedure:

(Appendices continue)
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Algorithm 1: Meta-Learning

while not converged do

sample a batch of tasks: xi.7, ci.r ~ p(X1.7, c1.7);
sample model parameters: © ~ ¢(O; A);
initialize loss: L(A) < SKL [¢(©; A)||p(©)];
fort«< 0to7T —1do

compute A, = {g;, ¥;} according to Equations C1 to C6;

publishers.

compute p(Cyy1 = 1]x411, A, ©) according to Equation 4;

accumulate loss: L(A) <= L(A) — log p(Cri1 = cri1|Xes1, Ar, ©);
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end

perform gradient step: A <— AMSGRAD(L(A), A);

end

Learning rates are set to 3 x 10™* and we train for 10 iterations Evaluation
with a batch size of 32; at the end of meta-learning, the loss function
has converged. Each model is initialized from a pretrained version
without resource limitations and we increase f linearly over the first
half of the training to the desired value.

During evaluation the expectation of the log-likelihood term is
approximated through K = 100 samples from the encoding distri-
bution and we perform no further updates of meta-parameters:

ghted by the American Psychological Association or one of its allied

Algorithm 2: Evaluation

led solely for the personal use of the individual user

%« Input: a particular task xi.7, c1.1

% 2 sample model parameters: @y ~ q(0; A);
%é fort<0to7 —1do

¥ for k + 1 to K do

compute A = {pe s, ¥ir} according to Equations C1 to C6;
compute p(Cri1 = 1]Xps1, Arg, Ok) according to Equation 4;

end

compute predictive posterior distribution: % Zszl P(Cit1 = 1Xt1, A i, Ok);

end

(Appendices continue)
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Prior

The prior over meta-parameters corresponds to a variational
dropout prior (Kingma et al., 2015). In variational dropout, model
parameters are corrupted by multiplicative normally distributed
noise, see Equations C7, C8 and C9:

0, =u-§ Cn
& ~ N (&1, o) (C8)
q(®;A) = HN(@MM,“:'H?)- (C9)

Instead of parametrizing the encoding distribution by A = {p,;, a;},

which is used together with an improper log-scale uniform prior
over model parameters as described in Equation C12:

1
p(|0;]) x —.
(1) -

(C12)

There is no analytical expression for the KL term (ref. Equation 8)
under this prior and encoding distribution, however it can be
approximated numerically. Molchanov et al. (2017) suggested
the following approximation:

KL[g(O:|A)[|p(0;)] = —k;o(k; + k3 log ;)

.S5log(1 -1 — . 1

Molchanov et al. (2017) suggested the following reparametrization +0.5log(l + o) — const (€13

(Equations C10 and C11) to reduce the variance of stochastic gradients:
ky =0.63576, k, = 1.87320, k3 = 1.48695. (C14)

of =0} (C10)
Meta-learning models presented in this article use the parametri-
= q(0;A) = HN (O;|n;,67), (C11) zation from Equation C11 and approximate the KL term through

i Equations C13 and C14.
Appendix D

Bayesian Model Comparison

We relied on Bayesian model comparisons (Bishop, 2006) to test
which hypothesis accounted best for human choices. For the most
part, we performed separate comparisons for each participant in
order to detect potential individual differences.

Let X = {x,, ..., Xgr} denote the set of all observed features and
¢ = {2,, ..., &y} the set of corresponding decisions from a single
participant , and let X and €denote the joint data for all participants.
K corresponds to the total number of tasks and 7 to the number of
trials per task. Note that we use ¢ to refer to decisions made by
participants and ¢ to refer to ground truth labels. We can then
compute the probability that a participant used strategy m through
Bayes’ rule as described in Equation D1:

oll 1
P(E0 X0, m)p(m) o
p(e@X0)
We assumed a uniform prior over hypothesis in all of our analyses.
For models that include fitted parameters, we approximated the
model evidence using the Bayesian information criterion (BIC,
Equation D2, Schwarz, 1978):

. . 1 . .
log p(€D[XD, m) ~ —=10|log KT + log p(¢® XD 0%, m
2

+ const. D2)

where 101 denotes the number of parameters and 6* a maximum
likelihood estimate. For all models except BMI, the maximum
likelihood estimate was obtained using Bayesian optimization
(GPyOpt, 2016; Mockus, 1975; Snoek et al., 2012). For BMI, we
instead adopted a simple grid-search procedure. Fitted parameters
and their search domains were:

Model Parameter Domain
Ideal observer c [0.01, 10]
Equal weighting c [0.01, 10]
Single cue c [0.01, 10]
Strategy selection c [0.01, 10]
Feedforward network c [0.01, 10]
o [0, 0.1]
Bounded meta-learned B {0, 0.0003, 0.001, 0.003,
inference (BMI) 0.01, 0.03, 0.1}

(Appendices continue)
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Appendix E

Strategy Selection Model

Our strategy selection model is based on the idea of Bayesian
model selection (Bishop, 2006). In time-Step # + 1, the agent selects
the model m with the highest posterior probability given the past
data p(m|x,.,, c;.,) from a set of candidate models M. In our model
simulations, we defined the set of candidate models as M =
{IO0,SC,EW} and assume a uniform prior over models. The
computation of the posterior distribution over models can be ex-
pressed iteratively:

myy; = argmax[log p(mx;:. cy:/)] (ED
meM

= argmax [log p(cy;[X;:,,m) + log p(m)] (E2)
meM

= arg max(log (e %, m)] (E3)
memM

= arg max[logp(ct|x,, X1, Cl:g—1, 1)
mem
+ log p(cy i X1 -1, m)], (E4)

Equations E1, E2, E3 and E4 reveal that this strategy selection
model amounts to selecting the model with the highest accumu-
lated log evidence over all previous time-steps. The strategy
selection model combines advantages of the ideal observer model
with those of heuristics: If additional information is provided
heuristics may outperform the ideal observer early on and hence
they will be initially preferred. However, after a while, the ideal
observer model surpasses both heuristics in terms of performance
and hence it will be preferred during the later stages of a task.
Figure E1 shows the average performance of the strategy selection
model and its probability for the selection of each strategy plotted
over the number of trials.

(Appendices continue)
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Figure E1
Percentage of Correct Decisions (Left) and Probability of Selecting Each Strategy (Right) in
the Strategy Selection Model Plotted Over Number of Trials

(a) Experiment 1: Known Ranking
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(b) Experiment 2: Known Direction
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(c) Experiment 3: Unknown Ranking and Direction
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Note. See the online article for the color version of this figure.
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Appendix F

Feedforward Network

Our feedforward neural network models use the same architecture
as MI and BMI, but without recurrent connections and the previous
target as additional input. Parameter updating is performed through
gradient descent on the negative log-likelihoods of targets. Figure F1
shows the average performance of the feedforward neural network
with different learning rates together with the Gini coefficients of its
inferred weight vectors. In our model comparisons, we treated the
learning rate « as a free parameter that is fitted to the empirical data.
The exact forward pass equations are given by Equations F1, F2, F3,
F4, F5 and F6:

r, = o(W,x,) (F1)

z, = 6(W;x,) (F2)

h, = (1 —z,) © tanh(W;,x, + 1r,) (F3)
p, = W,h, (F4)

logo, = W;h, (F5)

W, = diag(elo2), (Fo6)

where ¢ denotes the logistic sigmoid function and © element-wise
multiplication.

(Appendices continue)



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

34

BINZ, GERSHMAN, SCHULZ, AND ENDRES

Figure F1
Percentage of Correct Decisions (Left) and Gini Coefficients (Right) for the Feedforward
Neural Network Plotted Over Number of Trials

(a) Experiment 1: Known Ranking
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(c) Experiment 3: Unknown Ranking and Direction

1.0_—- a=0 0.6_
— - a=2"8 . 10
0.99—= g=2-5 2
> —_— a=27* ,E) 0.4 1
§ 0.8 b'LE)
g So2{we * &
£ 077 = "5: 8 <
—_—— G 3 °
0.6 1 T G] ol F j _-_:-:
0.5 T e —— ' “equal weighting
' 2 4 6 8 10 1 2 4 8
Trial Trial

Note. Gini coefficients are shown for an example model with learning rate of 2~ but are similar for other
learning rates. See the online article for the color version of this figure.
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Appendix G

Experiment 3b: Unknown Ranking and Direction, Four Features

Here, we briefly summarize the results of our original study with
four features and no information about ranking and direction. We
have excluded this study from the main text because the performance
of participants did not allow us to draw decisive conclusions about
their use of strategies. The design was identical to Experiment 3,
except that participants observed four features per alien.

Participants

Participants were students from the University of Marburg, taking
part in the study for course credits. Besides course credits, they got a
chance to win a €10 voucher if they made more than 60% correct
decisions. The experiment was approved by the local ethics board
(AZ 2020-32Kk). In total, we collected data from 23 participants (16
female, average age: 23.09 + 4.38). The median time to complete
the experiment was 36.09 min.

Figure G1

Performance

Participants found this version much harder and performed
substantially worse. Without the additional information from the
first two conditions, their cognitive resource limitations became a
dominating factor. The average performance dropped to
57.14% + 4.38%, ref. Figure G1(a). While some participants per-
formed well, a substantial amount was at or close to chance level.
We used an exact binomial test with a base probability of p = .5 to
assess whether or not individual participants chose the better option
more frequently than chance. In this study, only 14 out of 23
participants performed better chance. We then repeated the
mixed-effects logistic regression analysis described in the main
text to investigate participants’ learning over trials and tasks. The
results of this model showed no significant fixed effect of either trial
number (B =—-0.01, z=-027, p=.79) or task number
(B = —0.01, z = —0.29, p = .77) onto choosing the better option.

Study Results With Unknown Ranking and Direction, Four Features

(a) Performance
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(b) Posterior probabilities for each participant
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BMI = bounded meta-learned inference. (a) Percentage of correct decisions in the unrestricted condition

plotted over the number of trials within a task. For human performance shaded contours represent the standard
error of the mean. The left panel shows the ideal observer model and both heuristics, while the right shows BMI
for different values of p. For BMI, lower p-values correspond to a less restricted model. (b) Posterior distributions
for each participant over different strategies in the unrestricted condition. See the online article for the color

version of this figure.
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Model Comparison

Posterior probabilities obtained from a Bayesian model compar-
ison in Figure G1(b) indicated a trend toward strategies that
combine information from multiple features. Nine out of 23
participants were best described by BMI; in four of those we found
decisive evidence (p(m =BMI[¢?),X?) =0.99). Amongst the
participants not best described by BMI, six were best described
by the equal weighting heuristic, two by guessing, two by the ideal
observer model, two by the feedforward network, one by the single

cue heuristic, and one by the strategy selection model. The pro-
tected exceedance probability (PXP) provided moderate support for
the hypothesis that BMI was the most frequent explanation for
participants in our population (PXP = 0.57). The obtained evi-
dence was however not decisive.
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