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a b s t r a c t

The learning of new facial identities and the recognition of familiar faces are crucial pro-

cesses for social interactions. Recently, a combined computational modeling and func-

tional magnetic resonance imaging (fMRI) study used predictive coding as a biologically

plausible framework to model face identity learning and to relate specific model parame-

ters with brain activity (Apps and Tsakiris, Nat Commun 4, 2698, 2013). On the one hand, it

was shown that behavioral responses on a two-option face recognition task could be

predicted by the level of contextual and facial familiarity in a computational model derived

from predictive-coding principles. On the other hand, brain activity in specific brain re-

gions was associated with these parameters. More specifically, brain activity in the supe-

rior temporal sulcus (STS) varied with contextual familiarity, whereas activity in the

fusiform face area (FFA) covaried with the prediction error parameter that updated facial

familiarity.

Literature combining fMRI assessments and computational modeling in humans still

needs to be expanded. Furthermore, prior results are largely not replicated. The present

study was, therefore, specifically set up to replicate these previous findings. Our results

support the original findings in two critical aspects. First, on a group level, the behavioral
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responses were modeled best by the same computational model reported by the original

authors. Second, we showed that estimates of these model parameters covary with brain

activity in specific, face-sensitive brain regions. Our results thus provide further evidence

that the functional properties of the face perception network conform to central principles

of predictive coding. However, our study yielded diverging findings on specific computa-

tional model parameters reflected in brain activity. On the one hand, we did not find any

evidence of a computational involvement of the STS. On the other hand, our results

showed that activity in the right FFA was associated with multiple computational model

parameters. Our data do not provide evidence for functional segregation between partic-

ular face-sensitive brain regions, as previously proposed.

© 2023 Published by Elsevier Ltd.
1. Introduction

The recognition of familiar faces is crucial for appropriate

social interactions. Recognizing a familiar face comprises the

recognition of someone's visual appearance and entails the

spontaneous retrieval of autobiographical information and

the triggering of appropriate emotional responses. At the

neural level in humans, the recognition of familiar faces is

associated with a distributed hierarchical cortical brain

network. This network is often divided into a core system and

an extended system (Duchaine & Yovel, 2015; Haxby, Hoffman,

& Gobbini, 2000; Said, Moore, Engell, Todorov, & Haxby,

2010). The core system encodes the visual appearance of a

face, and it consists of at least three bilateral, typically right-

lateralized regions: the occipital face area (OFA) in the infe-

rior occipital gyrus, the fusiform face area (FFA) in the lateral

fusiform gyrus, and the posterior superior temporal sulcus

(pSTS). The OFA, as the hierarchically first stage of the face-

processing network, is typically associated with the analysis

of invariant facial features like eyes ormouth and the decision

of whether an object is a face or not (Pitcher, Walsh, &

Duchaine, 2011). The FFA mainly processes abstract high-

level features of faces and therefore plays a key role in

recognition of familiar identities (Kanwisher, McDermott, &

Chun, 1997; Kanwisher & Yovel, 2006), although specificity

and invariance of FFA activation/representation are still

debated (see, e.g., Tsantani et al., 2021 or Burns, Arnold, &

Bukach, 2019). The pSTS is involved in perceiving change-

able features of faces, such as expression and eye gaze. It has

also been associated with recognizing familiar visual

appearance linked to the perception of dynamic components

characteristic of an individual (O'Toole, Roark, & Abdi, 2002).

The extended system is involved in extracting further infor-

mation that a face can convey (Haxby et al., 2000). Diverse

cognitive processes related to our ability to recognize familiar

faces have been linked to multiple brain regions. Anterior

temporal areas are associated with the representation of se-

mantic and biographical information, while the precuneus is

related to the retrieval of episodic memories. The amygdala

and the insula, areas involved in the representation of emo-

tions, have been related to the processing of emotional re-

sponses associated with the recognition of specific faces.

Familiar faces also recruit “Theory of Mind” areas, such as the
temporoparietal junction (TPJ), to a more significant extent

than unfamiliar faces because they are more strongly associ-

ated with personal knowledge (Gobbini et al., 2007). The

computational processes that underlie the learning of facial

identities, i.e., the transition of faces from unfamiliar to

familiar, are still poorly understood in humans.

In theory, these processes could be modeled within the

meta-framework of the Hierarchical Mechanistic Mind (HMM,

Badcock, Friston, & Ramstead, 2019; Badcock, Friston,

Ramstead, Ploeger, & Hohwy, 2019), subsuming the recent

neuro-theoretic frameworks of the Bayesian brain, predictive

coding, and active inference under the free-energy principle.

Following the HMMmeta-framework, predictive coding (PC) is

a neurobiologically plausible algorithmic and implementa-

tional scheme describing how inference over the latent causes

of sensory input might be implemented in humans and other

mammals (Clark, 2013; Hohwy, 2020; Keller & Mrsic-Flogel,

2018). PC rests on the proposition that the brain implements

a hierarchical probabilistic generative model of the world,

which constantly maintains a set of hypotheses about the

expected sensory input, thereby coding the generative

mechanisms causing the sensory input under consideration

of context and previous experience. This generative model

uses these hypotheses to predict each level of the computa-

tional hierarchy regarding how likely a sensory input is to be

expected under a given generative hypothesis. The pre-

dictions derived from each of the hypotheses maintained by

the internalmodel and sensory data are compared to calculate

a prediction error. The brain then attempts to infer the causes of

the sensory input by iteratively reducing this prediction error

either by an update of the internal generative model (i.e.,

“explaining away” the prediction error/updating hypotheses

and predictions) and/or by choosing appropriate actions (e.g.,

deciding to acquire more sensory data or to modify the envi-

ronment to conform to the predictions). During the last

decade, PC has been examined in various studies to describe

the functional brain organization, and canonical cortical cir-

cuits have been proposed (Keller & Mrsic-Flogel, 2018). The PC

framework has now been used in a wide range of neuro-

imaging studies, from visual perception to higher cognitive

processes, e.g., language (Brodski-Guerniero et al., 2017; Lewis

& Bastiaansen, 2015; Rauss, Schwartz, & Pourtois, 2011; Shipp,

Adams, & Friston, 2013) or memory (Barron, Auksztulewicz, &

Friston, 2020; Frank & Kafkas, 2021). In summary, it can be
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concluded that PC-consistent approaches for studying multi-

ple neuroscientific phenomena have emerged as plausible and

useful process models (Teufel & Fletcher, 2020).

Consequently, it has also been proposed that examining

the hierarchical nature of facial processing under a PC

perspective might help disentangle current issues with

apparently contrary results regarding the specificity and hi-

erarchy within the core and extended face networks. Indeed,

in themacaque face-processing system, preliminary evidence

has been reported for neuronal computations consistent with

PC, which helped advance the field (Freiwald, 2020; Issa,

Cadieu, & DiCarlo, 2018; Meyer & Olson, 2011; Schwiedrzik &

Freiwald, 2017). However, some of the prior literature yielded

negative results regarding PC consistency in macaque facial

processing studies (e.g., Kaliukhovich & Vogels, 2011; Vinken,

Beeck, & Vogels, 2018; Vogels, 2016).

In humans, using task-based functional magnetic reso-

nance imaging (fMRI), a large body of literature also indicates

the compatibility of activity in relevant cortical face-

processing areas with predictive coding accounts (Freiwald,

2020; Summerfield, Trittschuh, Monti, Mesulam, & Egner,

2008; Summerfield & Koechlin, 2008; Summerfield & Lange,

2014; Trapp, Schweinberger, Hayward, & Kov�acs, 2018).

Notably, a previous studymodeled face-stimulus-induced FFA

activation in humans via PC-consistent computational

mechanisms (Egner, Monti, & Summerfield, 2010). Their study

demonstrated that FFA activity in a cued object/face

discrimination task was best modeled by a group-level (fixed-

effects) regression model using expectation and error-related

responses as regressors.

Following the previously mentioned results, in this work,

we were focused specifically on fMRI and computational

modeling results for a PC-consistent neural hierarchy in the

human face processing system. Importantly, human results

are available, including computational modeling-informed

fMRI approaches. Here, we decided to replicate a multi-

modal study by Apps and Tsakiris (2013) that successfully

employed a PC-consistent behavioral auto-regressive (time-

series) computational model in combination with task-based

fMRI. To our knowledge, this was the first successful model

of this kind. The original authors modeled informed fMRI

analysis with a facial identity learning paradigm to examine

the in-principle compatibility of neural activity in the face-

processing framework with PC-derived computational hy-

potheses. Apps and Tsakiris (2013) expanded upon the prior

literature with new computational models formalizing mul-

tiple competing hypotheses regarding face identity learning.

Firstly, their computational modeling approach improved

upon themodel by Egner et al. (2010) in two important aspects:

(a) it allows a subject-level model-fitting procedure, thereby

enabling random-effects analyses of estimated individual

model parameters (e.g., learning rates) and (b) estimation of

trial-by-trial values of dynamic latent variables (e.g., predic-

tion errors) thought to be represented by the subject during

task performance.

In this work, we performed a replication of the effects of

Apps and Tsakiris (2013) that is akin to a direct replication.We

followed in our approach the definition of a direct replication

as “a study that attempts to recreate the critical elements (e.g.,

samples, procedures, and measures) of an original study” but “[…]
does not have to duplicate all aspects of an original study. Rather it

must only duplicate those elements that are believed necessary for

producing the original effect.” (Zwaan, Etz, Lucas, & Donnellan,

2017, p. 3, p. 3). To identify replication candidates, we per-

formed a literature overview, and the study by Apps and

Tsakiris (2013) emerged as the replication candidate with the

highest expected utility upon replication (Isager, et al., 2021a,

b) in its field using this specific methodology and theoretical

background. The literature overview was performed over the

years 2000e2021 with the key topics ‘face processing,’

‘computational modeling,’ ‘predictive processing,’ and ‘fMRI,’

including their synonyms (see Supplementary material/

Appendix A and B for exact keywords, parameters, and full

results; see Table 1 for study details of the two relevant

replication candidates after screening). Furthermore, we

estimated the expected utility gain of replication specific for

each of the replication candidates via the replication value

(RVCn; Isager, et al., 2021a, b).

The results of our literature overview were further

corroborated by Trapp et al. (2018), where the authors high-

light abundant attempts in the literature to leverage the well-

researched neural facial processing system to empirically test

PC hypotheses without reference to existing cognitivemodels.

The authors contrasted this with the relative scarcity of

literature that attempts to test the general compatibility of

cognitive face processing models with PC principles or to

reformulate current cognitive models in a predictive frame-

work. Contrary to this latter trend, Trapp et al. (2018) singu-

larly identified the study by Apps and Tsakiris (2013) as the

first successful attempt to connect high-level face recognition

processes with PC principles in humans.

Within the PC framework, Apps and Tsakiris (2013)

modeled face identification as a function of contextual infor-

mation and stimulus familiarity. In PC, contextual information is

used to shape the prediction of, e.g., how familiar an up-

coming stimulus will likely be, thereby modulating the pro-

cessing of that stimulus. Context can be operationalized, for

instance, by the familiarity with objects that are presented

before the presentation of a target stimulus. Stimulus famil-

iarity naturally also influences the recognition process. To

operationalize both influences on the face recognition pro-

cess, Apps and Tsakiris (2013) constructed a cognitive task

where subjects were repeatedly shown computer-generated

faces presented from different viewpoints (front on or at a

30� angle from the right or left). Stimulus familiarity was oper-

ationalized by the number of times a specific facial identity

was presented before a given trial overall and contextual fa-

miliarity was operationalized by the general level of stimulus

familiarity in the immediate history of a given trial, i.e., the

number of ‘familiar’ faces previously presented. All face

stimuli were unknown at the beginning of the experiment to

the subjects and some facial identities were pseudo-randomly

shown more often than others. As a result, familiarity and

contextual information were varied systematically over the

stimulus presentation. The participants were required to

indicate in a two-option forced-choice task whether they had

seen that person before or not, regardless of the specific

viewpoint. Importantly, Apps and Tsakiris (2013) developed a

set of computational models coding multiple computational

hypotheses consistent and inconsistent with the PC

https://doi.org/10.1016/j.cortex.2023.05.021
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Table 1 e Two remaining relevant replication candidates after screening with relevant study details. A higher replication
value indicates a higher expected utility upon replication. See Supplementary material/Appendix A for exact formula of
replication value.

Year of
publication

Number
of citation

Age in
years

Yearly citation
rate (2021)

Effective
sample size

Replication
value (RVCn)

Stefanics et al. 2019 6 2 3.0 35 .58

Apps and Tsakiris 2013 20 8 2.5 16 1.66

c o r t e x 1 6 8 ( 2 0 2 3 ) 2 0 3e2 2 5206
framework. Their models allowed the computation of unique/

idiosyncratic parameters like learning rates and trial-by-trial

estimates of hidden quantities like prediction errors. Their

winning PC-consistent model was able to make predictions

about how each face presentation increased the probability

that the same face will be recognized and how such effects

might be modulated by contextual information.

On a behavioral level, Apps and Tsakiris (2013) demon-

strated that subjects showed a clear learning effect, catego-

rizing the faces as familiar themore times a facial identity had

been presented. In their behavioral task, they showed that

responses on the face recognition task could be predicted by

the level of both contextual familiarity and stimulus famil-

iarity irrespective of viewed perspective. Using fMRI, they

further showed that activity in the FFA varied with the trial-

by-trial prediction error parameter that updated stimulus fa-

miliarity. Activity changes in the pSTS were associated with

contextual familiarity. Taken together, their results charac-

terized, both at the behavioral and at the brain level, key

computational mechanisms underlying the perceptual

learning of faces. The examination of facial processing with

combined computational modeling and functional neuro-

imaging is fruitful from a basic neuroscientific perspective but

is unfortunately rare and not replicated in the current

literature.

In summary, the present study aimed at replicating the

central findings and methodology of Klicken oder tippen Sie

hier, um Text einzugeben (2013). Our replication goals were

focused on a direct replication of the original findings. How-

ever, as some methodological parameters were changed in

our design (compared to the design of the original authors),

this replication attempt will only approximate an idealized

direct replication. The central findings we attempted to

replicate can be summarized as follows.

� Hypothesis 1: Behavioral responses on a two-option face

recognition task can bemodeled best (highest approximate

Bayes factor, see section 2.4.8) by a computational model

consistent predictive-coding principles that assume com-

bined effects of contextual familiarity and facial familiarity

irrespective of viewing angle (‘view-independence and

context’-model). A detailed mathematical specification is

given in the Methods section 2.4.8.

� Hypothesis 2: Activity in the right pSTS is correlated with

the trial-by-trial contextual familiarity estimated by the

computational model described in Hypothesis 1.

� Hypothesis 3: Activity in both the right and the left FFA is

correlated with the trial-by-trial prediction error estimate

that updates facial familiarity in the winning model

described in Hypothesis 1.
Themethods sectionwill describe if andwhy changeswere

introduced to the study design in comparison to the original

study by Apps and Tsakiris (2013). Stage 1 preregistration is

available under the link https://doi.org/10.17605/OSF.IO/

A8VU7.
2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.1. Subjects

Thirty-four subjects (13 male, 21 female; mean age 23.8

years ± 2.6 years) were included in the study. Inclusion criteria

were age between 18 and 30 years, right-handedness accord-

ing to the Edinburgh handedness inventory (Oldfield, 1971)

with a cut-off at þ30, German as a native language, and

normal or corrected-to-normal vision. Exclusion criteria were

COVID-19-like symptoms, alcohol or drug abuse, past or pre-

sent psychiatric or neurological disorders according to ICD-10,

reading or spelling disorders, and disturbances of color vision.

During pre-registration, we established several criteria ac-

cording to which subjects had to be excluded. Two partici-

pants were excluded because of bad MRI data quality. One

subject was excluded because it did not reach a level of correct

face recognition of at least 60% averaged over all stimuli at the

end of the experiment (see 2.3.1, behavioral data quality, for

details). Thirty-one subjects (11 male, 20 female; mean age

23.7 years ± 2.6 years) were therefore included in the final data

analysis. Before the experiment, written informed consent

was obtained following the Declaration of Helsinki. 10 V

compensation was offered for participation. The study design

was approved by the local ethics committee of the Medical

Faculty of the University of Marburg.

2.2. Power analyses

The required number of subjects was calculated by a power

analysis. We performed separate power analyses for all three

central aspects of Apps and Tsakiris (2013): the behavioral re-

sults, the fMRI results, and the computationalmodel selection.

Aminimum required sample size of 26 was determined by the

fMRI analyses; the behavioral and computational model se-

lection results yielded a minimum required sample size of

three (a ¼ 0:02) and ten, respectively, for the power of >90%:

https://doi.org/10.17605/OSF.IO/A8VU7
https://doi.org/10.17605/OSF.IO/A8VU7
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2.2.1. Behavioral power analysis
The power analysis for the behavioral learning effect was

performedusing thedataextracted fromtheoriginal study (see

Table 2). The original study reports a separate analysis to es-

timate a learning effect via one-sample t-tests. The learning

effect was defined as an increased probability of answering yes

(i.e., declaring to recognize a face) with an increasing number

of prior presentations, irrespective of whether the answerwas

correct or not. We interpreted this analysis on a group level by

comparing the overallmean percentage of stimuli that yielded

yes responses at their first three and last three presentations.

Here we utilized the observed t-value and the sample size

described byApps and Tsakiris (2013) to estimate an effect size

and compute a power analysis using the function ‘pingouin.-

power_ttest’ of the python package Pingouin (Vallat, 2018).

In the first step, we converted the t-value obtained by the t-

test of the original study to an effect size (i.e., Cohen's d) using
the reported sample size of N ¼ 16. Next, to estimate the

sample size needed for replication, we specified a power

analysis with the converted effect size, a power of .9, and an

alpha level of .02.

2.2.2. fMRI power analysis
Apps and Tsakiris (2013) showed that activity in the right pSTS

varied with contextual familiarity Ct, whereas activity in both

the left and the right FFA co-varied with the prediction error

parameter ε that updated face familiarity. Our power analysis

specifically aimed to determine the number of subjects

needed to replicate these findings.

The required number of subjects for the fMRI analysis was

calculated by a power analysis using the software G*Power

(version 3.1, Faul, Erdfelder, Buchner, & Lang, 2009). The sta-

tistical power was set to .90, according to the Registered Report

Guidelines. The alpha error probability was set to a ¼ .02, again

following the Registered Report Guidelines. Since we had to

correct the number of main analyses, we divided this number

by 3, resulting in a final threshold of a ¼ .0067. The expected

effect size (i.e., Cohen's d) was estimated from results pre-

sented in the original study (i.e., from the averaged parameter

estimates and the respective standard errors, see Fig. 3, p. 6 in

Apps and Tsakiris (2013)). This yielded, averaged across all

face regions, an effect size estimate of d ¼ .788. Using these

numbers, the power analysis (based on a one-sample t-test)

yielded a required sample size of n ¼ 26 subjects (Please note

that we erroneously wrote in the original version of the

manuscript (i.e., at stage 1 of the registered report) thatwe had

to include n ¼ 27 subjects.).

2.2.3. Computational modeling power analysis
To estimate the minimum sample size required for robust

results of the computational model selection, we employed a
Table 2 e Power and results reported by Apps and Tsakiris (201
our power analysis based on the probability of ‘yes’ answers an

t-value Cohen's d

Apps and Tsakiris (2013) 14.661 n.a.

Our analysis Power analysis n.a. 7.33

Our pilot data 20.23 5.14
generative model-based power analysis based on our pilot

sample of 3 subjects. Following Gluth and Jarecki (2019), we

extended the statistical concept of power as the probability of

our model selection approach to correctly identify the data-

generating mechanism producing the observed behavior/

data with a probability of � 90% on a group level. More spe-

cifically, this translates to a relative posterior model proba-

bility of our winning model of � 0:9. The posterior model

probability of the proposed winning model was calculated

from the group-level Bayesian information criterion (BIC)

sums of the models via formula (14) of the main text. We

utilized the individually fitted view-independent model with

contextual influence and the view-dependent model without

contextual influence from our pilot data to generate new syn-

thetic samples of arbitrary plausible sample size n*. To esti-

mate the required sample size, we simulated two opposite

data-generating scenarios, as summarized in Table 3.

First, we created a best-case scenariowhere the subject-data

is produced by a generative mechanism involving view-

independent representation of face stimuli with contextual

influence. Note that this model was also proposed to be the

winning model in both scenarios, as it was reported as the

winning model by Apps and Tsakiris (2013). Here, we esti-

mated a required sample size that ensured a �90% posterior

model probability of this model.

Secondly, we simulated aworst-case scenariowhere subject-

data is generated by a generative mechanism only involving

view-dependent representation of face stimuli without any

contextual influence. Further, we estimated a required sample

size that ensured a posterior model probability of �10% (1-

best-case scenario) for the view-independent proposed win-

ning model with contextual influence. Since the synthetic

data were generated by a different generative mechanism as

in the proposed winning model, and the context-dependent

view-independent model should therefore have a low (�10%)

posterior model probability.

Points 1, 2, and 3 of the following procedure were done in

each scenario described in Table 3. The entire procedure, i.e.,

simulating each scenario, was repeated for each time point.

First, we generated a large set N* of artificial subject data

from each generative mechanism/model with a respective

total size of jN*j ¼ 500. This data set was generated based on

the fitted models from our pilot data.

Second, for each relevant sample-size n* and for each

generative mechanism (cf. Table 3), we drew 50 random sub-

samples with replacement of size n* from N* and fitted the

proposed winning model to each sub-sample, and calculated

the BIC values per model. However,we assumed the view-

independent and context components as the data generating

process. In other words, the data were generated by a ‘best-

case scenario’ and a ‘worst-case scenario’ with respect to the
3) regarding the learning effect, parameters, and results of
d observed power in our pilot sample.

N Power Alpha/p-value

16 (reported) >.999 p < .0001

~3 (required for replication) .9 a ¼ .020

3 (reported) .98 P ¼ .002

https://doi.org/10.1016/j.cortex.2023.05.021
https://doi.org/10.1016/j.cortex.2023.05.021


Table 3 e Summary of the two generative mechanisms, which model is assumed to be the winning model and power
criteria.

Simulated scenario Generative-mechanism
of the data

Proposed winning model Power criterion
(posterior model

probability)

Best-case view-independent representation,

contextual influence

view-independent model with contextual influence � 90%

Worst-case view-dependent representation,

no contextual influence

view-independent model with contextual influence �10%

c o r t e x 1 6 8 ( 2 0 2 3 ) 2 0 3e2 2 5208
underlying generative mechanism. The corresponding pro-

posedwinningmodel should have the highest posteriormodel

probability (Table 3) in the ‘best-case scenario’ and the lowest

in ‘worst-case scenario’ consistently over subsamples.

Third, we calculated the group-specific posterior model

probability of the proposedwinningmodel (view-independent

and context) based on the per-model sum of the BIC over all n*

artificial subjects in each sub-sample.

Fourth, the sample size n* was increased until (1) the mean

posterior probability of the proposed winning model (view-

independent model with contextual influence) exceeded 90% while

the data was generated assuming this generative mechanism

and until (2) the mean posterior probability of the proposed

winning model did not exceed 10% while the data was
Fig. 1 e Boxplots of the power analysis for computational mode

a result for a subsample. The Y-axis of the subplots shows the p

‘view-independent model with contextual influence.’ The X-axi

estimation.
generated by the view-dependent model without assuming

contextual influence.

Finally, we decided upon the minimum sample size of

N ¼ 10 as it consistently yielded a posterior model probability

within the specified parameters with a negligible variation

(see Fig. 1) and a 95% CI lower-bound of >.999.
The detailed results of the power analysis can be found in

Table 4.

2.3. Experimental paradigms

Subjects performed two tasks. The first task was a face iden-

tity learning task. In this task, subjects were repeatedly shown

faceswhose identitywas initially unknown. They had to judge
ling approach. Datapoints within each sample size describe

osterior model probability of the proposed winning model

s of the subplots shows the sample sizes n* used for power

https://doi.org/10.1016/j.cortex.2023.05.021
https://doi.org/10.1016/j.cortex.2023.05.021


Table 4 e Detailed results from the power analysis for a sample size of n* ¼ 10. The proposed winning model was, in both
scenarios, the ‘view-independent model with contextual influence.

Simulated
scenario

Selected n* Posterior model
probability

(proposed winning model)

95% CI for selected n* [lower bound, upper bound] Criterion

Best-case 10 >.999 [.999.1] � .9 (90%)

Worst-case 10 <.001 [<.001, <.001] � .1 (10%)
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whether a face had been presented before or not. The ground

truth of the task used to generate the stimulus order over time

consisted of the stimulus familiarity (i.e., the number of times a

specific face stimulus has been presented before) and the

contextual familiarity (i.e., the average familiarity of the previ-

ously presented faces). Both parameters of the task were

systematically varied over the course of the trials. The second

taskwas a face localizer task inwhich blocks of faces and non-

face stimuli, respectively, were presented. This task allowed

us to visualize individual face-sensitive brain areas (OFA, FFA,

pSTS), making it possible to assess brain activity changes in

the first task in independently selected regions of interest

(ROIs). In the following, we will describe the face identity

learning task in detail. The description of the face localizer

task can be found in the supplementary material/ Appendix J.

2.3.1. Face identity learning task
2.3.1.1. STIMULUS MATERIAL. We created face stimuli as close as

possible to the study of Apps and Tsakiris (2013). The stimuli

were taken from the database of the Social Perception Lab,

Princeton (http://tlab.princeton.edu/databases/secretdatabas

eportal/). More specifically, we used the “300 random faces”

data set (Todorov, Said, Engell, & Oosterhof, 2008), consisting

of 300 faces that were randomly generated using the FaceGen

software package (version 3.1, https://facegen.com/modeller.
Fig. 2 e (A) Example of computed generated face identities. The im

used during the experiment (B) Experimental design, trial examp

question, short feedback, and a jitter randomly distributed in 1

from 0 to 5.25s. The question was also randomly presented wi
htm). These faces were rated on nine trait dimensions:

attractiveness (n ¼ 35), likeability (n ¼ 32), trustworthiness

(n¼ 29), competence (n¼ 44), extroversion (n¼ 33), dominance

(n ¼ 23), meanness (n ¼ 27), frightening (n ¼ 28), and threat-

ening (n ¼ 27). We selected 24 faces within one standard de-

viation of the mean on each of the mentioned trait

dimensions, i.e., the faces were close to the mean on all traits

(see Fig. 2 for an example).

Face stimuli were presented centrally on a uniform gray

background, with 15� height and 12� widths of the visual

angle. As face identity recognition is typically guided by visual

features beyond facial structure, such as skin color, we used

color face stimuli. All faces from the database were shown

from the front. To investigate face identity recognition inde-

pendent of the point of view,we generated two face stimuli for

each individual using the FaceGen software. The face was

turned 30� to the left and right in these stimuli, respectively.

Participants were required to recognize faces from novel

viewpoints, even if they had not seen that face from this

specific viewpoint before.

2.3.1.2. EXPERIMENTAL DESIGN. Subjects were repeatedly pre-

sented with computer-generated faces (“trials”). These faces

were shown from different viewpoints. After each presenta-

tion, the subjects were required to indicate whether they had
ages are displayed in the three different points of viewwe

le. A face identity was initially presented, followed by a cue

2 sec intervals. The face stimuli were randomly presented

thin a 6e12s interval.

http://tlab.princeton.edu/databases/secretdatabaseportal/
http://tlab.princeton.edu/databases/secretdatabaseportal/
https://facegen.com/modeller.htm
https://facegen.com/modeller.htm
https://doi.org/10.1016/j.cortex.2023.05.021
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Fig. 3 e Ground truth data was used for the generation of our stimulus sequence estimated iteratively due to missing f

information in the original study (missing Fig. 4 in suppl. Material of the original study). The six-block structure mentioned

in the original study could not be reproduced. The upper figure shows the (graphically) extracted data from Fig. 1 c left from

the original study versus our best approximation. Here, the rolling average of our trial sequence was calculated with respect

to the rolling average number of previous stimulus presentations. The original authors report manipulating this value

deliberately, as it is centrally important for contextual familiarity calculation. The lower figure shows the data from Fig. 1 c,

right from the original study. Here, the rolling average number of new faces in the last ten trials is depicted.
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seen that person before or not in a two-option forced-choice

task, regardless of the specific viewpoint. Inmost aspects (e.g.,

regarding the timing of the onsets), our experimental design

was as close as possible to the original study design of Apps

and Tsakiris (2013). Of note, however, some experimental

details (e.g., the operationalization of contextual familiarity)

were not evident in the original paper. We numerically

reconstructed the experimental design from the available

graphical data in the article document, as detailed in Fig. 3.

The experiment consisted of 189 trials. Before the first and

last trials, subjects were presented with a white screen for

7.250 sec. Each trial lasted 12 sec. First, a face was shown for

750ms. It was shown in the first half of the trial, i.e., the onset

of the presentationwas between 0 sec and 5.250 sec. The onset

was randomly varied across trials and subjects. Second, the

question “Do you recognize the person?” was displayed in the

center of the screen for 1000 ms. During this time, the par-

ticipants were allowed to answer via a button press. Below the

question, thewords “yes” and “no”were presented to the right

and left of the center of the screen, respectively. To prevent

participants from preparing a motor response already at the

time of the face presentation, the “yes” and “no” stimuli were

pseudo-randomly positioned on the right and left of the

screen. The response given by the participant was displayed

on the screen for 250 ms as feedback directly after the pre-

sentation of the question. The feedback ensured the partici-

pants that their responses were recorded. If the participant

did not respond to the trigger cue within a time window of

1000 ms, the word “missed” was displayed as feedback on the
screen. Question and feedback were shown in the second half

of the trial, i.e., the onset of the presentation of the question

was between 6 sec and 10.750 sec. The onset was randomly

varied across trials and subjects.

Twenty-four different face identities were shown in the

experiment. All faces were unknown at the beginning of the

experiment. Fifteen face identities were shown several times

and were thus learned. These faces were presented from

different viewpoints (front on or at a 30� angle from the right

or left). Each of these faces was presented four times from

each viewpoint, i.e., 12 times in total. Nine face identities were

shown only once. Three of these faces were presented front

on, three at a 30� angle from the right and three at a 30� angle
from the left. In total, 189 face stimuli were shown.

Face stimuli were ordered so that the identities of the faces

became gradually more familiar to the participants

throughout the experiment. For this design, the order of the

face stimuli was partly pseudorandomized and partly

controlled. On the one hand, both the order of identities and

the order with which each identity was presented from the

different viewpoints were pseudorandomized. Subjects,

therefore, were not able to make any predictions about the

upcoming stimulus besides the prediction based on contex-

tual familiarity. On the other hand, contextual familiarity

during the presentation of a stimulus was systematically

controlled. Contextual familiarity was operationalized by the

number of previous presentations of a familiar face. By

manipulating the average number of times a face identity was

seen before, we were thus able to control the contextual

https://doi.org/10.1016/j.cortex.2023.05.021
https://doi.org/10.1016/j.cortex.2023.05.021


Fig. 4 e Graphical depiction of the ‘view-independent and context-dependent model’ (Model 1, proposed winning model).

Squares indicated idiosyncratic parameters estimated per subject. See Table 6 for additional details. Dotted rectangles

denote the trial-by-trial updates to hidden variables, including prediction errors. Large white circles denote the hidden

variables of this model. Note that hidden variables are different for each model, see Table 7 for details. Filled circles denote

the observed data by each subject and the corresponding action. Arrows denote general mathematical dependencies. Index

t refers to trials, and index init refers to the initialization values.
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familiarity without losing the randomization effect for

viewing angle and identity. This is detailed in the upper part of

Fig. 3. A further feature that was controlled was the presen-

tation of the nine face stimuli that were presented only once.

They were shown in particular in the later stages of the

experiment so that subjects were not able to perform the task

more accurately by increasing the number of “yes” responses.

All blocks, therefore, contained face identities that had not

been presented before or had been presented only a small

number of times during the experiment.

Before the fMRImeasurements, all participants took part in

a training session. This session consisted of a short version of

the task that the participants performed inside the MR scan-

ner. The face identities in the training session differed from

the face identities in the scanning session but were taken

from the same database from which the original stimuli were

created. Before the scanning session, participants were

informed that they would be ‘learning’ a completely novel set

of face identities.

2.3.1.3. TASK PERFORMANCE. Apart from computational

modeling and fMRI analyses, one of the main goals of this

work was the replication of behavioral results observed in

Apps and Tsakiris (2013). Therefore, the following task per-

formance metrics were calculated per subject.
� Total errors made (false remembering & false not

remembering)

� Percentage of correct/wrong answers from all trials

� Answers missed

Following the original study, we performed another series

of t-tests to ensure learning of the face identities. We calcu-

lated the proportion of ‘yes’ answers for the first and last three

presentations (i.e., 1st.2nd, 3rd vs. 10th,11th, 12th) of each

stimulus averaging over all subjects. Assuming adequate

learning of the face identities, the proportion of ‘yes' answers

was assumed to be significantly higher in the last three pre-

sentations than in the first three.

2.3.1.4. BEHAVIORAL DATA QUALITY. During pre-registration, we

established several criteria according to which subjects had to

be excluded. The first criterion was based on the behavioral

quality. To ensure behavioral data quality, subjects had to

reach a level of correct face recognition of at least 60% aver-

aged over all stimuli at the end of the experiment. More spe-

cifically, the percentage of correct responses was averaged for

the last three presentations of each stimulus for stimuli that

were presented more than once. This stimulus-specific

average was then, in turn, averaged again over all relevant

stimuli resulting in a single average percentage indicating the

https://doi.org/10.1016/j.cortex.2023.05.021
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overall highest mean recognition performance reached by a

subject at the end of the experiment. One subject did not reach

this threshold and was therefore not included in the final

analysis and excluded from any further assessments.

2.4. Computational modeling

Apps and Tsakiris (2013) developed multiple computational

models to test several hypotheses pertaining to computa-

tional processes underlying face identity learning. These

models can be described as a non-hierarchical implementa-

tion of learning principles also found in common reinforce-

ment learning models like Q-learning (Watkins, Christopher J

C H & Dayan, 1992) or the Rescorla-Wagner model (Rescorla &

Wagner, 1972). This model architecture implements trial-by-

trial prediction errors used to update the hidden variables/

internal states of the models carried over discrete time-steps.

The prediction errors broadly resemble current neuro-

biologically plausible computational frameworks proposed in

neuroscience like Active Inference (Friston, FitzGerald, Rigoli,

Schwartenbeck, & Pezzulo, 2017) and PC (e.g., Keller & Mrsic-

Flogel, 2018). The number of hidden variables and associated

computational processes differ between the models proposed

in the original study (Apps & Tsakiris, 2013), resulting in

different amounts of model parameters (see Tables 5 and 6).

A summary of the computational hypotheses and the

associated model-space put forward by the original study can

be found in section 2.4.1. This section also translates the

psychological hypotheses involving the three proposed fac-

tors (view-independence, view-dependence, and context)

created in the original study into the associated computa-

tional hypotheses. Section 2.4.2 will give details on the

implementation of the code and used software packages to

ensure the reproducibility of our results. Section 2.4.3 gives

details of employed optimization algorithms andmodel fitting

procedure. Section 2.4.4 will discuss the individual model

components and respective formulas, i.e., the trial-by-trial

updating equations and the overall mathematical behavior

of the models. Sections 2.4.5, 2.4.6, and 2.4.7 will discuss the

mathematical details of each computational model in more

detail. Finally, section 2.4.8 will describe model-selection

procedures.

2.4.1. Computational hypotheses
Apps and Tsakiris (2013) proposed a total of six computational

models corresponding to six different hypotheses about the

computations performed in the brain when the learning of
Table 5 e Model space, computational processes, and the numb

View-de
proce

View-independent and context-dependent

View-dependent X

View-dependent and context-dependent X

View-independent

View-dependent and view-independent x

View-dependent, view-dependent, and context-dependent x

Random answer probability
faces occurs. The six models are characterized by different

combinations of three main computational processes: view-

dependent familiarity learning, view-independent familiarity

learning, and contextual learning. View-dependent process-

ing refers to the encoding of face-related visual information as

it reaches our retina with little higher-order abstraction, i.e.,

the same face viewed from different angles induces a new

stimulus-representation for each angle and is not recognized

as different views of the same stimulus. View-independent

processing describes computations that rely more on the ab-

stract higher level of inference in visual perception. Here, it

was hypothesized that the brain only uses one abstract rep-

resentation for face identification, regardless of viewpoint.

In addition to Apps and Tsakiris's (2013) models, we

included a model which outputs a 50% answer probability for

each of the two answer possibilities at any given trial. These

amount to a random-choice model, which will be used as a

baseline comparison in all analyses (see Table 5 for an over-

view of the model space).

2.4.2. Software and implementation
Behavioral data pre-processing and computational models

were implemented in Python 3.x on Ubuntu 20.x using various

functions from the packages Numpy (Harris et al., 2020), Scipy

(Virtanen et al., 2020), Pandas (Jeff Reback et al., 2021), Seaborn

(Waskom, 2021) and Pingouin (Vallat, 2018). All code imple-

mentations, plots, and raw data for the computational

modeling and behavioral analyses can be found in the asso-

ciated public repository DOI (https://doi.org/10.18112/

openneuro.ds004529.v1.1.0), including a full list of

dependencies.

2.4.3. Model fitting and optimization
The data was fitted subject-wise using a maximum-likelihood

approach. The joint-likelihood of the observations obtained

from each subject under each model was evaluated using the

sum of the log-likelihoods for the trial-wise model pre-

dictions. Parameter optimization for maximizing the joint-

probability of the observations under each model was done

using the L-BFGS-B algorithm with a finite-differences nu-

merical gradient approximation (including Basin-hopping for

improved global optimization) as implemented in the Python

package Scipy (Virtanen et al., 2020). Apps and Tsakiris (2013)

used a bounded categorical parameter space for each model.

Some parameters were varied in their respective space in

steps of .01 and others in steps of .1. Due to technical re-

strictions of our optimization algorithm, the implementation
er of associated parameters of each model.

Hidden variables/computational processes

pendent
ssing

View-independent
processing

Contextual
processing

Number of
parameters

x x 4

3

x 4

x 3

x 5

x x 6

0

https://doi.org/10.18112/openneuro.ds004529.v1.1.0
https://doi.org/10.18112/openneuro.ds004529.v1.1.0
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Table 6 e Individual model parameters. All model parameters are optimized individually/per subject (‘idiosyncratic’
parameters) and per model if the respective computational process was included in the specific model. See Table 5 for
details. Note that some letters are assigned differently than in Apps and Tsakiris (2013).

Computational
process

Model parameter

Behavioral
response

View-dependent
face learning

View-independent
face learning

Context
learning

Description stochasticity

parameter

maximum

view-dependent

familiarity

view-dependent

learning-rate

maximum

view-independent

familiarity

view-independent

learning-rate

context

learning-rate

Symbol b r g l a s

Bounds (.1.20) (.2) (.1) (.2) (.1) (.1)

Steps in original study ±0.1 ±.01 ±.01 ±.01 ±.01 ±.01
Steps in our study ±.01 ±.01 ±.01 ±.01 ±.01 ±.01
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of all parameters varied in steps of .01. The bounds of the

parameter-space were implemented as closely as described in

the Apps and Tsakiris (2013) (see Table 6).

2.4.4. Model components
Each model consisted of a hidden variable model and a

response model. The architecture of the former differed be-

tween the proposed computational models; the latter was

identical for all models. The function of the hidden variable

model was to update and carry the trial-by-trial estimates of

the hidden variables (e.g., contextual familiarity) and to

convert them into the total familiarity of a stimulus at a given

trial. The response model converted the total familiarity of a

stimulus into a model-predicted answer probability for the

observed data in this trial. The equations used to calculate

contextual familiarity in all computational models were

modified by us due to numerical stability issues (see also

section ‘2.3.5 Model 1’). All other equations were unmodified.

2.4.4.1. RESPONSE MODEL. The response model converted the

trial-by-trial total stimulus-familiarity predictions outputs by

the model into answer probabilities for the two possible ac-

tions of the task (‘Yes,’ ‘No’). Apps and Tsakiris (2013) reported

their response model as an implementation of the Luce-

choice rule (Duncan Luce, 1977; Luce, Ng, Marley, & Acz�el,

2008), which in turn is an application of the softmax-

function often used in reinforcement learning models

(Sutton & Barto, 2018). The model-predicted probability of

answering ‘Yes’ at a given trial was calculated by

pðyesjtÞ¼ 1
1þ eð�bFtÞ (1)

where b is the stochastic parameter indicating the sensitivity

of the answer-behavior to the total familiarity of the stimulus

at time t (Ft). As implied by the binary answer format, the

probability of answering ‘No’ is given by

pðnojtÞ¼1� pðyesjtÞ (2)

2.4.4.2. INITIALIZATION VALUES OF INTERNAL MODEL STATES. The

model architecture used in the original study requires

initialization values to start the hidden-variable updating

processes. These initialization values may be viewed as the

prior information a subject is equipped with (e.g., primed

stimulus and context processing) when starting the cognitive
task. Contextual familiarity, view-independent familiarity,

and view-dependent familiarity all require initialization

values. Explicit information was only provided for the view-

independent familiarity where the initial hidden variable

state Vi;0 for all stimuli i was defined as

Vi;0 ¼FPrate*l (3)

Here, FPrate denotes percentage of false-positive responses for

those stimuli presented the first time regardless of view-

angle, i.e., wrongly answering that a stimulus was familiar

at its initial presentation. l denotes the individual parameter

reflecting the maximum view-independent familiarity

achievable for any stimulus in this subject. Analogously, we

calculated the initialization values for the view-dependent

familiarity by

VDi;0 ¼FPrate*r (4)

where r represents the maximum view-dependent fa-

miliarity, FPrate denotes the view-dependent false-positive

answer rate, i.e., the percentage of wrong “yes” answers to

the first stimulus presentation while considering different

viewing angles as the entire new stimulus representation.

The initial contextual familiarity was considered to be 0 due

to the total unfamiliarity of each subject with the stimulus

material.

2.4.4.3. PERCEPTUAL MODELS/HIDDEN VARIABLE MODELS. In this sub-

section, we will briefly cover the hidden variable models

reflecting the computational processes proposed by Apps and

Tsakiris (2013). Note that the mathematical notation differs at

times from that of the original authors (see Table 7 for detailed

information regarding the trial-by-trial model estimates).

2.4.5. Model 1 - view-independent and context-dependent
(‘winning-model’)
In model 1, the overall familiarity of a given stimulus is the

product of its view-independent familiarity (i.e., perspective

invariant face identity learning) and contextual familiarity

(i.e., stimulus familiarity on preceding trials). Total familiarity

with this model is given by

Ft ¼VIi;t*Ct (5)

where VIi;t is the view-independent familiarity of stimulus i at

trial t. Note that VIi;t is hypothesized to be calculated after the

https://doi.org/10.1016/j.cortex.2023.05.021
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Table 7 e Trial-by-trial model estimates of hidden variables. Trial/time is indexed by t. As stimulus familiarities are specific
for a given stimulus, index i describes the stimulus-ID in question. All variables are calculated at each trial.

Hidden variables/Computational processes

View-dependent
familiarity

View-dependent
prediction-error

View-independent
familiarity

View-independent
prediction-error

Contextual
familiarity

Contextual
prediction-error

Total
familiarity

Model

variables

VDi;t t VIi;t d Ct ε Ft
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presentation of each stimulus and is subsequently used to

calculate the contextual familiarity and, finally, the total fa-

miliarity. It is given by the formula

VIi;t ¼VIi;n�1 þ ad (6)

where VIi;n�1 is the view-independent familiarity of a stimulus

i at its previous presentation. a denotes the view-independent

learning rate, and d denotes the view-dependent prediction

error. d is given by

d¼ l� VIi;n�1 (7)

where l is the individual maximum view-independent famil-

iarity. Contextual familiarity at a given trial twas calculated in

the original study via

Ct ¼Ct�1 þ sε (8)

where Ct�1 is the contextual familiarity at the previous trial, s

denotes the contextual learning rate, and ε the prediction

error. Importantly, the pilot data revealed that formula (8) for

the calculation of Ct produced numerically unstable results

with trial-by-trial estimates, which approached within a few

trials positive or negative infinity (under/overflow errors). We

modified the formula to

Ct ¼Ct�1 � sε (9)

which yielded numerically stable results. Note that this

modified formula was used in our implementation for all

models using contextual familiarity estimation. ε, the

contextual prediction error, is unmodified and calculated by

ε¼Ct�1 � VIi;t (10)

where again Ct�1 is the contextual familiarity at the last trial

and VIi;t is the view-independent familiarity of stimulus i at

the current trial calculated by formula (6).

2.4.6. Model 2 - view-dependent
In this model, the total familiarity at a trial was a direct

function of the view-dependent familiarity VDi;t , where the

total stimulus familiarity is calculated by

Ft ¼VDi;t (11)

and VDi;t is calculated by

VDi;t ¼VDi;n�1 þ gt (12)

where g denotes the view-dependent learning rate. Similar to

the view-independent familiarity, VDi;n�1 refers to the view-

dependent familiarity of stimulus i at the previous presenta-

tion. t denotes the view-dependent prediction error given by

t¼ r� VDi;t (13)
Here r denotes the individual maximum view-dependent

familiarity.

2.4.7. Models 3 to 6
All formulas for the other control models (models 3e6) were

combinations of the formulas described in the hidden variable

models 1 and 2. Therefore, it is unnecessary to describe these

models in detail, but only summarize the calculations of the

total familiarity (Ft) in Table 8.

2.4.8. Bayesian model selection
We replaced the model selection procedure of Apps and

Tsakiris (2013) with an approximate Bayesian model selec-

tion via the BIC and an approximate Bayes Factor ABF10. This

method will yield intuitive estimates of relative posterior

model probability expressed as an approximate Bayes Factor

for interpretability. The BIC will be calculated via Formula 14.

BICM ¼ LL� 1
2
NP lnðNÞ (14)

Here, LL denotes the maximized log-likelihood of the model.

NP denotes the number of parameters, and N is the sample

size. Note that our BIC definition differs in two aspects from

other authors: first, it is multiplied by a factor of 2. Second, we

omitted a minus sign. Wemade these changes so that our BIC

can be interpreted directly as an approximate log-evidence for

a model (Bishop, 2006).

As mentioned before, we estimated the parameters of the

computational models by Apps and Tsakiris (2013) by maxi-

mizing the joint probability for the observations under each

model. This resulted in a model-specific log-likelihood that

will be corrected for model complexity by using the BIC on an

individual level. Then, a per-model BIC sum was evaluated,

resulting in a vector of group-level but model-specific sums of

BIC values, i.e., one sum for each model. Since the Laplace

approximation to the model evidence converges asymptoti-

cally to the BIC under fairly general conditions, the BIC values

can be considered an asymptotic approximation to twice the

negative log of the Bayesian posterior probability of a model

assuming a uniform model prior (Endres, Chiovetto, & Giese,

2013; Neath & Cavanaugh, 2012). We will denote the BIC for

model M as BICM for any model M. Here, our main goal using a

Bayesianmodel selection via the BICwas the estimation of the

relative posterior probability of a model given all models

included in the selection procedure, i.e., pðMijfMIgÞ for amodel

Mi. This posterior probability of a model was calculated by

exponentiation of the difference between the model-specific

sum of BIC (BICM) and the total sum of BIC of all models in

the model selection set (BICfMIg). The latter was calculated

https://doi.org/10.1016/j.cortex.2023.05.021
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Table 8eTrial-by-trial calculation of total familiarity Ft. Overview of all components used in eachmodel to calculate the total
familiarity at a given trial. For descriptions of the individual components refer to Table 7.

Model Formula

1 View-independent and context-dependent Ft ¼ VIi;t*Ct

2 View-dependent Ft ¼ VDi;t

3 View-dependent and context-dependent Ft ¼ VDi;t*Ct

4 View-independent Ft ¼ VIi;t
5 View-dependent and view-independent Ft ¼ VIi;t þ VDi;t

6 View-dependent, view-independent and context-dependent Ft ¼ ðVIi;t þVDi;tÞ*Ct
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using the LogSumExp function as implemented in the Python

package Scipy (Virtanen et al., 2020).

PðMijfMIgÞ¼ exp

 
BICðMijDÞ� log

 XI

i

exp ðBICðMijDÞÞ
!!

(15)

For convenience and clear interpretation, this model-

specific posterior probability was further transformed into

posterior model odds via

oðMijfMIgÞ¼ pðMijfMIgÞ
1� pðMijfMIgÞ¼ABF10 (16)

As these odds are in the same range as the BF10 , i.e., be-

tween 0 and positive infinity, we propose using the conven-

tions of Bayes factors BF10 (Lee & Wagenmakers, 2014;

adjusted from Jeffreys, 1998). Therefore, the model-specific

posterior odds will be called ABF10 from here on out. Similar

to the BF10, the ABF10 can be interpreted as showing the sup-

port for our Mii, i.e., that the proposed winning model is most

likely given the data and the control models. As per Cortex

guidelines, we considered an ABF10 � 6 as a successful repli-

cation of the original results. Any value below 6 but above 1

denoted negligible evidence for Mii, and the replication was

considered not successful. Any value below 1 denotes evi-

dence for the control models, i.e., that the proposed winning

model is not probable given the data and the set of the control

models fits the data better.

2.5. MRI data acquisition and analysis

2.5.1. MRI data acquisition
MRI datawere acquiredwith a 32-channel headmatrix receive

coil on a Siemens 3 Tesla Tim Trio MRI scanner (Siemens

Medical Systems, Erlangen, Germany) at the Core-Facility

Brain imaging, University of Marburg, Germany. Functional

images were collected with a T2*-weighted gradient-echo

echo planar imaging (EPI) sequence sensitive to the blood-

oxygenation-level-dependent (BOLD) contrast (repetition

time (TR) ¼ 1530 ms, echo time (TE) ¼ 30 ms, voxel

size ¼ 3 � 3 � 3 mm3, 48 slices, 3 mm thickness, flip

angle ¼ 55�, matrix size ¼ 70 � 70 voxels, field of view

(FoV) ¼ 210 � 210 mm2). Slices were acquired in ascending

order parallel to the intercommissural plane (anterior to

posterior commissure) using a multiband acceleration factor

2. The initial four images were excluded for both the face

identity learning task and the face localizer task from further

analyses to remove the influence of T1 stabilization effects.

Prior to the functional images, we also acquired a high-

resolution T1-weighted anatomical scan covering the whole

brain, with a magnetization-prepared rapid gradient-echo (3D
MP-RAGE) sequence in the sagittal plane (TR ¼ 1900 ms,

TE ¼ 2.26 ms, voxel size ¼ 1 � 1 � 1 mm3, 176 slices, 1 mm

thickness, flip angle ¼ 9�, matrix size ¼ 256 � 256 voxels,

FoV ¼ 256 � 256 mm2). We would like to point out that the

imaging parameters for the fMRI sequence differed from those

described in stage 1 of the registered report. We decided to

choose an imaging sequence that wasmost appropriate at the

time of data collection. The imaging parameters listed in the

registered report referred to a now obsolete imaging sequence

previously used in our laboratory.

2.5.2. MRI data analysis
2.5.2.1. IMAGE PROCESSING. Imaging data were analyzed with

SPM12 (www.fil.ion.ucl.ac.uk/spm) within MATLAB (R2017a,

https://de.mathworks.com/products/matlab.html) using

standard routines and templates. Face identity learning task:

First, the functional images were slice time corrected and

realigned. Second, the high-resolution anatomical image was

co-registered with the mean functional image, then

segmented and normalized to the MNI standard space. All

functional images were normalized using the spatial

normalization parameters obtained from the unified

segmentation-normalization approach to the anatomical

image and resampled to a voxel size of 2 � 2 � 2 mm3. Finally,

all imageswere smoothedwith an isotropic 6mm full width at

half maximum (FWHM) Gaussian kernel. Functional localizer

task: First, the functional images were realigned. Second, the

high-resolution anatomical image was co-registered with the

mean functional image, then segmented and normalized to

the MNI standard space. All functional images were normal-

ized using the spatial normalization parameters obtained

from the unified segmentation-normalization approach to the

anatomical image and resampled to a voxel size of

2 � 2 � 2 mm3. Finally, all images were smoothed with an

isotropic 6 mm FWHM Gaussian kernel.

2.5.2.2. STATISTICAL ANALYSIS. Statistical analysis of the pre-

processed functional data was conducted using a General

Linear Model (GLM). In the following, we will describe the

statistical analysis separately for the face identity learning

task and the face localizer task.

Face identity learning task: The GLM was built to examine

the association between the BOLD response and the compu-

tational model parameters describing the face learning pro-

cess best (i.e., ‘winning’ model, see above).

At the subject level, we included the following conditions

in the GLM. The first regressor modeled the onset of the face

stimuli. Only those events were included in which a response

was given. The second regressor modeled the onset of the

http://www.fil.ion.ucl.ac.uk/spm
https://de.mathworks.com/products/matlab.html
https://doi.org/10.1016/j.cortex.2023.05.021
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trigger cue events. Again, only those events were included in

which a responsewas given. The third regressormodeled both

of the aforementioned events on missed trials. Trials were

classified as missed if the participant did not respond to the

cue event within a time window of 1000 ms. All three re-

gressors were convolved with the canonical hemodynamic

response function implemented in SPM. The fourth regressor

describes the effect of specific computational model param-

eters (e.g., prediction error). This effectdthe main effect of

interest in this GLMdwas implemented as a first-order para-

metric modulator to the face regressor. Last, we included the

six realignment parameters as nuisance regressors to control

for movement-related artifacts (regressors 5e10). Further-

more, low-frequency noise in the data was accounted for by a

high-pass filter (cut-off frequency: 1/128 Hz). In total, we

builtdfor each computationalmodeldfiveGLMs, i.e., one GLM

for each computational parameter of interest: (1) Overall fa-

miliarity of each trial (Ft), (2) view-independent familiarity (Vi),

(3) view-independent update (d), (4) context-dependent fa-

miliarity (Ct), and (5) context-dependent prediction error (ε).

Additionally, we built another GLM without a parametric

modulator. This GLM was used to assess whether the face

identify learning task activated face-specific brain regions in

the core system (i.e., OFA, FFA, pSTS), as in the face localizer

task.

Face localizer task: We used the three regressors (i) faces,

(ii) houses, and (iii) scrambled images. Additionally, we

included the six realignment parameters as nuisance re-

gressors to control movement-related artifacts. Low-

frequency noise in the data was accounted for by a high-

pass filter (cut-off frequency: 1/128 Hz). Parameter estimate

(ß-) images were computed for each subject. For the face

localizer task, we were interested in the conjunction contrast

image “faces > houses and faces > scrambled.” For these

contrasts, we computed t-images for each subject (see Thome

et al. (2022) for details). At the group level, the individual

contrast images were entered into random-effects analysis

using one-sample t-tests.

Next, we calculated the following analyses:

Analysis 1: We used the face localizer to determine the

face-sensitive regions OFA, FFA, and pSTS, both for the left

and right hemispheres. These regions served as (indepen-

dently determined) ROIs for the subsequent analyses. In

addition, we also determined the Parahippocampal Place Area

(PPA) using the contrast “houses > faces.” The PPA acted as a

control region as its activity should not vary with any of the

parameters of our experimental model if activity in the task is

driven by familiarity with the identity of the face. All ROIs

were determined both on the subject and the group level. For

the identification of the ROI center coordinates at the group

level, we chose the highest local maximum in specific,

anatomically defined regions. TheOFA had to be located in the

inferior occipital gyrus, the FFA in the fusiform gyrus, the

pSTS in the superior posterior sulcus, and the PPA in the

parahippocampal gyrus. Anatomical localization of the acti-

vated brain regions was assessed using masks created with

the WFU-pickatlas (Maldjian et al., 2003, 2004). Precisely, we

used for the FFA the fusiform gyrus (IBASPM 116); for the OFA,

the inferior occipital gyrus (IBASPM 116); for the STS, the su-

perior and mid-temporal gyrus (IBASPM 116) and for the PPA
the parahippocampal gyrus (TD Labels, J. L. Lancaster,

Summerlin, Rainey, Freitas, & Fox, 1997; Jack L. Lancaster

et al., 2000). For all masks, a 3 d dilation of 2 was applied.

For the identification of the ROI center coordinates at the

subject level, we chose the subject-specific maximum closest

to the respective group maximum, as described in Thome

et al. (2022). Again, these maxima had to be in the above-

described anatomical masks. These automatically identified

coordinates were visually checked for plausibility and, if

necessary, corrected (see supplementary material for details).

ROIs were then created as spheres with a 10 mm radius

around the respective maximum.

Analysis 2: As the main analysis, we assessed whether

brain activity at the time of face presentation is modulated by

any parameters of the computational model. We expected,

analogous to the results of the study of Apps and Tsakiris

(2013), that activity in the pSTS varies with the context-

dependent familiarity (Ct) (see the introduction, Hypothesis

2), whereas activity in the FFA covaries with the context-

dependent prediction error (ε) (Hypothesis 3). Group analyses

were calculated in two different ways. In the first analysis, we

calculated for each single-subject ROI the mean ß-parameter

of interest (i.e., averaged over all voxels in the respective ROI).

Using a one-sample t-test, we then assessed whether these

parameters significantly differed from zero. This approach is

less flexible than the standard voxel-wise analysis (described

below) since it does not allow the assessment of brain activity

outside the ROIs. It is, however, potentially more sensitive

since it takes into account individual differences in the

anatomical location of the face-sensitive regions. As a statis-

tical threshold, we set p < .05, corrected for the number of

statistical tests. In the second analysis, we used the standard

voxel-wise approach using the second-level fMRI models. In

the first step, activity was assessed in the above-defined

group-level ROIs (using a threshold of p < .05, corrected for

multiple comparisons at the voxel level). In a second step, we

also assessed BOLD activity at the whole-brain level (using a

threshold of p < .001 uncorrected).

2.5.2.3. ASSESSMENT OF MRI DATA QUALITY. MRI scanner quality

assurance: MRI scanner stability was assessed by a general,

non-study-specific quality assurance protocol. This protocol

involved the regular measurements of both an ACR phantom

and a gel phantom at fixed time points. Quality metrics (e.g.,

spatial signal-to-noise ratio, temporal signal-to-noise ratio)

were calculated using the LABQA2GO toolbox (see Vogelbacher

et al., 2018; Vogelbacher et al., 2019 for details).

General MRI data quality assurance: Routinely, all study-

specific MRI data were visually inspected for artifacts and

altered morphology, potentially affecting further analyses. To

complement our visual inspection, the MRIQC tool (Esteban

et al., 2017) was used to extract image quality metrics (IQMs)

and visual reports that would allow us objective quality con-

trol of the neuroimaging data.

Study-specific MRI data quality assurance: In the present

study, we further used neutral outcome measures to ensure

good data quality, in particular for the face identity learning

experiment. These outcome measures comprised the behav-

ioral learning effect, the results of the localizer task, and the

“face contrast” from the face identity learning experiment.We

https://doi.org/10.1016/j.cortex.2023.05.021
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expected participants to show (1) a behavioral learning effect

above chance. This is definedwhen a subject reaches a level of

correct face recognition of at least 60% averaged over all

stimuli at the end of the experiment. More specifically, the

percentage of correct responses was averaged for the last

three presentations of each stimulus for stimuli that are pre-

sented more than once. This stimulus-specific average was

then, in turn, averaged again over all relevant stimuli resulting

in a single average percentage indicating the overall highest

mean recognition performance reached by a subject at the end

of the experiment (see 2.3.1, behavioral data quality, for de-

tails). We further expected (2) BOLD activity in the core system

in the face localizer experiment and (3) BOLD activity in the

core system in the face identity learning experiment for the

contrast “faces > baseline.” In both activation patterns, we

determined whether brain activity can be found in the left

OFA, right OFA, left FFA, right FFA, left pSTS, and right pSTS.

The brain activation patterns were first set to a conservative

threshold of p < .05, corrected for multiple comparisons at the

whole-brain level (family-wise error, FWE, corrected at the

voxel level). If BOLD activity was not found in all regions of the

core system at this threshold, the p-value was subsequently

lowered to more liberal thresholds (p < .001 and p < .05,

respectively, uncorrected for multiple comparisons) (see

Schuster et al., 2017; Hildesheim et al., 2020 for an extensive

discussion of this procedure). Data from sessions in which

participants failed to fulfill these criteria were excluded.

We excluded three subjects from the final data analysis. One

subject (ID 21) was excluded because of a face recognition rate

below 60%. Two participants (ID 16 and ID 26) were excluded

because of low fMRI data quality (framewise displacement >.3,
cf. MRIQC results in online repository at: https://osf.io/tye24/).

Three subjects (ID 4, ID 18, and ID 28) were further excluded

from the fMRI data analysis. When plotting the individual

regression weights for the parametric modulators, we

encountered that these subjects had absurdly high values.

Upon closer inspection, we found out that in all cases, one of

the trial-by-trial parameters extracted from the fitted winning

model (view-independent familiarity ;VIi;t) showed little to no
Fig. 5 e Behavioral results from face identity learning task. Left

(answering ‘yes’) given the number of stimulus repetitions. Erro

chance-level responding, i.e., 50%. Right plot: Group-level mean

prior stimulus repetitions split for the first and second half of t
variation over trials. This most likely led to convergence issues

when estimating covariation with BOLD activity.
3. Results

In the following, we will present behavioral results (3.1),

computational modeling results (3.2), and fMRI results (3.3).

We will first give the results of the primary analyses outlined

in the registered report in each section. Exploratory analyses

will be clearly distinguished from this and are presented in a

second step. Importantly, the data and analysis scripts of this

study are publicly available at: https://osf.io/tye24/.

3.1. Behavioral results

In the final sample, the subjects showed an apparent learning

effect in the face-learning task (Fig. 5 left). With each subse-

quent stimulus presentation, the tendency to recognize a face

increased, exceeding chance-level answering after only two

presentations (see Fig. 5).

When focusing on the percentage of answering ‘yes’ at the

first three stimulus presentations, i.e., 1st,2nd,3rd (M ¼ .489,

SD ¼ .107) versus the last three stimulus presentations, i.e.,

10th, 11th, 12th (M ¼ .842, SD ¼ .106) this difference is signif-

icant and meaningful indicating a fast learning effect. Spe-

cifically, a paired sample two-sided t-test revealed a

significant increase in the tendency to give ‘yes’ responses

with tð30Þ ¼ 15:697, BF10 > ¼ 100, p ¼ 5:204430� 10�16,

d ¼ 3:297 from the first three presentations vs. the last three

(see Table 9).

This effect could not be explained by subjects responding

habitually ‘yes’ more often as the experiment progressed. The

proportions of novel faces presented throughout the task and,

consequently, the ground truth familiarity varied (cf. Fig. 3)

over the course of the task. However, we additionally per-

formed a two-sided paired Wilcoxon signed-rank test on the

probability of answering ‘yes’ (i.e., reporting to have recog-

nized a face) between the first half and second half of the task
plot: Group-level mean probability of face recognition

r bars are standard deviations. The Red dashed line marks

probability of face recognition (answering ‘yes’) given no

he task.

https://osf.io/tye24/
https://osf.io/tye24/
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Table 9 e Group-level task performance in the face identity learning task. Falsely remembered trials describe the erroneous
response that the face is known at its first presentation. Not remembered trials describe the casewhere a face id was shown
at least once and not recognized. Missed answers represent the number of trials where the subject did not provide any
answer.

% correct answers No. of total errors No. falsely
remembered stimuli

No. of not
remembered stimuli

No. of missed
answers

M SD M SD M SD M SD M SD

.758 .070 58.483 15.924 5.870 3.612 39.516 14.009 1.129 1.565
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exclusively for new stimuli. The test confirmed that the

probability of reporting to have recognized a face did not

significantly differ between the first half (MDN ¼ .226) and

second half (MDN ¼ .295) half withW ¼ 18, p ¼ .11, and a non-

parametric common language effect size (McGraw & Wong,

1992) of CLES ¼ .32.

3.2. Computational modeling

With our computational modeling approach, we found posi-

tive evidence for Hypothesis 1 of our replication. We defined a

successful replication as an ABF10 � 6 (highest approximate

Bayes factor, see section 2.4.8 for definition) for the winning

model of the original study (i.e., the view-independent and

context-dependent model) on a group level. Indeed, we found

an ABF10 ¼ 9999:50; which corresponds to a posterior model

probability of >99.999%, given the observed data and other

models in the approximate Bayesian model selection pro-

cedure. To avoid floating point underflows in the calculation,

we capped the ABF results to a maximum value of 9999.50.

We performed the primary approximate Bayesian model

selection described in the methods section 2.4.8. and another

exploratory model selection, excluding the random-choice

model, as it was not included by the original authors. How-

ever, excluding this additional baseline model did not influ-

ence the conclusions from the confirmatory model selection

results.

On another exploratory note, a more heterogeneous pic-

ture emerges when focusing on subject-level results. Even

though the view-independent and context-dependent model

emerged as having the highest ABF10 in our model selection,

thismodel only fitted 12 of the 31 subjects included in the final

sample best. We determined this by selecting the model with

the largest BIC (i.e. closest to zero) on a subject level following
Fig. 6 e Individual maxima for the three brain regions of the core

task: OFA (purple), FFA (green), STS (yellow), and PPA (pink). Co

(Abraham et al., 2014)
the winner-takes-all-principle. The control model, including

view-dependent and contextual processing, fitted 13 of the 31

final subjects best. Additionally, the control model encoding

only view-independent without contextual modulation best

fitted four out of the subjects. For two subjects, none of the

models provided a better model fit than the random choice

model.

In summary, we were able to corroborate Hypothesis 1 at

the group level and the main computational modeling results

obtained by Apps and Tsakiris (2013) following our predefined

cut-off for successful replication of ABF10 � 6. Additionally,

following the BF10 �150 convention by Kass and Raftery (1995),

our evidence can be considered ‘very strong’ on a group level.

3.3. fMRI results

In the following, we present the results from the face localizer

task (3.3.1), then the face identity learning task (3.3.2).

3.3.1. Face localizer
Based on independent data, the face localizer task was

included in the experiment to determine face-sensitive ROIs

for analyzing the face identity learning task. It was associated

with BOLD activity in a distributed network encompassing the

bilateral occipito-temporal cortex (including the core system's
brain regions OFA, FFA, and pSTS) and frontal and parietal

areas (see Fig. 7).

The localization of the OFA, FFA and pSTS was determined

for the left and right hemispheres both at the group level and

the individual subject level using the conjunction contrast

“face > houses” AND “faces > scrambled.” The individual

center coordinates are depicted for each ROI in Fig. 6.

In Table 10, we present the center coordinates of each ROI

at the group level of the face-localizer task. The
system of face perception, as assessed by the face localizer

ordinates were visualized with nilearn (version .7.0)

https://doi.org/10.1016/j.cortex.2023.05.021
https://doi.org/10.1016/j.cortex.2023.05.021


Fig. 7 e In our main analysis, we investigated whether face-related brain activity was modulated by trial-by-trial estimates

of the winning computational model i.e. the model involving view-independent and contextual processing. Here, we

present themean regression weights (“mean beta”) for each ROI and each parameter. Using one sample t-tests, we assessed

which modulation parameters were significantly different from zero (*: p < .05, **: p < .01).
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supplementary material/ Appendix G also presents each ROI's
center coordinates for each subject. In addition, we also

determined the Parahippocampal Place Area (PPA) using the

contrast “houses > faces.” The PPA acts as a control region, as

its BOLD activity should not varywith any of the parameters of

our experimental model.

3.3.2. Face identity learning task
The face identity learning task was, just like the face localizer

task, associated with BOLD activity in a distributed network
encompassing the core system's brain regions (contrast

“faces > baseline”; see Table 11 for a list of coordinates at the

group level, supplementary material/ Appendix E for an

illustration of the activation pattern). The anatomical locali-

zation of the regions of the core system was, as expected,

highly similar when determined by the face localizer task and

the face identity learning task.

In ourmain analysis, we assessedwhether the face-related

BOLD activity is modulated by parameters of the winning

computational model, i.e., the model involving view-

https://doi.org/10.1016/j.cortex.2023.05.021
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Table 10 e Group analysis. For the core system, the
conjunction contrast (“faces > houses” AND
“faces > scrambled”) was used. For the PPA, the contrast
“houses > faces” was used. Bilateral FFA, pSTS, and PPA
were detectable at p < .05, FWE corrected at the voxel level.
The left OFAwas only found at p< .05 uncorrected, and the
right OFA at p < .001 uncorrected.

Face localizer task: MNI coordinates of BOLD activity
in the core system (OFA, FFA, pSTS) and the PPA

Region of interest x y z t-value

Left OFA �42 �84 �10 1.82

Right OFA 48 �74 �6 3.86

Left FFA �42 �46 �18 7.32

Right FFA 42 �46 �16 6.80

Left pSTS �58 �54 8 5.55

Right pSTS 46 �54 14 6.25

Left PPA �22 �46 �8 17.57

Right PPA 24 �46 �10 16.95
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independent and contextual processing. Ourmain hypotheses

were that activity in the right pSTS covaries with the trial-by-

trial model estimate of contextual familiarity (Ct) (for mathe-

matical description, see methods section, Hypothesis 2),

whereas activity in the FFA covaries with the view-

independent prediction error (d) (Hypothesis 3).

In the first step, we calculated, for each subject and each

ROI, the beta regression weight of the GLM for the respective

computational model parameter averaged across all voxels in

the ROI. ROIs were created as spheres with a 10 mm radius

around the individual center coordinates determined from the

face localizer task. Using one-sample t-tests, we assessed

whether these parameters were at the group level signifi-

cantly different from zero. If so, it would indicate that these

specific model parameters are significantly associated with

the BOLD activity. The results are presented in Fig. 7. A sum-

mary of statistics (e.g., mean, standard deviation, p-values)

can be found in the supplementary material/ Appendix E and

F. The main findings can be summarized as follows: First,

we did not find a significant association between activity in

the right pSTS and context-dependent familiarity (Ct). Hy-

pothesis 2was therefore not confirmed. We also did not find a

significant association between activity in the right or left

pSTSwith any other computationalmodel parameter. Second,

we found that activity in the right FFA covaried with the view-
Table 11 e Group analysis, GLM without parametric
modulator, contrast “faces > baseline.” All clusters but the
left pSTS were detectable at p < .05 FWE corrected at the
voxel level. The left pSTS was only found at p < .001
uncorrected.

Face identity learning task: MNI coordinates of
BOLD activity in the core system (OFA, FFA, STS)

Region of interest x Y z t-value

Left OFA �40 �82 �8 20.21

Right OFA 42 �78 �6 16.36

Left FFA �36 �44 �20 14.74

Right FFA 36 �40 �16 15.04

Left pSTS �52 �46 14 4.73

Right pSTS 46 �40 14 10.27
independent prediction error (d). Hypothesis 3 was therefore

confirmed at least for the right FFA, albeit not for the left.

BOLD activity in the right FFA further covaried with d, VIi;t and

Ft. Third, we further found that activity in the right OFA was

associated with d. Activity in the PPA, a non-face-sensitive

region, did not significantly covary with any parameter.

In a second step following the main authors in a more

exploratory path, we additionally applied a standard voxel-

wise approach using second-level fMRI models (i.e., one-

sample t-tests for each computational parameter). This

approach is also able to assess associations between compu-

tational model parameters and BOLD activity outside the core

system's brain regions. We decided to specifically present re-

sults for the trial-by-trial estimates d and Ct only from the

winning model since our main hypotheses were based on

these parameters. We used a statistical threshold of p < .05

family-wise error rate corrected for multiple comparisons at

the voxel level, either at the whole brain level or with a small

volume correction (svc); for svc, we used, in accordance with

Apps and Tsakiris (2013), a mask consisting of voxels being

activated at p < .001 for the conjunction contrast

“faces > houses” AND “faces > scrambled” derived from the

face localizer task. This ensured that only voxels were

analyzed that could be considered face-sensitive. For Ct no

cluster survived this threshold. For d; we found significant

brain activation in the left superior frontal gyrus, left caudate,

right amygdala, and right FFA (Table 12). In the supplementary

material, we additionally present activated clusters at an un-

corrected threshold of p < .001 (Fig. 7 and supplementary

material/ Appendix F).
4. Discussion

Apps and Tsakiris (2013) investigated the computational and

neural mechanisms underlying the learning of new face

identities. On the one hand, they showed that behavioral re-

sponses on a face recognition task could be predicted by the

level of contextual and facial familiarity in a computational

model derived from predictive coding principles. On the other

hand, they showed that variations in key parameters of this

model (e.g., prediction error) were associated with BOLD
Table 12 e T-test group analysis for the parametric
modulator d. Significant clusters at p< .05 FWE corrected at
the voxel level are marked with ** and significant clusters
after small volume correction with the conjunction
contrast (faces > houses AND faces > scrambled) derived
from the localizer task (p < .001 uncorrected) are marked
with *.

Group activation of view independent familiarity
(d) identity learning task, MNI (x, y, z)

Region x y z t-value

Left superior frontal gyrus medial

segment

�6 34 44 6.44**

Left caudate �20 8 4 6.56**

Right amygdala 20 �4 �14 6.65**

Right FFA 42 �50 �16 4.99*
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activity changes in specific areas of the face perception

network. The present preregistered study aimed to replicate

these findings. In the following, we will first present the re-

sults we could replicate and those we could not (4.1). We will

then shortly outline which new insights we gained about the

face perception network and describe open research ques-

tions (4.2).

4.1. A comparison of the results of Apps and Tsakiris
(2013) with the present replication study

In their study, Apps and Tsakiris (2013) presented subjects

with previously unknown faces. They were instructed to

remember the faces. Some stimuli were repeated throughout

the experiment so that they became increasingly familiar. For

each face, subjects had to respond whether or not they had

previously seen this face during the experiment. The authors

systematically varied contextual familiarity by the general

level of stimulus familiarity in the immediate history of a

given trial (i.e., the number of more familiar faces previously

presented) and stimulus familiarity by the number of times a

specific face identity had been shown before. Themain results

reported by Apps and Tsakiris (2013) that we set out to repli-

cate were the following: First, behavioral responses on a face

recognition task could be modeled best by a behavioral

computational model assuming a multiplicative effect of

contextual familiarity (Ct) and facial familiarity irrespective of

the viewing angle (VIi;t). Second, activity in the right STS was

correlated with that model's trial-by-trial contextual famil-

iarity parameter (Ct). Third, activity in both the right and the

left FFA was correlated with the trial-by-trial prediction error

estimate updating facial familiarity (d).

Hypothesis 1: Computational modeling of behavioral re-

sults. Similarly, to the original study, we evaluated which of

the proposed computational models explained the learning

processes best andmost parsimonious. On the group level, we

could replicate the original results by Apps and Tsakiris (2013).

The model involving abstracted and perspective-invariant

facial representations (view-independent processing) and

contextual influences captured the learning process best on a

group-level. The contextual influence was operationalized as

the level of familiarity of the preceding facial identities, which

is hypothesized to provide additional information for an agent

when predicting the familiarity of the upcoming facial stim-

ulus. Notably, the winning model is consistent with funda-

mental concepts of the (non-hierarchical) predictive coding

framework (e.g., prediction errors). Supplementary analyses

further highlighted that the trial-by-trial model parameters

extracted from the winningmodel covaried with the observed

behavior. In summary, we were able to replicate Hypothesis 1

decisively.

Hypotheses 2 and 3: Association between model parameters

and BOLD activity. Whether the results of an experiment can

be replicated also depends on the data quality of the replica-

tion study. A non-replication might happen, of course, simply

because the acquired data is of insufficient quality. However,
wehave no evidence that this study's data quality was poor, as

assessed, for instance, by the MRIQC analyses. The activation

patterns of the basic contrasts (“faces > baseline”) also pro-

vided highly plausible results. The face localizer task (which

was used to determine the ROIs) was associated with robust

activity in the core system of face perception. It was possible

to determine the core regions OFA, FFA, and pSTS, as well as

the control region PPA in both hemispheres for each subject.

The presentation of faces was associated with activation in

the face perception network, particularly in the core system.

Therefore, there was no evidence that a possible non-

replication of previous results was due to poor data quality.

Hypothesis 2 (Activity in the STS): Apps and Tsakiris (2013)

showed that activity in the right STS covaried with the trial-

by-trial model estimate of contextual familiarity (Ct). We did

not replicate this finding (p¼ .58, see supplementarymaterial/

Appendix E and F). Exploratory analyses further showed that

activity in the right pSTS also did not covary with any other

model parameter. An exploratory whole-brain analysis

showed that contextual familiarity (Ct) was not significantly

correlated with activity in any other brain region outside the

core system of face perception. In summary, we were not able

to replicate Hypothesis 2.

To further understand the discrepancies between both

studies, we analyzed whether there were differences in the

localization of the face-sensitive regions in the STS. Although

these regions were determined in both studies using a similar

procedure, their localization differed. In the present study, we

found activity in the posterior part of the STS, as typically

reported in studies on face perception (Fox, Iaria, & Barton,

2009; Haxby et al., 2000). In contrast, Apps and Tsakiris

(2013) located the STS in far more anterior regions. It might

therefore be possible that our study did not replicate the

previous results simply because we analyzed activity in a

different region. However, as mentioned before, both regions

were defined using the same approach. Using the whole brain

analysis approach, we further analyzed the association be-

tween contextual familiarity and BOLD activity. Nevertheless,

at an uncorrected threshold of p ¼ .05, we did not find any

activity in any part of the STS.

We have also to acknowledge, however, that the actual

power for the STS was lower than for the FFA. The expected

effect size (i.e., Cohen's d) was averaged across all three ROIs

reported in the original study (i.e., right STS, left FFA, right

FFA), yielding d ¼ .788. When considering the STS separately,

the expected effect size would have been .403, leading to an

actual power for the STS of .37. Our study thus had effectively

less power to find the STS effect compared to the FFA effect.

Hypothesis 3 (Activity in the FFA): Apps and Tsakiris (2013)

showed that activity in both the right and the left FFA was

correlated with the trial-by-trial view-independent prediction

error estimate updating facial familiarity (d). We also found

that activity in the right FFA significantly covaried with this

parameter (d), thus confirming Hypothesis 3, at least for the

right FFA. We did, however, not find a significant effect for the

left FFA as previously reported (p ¼ .11, see supplementary

material/ Appendix E and F). Exploratory analyses further

showed that BOLD activity in the right FFA also covaried with
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other model parameters (i.e., with d, VIi;t and Ft). The contex-

tual prediction error ε was the only computational parameter

for which we did not find an association (p ¼ .15, see

supplementary material/ Appendix F). It has to be noted,

however, that the computational parameters partly covaried

across trials (see supplementary material/ Appendix I).

Therefore, it is not possible to conclude that each parameter,

even if significant, reflects a unique contribution from that

parameter. The right FFA might only encode, for instance,

facial familiarity, which happens to be correlated with other

model parameters.

Furthermore, an exploratory whole-brain analysis showed

that the association between the view-independent predic-

tion error estimate (d) and BOLD activity was not restricted to

the right FFA but was also found in a large network outside the

core system of face perception. This network encompasses

brain regions in the left superior frontal gyrus, left caudate,

and right amygdala. In summary, we could replicate Hy-

pothesis 3 for the right FFA but not for the left FFA.
3 To avoid misinterpretations of our findings, we would like to
note that the computational parameters partly covary across
trials and therefore one cannot conclude that single-parameter
based significances reflect a unique contribution of that param-
eter. See also Appendix I.
4.2. New insights into the face perception network and
open research questions

The recognition of familiar faces is crucial for appropriate

social interactions. The computational processes that under-

lie the learning of facial identities, i.e., the transition of faces

from unfamiliar to familiar, are still poorly understood in

humans. Formally, these processes can bemodeledwithin the

meta-framework of the Hierarchical Mechanistic Mind

(Badcock, Friston, & Ramstead, 2019; Badcock, Friston,

Ramstead, Ploeger, & Hohwy, 2019) encompassing the recent

neuro-theoretic frameworks of the Bayesian brain, predictive

coding, and active inference under the free-energy principle

(see the introduction for a thorough overview). The empirical

foundation for PC consistency in face processing, however, is

sparse. A notable exception is the study by Apps and Tsakiris

(2013). The authors used, for the first time, a combination of

computational modeling and neuroimaging to characterize,

both at the behavioral and at the brain level, fundamental

computational mechanisms underlying the perceptual

learning of faces.

In the long term, we want to use similar approaches to

understand better mental disorders (e.g., autism spectrum

disorder), leveraging theory-driven computational psychiatry

methods (i.e., translational neuromodeling approaches)

following process theories based on the HMM framework

(Haker, Schneebeli, & Stephan, 2016). Before embarking on

these projects, we wanted to improve the empirical database

and ultimately ensure that we worked with paradigms that

would yield replicable results. More specifically, we wanted to

test whether crucial model parameters of computational

models describing face perception processes are associated

with specific brain activity patterns.

Our study supports the original findings of Apps and

Tsakiris (2013) in two critical aspects. We showed that

behavioral responses in the face recognition task could be

predicted by the level of contextual and facial familiarity in a

computational model derived from predictive coding princi-

ples. On the other hand, we showed that trial-by-trial
variations of these model parameter estimates covaried with

BOLD activity in specific, face-sensitive brain regions. Addi-

tionally, we presented evidence that face identity learning

likely follows predictive coding principles on a computational

level and that crucial parameters of this computational model

can be localized to specific brain regions.

Our study, however, paints a different picture of how these

computational model parameters are reflected in the brain.

Apps and Tsakiris (2013) suggested that a particular parameter

is associated with a particular brain region at a time. More

specifically, they associated the STS with contextual famil-

iarity and the FFA with the prediction error updating facial

familiarity (“double dissociation of brain functions”). They

concluded that “an important functional property of the FFA is

to update how familiar a facial identity is […] while the STS

processes task-relevant, contextual information about the

recent history of the familiarity of faces” (Apps & Tsakiris,

2013, p. 7). In contrast, our study comes to a different

conclusion. Our results show that BOLD activity in the right

FFA is associated with multiple computational model pa-

rameters, while we do not find an association with STS ac-

tivity.3 Our data do not support any dissociation between

particular brain regions in the sense that one region is specific

for one aspect, another region for another aspect of themodel.

In future work, we aim to investigate further aspects of the

compatibility of predictive processes with facial identity

learning. First, we will test whether other computational

modeling approaches consistent with hierarchical predictive

coding (e.g., hierarchical Gaussian filter, C. Mathys,

Daunizeau, Friston, & Stephan, 2011; C. D. Mathys et al.,

2014) are better suited to model behavioral data. If so, we

plan to assess how these model parameters are related to the

BOLD activity of the face-processing areas. Second, we will

further investigate whether interindividual differences in the

winning models are also associated with differences on the

neural system level. As a reminder, even though the view-

independent and context-dependent model emerged as hav-

ing the highest posterior weight in ourmodel selection, it only

fitted 12 of the 31 subjects included in the final sample best.
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