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Abstract

Accurate navigation often requires the maintenance of a robust internal estimate of heading

relative to external surroundings. We present a model for angular velocity integration in a

desert locust heading circuit, applying concepts from early theoretical work on heading cir-

cuits in mammals to a novel biological context in insects. In contrast to similar models pro-

posed for the fruit fly, this circuit model uses a single 360˚ heading direction representation

and is updated by neuromodulatory angular velocity inputs. Our computational model was

implemented using steady-state firing rate neurons with dynamical synapses. The circuit

connectivity was constrained by biological data, and remaining degrees of freedom were

optimised with a machine learning approach to yield physiologically plausible neuron activi-

ties. We demonstrate that the integration of heading and angular velocity in this circuit is

robust to noise. The heading signal can be effectively used as input to an existing insect

goal-directed steering circuit, adapted for outbound locomotion in a steady direction that

resembles locust migration. Our study supports the possibility that similar computations for

orientation may be implemented differently in the neural hardware of the fruit fly and the

locust.

Author summary

In both fruit flies and locusts, a specific brain region shows an activity pattern that resem-

bles a compass, with an activity peak moving across an array of neurons as the animal

rotates through 360 degrees. However, some apparent differences in the properties of this

pattern between the two species suggest there may be differences in how this internal

compass is implemented. Here we focus on the locust brain, building a computational

model that is based on observed neural connections and using machine learning to tune

the system. Turning by the simulated locust provides modulatory input to the neural cir-

cuit that keeps activity in the array aligned to its heading direction. We simulate a migrat-

ing locust that tries to keep the same heading despite perturbances and show this circuit
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can steer it back on course. Our model differs from existing models of the fruit fly com-

pass, showing how similar computations could have different implementations in differ-

ent species.

Introduction

Various navigational strategies have evolved across diverse ecological contexts, many relying

on a robust estimate of the animal’s current heading direction [14–16]. Shared across species

(including humans) [17, 18], these strategies likely stem from similar neuronal and computa-

tional foundations. Investigating orientation and its neural substrates in a model organism

provides a gateway to uncovering general mechanisms of spatial cognition. With their impres-

sive navigational abilities and suitability for both laboratory and field studies, insects emerge as

excellent model organisms for investigating navigation [19].

The navigation centre of the insect brain is located in the central complex (CX) [20–23].

This brain region is a midline-spanning group of four major neuropils: the protocerebral

bridge (PB), the upper (CBU) and lower (CBL) divisions of the central body (also known as the

ellipsoid body (EB) and fan-shaped body (FB) in some species; see Table 1 for a comparison of

terms and their abbreviations between the desert locust (Schistocerca gregaria) and homo-

logues in the fruit fly (Drosophila melanogaster); and the paired noduli (NO) [21]. The PB,

CBU, and CBL are compartmentalised into columns, and the CBU, CBL, and NO are stratified

into layers [1, 20, 24]. These columns and layers are interconnected by tangential and colum-

nar neurons following stereotypical projection patterns [1, 9]. Tangential neurons provide

multimodal inputs from various brain regions to the CX [3, 8, 25–27], while columnar neurons

connect columns between the different neuropils and serve as the principal output elements of

the CX [11, 21]. This organization is highly conserved, and tight structure-function relation-

ships reveal the biological implementation of vector-based algorithms in the CX [23].

Table 1. Abbreviations for neuron types and brain regions in the desert locust (Schistocerca gregaria) and homo-

logues in the fruit fly (Drosophila melanogaster).

Schistocerca gregaria Drosophila melanogaster

Lower division of the central body (CBL) Ellipsoid body (EB)

Upper division of the central body (CBU) Fan-shaped body (FB)

Central complex (CX) Central complex (CX)

CL1a-neurons [1] E-PG-neurons [2, 3]

CL2-neurons [4] P-EN-neurons [2, 3]

CPU1-neurons [1] PFL1/3-neurons [3]

CPU2-neurons [1] PFL2-neurons [3]

CPU4-neurons [1] PFN-neurons [3]

CU-neurons [1] FC2-neurons [5]

Nodulus (NO) Nodulus (NO)

Lower unit of the nodulus (NOL) Lower unit of the nodulus (NOL)

Protocerebral bridge (PB) Protocerebral bridge (PB)

TB1/2-neurons [6] Δ7-neurons [7]

TB7-neurons [8] SpsP-neurons [3, 7, 9]

TL-neurons [4, 10] ER-neurons [3]

TNL-neurons [11] L-N-neurons [12], LNO- & GLNO-neurons [3, 13]

https://doi.org/10.1371/journal.pcbi.1012155.t001
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Analogous to head direction cells [14] observed in mammals [28, 29], numerous CX-neu-

rons respond to celestial cues and map the animal’s heading direction relative to the angle of

polarised skylight and the solar azimuth [11, 14, 30]. To track the animal’s orientation robustly,

these cells integrate partly redundant inputs from various modalities [22], including self-

motion generated signals [2, 31], such as efference copies or optic flow. In the fruit fly, colum-

nar E-PG-neurons form a comprehensive 360˚ compass within the EB, with calcium imaging

revealing a single activity maximum or compass bump encoding the animal’s heading direc-

tion [2, 31]. Projection schemes of E-PG-neurons yield one 360˚ compass representation in

each hemisphere of the PB, shifted relative to each other by 22.5˚ [2, 3, 32]. The representation

of space in the fruit fly CX exhibits variability between individuals and across contexts [30, 31].

In contrast, in the desert locust, intracellular recordings suggest a single 360˚ compass

encoding across the entire width of the PB [6, 33, 34], and projection patterns of columnar

neurons imply two intercalated 180˚ representations of space along the CBL [1, 35]. The

data suggest that the compass topography is consistent across individual locusts. Fig 1A

Fig 1. Overview of the proposed model. (A) Schematic comparison of heading encoding in the fruit fly and the desert

locust protocerebral bridge (PB) and ellipsoid body / lower division of the central body (EB and CBL, respectively),

based on data from [32, 42] and [35] and inspired by illustrations from [3, 23, 34]. Columnar E-PG- and CL1a-neurons

encode the heading direction (indicated by color) of the insect. Bar graphs illustrate the activity level of neurons in

each PB column, revealing a sinusoidal pattern of activity across the PB. In contrast to the fruit fly’s 2 × 360˚

representation of space with two activity maxima (compass bumps) along the PB, one on either side, our model of the

locust heading circuit assumes a 360˚ spatial map with a single compass bump along the entire PB. The EB features a

single bump of activity, but projection patterns of CL1a-neurons [1] (cf. Fig 2A) imply two intercalated representations

of space along the locust CBL [35]. (B) Diagrammatic comparison of information flow through the fruit fly heading

circuit proposed by [2] and our proposed model of the desert locust heading circuit. Both circuits feature homologous

columnar neurons (E-PG- and P-EN-neurons / CL1a- and CL2-neurons). In this fruit fly heading circuit, P-EN

activity directly depends on the animal’s angular velocity. In our proposed locust heading circuit, an abstract class of

angular velocity neurons modulates the circuit connectivity depending on the animal’s angular velocity.

https://doi.org/10.1371/journal.pcbi.1012155.g001
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illustrates the internal compass topographies in the PB and EB/CBL of the fruit fly and the

desert locust, respectively. In addition to this functional difference between the fruit fly and

locust heading circuits, many structural differences exist [36, 37]. A major difference is the

ring-shaped EB in the fruit fly, which is a striking exception to the crescent-shaped homolo-

gous neuropils in most other insect species [38], including the CBL in the locust (cf. Fig 1A

for the comparison of the fruit fly EB and desert locust CBL, respectively). Given the preva-

lence of this locust-like CBL architecture, we deemed it relevant to investigate the conse-

quences of a locust-like 1 × 360˚ heading representation in the PB. Many models of insect

navigation [36, 39–41] assume a 2 × 360˚ heading representation across the two halves of

the PB, but this pattern might be an exception in the fruit fly rather than common to all

insects.

A model of angular velocity integration in a fruit fly heading circuit [2] includes two types

of columnar neurons, E-PG-neurons encoding heading and P-EN-neurons conjunctively

encoding heading and angular velocity. Within this model, asymmetric activation of P-EN-

neurons in the two halves of the PB occurs based on the fruit fly’s turning direction, resulting

in a shift of E-PG and P-EN activity maxima in the EB and the PB through the circuit’s connec-

tivity. This mechanism is consistent with an early theoretical framework of self-motion inte-

gration in a vertebrate heading circuit [43]. This framework proposed additive and

multiplicative modulation that introduces asymmetries to the circuit connectivity as two alter-

natives to shift the compass bump. The model by [2] fits the additive modulation mechanism

described by [43]. Recent studies have identified tangential GLNO-neurons as a source of rota-

tional velocity information to P-EN-neurons in the fly. They rely primarily on motor signals

but can alternatively use visual information [13]. In the locust, homologous columnar neurons

to E-PG- and P-EN-neurons are CL1a- and CL2-neurons. They display projection schemes [1]

suggesting similar connectivity, although excitation and inhibition remain uncertain. Func-

tionally, CL1a-neurons encode heading relative to a fixed point of reference [33, 34], and

recordings from CL2-neurons suggest directional sensitivity to rotational optic flow [35]. The

circuit likely receives angular velocity inputs from tangential neurons [11]. Tangential neurons

homologous to GLNO-neurons have been termed TNL-neurons [11], but data revealing their

responsiveness to angular velocity are lacking.

In previous work, using a simplified model with linear neural units, discrete-time updates,

and binary rotation encoding (left vs. right), we showed that the observed heading encoding

in the locust could in principle be shifted appropriately by a multiplicative rotation-depen-

dent modulation of the firing rate [35, 44]. Unlike the additive modulation mechanism

observed in the fruit fly, our locust model aligns with the multiplicative modulation intro-

duced by [43] and suggests a potential biological implementation in an insect heading cir-

cuit. Here, we significantly extend this work by developing a firing rate model of the locust

heading circuit with synaptic dynamics and by optimising its function under structural and

biologically plausible parameter constraints. An overview of the included neuron types and

their interactions is shown in Figs 1B, and 2 features a more detailed depiction. We were

interested in determining whether such a constrained model would be able to integrate a

continuum of angular velocities and generate locust-like neural activity and orientation

behaviour. This approach is conceptually related to the ‘bounded rationality’ models in cog-

nitive science [45], where realistic behaviour emerges by training models constrained by

available resources towards optimal behaviour. The results show that a heading circuit with a

compass topography different from that in the fruit fly, and with neuromodulatory instead

of feed-forward angular velocity inputs, can still function to maintain a robust heading esti-

mate and to control steering behaviour.
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Model and methods

The heading circuit model and all simulations were implemented in Python 3.11. We used the

machine learning library PyTorch [46] (version 2.2.1) for optimisation of the model’s free

parameters as described in section Free parameters and their optimisation.

Neuron model

The network consists of single-compartment steady-state firing rate neurons abstracted from

integrate-and-fire neurons [47]. Since the main focus of our work is the circuit topology, we

only present the key assumptions regarding free and constrained parameters here. For a com-

plete derivation of the neuron model, please refer to the supporting information S1 Text.

The dynamics of the model neurons are governed by two time constants: τm, the membrane

time constant, and τs, the synaptic time constant. Estimates for τm vary with neuron type.

While τm = 1.5 ms can be derived from the resting state conductance of a Hodgkin-Huxley

model with the parameter values given in [47], the membrane time constants used in the fruit

fly CX model of [2] are larger by an order of magnitude to capture observed delays between

E-PG- and P-EN-neuron activity in walking flies [2]. Please refer to supporting information

S2 Text for an order-of-magnitude delay estimation approach. We chose to model these delays

Fig 2. Deduction of the heading circuit connectivity from anatomically plausible connections in the CX. (A,B)

Projection schemes of CL1a- and CL2-neurons, adapted from [1]. CL1a-neurons connect multiple adjacent columns of

the CBL to single columns of the PB. CL2-neurons connect single columns of the PB to single columns of the CBL and

to the contralateral NOL. The pattern by which PB and CBL are connected is shifted by one column when comparing

the two neuron types. (C) Connectivity matrix mask for CL1a- and CL2-neurons, indicating potential synapses (yellow

squares) without specifying excitation versus inhibition or strength. Neurons are arranged according to their position

in the PB. PB, protocerebral bridge; CBL and CBU, lower and upper division of the central body, NOL, lower unit of

the noduli.

https://doi.org/10.1371/journal.pcbi.1012155.g002
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by slow synapses, i.e. τs� τm. This assumption justifies the use of a steady-state firing rate

model with an explicit dynamics model for the synapses. In our computational model,

“steady-state firing rate neurons” refers to a simplified representation where neurons are con-

sidered to achieve a stable firing rate after initial transients have settled. This stable firing rate

is reached due to the slow dynamics of the synaptic inputs relative to the membrane time con-

stant. Although the firing rate becomes stable after some time, it is still responsive to ongoing

inputs and can change depending on the input dynamics. The steady-state potential U1 of the

membrane, which evolves on the same slow time scale as the neuron’s inputs, is

U1 ¼
P

i ~g tot;iPs;iEs;i

1þ
P

i ~g tot;iPs;i
; ð1Þ

where Ps,i is the post-synaptic ion channel opening probability, Es,i is the synaptic reversal

potential, and ~g tot;i is the total relative synaptic conductance of synapse i. This conductance is

calculated as

~g tot;i ¼ ~g s;i þ
X

j

Prel;i;j~gmod;i;j; ð2Þ

where ~gmod;i;j and ~g s;i are its two contributions. Note that ~gmod;i;j is multiplicatively modulated

by pre-synaptic transmitter release probability Prel,i,j from modulatory input j, and ~g s;i is not

modulated. Both contributions are free parameters, hereafter referred to as synaptic “weights”,

that will be optimized subject to connectivity constraints. In our model, the sign of the synaptic

weight determines whether a synapse is excitatory or inhibitory (positive or negative synaptic

weight, respectively). We compute the firing rate r with a logistic sigmoid activation function

rðU1Þ �
99:6 Hz

1þ expð� 0:19 mV� 1 � ðU1 � 17:8 mVÞÞ
: ð3Þ

We model the effect of a spike on Ps,i by a single-exponential kernel. The kernel is con-

volved with the density of the pre-synaptic spike train, which we assume to have inhomoge-

neous Poisson process statistics with rate ri(t). We argue that the Poisson assumption is

approximately valid for CX neurons, since ri(t) does not exceed 50 Hz in available data from

the locust [35]. This implies that the typical inter-spike interval is substantially longer than the

refractory period. Following the derivation in [47], the time course of Ps,i can then be described

by the differential equation

dPs;i

dt
¼ Ps;maxriðtÞ � riðtÞ þ t

� 1

s

� �
Ps;i; ð4Þ

where Ps,max is the maximum synaptic open probability, which we set to 1.

The circuit model relies on multiplicative neuromodulation for heading representation

updates. Neurons with a modulatory effect change their pre-synaptic transmitter release prob-

ability Prel,i,j proportionally to their rate and with time constant τs,mod. We expect τs,mod> τs
because neuromodulation often involves signal transmission cascades.

Heading circuit model

The heading circuit consists of columnar CL1a- and CL2-neurons and an abstract class of

angular velocity neurons that combine properties of various tangential neurons. The angular

velocity neurons are sensitive to angular velocity and modulate the connectivity among CL1a-

and CL2-neurons.
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The locust CX receives diverse inputs from tangential neurons, supposedly including

explicit angular velocity information [11]. As there are no data indicating which specific tan-

gential neurons assume this role in the locust, we included abstract, functionally inspired

angular velocity neurons in our model. These units are designed to summarise the characteris-

tics of biologically identified tangential neurons, potentially delivering inputs to the PB, CBL,

and the lower unit of the NO (NOL). We modelled one angular velocity neuron tuned to

clockwise rotation (AVcw) and one tuned to counterclockwise rotation (AVccw). Their firing

rates are given by

rAVcw ¼
rAVmax
vmax
jvj

� Iðv > 0Þ;

rAVccw ¼
rAVmax
vmax
jvj

� Iðv < 0Þ;

ð5Þ

where Ið:Þ is the indicator function which is 1 if the argument is ‘true’ and 0 otherwise.

rAVmax ¼ 30 Hz is the maximum firing rate of angular velocity neurons, which corresponds to a

high firing rate of CX-neurons in the locust under experimental conditions [35]. v is the rota-

tional velocity, and based on data from flying locusts responding to striped patterns moving at

up to 90 ˚/s [48], we conservatively assume vmax = 150 ˚/s is the maximum angular velocity of

a locust.

CL1a-neurons encode the animal’s orientation in a compass-like manner [6, 33, 34]. The

preferred heading directions of the 16 CL1a-neurons included in our model are

~�pref ¼ fk � 22:5�jk ¼ 0; . . . ; 15g. Here, k corresponds to the PB column index a neuron

arborises in. PB columns are indexed from left to right, i.e., L8 has index 0 and R8 has index 15

(cf. Fig 2A and 2B for labelling of PB columns). The distribution of preferred heading direc-

tions of CL1a-neurons along the PB is based on the distribution of preferred solar azimuths

derived from sky polarisation tuning along the PB in four types of CX neurons (CL1-, TB1-,

CPU1-, and CPU2-neurons in locusts—E-PG-, Δ7-, PFL1/3-, and PFL2-neurons in fruit flies)

[34]. This results in a 360˚ representation of space with a single activity maximum or compass

bump along the PB (cf. Fig 1A, right panel, for a schematic representation). The firing rates

of CL1a-neurons are initialised with a sinusoidal relationship to the initial heading ϕ(t0) at

time t0:

rCL1aðt0Þ
¼ a � cos ð~�pref � �ðt0ÞÞ þ b; ð6Þ

where the rate amplitude a = 5 Hz and the operating point b = 25 Hz were determined from

the data reported in [35].

CL2-neurons inherit heading information from CL1a-neurons. In addition, they are sensi-

tive to rotational optic flow compatible with yaw rotation [35]. CL2-neurons and homologous

neurons in the fruit fly, P-EN-neurons [2, 32], show opposite directional selectivity with neu-

rons in the left PB hemisphere preferring counterclockwise rotations and neurons in the right

PB hemisphere preferring clockwise rotations. In our model, angular velocity and direction

information enter through the angular velocity neurons. They modulate the weights of synap-

ses between CL1a- and CL2-neurons such that their firing rates change in an angular velocity-

dependent manner.

To maintain a stable operating point b (see Eq 6), all CL1a- and CL2-neurons receive an

additional input from a bias neuron constantly firing at ca. 100 Hz.

Neuronal projections and connectivity assumptions. The heading circuit connectivity

was derived from anatomical projection data, based on two assumptions: first, smooth fibre
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endings indicate input regions of CX-neurons and varicose fibre endings indicate output

regions; second, overlapping arbors with opposite polarity are potentially synaptically con-

nected. See Fig 2A and 2B for the general projection schemes of the modelled neuron types.

The connectivity implications that follow from these two assumptions are detailed below,

together with the respective evidence.

First, CL1a-neurons provide input to CL2-neurons in the PB. Each CL1a-neuron has vari-

cose endings in a single PB column, and each CL2-neuron has smooth endings in a single PB

column [1], such that each CL1a-neuron could provide input to the CL2-neuron arborising in

the same column of the PB. In the fruit fly, E-PG-neurons also provide input to P-EN-neurons

in the PB [2].

Second, CL2-neurons provide input to CL1a-neurons in the CBL. Each CL2-neuron has

varicose endings in a single CBL column. Each CL1a-neuron has central bleb-like endings in a

single CBL column surrounded by smooth endings in up to two columns on both sides of it

(‘mixed’ endings in Fig 2A) [1]. Both CL1a- and CL2-neurons connect columns of the PB to

columns of the CBL, and both neuron types project columns in each half of the PB onto alter-

nating columns across the entire width of the CBL. The projection schemes of the two neuron

types are shifted by one column (cf. the pattern of alternating light and dark gray projections

across the columns of the CBL in Fig 2A and 2B). Each CL2-neuron could thus provide input

to CL1a-neurons arborising in the ipsilateral as well as in the contralateral half of the PB but in

the same column of the CBL. In the fruit fly, P-EN-neurons provide input to E-PG-neurons in

the EB [2]. However, neuron projections differ significantly between the two species, with each

E-PG-neuron innervating one of 16 wedges of the EB (corresponding to one column of the

CBL) and each P-EN-neuron innervating one of eight tiles of the EB (corresponding to two

neighbouring columns of the CBL).

Third, neighbouring CL1a-neurons make synaptic contacts in the CBL. The organization of

varicose terminals in a single column of the CBL flanked by smooth endings in neighbouring

columns renders it likely that CL1a-neurons in adjacent PB columns are synaptically con-

nected in the CBL. Due to their projection schemes detailed above, each CL1a-neuron could

provide input to other CL1a-neurons arborising in both the ipsilateral and the contralateral

half of the PB. Synaptic contacts between E-PG-neurons have also been demonstrated in the

EB of the fruit fly [3, 49].

Fourth, CL2-neurons arborising in the same NOL provide input to each other. In addition

to the PB and the CBL, CL2-neurons arborise in the contralateral NOL. In the fruit fly, all

P-EN-neurons from one hemisphere of the PB are connected with each other in the NO

[3, 49], and we assume the same is true for CL2-neurons from one hemisphere in the NOL.

Lastly, angular velocity neurons potentially modulate all synapses among CL1a- and

CL2-neurons. Tangential neurons provide inputs to the CX from various other brain regions

[8], and many types of tangential neurons have been immunostained for neuromodulatory

transmitters. Specifically, TB6-/TB7-neurons innervating the PB have been immunostained

for tyramine and the neuropeptides orcokinin and locustatachykinin [50–52]. TB8-neurons

(also innervating the PB) have been immunostained for octopamine [51]. TL1- and certain

TL4-neurons innervating the CBL have been immunostained for the neuropeptide orcokinin

[52], and TN-neurons innervating the NO have been immunostained for tyramine [51]. In

our model, we summarised these properties in angular velocity model-neurons, enabling them

to up- and down-regulate synapses among columnar neurons.

Fig 2C shows the resulting connectivity matrix mask for all potential synapses among

CL1a- and CL2-neurons in the model. There are no data indicating the inhibitory or excitatory

nature of these proposed synapses. Since data on their strength is not available either, we
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determined all synaptic weights using an optimisation algorithm (see section Free parameters

and their optimisation).

Stimuli. We supplied two types of input stimuli to the neural circuit; heading and angular

velocity. The heading stimulus was provided only once, to initialise network activity at the

beginning of each experiment. The initial firing rates of the ensemble of CL1a-neurons as well

as the ensemble of CL2-neurons were set to encode a particular heading direction via Eq 6.

This choice of identical CL1a- and CL2-activities was motivated by the observation that P-EN

and E-PG activity maxima align if the angular velocity is very low [2]. Angular velocity inputs

were provided to the angular velocity neurons throughout simulations and were used to con-

tinuously update the heading signal encoded in the CL1a-neuron population activity. The

angular velocity neurons initially fired at a rate corresponding to an angular velocity v(t0) = 0

˚/s. The initial states of all synapses in the network were set to a stationary state that is reached

when the circuit receives zero angular velocity inputs for a long time (i.e. much longer than τm
and τs).

Free parameters and their optimisation

The free parameters of the model were the synaptic weights (cf. Eqs 1 and 2) of all potential

synapses (indicated by the connectivity mask, see Fig 2C), including both the feed-forward

synapses between CL1a- and CL2-neurons and the modulatory effects of angular velocity neu-

rons on these synapses. These parameters were determined via unconstrained gradient-based

optimisation with the L-BFGS [53] algorithm. Gradients were computed with PyTorch’s auto-

matic differentiation algorithm. All synaptic weights were optimised so that the network

reproduced activity targets encoding the true heading during or after an angular velocity inte-

gration time interval of 200 ms. In line with observed behaviour in the fruit fly head direction

circuit reported by [54], these activity targets were defined to promote a stable heading repre-

sentation with no drift when the angular velocity is zero. We used a 4th order Runge-Kutta

integrator [55] to integrate the system of ordinary differential equations. Integration time steps

from 1 to 8 ms yielded comparable results. We used 4 ms integration time steps for the optimi-

sation of free parameters and 1 ms for all simulations reported here.

For a random initial heading direction ϕ(t0), we computed the true heading at time tn, ϕ(tn),

by integrating the angular velocity v(tn):

�ðtnÞ ¼
Z tn

0

vðtÞdt þ �ðt0Þ: ð7Þ

To train the network to maintain a stable heading encoding when v(t) = 0 ˚/s (const.) through-

out the integration time interval, we generated one maintenance activity target ^rCL1am
¼ ^rCL2m

per random heading direction. The optimisation algorithm then minimised the mean squared

error between this target and the network output at every 10th integration time step. Simulta-

neously, to train the network to shift the heading representation when receiving nonzero angu-

lar velocity inputs, we applied one of 64 randomly drawn constant v(t) 2 [−150 ˚/s, 150 ˚/s] for

4

5

th
of the integration time interval, and v(t) = 0 ˚/s for the remaining 1

5

th
of the integration time

interval afterwards. The optimisation algorithm then minimised the mean squared error

between the shift activity targets ^rCL1as
¼ ^rCL2s

resulting from integrating the angular velocity in

the final 10 integration time steps and the network outputs. This choice of identical CL1a- and

CL2-targets was again motivated by the observation that P-EN and E-PG activity maxima

align if the angular velocity is very low [2].

Since there is no unique solution to this optimisation problem, we regularised the mini-

mum with a low-entropy prior. The regulariser promoted similar values for all synaptic
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weights across repeated connectivity structures in the PB and the CBL, i.e., it punished vari-

ance along the diagonals of the quadrants of the connnectivity matrix. This regularization was

intended to produce a visually pleasing appearance of the connectivity matrix [56]. The relative

weight of the regulariser was 0.1.

In Python pseudo-code, the complete objective function used to optimise the synaptic

weights is

Lð~wÞ ¼ ðRCL1a½:: 10� � ^rCL1am
Þ

2
:meanðÞ

þðRCL2½:: 10� � ^rCL2m
Þ

2
:meanðÞ

þðRCL1a½� 10 :� � ^rCL1as
Þ

2
:meanðÞ

þðRCL2½� 10 :� � ^rCL2s
Þ

2
:meanðÞ

ð8Þ

where ~w is the vector of all free parameters, or weights (cf. Eq 2) and RCL1a is the matrix of the

rates of the 16 CL1a-neurons at each time predicted by the model. RCL1a[:: 10] indicates the

rates of all CL1a-neurons at every tenth integration time step, and RCL1a[−10:] indicates the

rates at the final ten integration time steps. ^rCL1am
is the vector of target rates during heading

maintenance and ^rCL1as
is the vector of target rates after shifting the heading direction with

angular velocity input and likewise for the CL2 rates.

Simulations and evaluation

Evaluating the noise robustness of heading and angular velocity integration. We first

explored the effects of altering membrane potentials, synaptic release probabilities, and synap-

tic weights on the accuracy of the integration of heading and angular velocity. We varied the

membrane potentials by adding zero-mean Gaussian noise with standard deviation σU 2 {0.0,

0.1, 0.5, 1.0}mV at every millisecond. We sampled Beta-distributed noise for the synaptic

release probabilities with the mean equal to the noise-free value, and a pseudocount 2 {10,

100, 1000} (These pseudocounts correspond to an approximate coefficient of variation 2 {0.1,

0.01, 0.001}). We chose a Beta distribution because it is range-limited to [0, 1], which is impor-

tant for an interpretation as a probability. Finally, we randomly perturbed synaptic weights by

uniformly distributed multiplicative noise with range 2 {0.01, 0.03, 0.05} at the start of each

integration trial, effectively applying noise to both modulatory and non-modulatory synaptic

weights relative to the original weight strength. For each noise value, we carried out N = 2000

integration trials lasting 4000 ms each. In each trial, the circuit activity was initialised based on

a random heading direction via Eq 6. The angular velocity neurons received angular velocity

inputs generated from lowpass filtered Gaussian noise, to mimic the observed trajectories of

walking locusts. We quantified the accuracy of the heading circuit via the average angular

error between the true heading (cf. Eq 7) and the heading estimate encoded in the activity of

CL1a-neurons:

1

N

XN

n¼1

j½ð�nðtNÞ � �
0

nðtNÞ þ 180�Þ mod 360�� � 180�j ð9Þ

where ϕ(tN) and ϕ0(tN) are the ground truth and estimated heading directions at the final

points in time of each trial. Estimated heading directions ϕ0(tN) were computed as the phase of

the closest fitting cosine to CL1a-neuron activity. The fit was obtained by a linear regression of

the cosine values to the rates rCL1a(tN) with arbitrary amplitude and baseline scaling.

Evaluating the attractor stability of the compass states. We further explored the ability

of the circuit to converge to a stable compass-like heading encoding after a perturbation of
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presynaptic rates and synaptic weights. We added Gaussian noise with a standard deviation

relative to the amplitude of srpre 2 f0:0; 0:1; 0:25; 0:5; 0:75; 1:0g to presynaptic input to the

network at the beginning of the simulation. We also randomly perturbed synaptic weights by

uniformly distributed multiplicative noise with range 2 {0.01, 0.03, 0.05} at the start of each

integration trial. For each value, we carried out N = 1000 integration trials lasting 100 ms each.

In each trial, the circuit activity was initialised via Eq 6 based on a random heading direction.

Throughout the trial, angular velocity neurons received angular velocity inputs generated

from lowpass filtered Gaussian noise. We quantified the stability of the heading circuit via the

mean-squared deviation between the CL1a-neurons’ activity and the best-fitting cosine at the

end of each trial.

Testing of the heading circuit in an agent simulation. Lastly, we tested whether the

heading circuit could guide locomotor behaviour. To simulate a walking locust in a simulated

world, we linked the heading circuit to a circuit that produces outputs for goal-directed steer-

ing [40]. In short, the heading circuit outlined above updates an internal heading representa-

tion by integrating angular velocity information (cf. Fig 3A). We adapted the steering circuit

to produce steering signals by comparing representations of the current heading and a con-

stant goal direction (cf. Fig 3B). In each trial, we initialised the heading circuit’s activity based

Fig 3. Connecting the heading circuit to the goal-directed steering circuit. (A) The heading circuit introduced

above updates an internal heading representation by integrating angular velocity inputs. (B) The goal-directed steering

circuit proposed by [40] produces steering signals to align the current heading with a goal direction representation. (C)

The two circuits can be linked to form a closed loop. Starting with an initial heading representation (at time t0), the

heading representation produced by the heading circuit is used as an input to the steering circuit, which is initialised

with a constant goal direction. The behavioural output of the steering circuit in turn produces angular velocity input

for the heading circuit (at all consequent times t1:N). (D) Topographic organization of TB1-neuron subtypes in the PB,

adjusted from [57]. Magenta squares indicate varicose fibre endings, blue indicates smooth fibre endings. (E)

Connectivity matrix mask for CL1a- and TB1-neurons within the steering circuit, adjusted for projection data from the

locust illustrated in panel D (TB1-neurons) and Fig 2A (CL1a-neurons). Yellow squares indicate potential synapses

without specifying excitation versus inhibition or strength. CL1a-neurons are arranged according to their position in

the PB, TB1-neurons are labelled according to the subtypes with matching arborisations.

https://doi.org/10.1371/journal.pcbi.1012155.g003
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on a heading direction at time t0. At all subsequent points in time, t1:N, the updated heading

representation served as an input to the steering circuit which drove a simulated motor system

that moved the agent. The agent’s behaviour resulted in angular velocities that were fed back

into the heading circuit (cf. Fig 3C). To connect the heading circuit to the steering circuit, we

had to make several adjustments to the original model of [40]: First, the CL1a output of the

heading circuit was transformed via a logistic sigmoid to match the rounded square wave of

CL1 activities of the goal-directed steering circuit. Second, in the original steering circuit, the

current heading direction is represented by two compass bumps across 16 CL1a-neurons. This

is transformed into a single bump across 8 TB1-neurons. Via optimisation, we derived a CL1a-

TB1 connectivity in the steering circuit, to achieve the same with the single bump heading

representation in the 16 CL1a-neurons of our model. The assumptions and optimization tar-

gets are detailed in the following: the optimization was constrained by projection data from

CL1a- [1] and TB1-neurons in the locust [8, 57] (cf. Fig 3D). As outlined above, we assumed

that smooth and varicose fibre endings indicate input- and output sites and that overlapping

fibres with opposite polarity indicate potential synapses. Fig 3E illustrates the resulting poten-

tial synapses from CL1a- onto TB1-neurons within the steering circuit. As there are no data

indicating the weights of these potential synapses, we optimised the CL1a-TB1 connections to

map rounded square wave activities across 16 CL1a-neurons to similar activities across 8

TB1-neurons. The weights were constrained to be positive. Furthermore, we regularised the

solution by a quadratic weight decay to push all unnecessary weights close to zero. Also, we

implemented a -5˚ phase shift between the CL1a and TB1 bumps, to compensate for biases

introduced by rounding the continuous-time representation of our heading circuit to the dis-

crete-time steering model. This implementation-dependent bias necessitated a slightly more

liberal interpretation of the CL1a-TB1 connectivity scheme depicted in Fig 3D, see Fig 4E.

However, we argue that this extended connectivity is still in agreement with the data of [57]

within the error margins of that data.

Third, we aimed to simulate outbound locomotor behaviour during the long-range

phase of a long-distance navigational task [58]. During this phase, the animal maintains its

goal direction based on global cues. In the goal-directed steering circuit, a homing vector is

encoded in CPU4-neurons and updated continuously. The authors of the study introduc-

ing the goal-directed steering circuit [40] suggested that CPU4-neurons could encode a

fixed direction during long-range migration in other insects, and we thus hard-coded a

goal vector fixed in direction and length in this layer, instead of performing continuous

updates.

The ability of the agent to maintain a steady travel direction was quantified by Eq 9, with ϕ
and ϕ0 as the actual and the ideal heading direction (matching the goal direction) of the agent

at the final point in time of the behavioural simulation. At the beginning of each trial, the

agent was placed in the simulated world with a random heading direction. This initial heading

was translated to the initial heading circuit activity rCL1a(t0) and rCL2(t0). A random and fixed

goal direction was encoded in rCPU4(t0:n). The agent then performed 200 steps, with a total

duration of 20 s (an agent time step is 0.1 s long). We explored the effect of displacements by

wind on the agent’s performance. We modelled wind with two parameters: P(translation) is

the probability of a gust of wind that displaces the agent laterally by the magnitude of one step

with each step the agent takes. P(rotation) is the probability of a gust of wind that rotates the

agent by a random magnitude with each step the agent takes. Each gust of wind lasted for a

random duration between 500 to 1500 ms. Translation and rotation were mutually exclusive.

We chose P(translation), P(rotation) 2 {0.0, 0.01, 0.02, 0.03, 0.04} and repeated N = 2000 runs

for each value.
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Results

A proposed circuit for heading and angular velocity integration in the

desert locust CX

The optimised circuit connectivity is illustrated in Fig 4. The CL1a-CL2 connectivity for main-

taining a heading representation encoded in an activity pattern is displayed in Fig 4A. Color

Fig 4. Biologically constrained and optimised feedforward connectivity and neuromodulation. (A,B,C) Effective

connectivity of CL1a- and CL2-neurons. Neurons are arranged according to their position in the PB. Effective positive

(excitatory) synaptic weights are displayed in magenta, negative (inhibitory) ones in blue (with the value range of the left

colorbar). Colors saturate at 25% of the maximal synaptic weight value for better visibility. Panel A displays the

connectivity matrix optimised to maintain a heading signal at zero angular velocity. Panels B and C illustrate the

optimised, modulated circuit connectivity during counterclockwise and clockwise rotation, respectively. (E,F)

Modulatory weights of angular velocity neurons onto synapses between CL1a- and CL2-neurons during

counterclockwise and clockwise rotation, respectively. Positive (upregulating) modulatory weights are displayed in

magenta, negative (downregulating) ones in blue (with the value range of the right colorbar). Note that B and C are the

sums of A+E and A+F, respectively. (D) Optimised connectivity of CL1a- and TB1-neurons within the steering circuit.

CL1a-neurons are arranged according to their position in the PB, and the eight TB1-neurons are labelled according to the

subtypes with matching arborisations. Excitatory synaptic weights are displayed in magenta (with the value range of the

left colorbar). (G,H) Exemplary microcircuits showing the optimised connectivity between a subset of neurons; recurrent

self-connections and connections that are only weakly modulated during turns are omitted for clarity. Panel G illustrates

the effective connectivity supporting activity maintenance in the heading circuit at zero angular velocity. Under these

conditions, neither clockwise (cw) nor counterclockwise (ccw) angular velocity neurons are active, so synapses between

CL1a- and CL2-neurons remain unmodulated. Panel H shows the modulating effect of angular velocity neurons during

counterclockwise turns of the animal, which adjusts the effective connection strengths within the circuit to produce a

shift in the compass bump. For a detailed description of the shift computation, please refer to the text.

https://doi.org/10.1371/journal.pcbi.1012155.g004

PLOS COMPUTATIONAL BIOLOGY A computational model for angular velocity integration in a locust heading circuit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012155 December 20, 2024 13 / 28

https://doi.org/10.1371/journal.pcbi.1012155.g004
https://doi.org/10.1371/journal.pcbi.1012155


saturation indicates unmodulated synaptic weight, i.e. ~g s;i in Eq 2. The solution features uni-

formly excitatory synapses from CL1a- onto CL2-neurons in the PB. In the CBL, CL1a-neu-

rons excite CL1a-neurons arborising in the same PB arm, including excitatory self-

connections, and inhibit CL1a-neurons projecting to the contralateral one. Also in the CBL,

the same pattern emerges in synapses from CL2- onto CL1a-neurons, with additional inhibi-

tory synapses between neurons arborising near the midline of the PB. In the NOL, CL2-neur-

ons from the same hemisphere are interconnected with near excitation (including excitatory

self-connections) and far inhibition. This weight matrix is symmetric, leading to a stable net-

work activity state [59].

Modulatory effects of angular velocity neurons onto synapses between CL1a- and

CL2-neurons induce a shift of the heading signal during turns. Fig 4B and 4C display the effec-

tive, modulated, connectivity (~g tot;i in Eq 2) during counterclockwise and clockwise rotations.

This connectivity results from adding modulatory weights ~gmod;i;j depicted in Fig 4E and 4F to

the connectivity shown in Fig 4A, after scaling them with the pre-synaptic release probabilities

Prel,i,j. The solution features neuromodulation of synapses between all neuron populations in

the PB, in the CBL, and the NOL. The core mechanism driving the shift of the activity bump

during turns relies on neuromodulation of synapses between neurons arborizing in neighbor-

ing columns of the PB, as opposed to the feed-forward mechanisms found in the Drosophila
heading system. The weight modulations during clockwise and counterclockwise turns are

complementary—negative modulatory weights in Fig 4E are positive in Fig 4F and vice versa.

These modulations, which are offset from the diagonals, induce asymmetries in the effective,

modulated weight matrices (see Fig 4B and 4C). This directional bias allows excitation to prop-

agate toward neighboring columns in one direction versus the other, shifting the activity

bump in tune with the animal’s turn direction.

This solution requires angular velocity neurons to exert both up- and down-regulating

effects. Potential biological substrates for this dual effect are addressed in the discussion. The

direction (up- or down-regulation) of modulatory effects is homogeneous across neuron pop-

ulations (given by neuron type and hemisphere), but strengths vary. As for synapses from

CL2-neurons onto CL1a-neurons and for synapses from CL1a-neurons onto CL2-neurons,

modulation is more pronounced at synapses between neurons arborising in the outer- and

innermost columns of the PB. A comparison of the effective connectivity at zero (Fig 4A) and

nonzero angular velocity (see Fig 4B and 4C) reveals that modulation does not substantially

alter overall excitation and inhibition in the circuit since modulatory effects are comparably

weak.

The optimised CL1a-TB1 connectivity is shown in Fig 4D. Note that the connections far

from the diagonal have been pruned, even though they would have been permissible (cf. Fig

3E). This means that only one of the two input domains of each TB1-neuron (cf. blue squares

in Fig 3D) is functionally connected to a CL1a-neuron. Whether this solution emerges from

the noise-free CL1a activities used for the optimisation, the positivity constraint on the

weights, or the weak quadratic regulariser is a question for future investigations.

Fig 4G and 4H show exemplary microcircuits of the effective connectivity between a subset

of neurons in the heading circuit at zero angular velocity and during counterclockwise turns,

respectively. During turns, angular velocity neurons modulate the strengths of connections

between CL1a- and CL2-neurons (see also Fig 4E and 4F).

The interplay of up- and down-regulation around the main diagonals of the connectivity

matrix (in other words, the modulation of synapses between neurons in adjacent PB columns)

serves a computational purpose, effectively yielding a discretised derivative of the sinusoidal

CL1a activity pattern across the PB. The derivative of a sine wave is a cosine wave (and vice
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versa). Any phase-shifted (co)sine wave can be computed by a weighted linear superposition

of a sine and a cosine wave. This mathematical relationship is expressed by the trigonometric

identity [60]:

cosðk � x � D�Þ ¼ a � cos ðk � xÞ þ b � sin ðk � xÞ ð10Þ

Here, a = cos(Δϕ), b = sin(Δϕ), k ¼ 2p

16
and x 2 {0, . . ., 15} indexes PB columns from L8 to R8

(labelling as depicted in Fig 2A and 2B). Consequently, the connectivity modulation intro-

duces a linear combination of a sine and a cosine wave, resulting in a shift of the compass

bump.

Accuracy and robustness of heading and angular velocity integration

The model was evaluated in three different simulations. We first assessed the capability of the

heading circuit for updating an initial heading representation by integrating a time series of

angular velocity inputs (see Fig 5A for an example). Throughout these simulations, both CL1a-

and CL2-neurons consistently exhibited sinusoidal activity patterns, localising in a single max-

imum along the PB. The position of this compass bump aligned with the ground truth heading

direction (Eq 7) and dynamically responded to angular velocity inputs. As in the model of the

locust heading circuit proposed by [36], the compass bump demonstrated the ability to seam-

lessly transition between the lateral ends of the PB. To determine how much neuromodulation

in the PB, CBL and/or NOL contribute to the accuracy of angular velocity integration, we

restricted modulatory inputs to either the CL1a-neurons or the CL2-neurons and re-optimized

the network. We evaluated the average absolute integration error and its standard error at the

Fig 5. The circuit integrates angular velocity signals to update the heading representation and is resilient to noise.

(A) Activity of all neurons of the heading circuit during a noise-free trial of heading- and angular velocity integration.

CL1a- and CL2-neurons are organised according to their position in the PB, revealing a single activity bump along the

PB. The white line indicates the position of the ideal CL1a compass bump corresponding to the ground truth heading

direction computed via Eq 7. (B-D) Accuracy of integration under increasing levels of noise. The angular deviation

between the heading encoded by CL1a-neurons and the true heading is depicted (histograms from 2000 trials).

https://doi.org/10.1371/journal.pcbi.1012155.g005
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simulation endpoint after 2000 trials of 4 s duration each. Errors were 25.05˚ ± 0.39˚ for the

CL1a+CL2 modulated network, 26.83˚ ± 0.45˚ for modulation of CL1a inputs only, and 26.91˚

± 0.39˚ for a network with modulation of the CL2 inputs only. These average errors indicate

that neuromodulation of either or both neuron populations will allow for comparably accurate

angular velocity integration, with a slightly higher accuracy for the CL1a+CL2 modulated

network.

To gauge the robustness of the CL1a+CL2 modulated circuit’s integration capability, we

subjected it to perturbations in three model parameters: membrane potentials, synaptic release

probabilities, and synaptic weights. The circuit exhibited graceful degradation [61] in integra-

tion accuracy with increasing membrane noise. Membrane noise up to 1 mV only marginally

increased the number of larger errors in the heading estimate (cf. Fig 5B). In contrast, even

small amounts of weight noise have a detrimental effect on integration performance (Fig 5C).

The model further demonstrated robustness to noise in the post-synaptic channel opening

probability (Fig 5D). Histogram legend shows pseudocount of noise-generating Beta distribu-

tion. Except for very small pseudocounts, i.e., for high probabilities of nonzero noise, the final

heading representation pointed in the right direction.

We further investigated the attractiveness of activity states. Fig 6A shows the circuit’s ability

to integrate the initial heading encoding and angular velocity inputs under noise-free condi-

tions, resulting in a minimally phase-shifted copy of the initial heading encoding. An illustra-

tive simulation with noise applied to the initial presynaptic inputs producing the initial

heading representation is depicted in Fig 6B. Here, the initially noisy heading signal stabilised

into an almost ideal sinusoidal activity pattern, signifying the emergence of ring attractor

behaviour. Fig 6C displays an example of noise added to synaptic weights, leading to a final

CL1a activity state significantly deviating from the initial heading representation or any phase-

shifted variant. Given sufficient time, the circuit demonstrated resilience in balancing out

noisy initial states caused by perturbations in input rates (cf. Fig 6D). However, the circuit

exhibited reduced robustness and accumulated errors when subjected to perturbations in its

Fig 6. The circuit maintains a sinusoidal activity pattern across the PB. (A-C) show the initial CL1a activity at the

beginning of a trial (blue) and the final activity after 0.4 s (magenta). Yellow circles indicate the sine wave best fitting to

the final activity. Neurons are arranged according to their position in the PB. Panel A shows an example trial with no

added noise, panel B depicts a trial with added presynaptic rate noise, and panel C shows a trial with added weight

noise. (D-E) Development of the relative mean-squared error (RMSE) between the activity of CL1a-neurons at the end

of each trial and the best-fitting sine (mean ± SD from 2000 trials). Panel D shows the network converging from noisy

initial CL1a activity patterns to less noisy states. Panel E shows that the network activity gets more noisy with added

weight noise.

https://doi.org/10.1371/journal.pcbi.1012155.g006
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connectivity induced by noise in synaptic weights (cf. Fig 6E), emphasising the optimality of

the optimised circuit connectivity.

Lastly, we conducted agent simulations to gauge the heading circuit’s efficacy in guiding

locomotion in a predetermined goal direction. Fig 4D shows our CL1a-to-TB1 connectivity in

the goal-directed steering circuit, modified from the connectivity reported by [40]. In this solu-

tion, each TB1-neuron receives excitatory inputs from two adjacent CL1a-neurons, not from

one CL1a-neuron from each hemisphere as in the original model (cf. [40] S5 Fig (B)). The sim-

ulations explored the agent’s ability to maintain a fixed goal direction for 20 s. Fig 7A and 7B

show example trials without and with added wind perturbations, respectively. Each trial

started with the agent executing a turning manoeuvre to align its heading with the goal direc-

tion. Note that the agent lacks the ability to rotate on the spot or to move sideways. In Fig 7A,

the agent’s heading did not improve after an initial approximate alignment with the goal direc-

tion. This may be due to a residual heading error that is too small to be corrected. In contrast,

Fig 7B shows how the introduction of wind perturbations provides more pronounced feedback

that helps the agent adjust its heading direction more effectively towards the goal. Upon being

displaced by a wind gust, the agent resumed its previous heading. Note that the agent is not

equipped with wind sensors and regulates its movements simply by comparing its current

heading to the fixed goal heading. The agent exhibited robust performance across diverse

probabilities of external translations and rotations, effectively balancing out the effects of per-

turbations. Fig 7C and 7D illustrate errors in the heading direction at the end of each simula-

tion. The distribution of angular deviations is bimodal, indicating that the system frequently

experiences minor deviations to the left and right from the goal direction but reaches exact

zero deviation less often. S1(A) and S1(B) Fig demonstrate the ability of the agent to maintain

straight-line orientation under conditions with different probabilities of being translated (A)

or rotated (B) by wind. These panels demonstrate that left and right errors occur equally often

and that overall error decreases over time, suggesting that these deviations tend to cancel each

other out if they don’t systematically accumulate in one direction. Importantly, these minor

Fig 7. Combined, the heading circuit and the adapted goal-directed steering circuit robustly guide motion in a

goal direction, also in the presence of perturbations. (A-B) Example traces illustrating the agent’s motion from a

starting location. The agent aligns its initial heading with the goal direction and moves in that direction. Panel A

depicts a scenario without external perturbations, while panel B shows a simulation where gusts of wind cause

translation and rotation of the agent. (C-D) Distribution of angular deviations between the goal heading and the

agent’s actual heading after 20 s (histograms from 2000 trials) under increasing probabilities of translations and

rotations of the agent. In all simulations, an agent time step is 0.1 s long, and the heading circuit is integrated in 1 ms

increments.

https://doi.org/10.1371/journal.pcbi.1012155.g007
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deviations are part of the system’s adaptation to dynamic conditions and do not significantly

affect the agent’s overall ability to maintain goal-directed locomotion. Together, these results

demonstrate the simulated agent’s capability to carry out goal-directed locomotion in the pres-

ence of environmental perturbations. Notably, rotational perturbations can improve straight-

line navigation: the bimodal error distribution in Fig 7 becomes more unimodal with increas-

ing rotational perturbations. This is likely due to the larger error signals that are available

under rotationally perturbed conditions compared to either unperturbed conditions or trans-

lation-only perturbations.

The comprehensive evaluations conducted on the proposed circuit consistently demon-

strate its robust and reliable performance. While instances of failure emerged under extreme

conditions surpassing the network’s noise tolerance, the model exhibits remarkable resilience

against minor variations in any parameter or state variable, except for noise added to its con-

nectivity, which emerges as a pivotal network property. These findings underscore the circuit’s

potential for stable and accurate functioning in diverse environmental conditions, and they

highlight the effectiveness of the connectivity solution obtained through optimisation.

Discussion

Expanding on earlier linear models [35, 44], our study introduces a dynamical synapse firing

rate model of angular velocity integration in a locust heading circuit. In contrast to analogous

fruit fly models, this novel model exhibits a different compass topography and relies on neuro-

modulatory, rather than feed-forward, angular velocity inputs.

Our work is situated within the broader context of insect heading circuits, drawing inspira-

tion from models in the fruit fly [2, 32, 62] and other insects [41]. Comparative modeling eluci-

dates adaptations of navigation circuits to species-specific demands, contributing to our

broader understanding of adaptive neural circuits. A recent comparative modeling study ana-

lysed structural differences between heading circuits in the fruit fly and desert locust [36] but

did not account for data suggesting a striking functional difference. Notably, while the fruit fly

circuit involves a 2 × 360˚ compass mapping along the PB, our model assumes a single 360˚

heading representation. This distinction is implied by physiological data revealing the pre-

ferred heading directions of individual CX cells in stationary animals [6, 33, 34, 63]. It remains

to be seen whether this fixed 360˚ topography is preserved during active walking or flight. Our

study aims to serve as a proof of concept, exploring whether such a topography can produce a

stable compass signal.

Model constraints and properties

The model comprises CL1a- and CL2-neurons along with an abstract class of angular velocity

neurons. It was constrained by morphological and functional data. Under-constrained con-

nectivity parameters were derived via optimisation.

Heading direction is encoded in the phase of a cosine wave across the PB in our model. The

notion of (co)sine waves across neural populations as representations of heading has been a

longstanding topic in the literature [64]. Recent advancements, particularly the work by Acei-

tuno and colleagues [65], have underscored their optimality under fairly general conditions,

particularly concerning robustness against noise. Our model successfully updates a heading

representation by integrating angular velocity signals and is robust to noise. The fruit fly

model by [2] posits asymmetric feed-forward angular velocity inputs to the two halves of the

PB that additively modulate firing rates in the heading circuit. Instead of relying on such feed-

forward inputs, our model features neuromodulatory angular velocity inputs that effectively

phase-shift the heading signal through multiplicative modulation of firing rates [43], cf. Eq 10.
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While our model focuses on synaptic-level neuromodulation, other mechanisms could also

achieve multiplicative effects. For instance, multiplication can occur through exponentiation

by active membrane conductances of summed logarithmic inputs, nonlinear dendritic interac-

tions, or network dynamics [66]. An anatomical offset between the projections of E-PG- and

P-EN-neurons in the PB and EB of Drosophila has been proposed to facilitate activity bump

shifts across these regions in both theoretical and computational models [2, 32]. A similar off-

set is conserved across species [37] and is mirrored in our circuit’s connectivity (see Fig 2 for

the CL1a and CL2 projection schemes and their derived connectivity). However, because our

model employs single-compartment neurons, we do not explicitly separate neuron endings in

different neuropils of the CX. Exploring this anatomical distinction and its effects on compass

bump dynamics will be a key focus for future modeling efforts.

To complement the holistic description of the compass bump shift (Eq 10) with a circuit-

level explanation, consider the microcircuits in Fig 4B and 4H, which show only the synaptic

connections that are strongly modulated by angular velocity neurons during turns. We

describe the bump shift from the perspective of neuron CL1aL5 arborising in PB column L5

(cf. Fig 2A and 2B for labelling of PB columns). During straightforward movement (or stand-

ing still), this neuron receives approximately equally strong excitatory inputs from its left and

right neighbors, CL1aL6 and CL1aL4, respectively (cf. Fig 4G). Thus, the total input received by

CL1aL5 from its neighbours is an average of its own activity, and this balance stabilizes the

compass activity against noise.

When the animal turns counterclockwise, the connection to CL1aL6 is up-regulated, and

the connection to CL1aL4 is down-regulated (see Fig 4H). If CL1aL5 is on the rising flank of the

sinusoidal compass bump, where CL1aL6 fires less than CL1aL4, the net input to CL1aL5

decreases, reducing its firing rate. This reduction is necessary to shift the activity bump to the

right. If CL1aL5 is on the falling flank of the bump, where CL1aL6 fires more strongly than

CL1aL4, strengthening the connection from CL1aL6 to CL1aL5 increases the net input to

CL1aL5, raising its firing rate. When CL1aL5 is on the falling flank, this increase is needed for

the bump shift to the right. The modulated connections from CL2-neurons CL2R3 and CL2R5

to CL1aL5 further amplify this effect, supporting the coordinated action of CL1a-neurons

CL1aL4 and CL1aL6 in achieving the bump shift.

In contrast to the fruit fly CX, the locust CX lacks a ring-shaped structure. However, our

proposed circuit exhibits key functional ring attractor properties as described in the fruit fly

[2, 32, 67]. Our model shares these properties with a previous model of the locust heading cir-

cuit featuring a 2 × 360˚ compass representation [36]. These properties include the localisation

of input to a single maximum, flexible and cyclic movement of this maximum along the

attractor space, and sustained activity in the absence of input. Despite structural deviations

from the fruit fly model, the shared ring attractor dynamics suggest convergent solutions to

navigation tasks.

Our model of the locust heading circuit could be refined by including recurrent connec-

tions from TB1- or TB2-neurons (notice that TB1-neurons are currently not included in the

heading circuit itself but appear at its interface with the goal-directed steering circuit).

Whether our proposed 360˚ heading representation would still emerge with these recurrent

connections remains to be seen. Franconville et al. [12] reported that connections from E-PG-

onto P-EN-neurons in the PB are mediated by Δ7-neurons rather than being mono-synaptic.

Similarly, [62] attribute the same intermediary role to Δ7-neurons (referred to as bridge neu-

rons by [9]) in their model of the fruit fly PB. In the locust, TB1- and TB2-neurons may have a

similar intermediary function. Notably, TB1a- and TB2-neurons innervate the innermost col-

umns of the PB [57, 68] (cf. Fig 3D). Their role should be investigated in light of new evidence
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suggesting that the innermost columns in the locust PB consist of two hemi-columns with

divergent projection patterns [69].

Neurobiological plausibility

The effective connectivity of our circuit model is an abstraction of the biological substrate.

First, it was regularized by a simple assumption which we made in the absence of detailed bio-

logical data: anatomically similar structures might perform similar physiological functions.

Second, neurons in the model can have both excitatory and inhibitory effects on other neu-

rons. Biological implementations could feature additional interneurons, or neurons with

opposing effects within the same column of the PB. Electron microscopy studies such as those

by [70] could reassess the model’s connectivity. Likewise, the two angular velocity units

included in our model, one tuned to clockwise and one tuned to counterclockwise turns, exert

up- as well as down-regulating effects on the circuit connectivity through the release of neuro-

modulators. These modulations may require more complex biological mechanisms than our

model directly represents. For instance, it is plausible that different CL2-to-CL1a connections

from the same presynaptic neuron could be modulated differently during the same turn, a pro-

cess that might involve distinct neuromodulators or receptor-specific effects. This complexity

could be achieved through spatially segregated synapses with different receptor expressions, or

through co-transmission of neuromodulators with opposing actions, depending on the context

and intracellular signaling cascades. Such effects could biologically be implemented in tangen-

tial neurons innervating the PB (TB3-TB8-neurons), CBL (TL-neurons), and the lower unit of

the NO (NOL, TNL-neurons), most likely through processes more complex than those

described in our model. For example, additional interneurons could effectively turn up- into

down-regulation. Another explanation could be that the up- or down-regulating effect of the

same modulators depends on postsynaptic receptors or signal cascades. While the presence of

neuromodulatory transmitters suggests potential for modulation, their effectiveness in our

model relies on more than just their presence. Specifically, for the model to work as intended,

these transmitters must be able to both up- and down-regulate synaptic strengths with appro-

priate timing. Long-lasting neuropeptides, for instance, may not be able to provide the rapid

and reversible modulation required. Future experiments should focus on determining whether

the temporal dynamics of neurotransmitter release and modulation align with the require-

ments of our model. An additional possibility is the co-transmission [71, 72] of up- and down-

regulating neuromodulators. This assumption contradicts the classical view that each neuron

releases a single neurotransmitter, leading to the “one neuron, one transmitter” hypothesis

[73], coined as “Dale’s Principle” by [74]. However, many neurons are capable of releasing

multiple neurotransmitters [75–78], and this may also be the case in the locust CX. To validate

the general concept of tangential neurons acting as angular velocity neurons modulating the

circuit connectivity, functional studies could assess whether TB-, TL- and TNL-neurons

indeed respond to rotation cues and whether they have modulatory effects on columnar neu-

rons. In fruit flies, GLNO-neurons have been identified as providers of rotational velocity

information to P-EN-neurons, prioritizing motor signals while using visual information only

under specific conditions [13]. Investigating whether analogous TNL-neurons in locusts [8,

11, 51] perform similar functions could enhance our understanding of the evolutionary con-

servation of these circuits across insect species.

Furthermore, the recurrent connectivity (see Fig 4A) and the attractor simulations indicate

a low-pass filtering of the activity of the CL1a-neuron population. This could be tested in

simultaneous neuro-stimulation and multicellular recording experiments, by injecting a noisy

activity state into the PB and recording its development in time.
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Regarding the employed neuron model, the use of steady-state firing rate neurons is an

abstraction, and future studies need to verify that the model’s basic principles of heading and

angular velocity integration carry over to an implementation with spiking neurons. We have

further assumed the same integration and firing dynamics in all neurons, which is likely an

oversimplification and might be refined in a more comprehensive CX model. The dynamics of

the neurons modelled in our study were constrained by data from homologous neurons in the

fruit fly Drosophila melanogaster[2]. Obtaining corresponding data from the locust is crucial

to explore potential differences in integration and firing dynamics specific to this species. Test-

ing whether a lead-lag relationship between the activity maxima of E-PG- and P-EN-neurons

as reported by [2] also manifests itself in CL1a- and CL2-neurons could be done with multi-

compartmental models to capture the action potential transmission time along neurites.

Simulation of goal-directed locomotion

In order to simulate locomotor behaviour, we supplied the heading representation of our

model to a goal-directed steering circuit [40]. In this model, a homing vector is encoded in

CPU4-neurons and constantly updated. We encoded a fixed goal direction in the CPU4--

neuron population to produce steering behaviour as it would be expected during long distance

migration, but other cell types are also possible candidates. In the monarch butterfly, goal

direction neurons have recently been discovered [79] but were not identified morphologically.

However, they could be similar to FC2- and PFL3-neurons in the fruit fly FB (corresponding

to CU- and CPU1-neurons in the locust CBU) shown to encode goal directions [5].

In conjunction with the modified goal-directed steering circuit [40], our model can make

behavioural predictions. Comparing reaction times of freely moving locusts to shifting visual

targets in virtual reality experiments would allow deriving bounds on the functional synaptic

delays in our circuit model. Furthermore, such data would allow for the comparison of our

model’s feedback control strategy [80] with locust behaviour.

The behavioural simulations conducted in this study are inspired by the initial phase of the

proposed three phases of long-range navigational tasks [58]. During this phase, the animal

maintains a steady travel direction, guided by global cues. The subsequent short-distance and

pinpointing-the-goal phases rely on increasingly specific local cues, underscoring the complex-

ity of successful long-range migration. The evaluations of the simulations we conducted here

show that our proposed mechanism for angular velocity integration is robust enough to update

the heading signal while other inputs are lacking or are unreliable for a short while. To allow

inferences about the circuit’s stability during long-range migration, multimodal cues should

be available throughout simulations.

Our current approach involves initializing the activity of the heading circuit based on an

initial heading direction and then supplying only angular velocity inputs to update the internal

heading signal. To increase the model’s realism, we plan to incorporate sky compass cues into

the integration process. This will make the pathway from sky inputs to an internal heading

representation with a single compass bump across the PB explicit, inspired by models featuring

two compass bumps across the PB [41, 81]. Our understanding of the effective fusion of multi-

modal cues into a stable heading signal in the desert locust could be furthered by a computa-

tional-level analysis (following the framework of [82]) of the heading circuit. This would allow

comparisons with similar models and studies of other insects, such as [83] and [84], and

exploring the computational principles implemented in the circuit in greater detail. Specifi-

cally, adopting an ideal observer model [85] could make the circuit’s objectives under different

conditions explicit. Given the potential for conflicting information between different cue

modalities in experimental manipulations, simulating experiments under both naturalistic and
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laboratory conditions is crucial for a comprehensive evaluation of such a model’s

performance.

Identifying fundamental neuronal and computational principles of orientation across dif-

ferent spatial and temporal scales requires future research. In particular, it should be investi-

gated how the various phases of navigation tasks are integrated, which cues are relevant in

each action space [86], and how an animal’s environment, body, and neural system [87] are

coupled.

Predictions and open questions for future research

In the previous discussion, we proposed several avenues for future experimental investigations

aimed at rigorously testing our model of the locust heading circuit. Below, we summarize the

key predictions and open questions derived from our model and its implications:

1. Validating the assumption of a single compass bump in the PB using whole-population

imaging techniques: Our proposed circuit predicts a single compass bump along the PB, in

contrast to the dual bumps observed in fruit flies using two-photon calcium imaging of the

entire population of compass neurons [32]. If such imaging techniques were available in the

locust, similar experiments would show whether our assumption holds. Dual bumps would

falsify our proposal. A single bump would constitute algorithmic-level (but not mechanis-

tic) evidence in favor of our model.

2. Investigating model connectivity via electron microscopy: We anticipate that detailed

electron microscopy studies of CL1a- and CL2-neurons as well as tangential neurons will

uncover additional synaptic connections within the heading circuit of the desert locust,

refining the connectivity assumptions underlying our model.

3. Assessing temporal dynamics alignment: Future experiments, e.g. simultaneous pre- and

postsynapic intracellular recordings, should determine whether the temporal dynamics of

neuromodulation and its electrophysiological consequences align with our model. For

example, is the magnitude modulation of post-synaptic potentials in line with our

predictions?

4. Examining the role of tangential neurons in angular velocity integration: We expect

physiological studies to show that TB-, TL-, or TNL-neurons respond to rotational cues,

comparable to GLNO-neurons in the fruit fly [13]. Further functional studies of the modu-

latory neurotransmitters detected in these tangential neurons [8] could validate their roles

in our model of the locust heading circuit.

5. Examining the role of TB-neurons: We predict that including TB1- and TB2-neurons in

future models will reveal significant contributions to heading representation, enhancing

our understanding of their potential role as intermediaries in the circuit.

6. Implementing spiking neuron models: We anticipate that spiking neuron models will rep-

licate the principles of heading and angular velocity integration implemented in our model.

This would confirm our model’s applicability to biological systems and underscore neuro-

modulation as a potential mechanism for introducing asymmetries into heading circuits

[43].

7. Testing lead-lag relationships between CL1a and CL2 activity bumps: Future circuit

models employing multi-compartmental neurons should demonstrate reversed lead-lag

relationships in the activity of CL1a- and CL2-neurons between the PB and CBL, mirroring

findings from E-PG- and P-EN-neurons in the fruit fly [2].
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8. Determining synaptic delays: We expect that experiments on reaction times to shifting

visual target stimuli in locusts will yield upper bounds for our assumptions about synaptic

delays. Two-photon calcium imaging studies of CL1a- and CL2-neurons in locusts, as per-

formed with E-PG- and P-EN-neurons in fruit flies [2], would be crucial for exploring spe-

cies-specific differences in integration and firing dynamics of the involved neurons.

9. Investigating low-pass filtering dynamics: We predict that simultaneous neuro-stimula-

tion and multicellular recordings at different positions in the PB will indicate that the

CL2-neurons’ activity is a low-pass filtered version of the CL1a-neurons’ activity, when the

latter are stimulated. Furthermore, it will be interesting to see if the time constants of this

low-pass filter are comparable to those deduced from Drosophila data, i.e. in the order of

100 ms (see supporting information S2 Text).

10. Assessing multimodal cue integration: Simulating cue integration in both naturalistic

and laboratory conditions should reveal how well the model performs under conflicting

cues, allowing comparisons with studies of other insect species [83, 84].

11. Incorporating sky compass cues: We expect that integrating sky compass cues will

enhance the accuracy of the model’s heading estimate and its predictive capacity for natu-

ral heading updates. This would close the loop between environment, body, and brain

[87], allowing for simulations of experiments from both field and laboratory settings.

12. Exploring integration across temporal and spatial scales: Future research should investi-

gate how different phases of navigation tasks are integrated, particularly focusing on which

cues from a multimodal set are most relevant for orientation in each context [17, 86].

Supporting information

S1 Text. Neuron model derivation.

(PDF)

S2 Text. Functional transmission delays between CL1a- and CL2-neuron populations.

(PDF)

S1 Fig. Supplementary Figure to Fig 7. Mean-squared deviation between the agent’s heading

estimate and the ground truth heading direction, averaged over 1000 trials lasting 20 s each,

recorded every 5 s. Panels A and B demonstrate the ability of the agent to maintain straight-

line orientation under conditions with different probabilities of being translated (A) or rotated

(B) by wind. Solid lines show the mean angular deviation, dashed lines are mean ± one stan-

dard deviation. For details, see text.

(TIF)

S2 Fig. Sigmoid rate function approximation. Green dotted line: rate function of the ideal

integrate-and-fire neuron without noise. Blue dashed line: rate function with σ = 8 mV mem-

brane noise, averaged across 1000 simulations. Solid orange line: best fit obtained with a logis-

tic sigmoid. For details, see text.

(TIF)

S3 Fig. Two integrate-and-fire neurons n1, n2 connected by an excitatory synapse. Top

panel: sinusoidal input current to n1. Second panel: membrane potential and spikes of n1.

Third panel: membrane potential and spikes of n1. Bottom panel: post-synaptic open
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probability Pn1!n2
.

(TIF)

S4 Fig. Comparison of integrate-and-fire neuron rates to rate neuron model predictions.

Top panel: rate of neuron n1. Histogram computed from 1000 repetitions of the integrate-and-

fire simulation. Lines show rate model predictions with a Poisson synapse. Bottom panel: rate

of neuron n2.

(TIF)
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