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Uncertainty of treatment efficacy 
moderates placebo effects 
on reinforcement learning
Nick Augustat *, Dominik Endres  & Erik M. Mueller 

The placebo-reward hypothesis postulates that positive effects of treatment expectations on 
health (i.e., placebo effects) and reward processing share common neural underpinnings. Moreover, 
experiments in humans and animals indicate that reward uncertainty increases striatal dopamine, 
which is presumably involved in placebo responses and reward learning. Therefore, treatment 
uncertainty analogously to reward uncertainty may affect updating from rewards after placebo 
treatment. Here, we address whether different degrees of uncertainty regarding the efficacy of a 
sham treatment affect reward sensitivity. In an online between-subjects experiment with N = 141 
participants, we systematically varied the provided efficacy instructions before participants first 
received a sham treatment that consisted of listening to binaural beats and then performed a 
probabilistic reinforcement learning task. We fitted a Q-learning model including two different 
learning rates for positive (gain) and negative (loss) reward prediction errors and an inverse gain 
parameter to behavioral decision data in the reinforcement learning task. Our results yielded an 
inverted-U-relationship between provided treatment efficacy probability and learning rates for 
gain, such that higher levels of treatment uncertainty, rather than of expected net efficacy, affect 
presumably dopamine-related reward learning. These findings support the placebo-reward hypothesis 
and suggest harnessing uncertainty in placebo treatment for recovering reward learning capabilities.

Our expectations shape how we remember the past1,2, experience the present3–5 and predict the future6. Expecta-
tions are built on prior experience and are strongly influenced by unexpected events7. Unexpected events create 
prediction errors, defined as positive or negative deviations from expectations, and drive learning8–10. The extent, 
to which single prediction errors influence expectations, is called the learning rate.

A number of psychological phenomena are subject to differences in the individual weighting of reward 
prediction errors11,12, which may be altered through placebo interventions13,14. A placebo intervention releases 
no medical agent into the organism, nevertheless, inducing positive treatment expectations towards a sham or 
open-label placebo trial may prove beneficial to several health outcomes, such as pain or depression15,16. It is 
thus of great interest for novel therapeutic approaches to disentangle and harness the supplementary factors of 
placebos contributing to symptoms improvement.

Neurobiological studies on placebo effects in pain and depression suggest that placebo effects involve dopa-
mine-related processes17. Specifically, the placebo-reward-hypothesis18 states that the effect of positive treatment 
expectations may directly be linked to striatal dopamine release, which in turn innervates the reward circuitry 
and thereby may mitigate symptoms of pain and depression. More specifically, it proposes that placebos rely on 
similar or identical neural underpinnings as rewards, and that the nucleus accumbens in the striatum constitutes 
the locus of dopamine-related action in response to reward expectations in anticipation of therapeutic improve-
ment. This implies a particularly useful role of placebos in the treatment of mental disorders associated with 
attenuated processing of and learning from rewards, as for instance major depressive disorder19.

Reward sensitivity may be increased by inducing positive treatment expectations. Particular evidence stems 
from a study on Parkinson’s disease20, although a study on healthy participants provided mixed findings21. In a 
prior study, we could find that learning rates for gain increased through a positive treatment expectation inter-
vention in healthy participants22. Before the participants performed a probabilistic reinforcement learning task, 
they were told that they either received an inert substance or an antidepressant pill, but, actually, all participants 
received an inert substance pill. However, the highest learning rates for gain were observed in the antidepressant 
expectation group. If this expectation-induced increase of learning rates accounts for the expectation-induced 
increase in therapeutic efficacy commonly observed in antidepressant trials23–25, it could be hypothesized that 
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learning rates for gain increase with higher subjective probabilities of receiving an active antidepressant substance, 
potentially leading to increased symptoms improvement.

In this regard, the benefits of the placebo effect would be presumed to follow a monotonic pattern, such 
that high (vs. low) expectations towards a beneficial effect would result in increased learning rates for gain 
(monotonicity hypothesis). Nevertheless, additional factors may have to be taken into account: theories define 
uncertainty as a part of expectations26,27 with clinical implications28. Given the placebo effect primarily relies on 
expectations, uncertainty regarding the probability of treatment efficacy could constitute an additional feature 
of placebo effects.

Similar to the link between placebo and reward, uncertainty as well makes a significant contribution to reward 
sensitivity26,29. Accordingly, in an unknown or variable environment, an ideal observer should update its expec-
tations more from recent observations than in a known and static environment. In this regard, previous studies 
have shown maximum tonic firing of striatal dopaminergic neurons during maximum reward uncertainty30,31, i.e., 
a 50 percent probability of reward delivery. Similar effects have been observed regarding dopamine release32–34, 
even though tonic firing may not necessarily affect dopamine release35. This tonic enhancement is observed in 
classically as well as operantly conditioned responses and presumed to reflect state uncertainty, although its 
specific role is not fully understood yet36. Given reward uncertainty increases tonic striatal dopaminergic firing, 
which in turn might facilitate quick updating from rewards, learning rates for gain should reach its peak under 
maximum reward uncertainty (uncertainty hypothesis). Consistent with the uncertainty hypothesis (rather than 
the monotonicity hypothesis), a previous study37 addressed the effect of placebo expectancy on learning rates for 
gain under high vs. low uncertainty regarding treatment efficacy and found increased learning rates for gain in 
a high (vs. low) uncertainty condition. Therefore, when varying the expected treatment efficacy systematically, 
the pattern of the learning rates for gain expected under this hypothesis would exhibit an inverted-U-shape, that 
is, a peak at maximum treatment uncertainty with monotonic increase on the left-hand side towards the peak, 
and monotonic decrease on the right-hand side towards the largest expected treatment efficacy.

Computational models within the reinforcement learning framework not only allow estimating effects of 
uncertainty on learning rates3,38,39, but have also been proven useful for investigating aberrant processes in mood 
disorders40,41. A mechanistic approach includes the computation of learning rates to capture the mapping of 
reward prediction errors onto future reward expectations. A higher learning rate reflects a stronger weighting 
of recent outcomes, which would be highly useful in a volatile environment, such as everyday life. In turn, a low 
value indicates a stronger integration of cumulative experiences serving best in a stable environment28,38. Sepa-
rate learning rates for gain and loss capture how differential sensitivity towards positive and negative feedback 
influences the expected choice value, resembling positive and negative reward prediction errors. In context of 
mood and anxiety disorders, learning rates have been assumed to exhibit a shift towards altered updating from 
negative feedback40.

In the present study, we asked if the learning rate is related to treatment uncertainty such that the relation-
ship between increasing treatment efficacy probabilities and learning rate follows an inverted-U pattern similar 
to the tonic dopamine pattern exhibited under different reward probabilities30,32. If so, individuals receiving 
a placebo treatment under different efficacy probabilities, analogously to varying reward probabilities, would 
exhibit increased sensitivity to rewards particularly under intermediate treatment efficacy probabilities where 
uncertainty is maximal. Alternatively, a monotonic increase of learning rate as a function of treatment efficacy 
probability would be consistent with recommendations from clinical findings to maximize treatment certainty 
for antidepressant trials24.

In order to test the monotonicity hypothesis against the uncertainty hypothesis, we collected behavioral data 
online and randomly assigned participants into five groups differing with regard to the expected treatment efficacy, 
i.e., the purported probability of treatment efficacy, from 0 to 100 percent in steps of 25 percent (Fig. 1, top; see 
Methods for details). Participants underwent a sham auditive treatment using binaural beats before indicating 
their treatment expectations. Binaural beats are two sinusoidal audio waveforms with different frequencies played 
separately on each ear and evoke an illusory difference tone equal to the frequency difference of the waveforms, 
which is perceived only by the listening individual. In public media, binaural beats are often promoted as a 
cognitive enhancement procedure, in spite of no substantial empirical evidence42. Therefore, harnessing this 
pseudo-treatment promised efficient use as inactive placebo treatment in an online approach. The participants 
subsequently performed a well-established probabilistic reinforcement learning task that has been shown to be 
sensitive to striatal dopamine43. In this task participants are simultaneously presented three pairs of two distinct 
stimuli each with different reward probabilities (80:20, 70:30 and 60:40, respectively) and participants have to 
find out by trial-and-error, which stimulus is more often rewarded. We applied a Q-learning algorithm37,44 with 
separate learning rates for both gain and loss trials to the choice data.

Results
Expected treatment efficacy did not affect behavioral task performance
Before assessing computational differences in task performance, we analyzed four aggregate measurements 
of behavioral performance typically encountered in behavioral experiments, i.e., reaction time (time between 
stimulus presentation and choice), optimal choices (task average of accuracy, or selecting the more rewarding 
stimulus under initially unknown reward probabilities) collected reward (task average of positive feedback), and 
stay probability (the probability of three equal consecutive choices given two preceding equal choices). Figure 2 
(top) shows trial-wise aggregates over the course of the task. A hierarchical generalized mixed-effects regression 
with log-link function including the provided probability of treatment efficacy as fixed effect and participant ID as 
random effect was tested against an intercept-only model. The findings revealed evidence for indifference regard-
ing individual reaction times (χ2(4) = 3.04, p = 0.551, BF10 < 0.001), the count of optimal choices (χ2(4) = 1.64, 
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p = 0.802, BF10 < 0.001), collected reward (χ2(4) = 3.99, p = 0.407, BF10 < 0.001), and stay probability (χ2(4) = 1.94, 
p = 0.746, BF10 < 0.001). Therefore, expected treatment efficacy did not show effects on conventional behavioral 
measurements of overall task performance.

Expected treatment efficacy alters reinforcement learning
Next, we investigated group differences concerning RL parameters. As previously noted, learning rates reflect 
the strength as to which novel feedback updates the expected outcome value (here: of a stimulus), separately for 
positive (gain) and negative (loss) feedback, whereas the inverse gain parameter modulates the choice probability, 
i.e., how “rational” a learner integrates expected value differences in its decisions. We performed Markov chain 
Monte Carlo (MCMC) sampling for parameter estimation on individual decision data and took the individual 
posterior means of RL parameters as a marker for individual reward sensitivity (see Methods for details; see 
Supplementary Fig. S1 for the posterior sampling distributions; Supplementary Fig. S2 for MCMC traces; and 
Supplementary Fig. S3 for posterior predictive distributions). To test the model assumption of separate updating 
from gain and loss, we performed a generalized mixed model with participant ID as random effect, which indi-
cated that preceding reward feedback significantly interacted on the subsequent stay probability within stimuli 
pairs supporting the assumptions of outcomes to differently drive subsequent choices (χ2(7) = 5.75, p = 0.016, 
BF10 < 0.171). In other words, different reward feedback in two consecutive equal choices significantly decreased 
the stay probability in the subsequent choice. Further, our model showed reasonable fit to the data (63.7 percent 
model accuracy in terms of the mean likelihood of observed choices; see Methods for details), and no group 
differences could be observed with regard to the fit (F(4,136) = 0.39, p = 0.814, BF10 = 0.042). Three one-way 
ANOVAs were computed with the provided probability of treatment efficacy grouping factor as fixed between-
subjects effect and each RL parameter on its original, normally-distributed unconstrained scale used for sampling 
(logit-scale for learning rates to ensure transformed values between 0 and 1, and log-scale for inverse gain to 
set a lower limit of zero) as the dependent variable. The ANOVAs yielded significant group effects regarding 
learning rates for gain (F(4,136) = 2.47, p = 0.048, η2 = 0.07, 95% CIη2 [0.00, 1.00], ω2 = 0.04, 95% CIω2 [0.00, 1.00], 
BF10 = 0.77), learning rates for loss (F(4,136) = 5.84, p < 0.001, η2 = 0.15, 95% CIη2 [0.05, 1.00], ω2 = 0.12, 95% 
CIω2 [0.03, 1.00], BF10 = 126) as well as the inverse gain parameter (F(4,136) = 2.96, p = 0.022, η2 = 0.08, 95% CIη2 
[0.01, 1.00], ω2 = 0.05, 95% CIω2 [0.00, 1.00], BF10 = 1.33). See Fig. 3 for transformed individual posterior means 
by group and significant post-hoc comparisons. Model and parameter recovery are shown in Fig. 4. Pairwise 
post-hoc comparisons are shown in Table 1.

Learning rates for gain exhibit an inverted‑U‑shape for expected treatment efficacy
In order to investigate the shape of the group effect according to our hypotheses and whether it exhibits a mono-
tonic pattern vs. inverted-U-shape, we tested a positive monotonic vs. inverted-U-shaped relationship with 
regard to learning rates for gain as index of reward sensitivity. For this purpose, the number of MCMC samples, 
in which the group-level estimates matched a (1) monotonic or (2) an inverted-U-shaped pattern, was counted 
and divided by the number of samples collected. We took all 80,000 MCMC group-level posterior samples for the 

Figure 1.   Experimental design and probabilistic RL task design. Top, Participants were randomly assigned 
into one of five groups differing in verbally provided probabilistic treatment efficacies (i.e., expected treatment 
efficacies) before listening to binaural beats as sham treatment. Afterwards, a probabilistic reinforcement 
learning task was performed. Bottom, The task constituted of a fixation period followed by stimulus presentation 
with a time limit for choice-making and a subsequent probabilistic feedback. The fixed reward probabilities of 
each pair were 80% to 20%, 70% to 30%, and 60% to 40% for the more vs. less frequently rewarded stimulus, 
respectively. Crucially, although the reward probabilities indicate that one stimulus is, on average, preferable 
over the other stimulus, choosing those stimuli exhibiting lower reward probabilities has been rewarded at 
times.
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learning rates for gain (αgain), and computed the percentage of samples exhibiting either pattern on group-level 
estimates (μ). We assumed μα,gain(0%) <  μα,gain (25%) < μα,gain (50%) < μα,gain (75%) < μα,gain (100%) for a monotonic 
relationship, and μα,gain (0%) < μα,gain(25%) < μα,gain (50%) > μα,gain(75%) > μα,gain(100%) for an inverted-U-shaped 
relationship. A monotonic increase was observed in 2.1 percent of the samples, whereas an inverted-U-shaped 
pattern was present in 17.4 percent of the MCMC samples. By omitting the 25% (unlikely) and 75% (likely) condi-
tions, the percentage increased to 22.8 percent for the monotonical increase, and 68.6 percent for the inverted-
U-pattern. All pairwise comparisons of the group-level posterior means are shown in Table 2.

Further, we performed a hierarchical regression for the individual RL parameter posterior means com-
paring a linear-only with a combined linear and quadratic (as a special case of an inverted-U-shape) effect 
of numerical expected treatment efficacy. The expected treatment efficacy group factor (0–100% in steps of 
25%) was transformed to centered numerical values ranging between 50 and − 50 with a mean of 0. Bayes fac-
tors are reported for comparisons against intercept-only models. The first model included a linear group term 
(R2 = 0.02, F(1,139) = 3.08, p = 0.081, BF10 = 0.73). A quadratic term was added to the second model (R2 = 0.05, 
F(2,138) = 3.72, p = 0.027, BF10 = 1.26; ∆R2 = 0.03, F(1,138) = 4.28, p = 0.040) providing support for the uncer-
tainty hypothesis. At the same time, adding a quadratic term also revealed an additional significant linear effect 
of expected treatment efficacy in support of the monotonicity hypothesis, which increased from b = 0.005 to 
b = 0.006 (p = 0.046). For complete results, see Table 3.

Figure 2.   Behavioral measurements over the course of the probabilistic RL task and their correlation with 
individual RL parameter posterior means. (a, b) The development of reinforcement contingency is shown within 
each stimulus pair for optimal choices and for collected reward, respectively. For each trial, response values (0 or 
1; top) and individual cumulative means (mean of all response values from trial 1 to the depicted trial number; 
bottom) were averaged across all participants. With increasing trial number, participants learned to make more 
optimal choices, particularly for the 80:20-pair. Shaded area indicates the standard error at each trial. The pair is 
designated by opacity of the lines. (c, d) The same procedure as in (a) and (b) was applied to reaction times (c), 
indicating faster choices with increasing trial number, and the stay probability (d), i.e., probability of three equal 
consecutive choices given two equal preceding choices. (e) Pearson’s product-moment correlations between RL 
parameters and individual means for count of optimal choices (purple), collected reward (magenta), reaction 
time (red), and stay probability (orange). RL parameters are represented on the x-axis, Pearson’s product-
moment correlation coefficients on the y-axis. To obtain the temporal correlations, a sliding window of 20 
trials was moved in steps of 1, where the first trial window (at trial 20) consisted of trials 1 to 20. Shaded areas 
represent the uncorrected 95% confidence interval at for each trial window.
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Correlations of RL parameters and behavioral performance depend on task stage
Across the task, learning rate for gain did not significantly correlate with behavioral measurements, i.e., optimal 
choices (r = 0.02, 95% CI [− 0.14, 0.19]), collected reward (r = 0.04, 95% CI [− 0.13, 0.20]) and reaction time 
(r = 0.09, 95% CI [− 0.08, 0.25]), and stay probability (r = 0.05, 95% CI[− 0.11, 0.21]). Learning rate for loss cor-
related significantly with optimal choices (r = 0.31, 95% CI [0.16, 0.45]), collected reward (r = 0.25, 95% CI [0.09, 
0.40]) and stay probability (r = 0.29, 95% CI [0.13, 0.44]), but not with reaction time (r = 0.15, 95% CI [− 0.01, 
0.31]). The inverse gain parameter correlated numerically the strongest of all parameters with all behavioral 
measurements, i.e., count of optimal choices (r = − 0.62, 95% CI [− 0.72, − 0.51]), collected reward (r = − 0.64, 
95% CI [− 0.73, − 0.53]), and reaction time (r = − 0.45, 95% CI [− 0.57, − 0.31]), and stay probability (r = − 0.77, 
95% CI [− 0.83, − 0.70]). The higher the inverse gain parameter was, the lower were the count of optimal choices 
and collected reward, and the faster was the reaction time, suggesting that any behavioral differences were only 
reflected in the inverse gain rather than in the learning rates. However, additional exploratory analyses revealed 
that the learning rates captured dynamical aspects of choice behavior: while the learning rate for gain correlated 
with collected reward the highest during early trials (b0 = 0.301, p < 0.001; b = − 0.004, p < 0.001), the correlation 
between learning rate for loss increased towards later trials (b0 = 0.046, p = 0.020; b = 0.001, p < 0.001), The traces 
of correlations throughout the task are depicted in Fig. 2 (bottom).

Explicit treatment expectations on symptoms improvement correlate with purported treat-
ment efficacy but not RL parameters
We exploratively assessed if our expectation manipulation elicited responses in explicit expectation ratings 
analogous to the quadratic pattern in learning rates for gain. We used three items of the Generic rating scale 
for previous treatment experiences, treatment expectations, and treatment effects45 (GEEE) separately asking for 
expected learning performance improvement, worsening from the treatment as well as expected side-effects from 
the treatment (see Methods). An additional item asked for the subjective certainty of performance improvement 
ranging from certainly ineffective to certainly effective. Bayesian regression models with the expected treatment 
efficacy as predictor and each questionnaire item as dependent variable were tested against an intercept-only 
model and for the model with the largest Bayes factor, explained variance and model significance are reported. 
The results yielded anecdotal evidence (1 < BF10 < 3) for a combination of linear and quadratic effects for expected 

Figure 3.   Individual RL parameters separately for each treatment group. Treatment groups are represented 
on the x-axis, and transformed (constrained) individual parameter posterior means are shown on the y-axis. 
Box plots represent the group-level median (thick horizontal bar), quartiles and whiskers (1.5*IQR). Group-
level means are depicted as a cross and connected with a thin dotted line. P-values are displayed, if Bonferroni-
correction for tenfold comparisons was significant at p < .05.
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performance improvement (BF10 = 2.69; group-only model: BF10 = 1.61; quadratic-only model: BF10 = 0.73), which 
explained R2

adj = 4.9% of the variance (pmodel = 0.012). These results implied maximum (explicit) treatment expec-
tations on symptoms improvement in a range between purportedly maximum certain and uncertainty treatment 
efficacy. There was further very strong evidence (BF10 > 103/2) for a linear effect on expected certainty of positive 
treatment efficacy (BF10 = 74.7, R2

adj = 8.2%, pmodel < 0.001; model including group and quadratic term: BF10 = 64; 
quadratic-only model: BF10 = 0.35) suggesting that participants in groups with higher provided treatment effica-
cies also expected a more certain improvement in learning performance. There was no evidence for effects of 
purported probability of treatment efficacy on expected symptoms worsening and expected side effects count 
(all BF10 < 0.45), except for anecdotal evidence for a quadratic effect on expected symptoms count (BF10 = 1.28, 
R2

adj = 0.1%, p = 0.273). This translated to a specific variability in positive, rather than negative, treatment expecta-
tions caused by the experiment. See Supplementary Fig. S4 for participants’ ratings on GEEE expectation scale, 
separately for each group and item.

Additional Spearman’s rank correlations between all questionnaires used in this study and RL parameters are 
shown in Supplementary Fig. S5. With respect to effects of personality traits, we observed a significant correlation 
between the learning rate for loss and the BFI-10 neuroticism scale (r = − 0.19, p = 0.028).

Forgetting might contribute to observed effects of treatment uncertainty
We performed additional analyses, since a large portion of behavioural effects has been reflected in the inverse 
gain parameter capturing decision noise. To this end, we refined the previously analysed model and tested it 
against two different candidate models.

First, we tested the robustness of the previously analysed standard model with wide priors and the original 
sampling procedure (SWo model) by narrowing the priors (SSo model; see Methods), revealing a similar treatment 
effect pattern as previously reported (see Supplementary Fig. S6 for individual posterior means), but exhibiting 
less within-group variance. A monotonic pattern was observed in 4.3% and 41.0% of the posterior samples for 
the strong and weak monotonicity hypothesis, respectively, and 17.2% and 57.8% for the inverted-U hypothesis. 
Further, we translated the SSo model to the hBayesDM framework in R46 (SSh model; Fig. 5, bottom left), which 
per default sets initial values using a variational Bayesian approach, using freely available scripts (https://​github.​

Figure 4.   Model recovery. (a) Observed means of participants’ optimal choices (x-axis) contrasted against 
means of optimal choices using the obtained RL parameters on simulated task data (black dots) and sampled 
from posterior likelihoods of observed choices (colored dots), separately for each participant’s first 30 trials (top 
row) and all remaining trials (bottom row). Brighter colors indicate a higher model accuracy for the observed 
choices in terms of a higher mean posterior likelihood for observed choices. (b) Trial-wise means for observed 
optimal choices (violet), model likelihood of optimal choices on observed data (green), and model likelihood of 
optimal choices on simulated data (yellow), averaged across all pairs within subjects first, and averaged within 
groups afterwards. The x-axis denotes the trial number within a pair (max. 40). (c) Pairwise density estimates 
of individual RL parameter posterior means on the unconstrained scale used for sampling. Note that the color 
levels are relative to the data depicted within each row, not across all rows. Brighter colors indicate higher 
density.

https://github.com/CCS-Lab/hBayesDM
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com/​CCS-​Lab/​hBaye​sDM). In both the SSh and the SSo model, the learning rates for gain revealed similar pat-
terns to the SWo model. Widening the priors again, on the contrary, disrupted the inverted-U-pattern (SWh 
model; Fig. 5, bottom right).

Second, we conducted a model comparison between the SSh and SWh model, consisting of two separate 
update parameters and an inverse temperature parameter (i.e., the inverse of the inverse gain parameter used 
in the SSo and SWo model); an extended standard model (ES model) similar to the SSh model, additionally 
including a forgetting rate47, irreducible noise48, and an initial bias49; and a forgetting-RL model with only one 
update and inverse temperature parameter each, and a choice kernel component50 (see Methods for all parameter 
definitions). Hierarchical model comparison was performed using a fully Bayesian LOOIC51 applying the func-
tion hBayesDM::extract_ic to the hBayesDM model objects fitted across all participants irrespective of the treat-
ment groups. The lower the LOOIC of a model, the better its out-of-sample prediction accuracy. The ES model 
yielded the lowest Leave-One-Out Information Criterion score (LOOIC = 17,971, SE = 382), closely followed by 
the RLf-CK model (LOOIC = 18,079, SE = 396) and, to a lesser extent, the SSh model (LOOIC = 18,551, SE = 378) 
and the SWh model (LOOIC = 18,750, SE = 369). To test for differences of the sampling procedure, a prediction 
accuracy score was computed for the SSo without group constraints. The analysis yielded the lowest score for 
this model compared to all other models (LOOIC = 17,906, SE = 394), supporting the quality of our initial model.

Additional parameter recovery was performed for all hBayesDM models fitted across all participants by 
extracting the individual group-level parameter posterior means, simulating new choice data for N = 141 agents 
over 120 trials each, and correlating the obtained parameters for simulated data with the generative RL param-
eters. Given the close to identical LOOIC for the ES and RLf-CK model, we considered the RLf-CK model as 
the better performing model due to a higher average Spearman’s rank-correlation coefficient for simulated vs. 
obtained parameters (rES = 0.46, and rRLf-CK = 0.66), and parsimony (five instead of six parameters). The SSh model 
yielded an average recovery correlation of rSpearman = 0.07, indicating parameters did not recover well using this 
procedure.

As part of the hierarchical comparison, all hBayesDM models were fitted separately for each group and tested 
for differences in the estimated parameters. The unified (non-separated) learning rate parameter of the RLf-CK 

Table 1.   Post-hoc comparisons for individual RL parameter posterior means. For each contrast, Cohen’s d (d) 
is shown with standard error (SE), degrees of freedom (df) and the 95% confidence interval (CI).

Parameter Contrast d SE df CI

Learning rate (gain)

(0–25%) 0.06 0.30 136 [− 0.52, 0.64]

(0–50%) 0.86 0.30 136 [0.27, 1.44]

(0–75%) − 0.16 0.29 136 [− 0.73, 0.4]

(0–100%) 0.63 0.30 136 [0.04, 1.22]

(25–50%) 0.80 0.26 136 [0.28, 1.32]

(25–75%) − 0.22 0.25 136 [− 0.72, 0.28]

(25–100%) 0.57 0.27 136 [0.04, 1.1]

(50–75%) − 1.02 0.26 136 [− 1.53, − 0.51]

(50–100%) − 0.23 0.26 136 [− 0.74, 0.29]

(75–100%) 0.79 0.26 136 [0.28, 1.31]

Learning rate (loss)

0–25% 0.06 0.30 136 [− 0.52, 0.64]

0–50% 0.86 0.30 136 [0.27, 1.44]

0–75% − 0.16 0.29 136 [− 0.73, 0.4]

0–100% 0.63 0.30 136 [0.04, 1.22]

25–50% 0.80 0.26 136 [0.28, 1.32]

25–75% − 0.22 0.25 136 [− 0.72, 0.28]

25–100% 0.57 0.27 136 [0.04, 1.1]

50–75% − 1.02 0.26 136 [− 1.53, − 0.51]

50–100% − 0.23 0.26 136 [− 0.74, 0.29]

75–100% 0.79 0.26 136 [0.28, 1.31]

Inverse gain

0–25% 0.06 0.30 136 [− 0.52, 0.64]

0–50% 0.86 0.30 136 [0.27, 1.44]

0–75% − 0.16 0.29 136 [− 0.73, 0.4]

0–100% 0.63 0.30 136 [0.04, 1.22]

25–50% 0.80 0.26 136 [0.28, 1.32]

25–75% − 0.22 0.25 136 [− 0.72, 0.28]

25–100% 0.57 0.27 136 [0.04, 1.1]

50–75% − 1.02 0.26 136 [− 1.53, − 0.51]

50–100% − 0.23 0.26 136 [− 0.74, 0.29]

75–100% 0.79 0.26 136 [0.28, 1.31]

https://github.com/CCS-Lab/hBayesDM
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Table 2.   Pairwise post-hoc comparisons of group-level parameter posterior samples. pd is the probability of 
direction, ps is practical significance. Region of practical equivalence (ROPE) was set to [− 0.1, 0.1]. CI denotes 
the 95% confidence interval.

Parameter Contrast Mean CI pd (%) ps % in ROPE 

Learning rate (gain)

0–25% − 0.30 [− 1.78, 1.13] 65.75 0.61 10.42

0–50% − 0.97 [− 2.37, 0.42] 91.34 0.89 4.71

0–75% − 0.59 [− 1.98, 0.78] 80.15 0.76 8.29

0–100% − 0.57 [− 1.94, 0.84] 79.10 0.75 8.41

25–50% − 0.67 [− 2.07, 0.72] 82.63 0.79 7.65

25–75% − 0.30 [− 1.66, 1.04] 66.42 0.61 11.07

25–100% − 0.28 [− 1.66, 1.09] 65.34 0.60 11.19

50–75% 0.38 [− 0.91, 1.68] 71.34 0.66 11.00

50–100% 0.39 [− 0.97, 1.68] 71.89 0.67 10.75

75–100% 0.02 [− 1.27, 1.32] 51.13 0.45 12.98

Learning rate (loss)

0–25% 0.04 [− 1.96, 1.96] 51.42 0.47 8.80

0–50% 0.90 [− 1.71, 3.82] 74.59 0.71 6.60

0–75% − 0.20 [− 1.98, 1.51] 58.38 0.54 9.64

0–100% 0.65 [− 1.65, 2.99] 70.87 0.67 7.11

25–50% 0.86 [− 1.90, 3.98] 72.55 0.69 6.38

25–75% − 0.24 [− 2.04, 1.52] 59.90 0.55 9.36

25–100% 0.61 [− 1.71, 3.06] 68.85 0.65 6.89

50–75% − 1.10 [− 4.06, 1.31] 81.46 0.79 6.07

50–100% − 0.25 [− 3.70, 3.12] 54.48 0.51 6.66

75–100% 0.86 [− 1.24, 3.17] 78.18 0.75 6.51

Inverse gain

0–25% − 0.43 [− 0.86, 0.00] 97.67 0.94 4.09

0–50% − 0.29 [− 0.69, 0.12] 92.27 0.82 15.58

0–75% − 0.32 [− 0.73, 0.08] 94.26 0.86 12.04

0–100% − 0.39 [− 0.80, 0.04] 96.44 0.91 6.88

25–50% 0.14 [− 0.23, 0.51] 76.87 0.58 33.98

25–75% 0.10 [− 0.27, 0.47] 71.19 0.51 37.36

25–100% 0.04 [− 0.34, 0.42] 58.84 0.38 40.88

50–75% − 0.03 [− 0.37, 0.32] 57.53 0.35 44.88

50–100% − 0.09 [− 0.45, 0.27] 69.72 0.48 39.23

75–100% − 0.06 [− 0.42, 0.31] 62.85 0.42 41.34

Table 3.   Regression results using learning rate for gain as the criterion. A significant b-weight indicates the 
beta-weight and semi-partial correlation are also significant. b represents unstandardized regression weights. 
beta indicates the standardized regression weights. sr2 represents the semi-partial correlation squared. r 
represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, 
respectively. *Indicates p < .05. ** indicates p < .01.

Predictor b

b 
95% CI
[LL, UL] beta

beta 
95% CI
[LL, UL] sr2

sr2 
95% CI
[LL, UL] r Fit Difference

(Intercept) − 0.69** [− 0.90, − 0.49]

group 0.01 [− 0.00, 0.01] 0.15 [− 0.02, 0.31] .02 [.00, .09] .15

R2 = .022

95% CI[.00,.09]

(Intercept) − 0.46** [− 0.76, − 0.16]

group 0.01* [0.00, 0.01] 0.17 [0.00, 0.33] .03 [− .03, .08] .15

group_sq − 0.00* [− 0.00, − 0.00] − 0.17 [− 0.34, − 0.01] .03 [− .02, .08] − .15

R2 = .051* ΔR2 = .029*

95% CI[.00,.13] 95% CI[− .02, .08]
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model revealed a reverse updating pattern in the first place: The learning rate now exhibited a U-shape, instead of 
an inverted-U-shape, indicating the slowest updating from recent prediction errors (Supplementary Figure S7). 
Importantly, the introduced forgetting rate mirrored this pattern, indicating the least forgetting under maximum 
treatment uncertainty. This could suggest the inverted-U-shape of learning rates for gain in the SWo model to be 
equally reflected in reduced forgetting and updating. We tested this assumption by regressing the learning rates 
for gain, and inverse gain, on all parameters of the RLf-CK model. Our findings revealed a multiple R2 = 18.3% 
for the learning rates for gain, significantly accounted for by all RLf-CK parameters (all pBonferroni < 0.024), except 
for forgetting (pBonferroni = 0.473). Instead, forgetting rate and choice inverse temperature predicted inverse gain 
of the SWo model (both p < 0.001), and the regression model explained R2 = 70.6% of the variance in inverse 

Figure 5.   Learning rates per treatment condition across four compared models. Learning rates of each model, 
either for gain or general updating, are depicted on the y-axis. Purported probabilities of treatment efficacy 
are denoted on the x-axis. Bold dots represent group-level means, and error bars indicate the standard error. 
Models are sorted from lowest to highest LOOIC, from top left to bottom rights. LOOIC and its standard errors 
are shown below the respective figure cells. We compared an extended standard model (ES; top left) with a 
forgetting-RL model including a choice kernel component (RLf-CK; top right), the translated standard model 
with small priors using the hBayesDM R package (SSh; bottom left) as well as its variant with wide priors (SWh; 
bottom right).
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gain. On one hand, this suggests the SWo decision noise largely to be accounted for by a forgetting process; on 
the other hand, no significant explanatory power of the forgetting rate regarding the learning rates for gain sup-
ports the assumption that both models might provide independent formulations of potential treatment targets.

Last but not least, we tested which parameters of the RLf-CK model predicted collected reward in order 
to understand the contribution of a potential treatment target. Only the forgetting rate significantly predicted 
collected reward, as indicated by standardized regression coefficients of a generalized linear mixed model ( β 
= − 0.13, 95% CI [− 0.18, − 0.08]), suggesting less forgetting in particular to promote successful collection of 
reward throughout the task.

Discussion
In our study, we investigated how varying degrees of expected treatment efficacy affect reward sensitivity and 
compared two hypotheses assuming either monotonicity or an inverted-U-shape relationship. For this purpose, 
we contrasted a monotonic and an inverted-U-shaped pattern of reward sensitivity after an auditive sham treat-
ment using binaural beats. We collected data in an online experiment, in which participants listened to binaural 
beats for three minutes and then performed a probabilistic reinforcement learning task. Crucially, participants 
were, unknown to them, separated into five groups differing with regard to the provided probability of treatment 
efficacy ranging from 0 to 100 percent in steps of 25 percent.

Our main findings indicated an inverted-U-shaped pattern of the learning rates for gain dependent on the 
expected treatment efficacy. In context of prediction-error driven updating (e.g., Rescorla-Wagner updates or 
RL), the learning rate determines the degree to which the outcome of an event, such as a choice in a probabilistic 
reinforcement learning task, influences the built expectation towards the outcome of a succeeding event. The 
higher a learning rate is, the more the current expectation relies on more recent outcomes. The highest learning 
rates for gain under maximum reward uncertainty observed here thus imply the strongest weighting of the most 
recent reward in the maximum uncertainty group with a provided 50 percent probability of treatment efficacy. 
While a higher learning rate for gain enables the agent to adjust reward expectations in a variable environment 
more appropriately, it might also lead to an overfitting to random fluctuations in a stable environment, which 
in the long run reduces collected net reward: for example, if a certain choice is rewarded 70 (vs. 30) percent of 
the time, consistent choice of this option results in 70 percent reward, whereas occasional switching after incor-
rect feedback would result in a total reward below 70 percent. In this regard, we could show that correlations 
with behavioral performance appeared to depend on the trials considered. While the learning rate for gain 
exhibited higher correlations with collected reward during early trials, the learning rate for loss showed the 
highest correlations with collected reward during late trials (Fig. 2e). Therefore, higher learning rates reflected 
faster behavioral optimization towards reward during early trials of the task, and particularly under maximum 
uncertainty of treatment efficacy.

In contrast, additional analyses involving a choice kernel component and forgetting rate parameter suggested 
a forgetting process as a complementary explanation for the data, exhibiting a U-shaped curve and accompanied 
by a U-shaped treatment effect for general RPE updating, with least forgetting and updating observed under 
maximum treatment uncertainty. In this regard, reduced forgetting, but not general RPE updating was signifi-
cantly associated with more overall collected reward. In line with the notion of Frank et al.43, a low learning 
rate during training would benefit accurate learning of reward probabilities, as opposed to rapid adaptations. 
Therefore, both the SWo and the RLf-CK model might hint at more pronounced feedback integration under 
maximum treatment uncertainty with i) higher stability of feedback integration as indicated by reduced forgetting 
and sensitivity to feedback (learning rate), but ii) an increased sensitivity to rewards, while iii) learning rates for 
loss were small in general, enabling a more stable integration of losses. However, due to the observed differences 
in the predictive model accuracy, the results of alternative models should be taken with caution.

RL parameters may indeed show sensitivity to dopaminergic treatments52–54. However, interpretability and 
generalizability of RL parameters still require caution as effects may vary dependent on performed task and 
computational model used55. Considerable interindividual variability can be seen in Fig. 3, which may reflect 
true individual differences in learning rates, or could hint at an incorrect model. After recovering the choices as 
a function of the simulated choice probability conditioned on observed and simulated data, the model’s choices 
constituted a mostly accurate and weakly biased representation of the participant’s data (Fig. 4): the visual cor-
relation of the model’s and participants’ percentage of optimal choices as well as likelihood curves contrasted 
to observed optimal choices suggest a reasonable match between both the model and participants’ decisions, 
and parameters did not exhibit visual correlations within groups. While our choice for the considered model 
was based on extensive validation in the literature43 and did not control for additional effects, such as choice-
autocorrelation posing the risk of estimation biases56, it exhibited the best predictive accuracy in this study. The 
introduced stay probability as a conventional and model-neutral alternative supported separate learning rates 
for gain and loss. Nevertheless, aims to replicate these findings as well as future extensive model comparisons 
are highly desired in order to reveal the actual parameters targeted by the treatment.

Under the assumption that our estimates of the extensively analyzed (SWo) model reflected genuine reward 
sensitivity, the results support a potential link between the placebo effect and the pattern of dopamine release 
and firing usually observed under different (conditioned) reward probabilities, although the true cognitive and 
neural processes involved could not be revealed in this study. In search of mechanistical explanations for the 
observed effects of uncertainty in context of placebo treatments, and to motivate further research in this regard, 
we would speculate that induced treatment uncertainty could have broadened the subjects’ probability distribu-
tion of possible treatment outcomes, which would bind attentional resources in order to understand how sensory 
input, i.e., the purported reward learning enhancement, is generated57. We would therefore speculate that (1) 
while other sensations indicating treatment efficacy (e.g., bodily symptoms) might have been uncertain, the 
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potential search for efficacy-confirming information (here: the task reward as a subjective indicator of reward 
learning enhancement purported by the instructions) could have helped at improving updating from positive 
task feedback58, and that (2) increased attention as only one of other potential cognitive process involved under 
uncertainty26 might have additionally influenced RL parameters59. More broadly, the instruction of maximum 
treatment uncertainty might have engaged participants in finding out if the treatment actually works or not, 
with obtained task rewards as a potential subjective indicator of efficacy. If confirmative or disconfirmative infor-
mation is sought under uncertainty, tuning reward detection towards a more liberal signal detection criterion 
would be beneficial for reward seeking60, with positive effects also observed in placebo analgesia61. Therefore, the 
observed elevated strength of positive feedback processing indicates a potentially beneficial effect of uncertainty 
in a placebo treatment.

As a limitation of our RL results, while frequentist ANOVAs yielded significance for the effects of expected 
treatment efficacy on individual RL parameter posterior means, there was no clear evidence of either an effect 
or indifference regarding individual posterior means of learning rates for gain and the inverse gain parameter, as 
obtained by the Bayesian ANOVAs. The frequentist results may therefore be an artifact of overfitting. In contrast, 
a Bayes factor of 80.8 for learning rates for loss constitutes very strong evidence for an actual effect. Post-hoc 
comparisons revealed that for the learning rates for gain, as the RL parameter of interest, the contrast between 
0 and 50% expected treatment efficacy drove the group effect, supporting the role of treatment uncertainty in 
increasing reward sensitivity. As a second consequence, our findings could suggest the learning rate for loss as 
a more certainly affected index of RL in context of efficacy manipulation compared to the learning rate for gain. 
On the transformed (inverse logit) scale, however, learning rates for loss close to the lower limit of the sampling 
boundaries may indicate a floor effect (see Fig. 2 and Supplementary Fig. S1) posing the risk of driving correla-
tions though influential data points and making interpretation difficult. This points at the need for further studies 
addressing effects of variations in expected treatment efficacies involving loss-oriented RL conditions, or more 
sophisticated RL models, so that more reliable estimates for loss sensitivity could be taken into account. Further, 
flooring learning rates for loss could implicate that our task may not have actively engaged participants in avoid-
ing no rewards, but rather in collecting rewards (i.e., positivity bias), which would support the importance of the 
learning rate for gain as the primary parameter involved in the performed probabilistic RL task.

Moreover, we included measurements of participants’ explicit expectations by means of the GEEE question-
naire items in our analyses to further understand in which manner expectations would affect RL behavior. If the 
uncertainty-driven reward sensitivity increase was based on explicit expectations, learning rates for gain and 
the provided probability of treatment efficacy should have had correlated. However, although our experimental 
manipulation evoked differential expectation ratings, we found no significant correlations between any GEEE 
item and any RL parameter, providing further support for the postulate that explicit expectation ratings are 
limited in predicting the placebo response62. As an important limitation of these results, we did not measure 
participants’ beliefs regarding the instructions at the end of the study, which would have allowed us to regress 
these beliefs out of the results, and we also did not correct for multiple testing of correlations due to the explora-
tory nature of the analysis, which requires caution at interpreting. For the experimental manipulation of inducing 
treatment uncertainty, we used numerical probabilities of efficacy supported by a verbal expression of probability 
with the goal to make the instructions more understandable, which at the same time might render the observed 
effects of provided probability of treatment efficacy here not perfectly linearly interpretable due to subjective 
variations and shifted means of the targeted probabilities63.

Recent research has identified the contribution of expectations to therapeutic enhancement, particularly in 
the domain of pain and depression. While placebo analgesia is well elaborated, less is known of placebo effects 
in reward sensitivity, which are theoretically highly relevant for an understanding of depressive disorders19 (but 
see Nielson et al.64 for a critical review). Both areas show a common reliance on dopamine as a central neuro-
transmitter of reward signaling. In clinical practice, maximum certainty of efficacy is considered to evoke the 
largest therapeutic effect. However, if placebo-induced dopamine enhancement is involved in reward sensitivity 
according to the placebo-reward hypothesis, reward uncertainty as a promoter for dopamine release and firing 
may ultimately come along with a greater placebo response in this regard. A previous study37 had addressed this 
issue and, indeed, found increased reward sensitivity after high vs. low uncertainty of provided treatment efficacy.

Our study may shed new light on the role of treatment uncertainty in placebo interventions. We showed 
that eliciting maximal uncertainty regarding the treatment efficacy enhanced an index of reward sensitivity, 
which followed an inverted-U pattern as a function of the provided probability of treatment efficacy. The pat-
tern exhibited here bore striking resemblance with the neural signature involving dopamine under uncertainty, 
but the exact mechanisms involved in the observed performance increase remain open for debate. If our find-
ings as well hold for a clinical sample, a placebo treatment aiming at increased reward sensitivity may thus help 
improving the treatment of major depressive disorder19,65–68 by systematically adding uncertainty to the expected 
treatment efficacy. A stronger weighting of recent (positive) experiences as reflected in a higher learning rate for 
gain under maximum treatment uncertainty might therefore add to therapeutic benefits. Future studies could 
try to address this topic under discomforting symptoms in clinical populations: while our current investiga-
tion on placebo effects under uncertainty relied on reward-associated features, we assume that uncertainty also 
comes into play at learning from negative task or symptom outcomes. For example, trait anxiety is thought to be 
particularly sensitive to uncertainty and could be linked to more pronounced learning from negative outcomes 
under stress69. Therefore, it would be presumable that under anxiety and stress, the inverted-U-shape in reward 
sensitivity would attenuate in terms of a shift towards learning from loss. Of interest might also be the temporal 
dynamics of reward sensitivity increasing placebo interventions and whether there are time periods particularly 
sensitive to this effect: is reward sensitivity increase sustained over the course of the treatment, or are they specific 
to a certain period of high uncertainty about the treatment efficacy? Also, would repeated exposure to a placebo 
treatment still support increased reward sensitivity in order to induce long-term symptoms improvement?
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Our findings serve as first supporting evidence of the contribution of uncertainty to increased reward sensitiv-
ity under positive treatment expectations. Further, the approach used here increased the resolution of observed 
treatment effects by operationalizing uncertainty by means of standardized definitions of verbal efficacy prob-
abilities. The online-based implementation will allow placebo research outside the lab enabling the collection 
of large samples. Inducing uncertainty in placebo interventions could help boosting updating from rewards, 
thus presumably facilitating the incorporation of positive event outcomes into expectations and future behav-
ior, thereby ameliorating potentially reduced reward sensitivity observed in depressive disorders. Translational 
studies harnessing these findings into practice and aiming at understanding what neural underpinnings exactly 
are responsible for the uncertainty-related placebo effect on reward sensitivity, are therefore highly desirable.

Methods
Participants
We recruited 143 participants (57 male, 1 diverse) with a mean age of 29.3 years (SD = 13.3 years) using the local 
research participation system of the University of Marburg and by direct personal approach. All participants 
were reportedly German native speakers with a minimum age of 18 years and current residency in Germany. A 
self-reported history of neurological disorders, particularly epilepsy or stroke, and mental disorders within the 
last three years precluded from participation. Two participants, who responded less than three times the stand-
ard deviations subtracted from the samples mean response count, were excluded resulting in a final sample size 
of 141. For correlations involving questionnaire data, one participant was additionally excluded due to failing 
to answer a control item correctly. Participants gave their informed consent and were reimbursed with course 
credits and feedback on provided questionnaire data. The study was conducted between May and June 2021 and 
was approved by the Local Ethics Committee of the University of Marburg Psychology Department (2021-38k). 
The study was conducted in accordance with the Declaration of Helsinki.

Paradigm
Participants performed the training phase of a probabilistic reinforcement learning task70 programmed in 
jsPsych71 (version 6.2.0). The task comprised six black Japanese hiragana letters grouped into three fixed pairs 
with different reward probabilities on a white screen (Fig. 1, bottom). Participants had 1700 ms per trial to press 
‘N’ or ‘M’ in order to make a choice between both stimuli of a pair and were subsequently presented a probabilistic 
feedback screen showing a green circle (gain) or a red cross (loss) for 1000 ms (Fig. 1, top). The task included 40 
trials per letter pair resulting in a total of 120 trials per participant in randomized order. Maximal task duration 
was, therefore, eight minutes. The trials were balanced regarding the stimulus position on the screen. Eighteen 
training trials of the probabilistic RL task with Kanji character stimuli were presented to make participants 
familiar with the task.

Experimental manipulation
All participants were randomly assigned into five groups through a random generator in the experiment’s code, 
which allows unbalanced group sizes. The groups varied with regard to the provided therapeutic efficacy instruc-
tion as probability from 0 to 100 percent in steps of 25 percent (“In recent studies, an improving effect on learning 
performance could be observed in (a) none of all, (b) 1 out of 4, (c) half of the, (d) 3 out of 4, (e) all participants. 
Therefore, an improvement of learning is (a) impossible, (b) unlikely, (c) uncertain, (d) likely, (e) certain.”).

Binaural beats
The presented binaural beats were played for 183 s to all participants, regardless of condition, and served as 
sham treatment. We used tones of 160 Hz and 180 Hz separately on each ear with a ten seconds fade-in and 
fade-out. We decided for binaural beats as treatment, as there is no clear evidence for any effects after short-term 
exposure42,72,73 while presumably inducing treatment-related sensations.

Questionnaires
All questionnaire items were displayed in German. Participants were asked to provide their age, sex, handedness, 
cigarettes consumption, whether they studied psychology at that time and if they had even marginal knowledge 
of Japanese symbols. The expectation scale of the Generic Rating Scale for Previous Treatment Experiences, Treat-
ment Expectations, and Treatment Effects45 (GEEE) was used in order to assess treatment expectations. This scale 
asks for participants’ expected improvement, worsening and count of side effects from a particular treatment on 
a particular outcome (here: “How much (1) improvement/(2) worsening of learning performance do you expect 
from the treatment with binaural beats?”; “How many complaints/side effects do you expect from the treatment 
with binaural beats?”), which is indicated on a 11-point Likert scale from zero (no improvement/worsening/
complaints) to ten (greatest improvement/worsening/complaints imaginable). A self-developed pilot item ask-
ing for expected treatment certainty towards positive outcomes (“How sure are you the treatment will have an 
impact on your learning performance?”) from zero (“certainly ineffective”) to ten (“certainly effective”) with an 
additional label at five ("uncertain”) was added. We further included questionnaires to potentially assess trait 
and state personality variables: the Positive and Negative Affect Schedule74 (PANAS) with four additional items 
(“expectant”, “sad”, “happy”, “motivated”), which were not considered in this study; the Temporal Experience of 
Pleasures Scale75 (TEPS; German translation76) for anticipatory and consummatory anhedonia, and the Big Five 
Inventory77 (BFI-10), which captures the Big Five personality traits. In addition, a control item („This is a control 
item to ensure data quality. Please check option ‘6’.”) was added to the TEPS.
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Procedure
First, all participants gave their informed consent. They indicated whether they fulfilled the criteria for participa-
tion before answering the BFI-10 first, followed by TEPS and PANAS. Afterwards, the participants read one of 
the five deceptive instructions on the treatment efficacy of binaural beats (see Experimental Manipulation). In 
order to make sure they had read the whole instruction set, participants were required to press a specific but-
ton on their keyboard that was mentioned in the last sentence on the screen. Participants were required to use 
their headphones. To make the auditive treatment more comparable across the whole sample, a set of instruc-
tions assisted the participants in putting the headphones into the respective ears and to adjust the volume to a 
pleasant level, before listening to the binaural beats. Participants, who tried to skip the audio manipulation by 
manipulating the source code, were automatically excluded at this stage through a preventive mechanism in the 
code. After the audio manipulation, a set of instructions for the probabilistic RL task was presented. Participants 
were informed that they would play a reward task for approx. 10 min and that the task requires learning by trial-
and-error in order to identify the more beneficial letter and therefore to maximize reward. Neither monetary 
nor another mode of reward was mentioned. The participants were made aware of different reward probabilities 
between the pairs and further of the possibility that also the overall less beneficial choice could occasionally 
be rewarded. After performing the probabilistic RL task, participants checked a box to disclose as to whether 
accurate data was provided. Questionnaire scores were provided as feedback at the end.

Analyses
Data were analyzed in R78 (version 4.3.1) using RStan79 (version 2.21.8) for computational modeling. Stan mod-
els were fitted on an AMD Threadripper 2990WX and analyzed using parts of analysis scripts from Turi et 
al.37 (https://​github.​com/​ihrke/​2016-​place​bo-​tdcs-​study), which were adapted for the purpose of our study. A 
Q-learning model incorporating the Rescorla-Wagner update rule separately for gain and loss was used for 
estimation of learning rates for gain (αG) and loss (αL):

The inner core of Q-learning is a slow integration of trial gains and losses (r; 1 for gains, and 0 for losses) 
into a stimulus-linked expectancy value Q of stimulus i, which is passed to a decision probability likelihood 
function for model fitting,

where PA denotes the choice probability for stimulus A over B in a given trial t, and β the inverse gain param-
eter that scales the Q-values prior to the softmax operation, was evaluated at observed individual choices. We 
applied MCMC sampling comprising of eight chains with 10,000 iterations for warm-up and an equal number 
for sampling with five separate group-level distributions:

Here, μθ is the group-level mean of each RL parameter θ, σ denotes the variance, and δ means the difference to 
the baseline group, i.e., 0% treatment efficacy (j = 0). The target average acceptance probability and the maximum 
tree depth were set to 0.99 and 15, respectively.

To assess the model performance, single-trial choices were simulated by re-running the Q-learning algorithm 
on the participants’ observed choice data as well as simulated task data using the sampled individual posterior 
means of RL parameters θ and compared with observed data (Fig. 4a, b). Here, we defined model accuracy as the 
mean model likelihood for observed choices. Choice simulation on simulated task data was repeated 20-fold 
due to the involvement of random uniform sampling, i.e., (1) choice of stimulus A, if the computed decision 
probability for stimulus A exceeded random thresholds in each trial, and (2) random choice of either Stimulus 
A or B, if both stimuli exhibit equal choice probabilities. The R packages BayesFactor80 (version 0.9.12.4.4) and 
bayestestR81 (version 0.13.1) were used for Bayesian testing of group effects on RL parameter means for individual 
posterior and group-level distributions, respectively.

Qi(t + 1) = Qi(t)+ αG[r(t)− Qi(t)]+ + αL[r(t)− Qi(t)]−

Qi ∈ [0,1], i ∈ {1,2, . . . , 6}, r ∈ {0,1},α ∈ [0,1]

PA(t) =
e
QA(t)
β

e
QA(t)
β + e

QB(t)
β

, PA(t) ∈ [0,1],β ≥ 0,

logit
(

αj
)

∼ Normal
(

µα0 + δαj , σα

)

log
(

βj
)

∼ Normal
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µβ0 + δβj , σβ

)

j ∈ 0,25,50,75,100, j = 0 ⇒ δθj = 0

µθ ∼ Normal(0,100)

σθ ∼ Uniform(0,100)

δθ ∼ Normal(0,3)

https://github.com/ihrke/2016-placebo-tdcs-study
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Group effects on individual behavioral measurements (reaction time, count of optimal choices, collected 
reward, and stay probability) and model fit, and effects of reward interaction on stay probability were estimated 
using hierarchical generalized linear mixed-models with participant ID as random effect using the lmerTest 
package82 (version 3.1.3). For reaction times, a gaussian distribution with log-link function was assumed, while 
optimal choices, collected reward and stay choices as discrete variables on single-trial level were modeled using 
a binomial distribution. Additional Bayesian estimates for hierarchical testing of these effects were computed 
using BIC-based Bayes factors83 with

where H1 posits existence of a group effect compared against an intercept-only model. Correlations of reaction 
time, relative count of optimal choices, collected reward and stay probability with RL parameters were computed 
using Pearson’s product-moment correlation.

We analyzed univariate effects of group allocation on normally distributed individual RL parameter posterior 
means using ANOVAs with Bonferroni-correction for 10 post-hoc t-tests per parameter. Additional Bayesian 
ANOVAs with Jeffries’ prior provided corresponding Bayes factors. Bayesian regression models with expected 
treatment efficacy as centered numerical predictor were performed for all GEEE items as dependent variables, 
and tested for the presence of a linear and quadratic term. If the Bayes factor of one or more possible models vs. 
an intercept-only model per GEEE item exceeded 1 thus supporting a model including a slope, adjusted explained 
variance and p-value was reported for the model with the highest Bayes factor. We additionally reported all corre-
lations between questionnaire scores and RL parameters using Spearman’s rank-order correlation for exploratory 
purposes. Tables were produced using the R packages apaTables84 (version 2.0.8) and rempsyc85 (version 0.1.5).

For additional analyses, we narrowed the priors of the SWo model from Normal(0,100) to Normal(0,1) for 
µθ , and from Uniform(0,100) to Normal(0,0.2) for σθ (SSo model), as set per default in the hBayesDM package46 
(version 1.21). To test the SWo model specifications in the hBayesDM framework, priors were then widened to 
µθ ∼ Normal(0,100) and σθ ∼ Normal(0,100) back again (SWh model). The ES model consisted of a forgetting 
rate parameter φ as part of a decay component,

decaying all six Q-values trial-by-trial to initial Q-values of 0. We also introduced an initial bias Q0 increasing 
the Q-value of the chosen option within a pair at the first trial:

The response function was extended by an irreducible noise parameter ξ , which allowed decision noise 
independently from the difference of Q-values:

The random choice probability in case of two competing stimuli is P = 0.5, thus, ξ multiplied by 0.5 is the 
weighted probability of irreducible decision noise in each trial. Note, that in this model as well as in the following 
model, β denotes the inverse temperature parameter, which is multiplied by the respective Q-values, whereas β as 
inverse gain parameter of the SSo and SWo model divides the Q-values. The RLf-CK model includes a forgetting 
rate parameter and a choice kernel component controlling for autocorrelated choices:

Here, choice kernel values CK are updated by a choice learning rate αCK in each trial. Whenever a stimulus is 
chosen, its CK-value is positively updated, and the CK-value of the competing stimulus is negatively updated. 
Similar to the inverse temperature parameter, a choice inverse temperature parameter τ is multiplied by the choice 
kernel values in the response function to soften the choice kernel-driven gradient in the probability function:

To investigate the effect of RLf-CK model parameters on reward collection, we computed a generalized linear 
mixed model with single-trial reward as the criterion, individual RL parameter estimates as the independent 
variables, and a random intercept per subject ID. Please note, that this model includes neither an irreducible 
noise parameter, nor an initial bias parameter.
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PA(t) ∈ [0,1], 0 ≤ β ≤ 20

CK(t + 1)chosen = CK(t)+ αCK ∗ [1− CK(t)]
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All models considered for LOOIC-based model comparison as well as the SSo model were sampled with 8000 
iterations per chain (4000 warm-ups, 8 chains) for the estimation of posterior means.

Data availability
Data and code for running the online survey and task, and the analyses are published under Creative Commons 
Attribution 4.0 license on the University of Marburg Research Data Repository, data_UMR (https://​doi.​org/​10.​
17192/​fdr/​193).
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