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Abstract

The generation of complex movements such as dance might be possible due to the utilization of movement building blocks, i.e.,
movement primitives. However, it is largely unexplored how the temporal structure of a movement sequence and the recruitment
of these primitives change with experience. Therefore, we obtained a representation of primitives with the temporal movement
primitive model from the motion capture data of dancers with varying experiences, both for improvised and choreographed
movements (elements from contemporary/modern/jazz) with different qualitative expressions. We analyzed differences between
movement conditions regarding the number of temporal segments and the number of primitives, as well as their association with
dance experience. Especially for the choreography with a neutral expression, the results indicate a negative association between
experience and the number of segments and a positive association between experience and the number of primitives. The varia-
tion in the recruitment of these primitives suggests an increased consistency of modular control with experience, particularly for
improvised dance. A prerequisite for the meaningful interpretation of these results regarding human movement production is that
the model can generate perceptually valid dance movements. This was confirmed in a subsequent experiment, although the valid-
ity was slightly impaired for improvised movements. Overall, the results of the choreographed movement sequences suggest that
experience is associated with an increase in motor repertoire that might facilitate fewer and longer temporal segments.

NEW & NOTEWORTHY This study demonstrates that a temporal movement primitive model, trained with movements performed
by dancers with different levels of experience, is able to generate natural-looking dance movements. The results suggest that
motor experience in dance is associated not only with fewer temporal segments but also with an increase in the number of
underlying movement building blocks. The recruitment of these primitives, which might be used to simplify movement produc-
tion, additionally seems to become more consistent with experience.

biological movement perception; dance experience; dimensionality reduction; event segmentation, movement primitives

INTRODUCTION

As humans, we are capable of producing a wide variety of
movements with apparent ease and additionally adapt these to
different environmental constraints. This is not trivial, as the
human body is a complex system comprising numerous
degrees of freedom (DoF), i.e., elements that can vary independ-
ently and thus need to be controlled given a specific movement
goal (1). According to previous studies, the central nervous sys-
tem may simplify the control of this complex system by using a
pool of fundamental movement building blocks, i.e., movement
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primitives, and flexibly combining these according to the task
at hand (2, 3). However, it remains unclear how such primitives
and their composition change over the course of skill acquisi-
tion. According to the coordination development model by
Bernstein (1), the acquisition of novel motor skills is accompa-
nied by an initial “freezing” of DoF to constrain the motor sys-
tem and thus reduce the complexity of a novel movement,
which is then followed by an “unfreezing” of DoF over the
course of further practice of the respective skill.

Previous findings suggest that learning and expertise are asso-
ciated with changes in the primitive structure of movements;
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Haar et al. (4) applied PCA to the movement data of billiard
shots and observed an increase in the number of principal com-
ponents that explained more than 1% of the movement var-
iance. Thus, in support of Bernstein’s original hypothesis, the
authors concluded that individuals use more DoF with practice.
In line with this, Matsunaga and Kaneoka (5) analyzed the mus-
cle activation patterns in the badminton smash shot and found
that the activation patterns of advanced players were best repre-
sented by an increased number of motor primitives as compared
with the activation patterns of novice players. Sawers et al. (6)
also analyzed muscle activations and found an increase in
motor primitives and a greater generalization of primitive func-
tion across tasks (beam vs. overground walking) with expertise.
Contrary to the findings reviewed so far, studies focusing on
artistic movements indicate an inverse relationship between ex-
perience and the number of primitives estimated to be used
in movement execution; Bronner and Shippen (7) showed that
the movements of expert dancers were better explained by fewer
movement primitives in comparison to intermediate dancers
when performing the Développé Arabesque. Similarly, Chang et
al. (8) found a reduction in the number of movement primitives
with skill progression in a Cha-Cha-Cha dance sequence. The
lower number of primitives observed in experienced individuals
is interpreted as an increase in the organization of primitives by
the motor control system (7, 8). A commonality of both of these
dance studies is that predetermined, short movement sequences
were analyzed.

The differing results described so far could be due to dif-
ferences in the overall temporal structure of the movements
analyzed in these studies. None of them took the sequential
order of movement elements within a sequence into account
while computing the primitive representation. Although
both the billiard shot (4) and the badminton smash (5) are of
such a short duration that a temporal segmentation might be
unnecessary, the analyzed dance sequences (7, 8), although
having been of relatively short duration, contained multiple
subparts. On a perceptual level, the segmentation of action
streams may facilitate memory encoding and learning (9,
10), with movement speed identified as a relevant kinematic
cue for segmentation (11, 12). The perceptual segmentation
of action sequences, however, is influenced not only by low-
level kinematic features of the observed movement but also
by prior knowledge of the observer (12-14). Specifically, it
has been shown that long-term motor experience of several
years was associated with longer perceptual movement seg-
ments in both martial arts (12) and dance (13, 14). Even short-
term motor experience had this effect, as amateur dancers
perceived fewer segmentation boundaries after learning to
dance the sequence to be segmented (13). Such perceived
segmentation boundaries are believed to reflect internal
action representations used to parse the observed action
stream into meaningful parts (9). Based on psychological
theories that postulate a common representational medium
of perception and action, such as the theory of event coding
and the common coding hypothesis, these internal represen-
tations are not only pertinent to the perception of move-
ment, but they also reflect representations that pertain to
the production of movement (15-19). Regarding the latter,
segment boundaries indicated by neural state transitions in
the primary motor cortex of primates during movement pro-
duction were closely linked to the kinematic output in a
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reaching task, specifically the speed extrema of the end-
effector (20). This shows the relevance of speed as a kine-
matic feature not only for the perceptual segmentation of a
movement sequence (11, 12) but also for segmentation during
movement production (20).

Considering the existence of a shared representational do-
main for the perception and production of movement (15-19),
it seems plausible to assume that if sensorimotor experience
resulted in fewer perceived segment boundaries in an
observed movement sequence, motor experience might also
lead to a reduction of movement segments during movement
execution. Such a practice-related reduction should be less
conspicuous in the ballistic aiming movements analyzed by
Matsunaga and Kaneoka (5) and Haar et al. (4), simply because
there might only be one segment. If movement segments were
lengthening with practice and thus became reduced in num-
ber within a given movement sequence, one could expect
such lengthening to require the development of appropriate
primitives to cover longer segments. Indeed, previous work
indicates that a smaller number of segments was associated
with a more complex representation of primitives (21). In that
study, an algorithm implementing a temporal primitive
framework was used to segment a tackwondo sequence. The
resulting segmentation boundaries were in good agreement
with perceptual boundaries identified by human observers.
Movement primitives can be seen as fundamental units uti-
lized to construct the movement between these boundaries
(22, 23). Although such an inverse relationship between move-
ment segments and movement primitives might play a larger
role in multipart movements such as dance sequences, it
should not matter much for very rapid, ballistic movements
such as a billiard shot or badminton smash.

The present study aims to test this hypothesized relation-
ship between movement segments and movement primitives
as a function of expertise. Since previous studies have mainly
used stereotyped dance sequences (7, 8) and to allow for more
variability in segment lengths, we chose to also target uncon-
strained movements and to focus on the dance styles contem-
porary, modern, and jazz. Furthermore, we also use different
expressive qualities of movement to elicit additional variation
in the temporal structure of the movement sequence and to
assess the consistency of expertise effects.

As highlighted by Cross et al. (24), the versatility of dance
and its high demands on multijoint coordination make this
skill particularly suitable for the investigation of the develop-
ment of expertise and analysis of coupling mechanisms
between action and perception. Dance differs from other
complex movements such as walking, as it can be catego-
rized under artistic movements (25). In contrast to functional
movements, these types of movements rather display exag-
gerated affective expressions, for example through an em-
phasis on timing and dynamics. In addition, these types of
movements do not necessarily occur in daily life and are
usually not object directed. Thus, while dance is a skill like
many others in that it contains movements that can range
from very simple to highly complex, it is special in that it
enables the analysis of movements generated merely for
movement’s sake, also called “pure” movements (24).

To test the hypothesized relationship between expertise-
dependent segment length and the number of movement
primitives, we chose to use a temporal movement primitive
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(TMP) model. Changes in the construction of movement can
generally be assessed by decomposing the kinematic data or
the underlying muscle activity and analyzing changes in the
number, shape, and recruitment of the obtained representa-
tion of movement primitives, i.e., the movement’s building
blocks. Primitives differ regarding the dimension on which
the extracted primitives are represented, i.e., spatial, temporal,
or both, depending on the applied decomposition method.
Various unsupervised learning algorithms have been imple-
mented to obtain this lower-dimensional representation (26).
Common techniques are principal component analysis (PCA),
independent component analysis or nonnegative matrix fac-
torization (27). Knopp et al. (28) showed that a perceptually
valid representation of movement primitives can be obtained
with a variationally trained TMP model, a specific type of
Bayesian generative model. In that study, the perceptual va-
lidity was assessed by asking human participants to discrimi-
nate between video displays of the original and the model-
generated movement. The confusion rate was used as a de-
pendent variable to indicate how well the model is able to
“confuse” the participant. More specifically, a confusion rate
approaching 0.5 would indicate that the participant is not able
to discriminate between the original and model-generated
movements. The results from Knopp et al. (28) showed that
the TMP model was the perceptually most valid (even hyper-
realistic with a confusion rate above 0.5) for gait movements.
However, so far, the perceptual validity of the TMP model has
not been assessed for more complex movements, such as
those produced by experienced dancers.

In experiment 1, the TMP model was used to evaluate the
influence of dance expertise on the modular and temporal
construction of a movement sequence. The resulting model
parameters of this experiment can only be interpreted rea-
sonably in relation to human movement production if the
output of the generative model emulates the actual data to a
sufficient degree [analysis-by-synthesis; e.g., Giese and
Poggio (29)], indicating that the quality of the model is
adequate for the types of movements analyzed in this experi-
ment. Since the perceptual validity of the model has not yet
been tested for dance movements, it was essential to also
evaluate the model’s validity for these types of movements.
Therefore, in experiment 2, we examined if the utilization of
the TMP model to generate choreographed and uncon-
strained dance movements would result in perceptually
valid movements. Moreover, we assessed whether the per-
former’s or the observing participant’s dance experience
affects the perceptual validity. Regarding the former, both
general and specific experiences in contemporary/modern/
jazz could lead to an increase in the complexity of the gener-
ated movements, possibly reducing the quality of the model
and thus the confusion rate. On the part of the observers,
higher levels of general and specific experience might
improve their ability to distinguish between the original and
model-generated movements, thereby reducing the confu-
sion rate, and thus the perceptual validity of the model.

EXPERIMENT 1

In this experiment, the effect of motor experience in dance
on modular structures during movement production was
assessed.
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Methods

Participants.

Twenty-one female dancers (mean age = 22.6 yr, SD = 3.0 yr)
participated in the experiment after replying to an advertise-
ment of the experiment posted on the university mailing list.
Participants either received course credit or 18€ for their par-
ticipation. The overall dance experience of the participants
ranged from 2 to 18 yr, with 67% of participants reporting ex-
perience with dance improvisation. Exclusion criteria were
disorders of the musculoskeletal system, abnormal vision,
and an experience below 1 year in contemporary, modern,
and jazz dance. The study was approved by the local ethics
committee and all participants gave written informed consent
to the experiment. The study was conducted in accordance
with the ethical standards of the Declaration of Helsinki,
except that we did not preregister the study.

Procedure.

The three-dimensional (3-D) positions of 39 passively reflect-
ing markers were captured with a 28-camera VICON motion
capture system (VICON, Oxford, UK) at a sampling rate of
120 Hz. Before the acquisition, participants were asked to
wear tight-fitting clothes to ensure a secure marker place-
ment. After an initial warm-up, anthropometric measure-
ments were taken and the markers were placed according to
the Vicon Plug-in Gait marker set. Participants were given
the opportunity to get accustomed to moving with the
attached markers and they were instructed that they could
take as many breaks as necessary between motion captures.

In the first part of data acquisition, three-movement sequen-
ces (30-s duration each) of improvised dance were captured.
Participants were specifically instructed to improvise, i.e., to not
consciously plan their movements, and to “dance as if nobody
is watching.” The experimenter and participant were separated
visually by a screen. In the second part of the acquisition, partic-
ipants practiced a dance sequence that was choreographed by a
professional dance teacher and contained elements from con-
temporary, modern, and jazz. The choreography was composed
considering the following;: 1) it should be learnable by beginners,
2) have a duration of approximately half a minute, and 3) con-
tain no floor movements (performing movements in close prox-
imity to the ground posed a risk of unintentional marker
detachment). Participants were instructed to practice the chor-
eography until they felt secure in performing the sequence (no
time limit was given). A prerecorded video of the dance
sequence was shown on a projector screen and repeated auto-
matically. After participants reported being capable of perform-
ing without the video display, the video was turned off.
Participants were instructed to perform the dance sequence
and the experimenter visually checked for deviations from the
dance choreography displayed in the video. In the case of devia-
tions, the subject was made aware of these and given the oppor-
tunity to rewatch the video and practice the dance sequence
further.

Three movement sequences were captured in which the
participants were instructed to perform the choreography as
displayed in the video (“neutral” condition). Subsequently,
participants were instructed to perform the choreography
according to different expressive movement qualities, in a
pseudorandomized order. These were the factors time and
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flow of the effort category of the Laban movement analysis
(30), a comprehensive method used to describe human
movement. Regarding the factor time, participants were
instructed to perform the sequence quick (urgent, fleeting)
and sustained (leisurely, lingering). Regarding the factor
flow, participants were instructed to perform the sequence
free, i.e., unconstrained, difficult to stop in the course of the
movement, and constrained, i.e., controlled, able to stop the
movement anytime. Three movement sequences were cap-
tured for each of these four conditions. All in all, three-
movement sequences were captured of each of the six-move-
ment conditions (improvised, neutral, time-quick, time-sus-
tained, flow-free, and flow-constrained).

Data processing.

The 3-D marker trajectories were labeled and gaps were filled
with algorithms implemented in Vicon Nexus (v2.11). The trajec-
tories were low-pass filtered with a fourth-order Butterworth fil-
ter (6-Hz cut-off frequency). One participant and four additional
movement sequences were excluded due to marker occlusion.
An 18-joint hierarchical kinematic body model was fitted to the
3-D marker trajectories with a custom skeleton estimation soft-
ware to compute joint angle trajectories. The .bvh-files con-
taining the joint angle trajectories were visually checked for
abnormalities in Blender (32). One participant and 2.4% of
the remaining movement sequences were excluded due to
artifacts (anatomically impossible joint-angle configurations).
The joint angles of each movement sequence were partitioned
into segments in the temporal dimension. The boundaries
used to partition each movement sequence were computed by
determining the minima of the summed speed of the wrist and
foot markers (LWRA, RWRA, LTOE, RTOE), limited to a mini-
mum distance of 160 ms between boundaries (Fig. 1, A and B).

Temporal primitive model.

The TMP model was used as a generative model for the joint
angle trajectories (in exponential map representation). In the
model, the data X of a joint j over time ¢ in a segment are a
weighted sum of m movement primitives MP (Fig. 1, C and D),

with additive Gaussian noise € ~ A (0, 52), with &, = 0.03 (Eq.
1). Similarly, there is a Gaussian prior on the weights
W~N(0, 62), with o, set to o, = 1 (joint angles overall
ranged from approximately —2 to 2 rad). Finally, a Gaussian
process prior was used for the movement primitives, MP(t) ~
(0,%), with an RBF kernel (Eq. 2) for . The variance and auto-
correlation of the data were used to respectively estimate c2,
and vy of the kernel. The data were decomposed via PCA to ini-
tialize the model parameters (MP and W).

Xio =Y WP, (1) + € (1)

ko, ?) = Pexp(—(1,1)?) 2)

The optimal number of primitives and segments for each
subject, condition, and repetition was estimated. To this
end, the data were partitioned into varying number of seg-
ments (ranging from 10 to 40, in steps of 2), and the models
were additionally trained with a varying number of primi-
tives (ranging from 3 to 16). The model parameters, i.e., the
weights and primitives, were optimized jointly with maxi-
mume-a-posteriori inference by maximizing the log joint
probability of the data and the model parameters (Eq. 3)
given the segment boundaries. The posterior distribution of
the number of primitives was estimated with the model evi-
dence, i.e., the marginal likelihood of each model, approxi-
mated via Laplace approximation [LAP (33)]. The model with
the highest posterior probability regarding the number of
primitives was identified for each dancer, condition, and
repetition (Fig. 2A). The number of primitives and segments
of these models were used in subsequent analyses.

log(p(X, W, MP (1)) = log(p(X|W,MP(t) p(W) p(MP(1)))

= log(p(X|W,MP(1)) + log(p(W)) + log(p(MP(r)))

An adjusted version of the TMP model was implemented to
analyze modulations in the weighting of the primitives by ex-

perience. In the adjusted version o,, was not set to 1 but given
a Gamma priot, oy,,, ~ Gamma(0.08,1.5). This enabled us to
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Figure 1. Example of the determination of
| boundaries for the temporal segmentation of
the movement sequence, based on the
summed speed of the limb endpoint markers
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Figure 2. Example of LAP-scores (4) and Variance accounted for (VAF; B)
for models with various number of primitives and segments. The red rec-
tangle in A marks the maximum model evidence for this particular subject
and condition. LAP, Laplace approximation.

learn the variance of the weights for each j and MP. The pa-
rameters of the Gamma hyperprior were estimated with the
previously learned weights. The adjusted TMP model was
trained for each dancer with the movement data of the third
repetition of the improvised and neutral choreography condi-
tion. The learned log weight variance was extracted from the
model with the highest model evidence and used to analyze
differences in the weight variance by experience.

Data analysis.

We analyzed the data using Bayesian inference. The posteri-
ors were computed with Markov Chain Monte Carlo, using
the No-U-Turn sampler implemented in the Python library
PyMC3 [v3.11.2 (34)]. To summarize the posteriors, we report
95% highest density intervals (HDIs).

We were interested in both the association with experi-
ence and the difference between performance modes (im-
provisation vs. choreography) and movement expression
conditions. In addition, we wanted to check for an effect of
repetition and a possible interaction between condition and
repetition. Therefore, we applied a model that is analogous
to a classical analysis of covariance (ANCOVA) (35). The fac-
tors condition (neutral choreography, quick, sustained, free,
constrained, and improvisation), repetition (1, 2, 3), and con-
dition x repetition were included and dance experience in
years was used as a covariate X,

As dependent variables, we separately analyzed move-
ment smoothness as well as the number of primitives and
segments. Movement smoothness was assessed to confirm
the effect of the instruction regarding movement expression.
As a measure of smoothness, we computed the mean
squared jerk (36) with the acquired 3-D positions x of the
hand markers LFIN and RFIN across time t (Eq. 4):

r $(1) dx. (4)

it

Mean squared jerk =
h—n
The number of primitives and segments of the model
with the highest model evidence regarding the number of
primitives was determined for each dancer, condition c,
and repetition r and also used as a dependent variable y.
Each element of the dependent variable y; was assumed to
be distributed as a Student ¢ distribution, to account for out-
liers (Eq. 5). The location y; is a weighted sum of predictors P
(Eq. 6). Zero-centered Gaussian priors were used for the
overall baseline o (Eg. 7) and the weights o, representing
the main and interaction effects. For the latter, a standard
deviation for the prior of c,, was used (Eq. 8). This was given
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a Gamma prior, that was weakly informed on the scale of the
data by using the standard deviation of the dependent vari-
able oy, and setting the mode of the before 3 and the stand-
ard deviation to 2c,. The condition-dependent metric
predictor . was also given a zero-centered Gaussian prior
(Eq. 9). The scales o, of the Student ¢ distribution were
assumed to be Gamma distributed. The corresponding mode
and standard deviation of these Gamma priors were given
vague Gamma priors. To specify these weakly informed pri-
ors the data were grouped by Condition and Repetition and
the standard deviation of y was computed for each group
Gy, The mode of the Gamma priors was set to the median of
oy, (when the dependent variable was segmented, the mode
of the Gamma priors was divided by half to improve sam-
pling), and the standard deviation of the Gamma priors was
set to twice the standard deviation of oy, . Finally, the degrees
of freedom v were given a broad exponential prior (Eq. 10):

yi ~ Student t(;, v, G (5)
H; = %o + Z 0(14’(- Xl,(-(l.) + Z 0(2,,. ,{2’).(1.)
+ Z °L1><2,c,r x1><2,(:,r(l.) + Bc X('Uv(i) (6)
ap ~N(0,5cy) (7)
At,ey 02,5 Oix2,0,r NN(07 G(X,)> (8)
20,
po~v(0.22) )

(1) 0
v~ Exp 30/ (10)

Finally, we analyzed modulations by experience in terms
of the weighting of the primitives. To this end, the log weight
variance was used as a dependent variable and estimated for
the factors joint, MP, and condition (improvised vs. choreog-
raphy), with dance experience as a covariate.

Results

Kinematics.

The HDIs of the posteriors for the condition main effect con-
trasts show that the mean squared jerk is smaller in the
Sustained than the quick condition (HDI of sustained-quick:
[-7.88 x 10'°; —5.54 x 10'°] L?/T®) and also smaller in the
constrained than in the free condition (HDI of constrained-
free: [—2.08 x 10'%; —9.66 x 10°] L?/T°). The posteriors do not
indicate a difference in jerk between the Improvised and
Neutral condition (HDI of improvisation-neutral: [—6.62 x
10'% —4.14 x 10°] L*/T°).

The HDIs of the posteriors of the repetition main effect
contrasts and of the interaction contrasts (condition x repe-
tition) all contain zero. Thus, there does not appear to be a
main effect of repetition nor an interaction effect.

The HDISs of the posteriors of the slope-parameter B, (Fig.
3B) do not indicate an association between jerk and experi-
ence for any condition, except for the condition free.
Specifically, the slope for the condition free indicates a posi-
tive association between mean squared jerk and experience
(Brree: M = 1.05 x 10°).
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Figure 3. Mean and highest density interval (HDI) of posterior samples of
o (A) and B (B) corresponding to the mean squared jerk of the hand
markers and the association with experience (L, length; T, time).

Primitives.

The HDIs of the posteriors for the condition main effect
contrasts show that the number of primitives (Fig. 4A) is
larger in the sustained than the quick condition (HDI of
sustained-quick: [0.13; 1.26]), whereas there is neither a
difference between the constrained and free condition
(HDI of constrained-free: [-0.76; 0.19]) nor the improvised
and neutral condition (HDI of improvisation-neutral:
[-0.70; 0.15]).

A positive association between the number of primitives
and dance experience (Fig. 4B) is indicated by the nonzero
HDI of the slope parameter (B.) for the neutral condition
(Bneutra: M = 0.07), whereas the HDI of the improvised con-
dition indicates no association with experience. The HDIs of
the other conditions show a tendency for a positive associa-
tion with experience, however, these HDIs also show

Condition Means Association with Experience
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Figure 4. Mean and highest density interval (HDI) of posterior samples of
oc (A and C) and B, (B and D) representing the number of primitives (A)
and the association with experience (B) and the number of segments (C)
and the association with experience (D).
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credibility for a slope of zero, since (given the observed data)
zero is within the HDI and values within the HDI have a
higher probability than values outside.

The number of segments (Fig. 4C) appears to be larger in
the improvised than in the neutral condition (HDI of
improvised-neutral: [1.59; 5.47]) and also larger in the sus-
tained than in the quick condition (HDI of sustained-
quick: [0.57; 4.58]). There is no difference between the con-
strained and free conditions (HDI of constrained-free:
[-1.51; 2.37]).

Regarding the association between the number of seg-
ments and dance experience (Fig. 4D), the slope parameter
(Be) for the neutral condition shows a negative association
(Bneutraiz M = —0.35). In contrast, the HDI of the slope pa-
rameter of the improvised condition shows credibility for
a slope of zero. This is also the case for the remaining con-
ditions, except for the quick condition, where the HDI
marginally does not indicate that a zero slope is credible
(Bouick: M=-0.28).

For both the number of primitives and the number of seg-
ments, the corresponding posteriors do not indicate a main
effect of repetition nor an interaction effect (condition x rep-
etition), since the HDISs of all contrasts show a high credibil-
ity for a zero difference.

A negative association between the number of segments
and the number of primitives (Fig. 5) is shown to be credible
for the improvised condition (Bruprovisea: M = —0.09).
Similarly, a negative association is also credible for the other
conditions with the mean of B, ranging from —0.14 (sus-
tained) to —0.19 (free).

Weighting of primitives.
The learned weights and movement primitives for the first
six primitives are displayed in Fig. 6. The weights are smaller
for certain primitives (MP 2, 4, and 6, Fig. 6A). However, the
resulting primitives appear to be quite consistent across sub-
jects, regardless of the underlying experience level (Fig. 6B).
The log weight variance is smaller in the choreography con-
dition than in the improvised condition (Fig. 7A; HDI of impro-
vised-choreography: [0.51; 0.63]). Furthermore, the weight
variance appears to decrease with increasing dance experience
(Fig. 7B). This is the case for the improvised state (HDI of slope:
[-0.02; —0.007]) and to a lesser extent for the choreography
(HDI of slope: [-0.009; —0.002]).

Association between
Primitives and Segments

Improvised ——
Neutral @ e—
Free
Constrained
Quick
Sustained
-0.2 -0.1 0.0
Be
Improvisation Choreography

Figure 5. Mean and highest density interval (HDI) of posterior samples of
the slope-parameters B, representing the association between the num-
ber of primitives and segments.
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EXPERIMENT 2

In this experiment, the perceptual validity of the TMP
model applied to dance movements was assessed with an
online perception experiment, using the JavaScript library
jsPsych (37).

Methods

Participants.

A participant management system (SONA system) was used
to collect the data of 102 psychology students in the percep-
tion experiment (duration around 40 min). Of these, 18 partic-
ipants were excluded due to not completing the experiment,
11 participants were excluded due to an accuracy below 60%
in the attention checks, and furthermore, 1 participant was
excluded due to an implausible median reaction time (132
ms). The data of the remaining 72 participants were analyzed
(23 males; mean age = 22.7 yr, SD = 4.5 yr). All participants
gave written informed consent to the experiment and
received course credits for their participation. Participation
requirements were an age above 18 yr and normal or cor-
rected-to-normal vision.

Condition Means Association with Experience

A B
8
2 150 * -
5 : Improvisation =~ =e——
=
2 -152
2
L 154
= - ’ Choreography —u—
=)
9 -156
o N -0.02 -0.01 0.00
04\96“ 909«89 B1
X K
\(“Q O‘(\O

Figure 7. Mean and highest density interval (HDI) of posterior samples of
o denoting the estimated log weight variance (A) and B. denoting the
association with experience (B).
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Stimuli.
The third, i.e., last, repetition of the improvisation and chor-
eography condition (neutral expression) of each dancer from
experiment 1 was used as stimuli in the perception experi-
ment. The model-generated movements were created using
the model with the highest evidence for each dancer and con-
dition. The standard deviation of the noise prior o, was
reduced exponentially over the five data points next to a seg-
ment boundary (from 0.03 to 0.005) to further enable smooth
segment transitions for these models. Specifically, the reduc-
tion should facilitate that the predicted joint angles of a seg-
ment during weight inference match the data even more.
This ensures that the end of a segment is approximately equal
to the beginning of the next segment. Consequently, as the
reconstructed segments were concatenated, thereafter, the
predicted joint angles closely matched at the boundaries. The
segments of each movement sequence were concatenated to
obtain a minimum stimulus duration of 3.0 s. Thus, every
stimulus is characterized by the condition (improvisation or
choreography) and the variables in Table 1.

The resulting 288 movement sequences were displayed at
veridical speed with stick figures (16 lines) on a canvas
(1,250 x 600 pixels) rendered in webGL (Fig. 8A).

Task.

The task was a two-alternative forced-choice task. In each
trial, the original and model-generated movement sequences
were shown side-by-side and the display was repeated once.
The participant was instructed to choose the movement
sequence that appeared the more natural. The choice could
be indicated with the corresponding arrow key on the key-
board (left or right) as soon as the repetition, i.e., the second
display of the stimulus, started. Attention checks (n = 10)
were evenly distributed across the time span of the experi-
ment. These checks consisted of two static stick figures in
different shades of gray displayed side-by-side (Fig. 8B). The
participant was instructed to always choose the darker stick
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Table 1. Variables describing the stimuli used in the per-
ception experiment

Variable Min Max
Duration, ms 3,017 6,250
Variance accounted for, % 97.5 99.9
Segments 2 7
Primitives 5 n
General experience of the dancer, yr 2 18
Style-specific experience of the dancer, yr 2 18

figure. The age, gender, and general dance experience of the
participant, as well as experience with specific dance styles
(contemporary/modern/jazz among others), were obtained
before the presentation of the stimuli.

Data analysis.

As in experiment 1, we analyzed the data using Bayesian in-
ference and summarize the posteriors by reporting 95%
highest density intervals (HDIs).

The perceptual validity of the TMP model was assessed with
the confusion rate, 6, which indicates to which degree the
model is able to “confuse” the participant. The confusion rate
is calculated with the rating k of each trial i, relative to the total
number of trials n (Eq. 11). Specifically, k; = 1 if the participant
chose the original movement sequence and k; = O if the partic-
ipant chose the model-generated movement sequence. Hence,
a confusion rate of 0.5 would indicate that the participant is
not able to distinguish between the original and model-gener-
ated movement. The lower the confusion rate, the less the par-
ticipant was “confused” by the model-generated movements,
i.e., chose the original movement sequence:

N=> "k
f=— ", (11)
N

The modal confusion rate of each stimulus condition ¢
(improvised dancing, choreographed dancing) was estimated
with a hierarchical Beta-Bernoulli model using the rating
data D. Due to the model’s hierarchical structure, the confu-
sion rate was also estimated for each stimulus s. The rating k
of each trial and stimulus was assumed to be Bernoulli-dis-
tributed with a probability of confusion 6, (Eg. 12), which was
given a Beta-prior (Eq. 13).

ki s ~ Bernoulli(6;) (12)

05 ~Beta(o. (k. —2) + 1,1 — o) (k. —2) + 1) (13)

B 1
1+ exp

ac~/\/’(07r = iz)
O

O, (14)

(15)

o ~ Gamma(1.64,0.32) (16)
Ke =Ke_p + 2 (17)
Ke—2~Gamma(0.01,0.01) (18)

The condition-specific modes of the Beta-distribution are
denoted with o, that is the output of a logistic function of a.
(Eq. 14), constraining the range of possible modes to the

J Neurophysiol « doi:10.1152/jn.00161.2023 « www.jn.org

interval [0, 1]. A Gaussian prior was used for a. (Eq. 15), repre-
senting a wide range ([0, 1]) of plausible values for o.. To this
end, the standard deviation of the Gaussian prior was given
a Gamma prior, with shape and rate settings corresponding
to a mode of two and a standard deviation of four (Eq. 16).
The condition-specific concentration parameter of the Beta-
distribution is denoted with «. and governs the dispersion of
stimuli confusion rates around the modal confusion rate of
each condition. To ensure k. > 2 we compute k. from x._»
(Eq. 17), which was given a vague Gamma prior (Eq. 18).
Overall, this yields the following chain of dependencies:

P(0,0,x,0|D) o< p(D]6) x p(Blo, k) x p(w]c) x p(k) x p(o). (19)

We additionally assessed whether the confusion rate dif-
fered by the dance experience of the observer. To this end,
we grouped the observers by experience and implemented
the same hierarchical model. However, in this case, s repre-
sents the participant and ¢ the experience group. The partici-
pants were assigned the following groups: 1) no experience,
2) general (any) dance experience, 3) specific experience
(over 1 year of experience with the specific dance styles dis-
played in the stimuli, i.e., contemporary/modern/jazz).

A Bayesian logistic regression model (Egs. 20 and 21) was
implemented to estimate the dependence of the confusion
rate on the predictors p, consisting of stimulus duration, var-
iance accounted for, the number of segments, and the num-
ber of underlying primitives. In this case, the slope B, of the
logistic regression model is a measure of the influence of the
explanatory variable x,, on the confusion rate:

k ~B ernoulli(0) (20)

1

- 1+ exp(f(ot + zp: Bp‘xl’)) '

Similarly, the effect of the performers’ experience on the
confusion rate was also assessed with a logistic regression
model, where p consisted of the performers’ general and spe-
cific dance experience. The parameters of the model were
given weakly informed Gaussian priors.

0

(21)

Results

The results from the hierarchical model regarding the ex-
perience of the participant (Fig. 94) show that the means of
the posteriors of the corresponding parameters approach a
confusion rate of 0.5 for all experience groups (M = 0.47).
The increased HDI of the group with specific experience is
due to the reduced number of participants in this group

A B
( N[ )
\. J \L J

Figure 8. Screenshot of the online experiment (4) and the implemented
attention checks (B).
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resulting in a low precision of the estimate. The results sug-
gest that participants, regardless of their level of dance expe-
rience, were hardly able to distinguish between the original
and model-generated movements.

The mean of the stimuli containing choreographed dance
movements also approaches a confusion rate of 0.5 (M =
0.48), as well as the mean for stimuli containing improvised
movements (M = 0.45), although lower (Fig. 9B). The 95%
HDI for the difference in the posterior estimates of the con-
dition-specific w, i.e., O¢ = improvisation — ®c = choreography> Was
[-0.049, —0.006], suggesting that the confusion rate is lower
for improvised than choreographed dance sequences.

The mean and 95% HDI of the posteriors from the slope
parameters of the logistic regression models are displayed in
Table 2. Both the performers’ general and specific dance
experiences do not seem to affect the confusion rate, since
both means of the slope parameter are near zero.

Of the variables characterizing the stimuli, the variance
accounted for seems to have a substantial effect on the con-
fusion rate. The mean positive slope of 0.298 denotes that a
higher variance accounted for is associated with a higher
confusion rate, i.e., the ability to discriminate between the
original and model-generated movements is reduced. The
confusion rate does not appear to depend on the duration of
the stimulus or the number of transitions (segments — 1) in
the movement sequence. In addition, there does not seem to
be a dependence on the number of underlying primitives, as
the 95% HDI of the corresponding slope parameter indicates
that a zero slope is credible.

DISCUSSION

In this study, the TMP model was applied to the motion
capture data of choreographed dance sequences, with differ-
ent movement quality expressions. We additionally applied
the model to fully improvised, unconstrained dance move-
ments. We explored whether and how the temporal structure
of a dance sequence and the underlying movement primi-
tives are modulated by experience. Results show an interde-
pendence between temporal segments and movement
primitives, while also suggesting an association with dance
experience for certain movement conditions, i.e., primarily

A Observer Experience B Stimulus Condition

by

Non

0.45

Confusion Rate
o
N
oo

0.43

0.40
General Specific

Experience

Improvisation Choreography
Condition

Figure 9. Mean and highest density interval (HDI) of posterior samples of

the w.-parameters from the hierarchical Beta—Bernoulli models that were

used to estimate the confusion rate for different experience groups (4)
and stimulus conditions (B).
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Table 2. Mean and HDI of posterior samples of the
slope-parameters (B,) from the logistic regression
models

Predictor, P Mean (B,,) 95% HDI

Performers’ experience

General experience 0.001 —0.005, 0.007

Specific experience —0.001 —0.007, 0.006
Stimulus descriptors

Duration 0.014 —0.034, 0.063

VAF 0.298 0.172,0.426

Transitions —0.023 —0.049, 0.003

Primitives 0.019 —0.007, 0.045

HDI, highest density interval; VAF, variance accounted for.

for the choreography performed with a neutral expression.
Furthermore, the perceptual validity of the model was eval-
uated in a second experiment. In general, the results show
that the model is capable of generating movements that are
basically indistinguishable from the original movements.

The analysis of movement smoothness confirmed the
effect of the instruction regarding various movement expres-
sions. An association between smoothness and dance experi-
ence was solely found for the movement expression Free. In
this case, movement smoothness was negatively (jerk posi-
tively) associated with the dance experience. This is in con-
trast to the results of prior studies, for instance showing a
positive association between specifically dimensionless jerk
and experience in a traditional Korean dance motion (38).
However, the fact that no association was found for all
remaining conditions overall supports previous findings,
showing no association between jerk-based measures and
dance experience (7, 38).

Analyzing the underlying components in conjunction
with a temporal movement segmentation reveals a consist-
ent trade-off between the two; the fewer the movement seg-
ments the greater the requirement for the number of
underlying primitives to obtain a sufficient representation of
the movement. Thus, this is in line with previous findings
from taekwondo movements (21), showing that higher poly-
nomial orders result in fewer segmentation boundaries.
However, the segmentation boundaries in a taekwondo
sequence are presumably more salient than those in dance.
In general, there is a tendency for a positive association
between the number of primitives and experience for chor-
eographed, but not for improvised dance. The most promi-
nent association is found for the neutral expression of the
choreography. The results suggest an increase in the utiliza-
tion of DoF and movement complexity with experience. An
increase in motor primitives has also been demonstrated in
the course of motor development (39) and with long-term
ballet training in beam walking (6). Although prior studies
have indicated that experience is associated with fewer com-
ponents when analyzing dance sequences of shorter dura-
tion (7, 8), the application of a decomposition method to
longer movement sequences thus suggests a reverse pattern.

In particular, for the neutral condition, there seems to be
an association between experience and the number of tem-
poral segments. This data-driven approach therefore is in
line with previous perceptual studies, indicating that dance
experience might lead to a broader representation of
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movement (13). Overall these results suggest that with
increases in movement experience, there is a tendency for
an increase in movement repertoire which might enable lon-
ger movement segments. Thus, an increase in primitives
might facilitate a different temporal structure used by neural
control mechanisms for more efficient production of coordi-
native movement. Previous studies have not incorporated
consideration for the serial elements of a movement
sequence and primarily represented primitives on the spatial
dimension (5-7). However, according to Event Segmentation
Theory, the identification of temporal boundaries is crucial
for prediction, memory encoding, and learning (9, 10).
According to the results of this study, experience is associ-
ated with the partitioning of a full-body coordinated move-
ment sequence into fewer and larger elements.

Beyond an analysis of the number of primitives and seg-
ments, we further assessed modulations in the weighting
of the primitives by experience. The results indicate that
the variance of the weights decreases with experience for
both improvised and choreographed movements, suggest-
ing an increased consistency of modular control with ex-
perience. Furthermore, the weight variance is smaller in
choreographed than in improvised dancing. This is likely
due to the versatility of movements in improvised move-
ments resulting in in a requirement for a greater diversifi-
cation of weights.

The different movement expression qualities (factors time
and flow) were based on the effort category of the Laban move-
ment analysis, since this category characterizes the dynamic
qualities of movement. The system has been applied in various
movement-related fields, e.g., the effort category has been
used as a basis for the semantic, automatic segmentation of
motion capture data (40) and the Kinetography Laban system
has been used to notate and analyze complex humanoid robot
movements (41). The Labanotation is also applied in Laban
movement analysis and uses body parts, space, duration, and
beginning and end of a movement as factors to describe move-
ment. Regarding the start and end points of an action, the tem-
poral primitives can be viewed as basic modules used to
construct the movement in between. Due to the temporal scal-
ability of TMPs, a similar number of temporal segments could
have been expected for the two opposite polarities of the factor
time; the quick and sustained condition. Based on the differ-
ence in the number of primitives between the conditions sus-
tained and quick, a straightforward scaling of primitives to
prolonged segments, that encompass the same movement, is
not feasible for the type of movement sequences used in this
study. The modulation of the qualitative expression in line
with the sustained condition of the effort category might have
had the secondary effect of introducing more submovements
to the movement sequence. Consequently, a scaling of tempo-
ral primitives does not turn a quick movement into a sustained
one in this case, because the sustained condition might require
more temporal segments. However, this may be feasible if the
scaling factor is closer to one, e.g., for more uniform move-
ments (42). The polarity constrained of the factor flow
describes a bound and rigid motion. With respect to the DoF,
this condition should be associated with a freezing of the DoF.
On the other hand, the polarity free, characterized by being
unable to stop in the course of movement, should conse-
quently have the opposite effect. A difference in the number of
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primitives with the modulation of the factor flow was not
found. Hence, this indicates that simply modifying the expres-
sive quality regarding a constrained or free state is not suffi-
cient to induce a modulation in the use of DoF.

A limitation of the current study is its cross-sectional na-
ture and the range of dance experience included. Specifically,
the dance experience analyzed only had a range of 16 yr and
no professional dancers were included. Consequently, it
would be interesting to replicate these analyses with a wider
range of dance experience. The chosen segmentation method
is a further limitation, due to its heuristic nature and lack of
an obvious relation to the movement primitive model. With
the applied version of the TMP model, the segmentation of
the movement sequence has been implemented as a reasona-
ble preprocessing step, to avoid having to temporally scale the
primitives to the full length of the movement sequence (in
this case ~30 s). It is also implausible that movement primi-
tives used during movement production would correspond to
the full length of the sequences used. The segmentation
method implemented in this study partitions the sequence
based on the minima in the speed of the hands and feet.
Although speed has been used as a kinematic feature by
observers to segment movement sequences (11, 12), it was
merely one of several segmentation criteria reported by
observers, also varying depending on experience level (12, 13).
Thus, it would be interesting to test other segmentation tech-
niques as well. Moreover, it would be advisable to apply a
more sophisticated segmentation method overall. However,
the development of such a method is beyond the scope of this
paper. This method should automatically determine the opti-
mal number and length of segments given the implemented
observation model with Bayesian model selection. To this
end, the likelihood of the data given the model parameters
(weights and MPs) would need to be computed for all possible
segment boundary configurations for each plausible model
complexity (number of segments and MPs). Although the
computational effort required is a limiting factor, an unsuper-
vised segmentation algorithm based on Bayesian Binning
would be appropriate for this task (21).

The results from the perceptual validation experiment
overall confirm that the TMP model is suitable for generating
natural, full-body dance movements. This is supported by
several factors. First, the confusion rate is independent of
the performers’ dance experience. Thus, the perceptual qual-
ity of the model is consistent regardless of the skill level
underlying the production of the movements. In addition,
the confusion rate does not seem to be modulated by the ex-
perience of the participant, i.e., participants with dance ex-
perience did not show an increased ability to detect
deviations from what would be predicted to be a natural
human-generated movement sequence, manifesting itself in
lower confusion rates. Hence, the perceptual quality of the
movements generated with the model seems to be independ-
ent of the participants’ acquired knowledge and specific rep-
resentation of the movement skill displayed. Furthermore,
the confusion rate seems to be independent of the number
of transitions in the movement sequence. This indicates that
the model is able to produce naturally appearing movement
sequences regardless of the number of segments needed.
Lastly, there was no influence of the optimal number of
underlying primitives on the confusion rate. This highlights
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the efficiency of the model-selection procedure, i.e., depend-
ing on the motion capture data a different number of param-
eters is required for a sufficient representation of the data,
but the selection procedure results in the same perceptual
validity nonetheless.

Certain factors seem to curtail the perceptual validity. If
the TMP model was a valid movement representation under
all conditions, there should be no difference between stimuli
showing improvised and choreographed dance movements.
However, the conditions under which the dance movements
were performed resulted in different confusion rates. A
lower confusion rate is observed for stimuli displaying
improvised dancing in contrast to choreographed movement
sequences. This might be due to an increased diversity and
complexity of movements captured in the improvised condi-
tion, perhaps resulting in reduced model quality. Second,
and possibly related, the confusion rate is dependent on the
variance accounted for. This result is in partial agreement
with findings by Knopp et al. (43). Although Knopp et al. (43)
found no effect of the mean squared error on the perceptual
performance of the TMP model in an online experiment, a
lab-based version of the experiment showed that a smaller
error was associated with a higher confusion rate. The latter
is also in line with previous results by Knopp et al. (28).

Conclusions

The TMP model was applied to the motion capture data of
improvised and choreographed dance sequences with differ-
ing movement expressions. The results show an interde-
pendence between the number of temporal segments and
movement primitives, as one would expect. In the case of a
choreography performed with a neutral expression, the for-
mer seems to be negatively associated, whereas the latter
indicates a positive association with dance experience. In
addition, the perceptual validity of the model was assessed,
showing that it is sufficient for choreographed and to a lesser
extent for improvised dance movements. Furthermore, the
model performance is a crucial predictor of the perceived
naturalness of the model-generated movements. Overall,
these findings indicate that an increase in experience is asso-
ciated with an increase in motor repertoire together with
fewer and longer temporal segments and that a representa-
tion of dance movements with the TMP model is feasible.
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