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Abstract

Introduction

To interact with the environment, it is crucial to distinguish between sensory information that

is externally generated and inputs that are self-generated. The sensory consequences of

one’s own movements tend to induce attenuated behavioral- and neural responses com-

pared to externally generated inputs. We propose a computational model of sensory attenu-

ation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause

for sensory information is inferred.

Methods

Experiment 1investigates sensory attenuation during a stroking movement. Tactile stimuli

on the stroking finger were suppressed, especially when they were predictable. Experiment

2 showed impaired delay detection between an arm movement and a video of the move-

ment when participants were moving vs. when their arm was moved passively. We recon-

sider these results from the perspective of Bayesian Causal Inference (BCI). Using a

hierarchical Markov Model (HMM) and variational message passing, we first qualitatively

capture patterns of task behavior and sensory attenuation in simulations. Next, we identify

participant-specific model parameters for both experiments using optimization.

Results

A sequential BCI model is well equipped to capture empirical patterns of SA across both

datasets. Using participant-specific optimized model parameters, we find a good agreement

between data and model predictions, with the model capturing both tactile detections in

Experiment 1 and delay detections in Experiment 2.

Discussion

BCI is an appropriate framework to model sensory attenuation in humans. Computational

models of sensory attenuation may help to bridge the gap across different sensory
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modalities and experimental paradigms and may contribute towards an improved descrip-

tion and understanding of deficits in specific patient groups (e.g. schizophrenia).

Introduction

Humans are constantly interacting with their environment, either processing information that

arrives at sensory organs from the surroundings, or acting on the environment to bring about

a desired outcome. It is crucial to distinguish between sensory events that are caused by

changes in the environment from the consequences caused by one’s own actions. Numerous

studies indicate that self-generated and externally produced sensory information are processed

differently [1–6]. In the auditory modality, tones that are produced via a button press elicit a

dampened neural response compared to tones that are passively listened to [7, 8]. In the tactile

domain, self-touch is perceived less intensely [9–12], and sensitivity to externally applied tac-

tile stimuli on a moving limb is reduced [13, 14]. Sensory attenuation is ubiquitous in the ani-

mal kingdom [15–18]. Studies in Drosophila suggest presynaptic inhibition as the root cause of

attenuated processing of self-generated sensory inputs during motor behavior [19].

Formal theories of sensory attenuation are rooted in engineering perspectives on motor

control [2, 20], where the decision to move initiates a motor command. In optimal control the-

ory, a forward model transforms the motor command into a prediction of the sensory conse-

quences produced by that movement. Next, a prediction error between the predicted- and

observed sensory consequences of the movement is computed. Whenever movement-induced

sensations are in line with the predictions derived from the duplicate motor command (i.e.,

control theory prediction error is small), their processing is suppressed subsequently. If, for

example, a motor command is sent to induce a saccade, a copy of the motor command is sent

to visual areas, where compensatory mechanisms can counteract retinal displacement during

the saccade [2]. Sensory attenuation of self-generated sensory events has been replicated across

a variety of experimental paradigms and sensory modalities, at behavioral and neural levels [5,

9, 14, 21]. It is modulated by factors such as agency [6, 22], stimulus predictability ([4, 23, 24],

but see [25]), and task- or feedback relevance [26–29] or feedback type (e.g. continuous or dis-

crete, [30]). The experience of sensory attenuation seems furthermore important for feelings

of agency and body ownership [22, 31, 32]. Supporting this, a study found increased sensory

attenuation when attribution of agency is more difficult [33]. In schizophrenia, a disturbance

of action-outcome monitoring may underlie body-related illusions [3, 32, 34, 35], as implied

by observations of reduced sensory attenuation in patient samples and individuals at risk for

psychosis [3, 36, 37].

The forward-model account of sensory attenuation suffers from some shortcomings [32].

For example, sensory attenuation is frequently observed in response to externally generated

stimuli, for example, tactile stimuli presented by an experimenter to probe tactile perception.

Since they are not self-generated, these stimuli cannot be interpreted as part of a forward

model and should not be attenuated. Further, sensory attenuation has been shown to occur up

to 400 ms before movement onset [38, 39], when it is implausible to be related to self-gener-

ated movement per se. Hence, the relationship between sensory attenuation and self-generated

movement is likely not as straightforward as assumed by forward models and the phenomenon

may be of broader importance than previously assumed [32].

theoretical developments extend optimal control theories and place many brain functions,

such as perception and learning, under the mantle of Bayesian inference for optimal action
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choices [40–42]. In Active Inference, Bayes-optimal behavior results from minimizing the pre-

diction error between internal models and sensory information for perception, and the error

between desired and obtained outcomes for action [43–45]. Real-world causes need to be

inferred from noisy and multisensory information. The tight coupling between action and per-

ception in active inference makes it a suitable candidate to study phenomena as sensory atten-

uation. Motor behavior in active inference is governed by “predictions, not commands” [43]:

when a movement is initiated, the proprioceptive information of the stationary limb first

needs to be down-regulated. This way, the internal belief can be realized [42]. Sensory attenua-

tion may be the consequence of the down-regulation of proprioceptive precision prior to

movement onset [32, 42], such that an initially false prediction about the current state of the

body (e.g., predicting to move my arm while it is currently at rest) can be realized through

peripheral reflexes despite conflicting sensory evidence (e.g. proprioceptive input from the

resting arm). This account, in turn, has been criticized for its inability to account for intact per-

ceptual monitoring during unexpected perturbations of movements [46, 47].

Similarly to Active Inference, Bayesian Causal Inference (BCI) is a normative framework of

cognitive functions that centers around the idea of inferring the hidden causes of observations.

Specifically, BCI assumes that the brain infers the cause of sensory inputs by selecting among

competing causal structures [48]. Each causal structure is assigned a prior probability, which is

updated using the congruency between the sensory inputs using Bayes rule. Besides offering a

principled mechanism of causal inference, BCI can further be used to model the estimation of

hidden variables [48]. BCI has been most extensively studied in the context of multisensory

perception, where it can be thought of as a form of competing priors model (e.g.: inferring a

common cause or two separate causes for multisensory inputs; [49–52]). Importantly, the

principles of BCI appear to govern not only the perception of the outside world, but also feel-

ings of body ownership [53–55] and motor learning [56, 57]. For instance, Samad and col-

leagues (2015) demonstrate that a BCI model can capture feelings of body ownership in the

rubber hand illusion. Here, synchronous stroking of the rubber hand and the participant’s

hand increases the illusion of body ownership, while asynchronous stroking decreases the

strength of the illusion. These classical findings were reproduced by a BCI model, which con-

sidered both temporal and spatial information from the proprioceptive, visual and tactile sen-

sory modalities [55].

We here draw on the theoretical frameworks of Active Inference and BCI to develop a

computational model of sensory attenuation. It is crucial for the brain to capture the causal

structure underlying sensory inputs. Any changes in sensory information brought about by an

individual’s voluntary movement (i.e., internally-generated sensory information) tend to be

highly predictable and will be processed in an attenuated manner. In contrast, sensory infor-

mation caused by an important change in the (external) environment is potentially relevant

and requires more processing resources. In our model, sensory attenuation therefore results

from inferring an internal cause for sensory information. Whenever sensory information is

labelled as internally, or self-generated, it is usually in line with the individual’s movement-

derived predictions about upcoming sensory information and processed in an attenuated

manner in subsequent processing steps. Meanwhile, sensations where an external cause is

inferred are represented with increased precision due to its potential relevance. We construct

causal graphical models of the tasks and perform BCI by belief propagation, inspired by Active

Inference. We apply the model to empirical data to uncover computational principles underly-

ing sensory attenuation across two experimental studies [6, 23]. We first report qualitative sim-

ulations with psychologically plausible parameter settings. The model’s parameters are

subsequently recovered from fitting the model to the experimental data for each participant
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individually and subsequently evaluated against a benchmark model with uninformed

parameters.

To preview our results, BCI can capture psychophysical signatures of sensory attenuation

qualitatively across two experiments, yielding that tactile stimuli predicted by the sensorimotor

system [23] and visual-tactile stimuli proximal to one’s own actions [6] are labelled as inter-
nally generated and hence attenuated. When reproducing task behavior with empirically

derived model parameters, we obtain a good fit between psychometric properties of partici-

pant behavior (PSE) and model predictions.

Methods

Data

We fit our model onto data from two experiments [6, 23]. In the following, we will give an

overview of the experimental procedures as relevant to the present work. All procedures are

described in detail in the original publications [6, 23].

Experiment 1. N = 32 healthy, right-handed human participants (N = 23 female, age

range 19–30, mean: 22.56 ± 3.03 years) completed an experiment on movement-related tactile

suppression at the University of Gießen, Germany. The customized experimental device con-

sisted of a force sensor, a vibrotactile stimulation device attached to the proximal phalanx of

the participants’ right index finger, and two 3D-printed textured objects. Half of the objects’

surfaces was smooth, and the other half had a texture with an even, square-wave pattern. The

object’s surface texture was determined by a large (5.08 mm, 40 Hz when moving across con-

sistently at 203 mm/s) or small (0.85 mm, 240 Hz) spatial period. The participants’ task was to

stroke across the textured objects with their index finger at a constant velocity of 203 mm/s

and report after the movement whether they had detected a vibrotactile stimulus prior to con-

tacting the textured part of the object. Several practice trials with visual feedback were imple-

mented to ensure participants adhere to the target motion speed. The empirical motion speed

was 203 mm/s ± SD 35 mm/s (range: 110–329 mm/s, see original publication, supplementary

Fig 6). If participants deviated considerably from the prescribed movement, the trial was

repeated, and verbal feedback was given. The brief probe stimuli (100 ms), delivered via the

vibrotactile stimulation device, were presented at frequencies of either 40 Hz or 240 Hz. The

participants’ hands were not directly visible to them, but the scene and the hand position were

presented on a computer screen and viewed via a mirror. Five pseudo-randomized blocks

were presented in the experiment, with one block per movement condition 2 (probe frequen-

cies) by 2 (object frequencies), and one baseline condition. For further information, see Fig 1A

and the original publication [23].

Experiment 2. N = 23 healthy, right-handed participants (N = 12 female, age range 20–35,

mean age 26.43 ± 3.99 years) completed the experiment at the University of Marburg, Ger-

many. Participants were instructed to hold the handle of a custom movement device for each

trial. The device’s handle could be moved from a neutral starting position to the right and

back. In active trials, the participant actively moved the device’s handle from neutral to right

and back. In passive trials, the participant’s hand was moved by the device via air pressure. The

device and the participant’s hands were covered from their view, but recorded with a high-

speed camera and played back onto a computer screen. Participants saw video recordings of

their own hand performing the movement (self trials) or a previously recorded video of

another person’s hand performing the movement (other trials) that were directly coupled to

their own movement. The experimental manipulation consisted of randomly inserted, variable

delays (delays = [0, 83, 167, 250, 333, 417ms]). A 2 (agency: active vs. passive) by 2 (hand iden-

tity: self vs. other) by 6 (delay level) design resulted. All participants completed three sessions
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of the experiment (one during a preparatory session, two fMRI sessions). We here consider

the behavioral data of all sessions. We do not consider the experimental manipulation of hand

identity here since it did not have a significant effect on behavior, with an insignificant main

effect of hand identity on psychometric function threshold and slopes F(1,22) = 0.185,

p = 0.671 and no interaction between hand identity and agency (active vs. passive), F(1,22) =

0.744, p = 0.332 (cmp. [6]). Each run contained 48 trials with an active and passive block,

respectively, and randomized self vs. other visual feedback. In each trial, participants were

instructed to perform the hand movement actively or that their hand was moved passively,

and they had to indicate whether there was a delay between their own movement and the

video feedback of their movement (see Fig 1B).

Model

A graphical Bayesian Causal Inference model was developed to capture empirical patterns of

sensory attenuation across the two experiments. A graphical model was chosen because of its

usefulness for characterizing probability distributions, which we use as a proxy for the inferen-

tial mechanisms underlying decision-making in an experimental trial. A sequential model

architecture furthermore aligns closely with the generative models commonly used in the con-

text of Active Inference. From Active Inference, we also draw on belief propagation algorithms

and free-energy based parameter updating methods [40, 42, 58, 59]. We use a custom Python

suite for sum-product belief updating with exponential family distributions [58, 60]. For fur-

ther information on the belief propagation algorithm, please see the S1 File.

The model for experiment 1 is a Hidden Markov Model (HMM), with a series of unobserv-
able variable nodes forming a hidden Markov chain, and one or more observable nodes

attached to each hidden node (Fig 2A). A set of HMMs with a causal inference variable

Fig 1. Experimental procedures. A. Top: Trial schematic Experiment 1, adapted from Fuehrer et al., 2022. Participants

were seated in front of a desk with a textured object, force feedback device and sensors. A vibrotactile stimulation

device was attached to their right index finger. Participants made a stroking movement across the textured object (40

Hz or 240 Hz at constant velocity of 203 mm/s) and were asked to detect a vibrotactile probe delivered via the

stimulation device before contacting the textured part of the object. Right: Probe and object frequency were designed

to be either congruent or incongruent. For details, please refer to the original publication. B. Top: Trial schematic,

Experiment 2; adapted from Uhlmann et al., 2020. Participants held the lever of a movement device. Participants

performed arm movements (active trials) or their hand was moved by the device (passive trials). Participants had to

detect experimental delays (0, 83, 167, 250, 333, 417 ms) between their movement and a video of their hand. Note that

we omitted the experimental manipulation of hand identity for simplicity (see Methods, Experiment 2). For more

details, please refer to the original publication.

https://doi.org/10.1371/journal.pone.0317924.g001
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switching between a common underlying cause and separate causes is developed for experi-

ment 2 (Fig 2B).

Experiment 1. The model consists of a Markov chain of 50 hidden variable nodes. A Mar-

kov chain of length T = 50 was chosen to match the experimental trial duration, with one time-

step representing 10ms in the experiment. These nodes can take on three possible values

Fig 2. Graphical models. A. Graphical model for Experiment 1. Hidden nodes form a Markov chain that can take on

values {internal, external, none}. Observable nodes Ft (filled circles) can process frequency inputs between 0–100 Hz.

The joint probability distribution over the network is given by the prior and the product of all transition- and emission

nodes. A detection response (rt = 1) occurs when the normalized posterior probability of the external cause exceeds the

normalized posterior probability of an internal or none cause. B. Graphical model for Experiment 2. Under a common

cause model (left box), proprioceptive Pt and visual information Vt are caused by the same hidden factorMt, whereas

in a separate cause model (right box), different causes Mt and Vt are inferred for the proprioceptive Pt vs. visual Vt
inputs. The switching node W compares the marginal log likelihood of the observations under a common- vs. separate

cause assumption and determines the dominant model in each trial. The joint probability distribution of the network

is given by the priors and the product of all transition- and emission factors. A delay is detected when the posterior

marginal probability of the common cause model (CC) given the observations exceeds the marginal posterior of a

separate cause (SC) model.

https://doi.org/10.1371/journal.pone.0317924.g002
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(variable range: cause C2{internal,external,none}). One observable node is attached to each hid-

den node. Observable nodes can take on values between 0 and 100 (observation O2{0−100}),

representing the observable frequencies elicited by the experimental stimuli (Fig 2A). The con-

nections between hidden and observable nodes are determined by likelihood factor nodes L.

The likelihood mediates the relationship between an observed frequency and the likely cause via

probability distribution P(O_C). Three assumptions were made to build the likelihood distribu-

tion for factor nodes L (see Fig 4A): 1) If no frequency is observed, observations around a 0 fre-

quency are most likely. 2) If the cause is external, all frequencies are equally expected; 3) If the

cause is internal, the prediction is normally distributed around a frequency determined by

movement speed. The variance of the likelihood function σ can be interpreted as the combina-

tion of motor- and sensory noise. Furthermore, transitions between hidden nodes are governed

by a probability distribution T. Parameter values for the transition nodes were task-inspired,

with e.g. the internal inference being more stable than the external or none state.

Sensory attenuation occurs when an observed probe frequency is inferred as internally
caused, which is likely when the frequency is in the range of the expected frequencies given the

current movement policy and object texture. In other words, in our conceptualization, sensory

attenuation means incorrectly attributing an externally caused sensory event (here: the vibro-

tactile stimulation) to an internal cause (here: the planned finger movement across the grat-

ing). Once inferred as internally caused, the observed frequency is processed in an attenuated

manner due to the predicted sensory consequences of the movement. It follows that in the

experiment, a probe can only be detected if it is correctly inferred as externally generated. Our

model hence delivers the probability estimate P(Mt = external) that should approximate detec-

tion events rt = 1.

For qualitative simulations, we directly converted the sequence of frequencies within one

trial into observations that were then input into the model’s observable layer (Fig 4B). For

example, in a high-frequency congruent trial, the observed frequencies are converted into a list

like (shortened) [0,0,0,30,0,0,0,30,30,30], where the first instance of a frequency of 30 (sur-

rounded by zeros) represents the probe presentation, and a longer phase of observing the fre-

quency represents object contact (padded to achieve a time series of length T = 50). In line

with the experiment’s two by two design, frequency series represented congruent (low fre-

quency probe and low frequency object, high frequency probe and high frequency object) or

incongruent (low frequency probe and high frequency objector high frequency probe and low

frequency object) probe-object frequency pairings.

The model is furthermore fit onto the empirical data. Python, and the SciPy package for

optimization (v. 1.10.1., Virtanen et al., 2020) are used to identify optimal model parameters

(likelihood L and transition T distributions) for each participant. The cost function is given by

c ¼ q � log
q

pðextÞ

� �

þ 1 � qð Þ � log
1 � q

1 � pðextÞ

� �

½1�

With q equal to the average of all detection events, q ¼
P

rt¼1

N where N is the number of tri-

als. Minimizing c will yield model parameters that lead to an optimal match between probe

detection responses (rt = 1) and the probability of the external cause P(C = external) for each

trial type in the movement condition. In addition to the divergence between the model and the

training data, a cost term was added for two endpoint constraints. At the beginning of the time

series, a hidden None state (i.e., no stimulation) was enforced to be consistent with the training

data (p(M5 = None)~1). Towards the end of the timeseries, the cost function enforced an inter-
nal state (p(M40 = internal)~1), to account for participants having made contact with the object

by this point, ensuring certainty about an internal state. All conditional probabilities were
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represented by their logits for the purpose of optimization. Their range was restricted to (−3,3)

and the starting values were chosen within this range, too. The optimizer used the Powell

method [61] and tolerance was set to 1e−12. For each participant, the optimization was initiated

10 times, where the optimizer’s starting values were jittered within the predefined bounds for

each optimization to ensure the results’ robustness. The best set of parameters (i.e., the param-

eters minimizing cost) was chosen for each participant. There were 7 free parameters in the

graphical model. For an overview of the parameters to be optimized for the models see Fig 3A.

A parameter recovery served to validate the model (Supplement S2 in S1 File).

Model comparison

We compared the full, causal model to two alternative models, a bias-only model and an unin-

formative model. In the bias-only model, participants are expected to show idiosyncratic

response patterns in the probe detection task, which are not directly related to the

Fig 3. Parameter overview. A. Parameters of model for Experiment 1. C: constant, Oi: Optimized, free parameter

number i, SM: obtained via exploiting normalization condition of conditional probability distributions. There is a total

of 13 parameters in the model (see top factor graph). Initial recovery indicated that the priors on the first hidden state

(p(M1)) do not influence detection behavior sufficiently. They were held constant at uninformative levels (p(M1 = [int,
ext,none]) = 0.33). As a result, there are 7 free parameters for modelling Experiment 1 (see tabular overview). B.

Parameters for model of Experiment 2. The graphical network contains a total of 15 parameters, of which 8 are free

parameters. As before, remaining parameters are computed via conditional distributions (SM).

https://doi.org/10.1371/journal.pone.0317924.g003
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experimental manipulation. The uninformative model predicts equal detection probabilities

for all three causes (p = 0.33). To compare the models M, we approximate the model evidence,

or the log probability of the data D under the model and a tuple of its parameters Θ:

log pðDjMÞ ¼ log
Z

dYpðDjY;MÞpðYjMÞ ½2�

After evaluating the model evidence for all models, we compare model evidence differences.

As usual in Bayesian approaches, the integral over model parameters is difficult to evaluate.

We hence approximate the model evidence using the Laplace approximation LAP [58, 60].

The LAP is given by [60].

p DjMð Þ � logðpðDjY∗
;MÞÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

log� likelihood

þ logðpðY∗
jMÞÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
þ

log� prior

dimðYÞ
2

logð2pÞ �
1

2
logðjHjÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

log� posterior volume

½3�

We evaluate the Hessian H with autograd [[62], v. 1.0] and find the optimal model parame-

ters Θ* using the L-BFGS-B optimizer from the scipy.optimize library [[63], v. 1.14.0]. The

LAP is a more accurate approximation to the model evidence than the BIC. Endres, Chiovetto

and Giese (2013) show that the BIC performs comparably to the LAP only in the limit of data-

sets larger than ours. Therefore, LAP is a more exact approximation to the Bayesian model evi-

dence than the BIC in the present case. As a global measure of model fit, we furthermore

report the Kullback-Leibler divergence given by

DKL pdatakpmodelð Þ ¼ p log
p

pest þ �

� �

þ 1 � pð Þlog
1 � p

1 � pest þ �

� �

½4�

Where p is the model-derived probability of detecting a probe, pest ¼
P

rt¼¼1

T and � = 1e−100

is a constant to avoid numerical underflow.

Experiment 2. In the experiment, participants were asked to detect delays between their

own movement and a video recording of the same movement. We framed this problem in

terms of causal inference, where participants can infer either a common cause or a separate

cause for the visual and proprioceptive information elicited by the movement and experimen-

tal stimuli. A delay detection corresponds to inferring a higher posterior probability for the

separate cause model, whereas smaller potential delays may be suppressed as a function of

inferring a common cause for visual and proprioceptive information. The common cause

model consists of a Markov chain of 80 hidden variable nodes. A Markov chain of length

T = 80 was chosen to represent the six levels of delay manipulation (transformed in deci-sec-

onds (ds)). Hidden nodes can take on the values H2{0,1}, representing the neutral- and right

lever position, respectively. Attached to each hidden node in the common cause model are two

observable nodes representing visual and proprioceptive sensory inputs. Both node types can

take on values 0 or 1, V2{0,1}; P2{0,1} (Fig 2B). Experimental delays are formalized by observ-

ing series of sensory input that are shifted against each other by the amount of timesteps corre-

sponding to the experimental delay. Sensory information and hidden state share a strong

correspondence in the common cause model due to the likelihood distribution. Whenever the

hidden state is in the “1” position, it is highly likely that the proprioceptive and visual inputs

are in the “1” position as well. If this is not the case, the common cause model becomes more

unlikely a-posteriori. The separate cause model consists of two separate Hidden Markov

Chains with 80 timesteps, where only one observable node is connected to any hidden node.

The first chain represents the visual observations and their causes, while the second chain
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models the proprioceptive inputs and their causes. In contrast to the common cause model,

proprioceptive and visual information can be caused by different factors in the separate cause

model. In other words, underlying the separate causes model is the assumption that the propri-

oceptive information was caused by an active or passive hand movement, while the visual

information was caused by the experimenter playing a video clip of the movement instead of

the real-time video feedback of the movement. In each trial, a model comparison is performed,

where the posterior probabilities of the common cause model and the separate cause model

are weighted against one another. Whenever P(M = separate _ D)>P(M = common _ D), a

delay is detected.

To qualitatively simulate the patterns of sensory attenuation in this experiment, visual and

proprioceptive sensory inputs were formalized as identical streams of model observations, or

as two streams of information shifted against one another with varying levels of delay (Fig 4C).

Observations were fed to the common cause- and the separate cause model, respectively. We

then compared the posterior probability of the data, given the models, with higher posterior

probabilities determining the winning model and hence perception.

SciPy-optimize [63] was used to fit the model on the experimental data and identify optimal

model parameters (i.e., likelihood parameter, mediating the relationship between hidden and

observable nodes; and transitions between hidden nodes) given the data. A total of 15 parame-

ters are considered in the optimization (see Fig 3B), consisting of priors, transitions and emis-

sions for both the common and separate cause models, respectively. The emission model is

shared between the common- and separate causes chain. Similar to Experiment 1, the cost

function is given by:

c ¼ p sepð Þ � log
pðsepÞ
q

� �

þ 1: � pðsepÞð Þ � log
1: � pðsepÞ

1: � q

� �

½5�

With P(sep), the posterior probability of the separate-cause model, and the average of all

detection responses q ¼
P

rt¼1

N where N is the number of trials. Minimizing c will yield model

parameters that lead to an optimal match between delay detection responses (rt = 1) and the

posterior probability of the separate cause model, P(sep). To ensure that all probabilities are

between 0 and 1, we optimize the logit of the parameters. Starting values for the logit was set to

be between (-1, 1). The optimizer method used was Powell with a tolerance of 1e−8. For each

participant dataset, the optimization was initiated 10 times, and the best resulting set of param-

eters was selected (i.e., the parameters that minimize cost across the 10 results).

A crucial experimental manipulation is the distinction between trials with an active vs. a

passive arm movement. To explore the effect of this experimental manipulation, we fit the

model separately to active vs. passive trial data to simulate model-derived psychometric func-

tions. This was done to examine whether our model can reproduce the main empirical finding

of Uhlmann et al., 2020 of heightened delay detection thresholds in active trials. As before, a

parameter recovery was performed to validate the model. Details on the procedure can be

found in supplement S2 of S1 File.

Model comparison

We compare the full causal model to two competing models commonly used in multisensory

integration research: forced fusion and forced separation [50, 57]. In a forced fusion model,

the proprioceptive and visual information will always be attributed to the same hidden cause.

Contrarily, in forced separation, the visual- and proprioceptive information streams are always

attributed to separate underlying causes. We furthermore introduce a bias-only model as

PLOS ONE Sensory attenuation as Bayesian causal inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0317924 January 24, 2025 10 / 27

https://doi.org/10.1371/journal.pone.0317924


Fig 4. Model specifications. A. Likelihood function for Experiment 1. If the none cause is inferred, frequencies around

0 Hz are expected. Under the external cause, all frequencies are equally unpredicted. If the internal cause is inferred,

the mean predicted frequency is normalized around the frequency expected given a movement policy. B. Experiment

1, observation schemes for each trial type; probe congruent to object (left), probe incongruent to object (center), no

probe (right). C. Experiment 2, observation schemes per trial type, non-delay trials (left), where visual and

proprioceptive inputs follow the same temporal pattern (i.e., shifting in state at the same time), vs. delayed trials, in

which the visual information is shifted against the proprioceptive input in time.

https://doi.org/10.1371/journal.pone.0317924.g004
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before, where participant choices are a function of their idiosyncratic response biases. The

Bayesian model evidence is approximated using the LAP, as described previously [58, 64].

Results

Experiment 1

Simulations. We simulated a time series of 50 nodes, with internal cause (internal, external,

hidden) as a hidden layer, and frequency observations (0–100) at the observable layer. A series

of frequency observations, contingent with the four experimental conditions, was developed

for the model. Qualitative results yield a good match between the probabilities predicted by

the model and participant behavior. Congruent probes, i.e. those matching the predicted sen-

sory consequence of the movement, are inferred as internally caused (Fig 5A). We assume that

sensory attenuation of highly predictable (i.e., congruent) probes results from inferring an

internal cause for the probes. In contrast, incongruent probes are inferred as externally gener-

ated by our model (Fig 5B). This pattern is mediated by the nature of the probability distribu-

tion contained in the emission nodes, where a given frequency that is expected under the

current motion policy determines the mean of a normal distribution. When the probe’s fre-

quency matches this mean expectation, an internal cause for it is inferred. In the incongruent

case, the mean expected frequency is different from the one experienced during probe presen-

tation, and hence an external cause is inferred for it. Under an external cause, all frequencies

are equally (un)likely, which is why the model prefers it for unexpected frequencies. Hence,

the model qualitatively captures the effects of stimulus predictability on underlying causal

inference. We next fit this model to the experimental data by Fuehrer et al., 2022.

Data fitting. Optimization was performed for each participant individually. The optimization

converged for all individual datasets. The objective function was evaluated on average 158 times

(range: 112–210, standard deviation: 22.5). The optimizer converged after on averageNfev = 333

(min: 294, max: 434, standard deviation: 25.25) evaluations of the objective function. A total of 12

parameters was optimized per participant. Optimal parameters on average consisted of uninformative

priors over causes (P(cause = (internal,external,none) = 0.33)), and a transition matrix with a stable

internal–internal transition and an unlikely transition from the none cause to an internal or external
cause (PðinternaljinternalÞ ¼ 0:68; PðinternaljnoneÞ ¼ 0:26; PðexternaljnoneÞ ¼ 0:17, see Fig

6B). The average noise parameter (sum of motor and sensory noise) was σ = 20.61 (Fig 6C). We next

compared empirical patterns of probe detections against detection events as predicted by our model

(P(external)>P(internal),P(none). The model is capable of capturing detection events particularly in

the incongruent conditions (Fig 6A). It predicts significantly less detection events in the congruent

conditions compared to the empirical data. We next initialize the model for each participant with

their individual optimized parameters. Simulating each trial type, the model yields a clearer distinc-

tion between causes at the time of probe presentation in incongruent trials (Fig 7C and 7D for an

example) compared to congruent trials (Fig 7A and 7B).

Model comparisons yielded an advantage for the full causal model. The evidence difference

per participant (Δ LAP causal–LAP bias) was 1.20 (± standard error 0.15), indicating an advantage

for the full causal model over a bias-only model on the participant level. This translates into a

probability ratio of 4.9x1016 on the group level. This indicates strong superiority of the causal

model on the group level. The bias-only model held an advantage over the uniform model (Δ
LAP bias—LAP uniform), with a group-level average of 28.54 ± standard error 5.46 (Fig 8). As a

measure of global fit of the full model, we computed the KL-divergence between model-derived

and empirical response distributions. Mean KL divergence for Experiment 1 was KLmean = 1.262

nats (Fig 14A). One outlier (KL = 12.56 nats) was related to a higher-than average detection fre-

quency, and a lack of variance in the incongruent condition (see S2 in S1 File) Finally, prediction
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Fig 5. Qualitative simulations (Experiment 1). A. Simulation of a congruent trial, where an internal cause is inferred

for the probe. B. In the incongruent probe trial, an external cause is inferred for the probe. C. In the trial without a

probe, no external or internal cause is inferred.

https://doi.org/10.1371/journal.pone.0317924.g005
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recovery showed that the fitting procedure does not introduce systematic biases and captures the

relationship between data and model-based detection probabilities. Interestingly, the trial type

drives certain parameter’s recoverability (see supplementary chapter S2, S15 Fig in S1 File).

Experiment 2

Simulations. We simulated a time series of length T = 80, with hidden causes (position 0

or 1) forming a chain of hidden nodes, and observable nodes for visual and proprioceptive sen-

sory inputs. Consistent with the experimental delays, a series of sensory observations for the

model’s observable nodes were developed. In a first qualitative simulation, the model yielded

results in line with the empirical results, where for smaller delays, a common cause model is

inferred, and a separate cause model is inferred for larger delays (Fig 9A). Similarly, the model

was used to simulate the task-specific psychometric function (Fig 9B), showing increasing

detection responses with higher delays.

Data fitting. The optimization procedure yielded participant-specific values for twenty

parameters, with 10 parameters each for the common- and separate-cause models, respec-

tively. Averaged parameter values are shown in Fig 10. Parameter values indicate slight differ-

ences in average optimal parameters between the common- and separate cause models, with

e.g. an increased prior on starting state 1 in the separate cause model (separate cause model: P

Fig 6. Results of optimization, Experiment 1. A. Detection probabilities per trial type in the empirical data (orange) vs. detection probabilities per trial type as

predicted by the model (blue). Congruent low: congruent, object and probe have a low frequency. Congruent high: Congruent, both object and probe have a

high frequency. Incongruent—low: Incongruent, probe has a low frequency, object has a high frequency. Incongruent—high: incongruent, probe has a high

frequency, object has a low frequency. Error bars represent standard deviations of model predictions (blue bars) and empirical data (orange bars). B. Average

optimized transition parameters yield biased transitions, with a sticky internal cause. Considerable variance between subject is present especially for the

transition parameters p(int|int) and p(ext|int), as indicated by the error bars (black) representing standard deviations of the parameter estimation. C. Violin

plot of average optimized σ (motor noise) parameter.

https://doi.org/10.1371/journal.pone.0317924.g006
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(1) = 0.54, common cause model: P(1) = 0.50) and an increased transition probability between

states 1 and 1 over time in the separate cause model (separate cause model: P(1−1) = 0.64;

common cause model: P(1−1) = 0.52). We next compared empirical delay detection event fre-

quency per delay with the model-derived detection events, as approximated by the probability

of inferring a separate cause for sensory information. Inputting the optimized parameters per

participant into the graphical model, we computed the probability of inferring separate causes

Fig 7. Average simulated time series with optimized parameters (Experiment 1). Simulation of all trial types (congruent low (A), congruent high (B),

incongruent–probe low (C) and incongruent–probe high (D)) with average optimized parameters. The probe is presented between timesteps 10 and 15 in

the timeseries (red bar on x-axis). In the congruent trials, the probe is mistaken as internally generated (p(internal)> p(external)). In incongruent trials,

the probe is labelled as externally generated (p(external)> p(internal)), albeit with some uncertainty.

https://doi.org/10.1371/journal.pone.0317924.g007
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Fig 8. Model comparison, Experiment 1. The full causal model is compared to a model where responses are predicted

exclusively by individual biases (bias) and one with uninformative parameters (uniform). Displayed are probability

rations, or differences (Δ) in LAP. Positive values indicate an advantage for the causal model compared to the bias-only

model, and an advantage over the bias model over a uniform model. Black lines represent standard errors.

https://doi.org/10.1371/journal.pone.0317924.g008

Fig 9. Simulated PSE and psychometric function (Experiment 2). A. The simulated point of subjective equality

(PSE)is represented by the red dashed line, indicating the PSE is located at a delay of 5 ds. In smaller delays, the

common cause model (coral line) has a higher marginal probability. For larger delays, the separate cause model

(turquoise line) is inferred as more likely. B. Simulated psychometric function for Experiment 2. The probability of

inferring separate causes for the visual and proprioceptive information increases with increasing delay duration (Unit

of time: deci-second, ds).

https://doi.org/10.1371/journal.pone.0317924.g009
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(or P(cause = separate)>P(cause = common)) for each experimental delay. When fitting a psy-

chometric function to the empirical and simulated data, we find a good match between the

two functions (Fig 11).

A model comparison yielded an advantage for the full causal model over all competing

models, namely, a bias model, a forced fusion- and a forced separation model. The superiority

of the full causal model held in both active- and passive movement trials (Fig 12). The evidence

Fig 10. Averaged parameters for common- and separate cause models (Experiment 2). Average parameter values for the optimized

parameters of Experiment 2, separate for active (left panel) and passive trials (right panel). Parameter names: cp_0: common cause chain,

prior on first state 0; c_trans_00: transition from state 0 to 0; c_trans_10: transition from state 1 to 0, c_lik_00: likelihood of inferring

state 0 after observing 0; c_lik_10: likelihood of inferring state 0 after observing 1, sp_0: separate cause chain, prior on state 0, s_trans_00:

transition from 0 to 0, s_trans_10: transition from state 1 to 0. Error bars represent the standard deviation caused by variance in

parameters between subjects.

https://doi.org/10.1371/journal.pone.0317924.g010

Fig 11. Average empirical vs. model-predicted psychometric functions for active and passive trials (Experiment

2). Psychometric functions were fitted to empirical detection probabilities per delay (blue) vs. detection probabilities

predicted by the model (orange). A. Active trials B. Passive trials.

https://doi.org/10.1371/journal.pone.0317924.g011
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difference per participant (Δ LAP causal–LAP bias) in active movement trials was 18.82 (±
standard error 1.98), indicating an advantage for the full causal model over a bias-only model

on the participant level. The advantage approached certainty on the group level (1.62e196) The

bias-only model held an advantage over the forced fusion model (Δ LAP fusion—LAP bias

-101.80 ± 10.06). The bias model was superior to a forced separation model (Δ LAP separation

—LAP bias: -124.87 ± 11.15). In passive movement trials, the causal model was superior to a

bias model (Δ LAP causal–LAP bias: 21.07±1.73). The bias model was superior to a forced

fusion model (Δ LAP fusion–LAP bias: -125.77±10.54) and to a forced separation model (Δ
LAP separation–LAP bias: -100.08±9.76).

We finally performed separate optimizations for the active- and passive trials. This optimi-

zation yielded distinct participant-specific sets of parameters for the two conditions. When

simulating the psychometric function with the active- vs. passive condition parameters, our

model replicates the finding of an increased threshold in the active- compared to the passive

condition (Fig 13), capturing empirical patterns of sensory attenuation in active trials in

Experiment 2. This distinction is driven by subtle changes in the parameters of the generative

model between active and passive trials (Fig 10). As a measure of global fit of the full model,

the mean KL divergence for Experiment 2 was KLmean = 3.396 nats (Fig 14B). Two outlier par-

ticipants are related to a lower-than-average detection performance (KL-divs = 10.484, and

13.267; see S3 in S1 File for details) The model’s predictions could be successfully recovered by

our fitting approach (see supplementary chapter S2, S16, S17 Figs in S1 File).

Discussion

Sensory attenuation is a ubiquitous phenomenon in sensory processing across species. Theo-

retically, it has been explained with mechanisms of unspecific sensory gating [65] or predictive

processes via efference copies generated from forward models [9]. Recently, sensory attenua-

tion has been framed as a consequence of Active Inference [32, 42]. We here expand on the

recent computational account of sensory attenuation by adding the perspective of Bayesian

Causal Inference (BCI, [48]). Across two different experimental datasets in the sensorimotor

(Experiment 1) and visuo-proprioceptive (Experiment 2) modalities, we show that our model

based on BCI by sum-product message passing in a graphical network can capture patterns of

sensory attenuation qualitatively in simulations, and yields a good quantitative fit to the data.

Fig 12. Model comparison, Experiment 2. A. Model comparison on active movement trials: a full causal model is

compared to a bias-only model (causal-bias). Positive values indicate higher model evidence for the full causal model.

The bias model is superior to a forced fusion model (fusion-bias), and a forced separation model (separation-bias). B.

Model comparison on passive movement trials. The full causal model is superior to a bias-only model. The bias-only

model is superior to a forced-fusion and a forced-separation model.

https://doi.org/10.1371/journal.pone.0317924.g012

PLOS ONE Sensory attenuation as Bayesian causal inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0317924 January 24, 2025 18 / 27

https://doi.org/10.1371/journal.pone.0317924.g012
https://doi.org/10.1371/journal.pone.0317924


Experiment 1 investigated sensory attenuation based on sensorimotor predictions [23]. A

key finding was that tactile sensitivity on the moving finger is more strongly reduced for tactile

probes that were congruent than incongruent to the sensorimotor predictions. The BCI model

can reproduce this key finding: an internal cause is inferred for prediction-congruent probes.

The brain constantly tries to maximize the information about its surroundings. Since self-gen-

erated sensations are not caused by unexpected changes due to external, environmental fac-

tors, these sensations are processed in an attenuated manner [66]. When fitting the model to

the data with optimized parameters for each participant, empirical patterns are particularly

well captured across trials where probes were incongruent with predictions. The model’s pre-

dictive power is slightly reduced for trials in which probe and object frequency were congru-

ent. Note that the model’s ability to capture these behavioral effects might be due to relatively

small empirical differences between the experimental conditions. To best test our model in the

context of tactile sensory attenuation, it may require clearer differences between experimental

conditions on the behavioral level. Our model nevertheless contributes an improved under-

standing of prediction-congruent sensory attenuation in the tactile domain as the first direct

application of BCI to individual, implicit measures of sensory attenuation.

Experiment 2 was concerned with the detection of delays between visual and proprioceptive

information during a guided arm movement [6]. During active movement, delay detection

performance decreased compared to trials where the participants’ arm moved passively. We

first reframe the task as the problem of inferring common- or separate causes for the visual

(video feedback) and proprioceptive information from the arm. With increasing delays, the

participant should become more and more certain that separate causes are underlying the

visual- vs. the proprioceptive information, while after observing small delays between the

Fig 13. Simulated average psychometric function for active vs. passive trials (Experiment 2). Average psychometric

function for active vs. passive trials, averaged across all participants.

https://doi.org/10.1371/journal.pone.0317924.g013
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visual and proprioceptive sensory streams, the participant should favor a common cause for

the visual and proprioceptive input. We reproduce this general pattern by showing that a com-

mon cause model is preferred for trials with smaller experimental delays, whereas a separate

cause model is preferred after observing simulated data with larger delays. Fitting the model to

the data with optimized parameters yields a good fit between empirical and model-derived

psychometric functions. We furthermore found that when fitting the model to trials with an

active- vs. a passive movement and simulating task behavior separately for each trial type, our

model can capture the empirical finding of increased sensory attenuation in active- compared

to passive trials.

Fig 14. Global fit (KL-divergence), subject-specific. A. Subject-specific KL-divergence between model-derived and

empirical response distributions, Experiment 1, mean divergence was KLmean = 1.262 nats B. Experiment 2, with mean

KLmean = 3.396 nats.

https://doi.org/10.1371/journal.pone.0317924.g014
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A strength of the present model lies in its direct, individual-level representation of the

computational mechanisms underlying sensory attenuation. While we here show that the

model can capture empirical signatures of sensory attenuation, it is flexible enough to model

data from different experimental paradigms and perceptual modalities. Since sensory attenua-

tion is assumed to be a crucial and domain-general function of sensory information process-

ing, a model based on variational BCI is a suitable choice to investigate the computational

mechanisms underlying sensory attenuation. Unlike descriptive approaches, computational

models of central cognitive functions can deepen our understanding of the multisensory pro-

cesses involved in the phenomenon of sensory attenuation. Classical theoretical frameworks

for sensory attenuation come with some crucial limitations that cannot account for the attenu-

ation of externally generated stimuli which are likely not part of a forward model [32] or con-

tradictory results that run against the predictions of simple forward model accounts [67]. For

example, van Kemenade and colleagues (2016) have provided evidence for multisensory facili-

tation in a delay detection task, i.e., participants showed improved performance in trials with

bimodal action consequences vs. unimodal. In our model, bimodal trials correspond to two

streams of sensory information connected to the model’s hidden state; improving detection

performance by means of the availability of more sensory information about the hidden state

available for inference. In the future, our BCI model of sensory attenuation may be applied to

gain a more mechanistic understanding of multisensory facilitation.

Our BCI model for Experiment 2 is closely related to Bayesian models of body ownership

[53, 55], where e.g. the rubber hand illusion is strengthened when a common cause for visual,

tactile and proprioceptive information can be inferred [55]. Sensory attenuation appears to

play an important role for body ownership and agency, as supported by aberrant patterns of

sensory attenuation in individuals with psychosis [34, 68, 69] and individuals with increased

levels of psychosis proneness [36]. The deficit in predicting the sensory consequences of one’s

own actions in psychosis may stem from disturbances in the contextualized regulation of sen-

sory precision, mediated by dopamine imbalances [32]. Similarly, patients with psychogenic

functional movement disorder show aberrant sensory attenuation [70]. These findings suggest

that sensory attenuation is not a quirk, but a crucial aspect of motor control. Understanding

the computational and neurobiological underpinnings of sensory attenuation may be a fruitful

avenue towards novel therapeutic approaches to disturbances of body ownership and motor

control.

Future directions

The present work provides a starting point for computational descriptions of sensory attenua-

tion. Our model’s sequential nature offers potentially high temporal resolution of intra-trial

dynamics, which are here inferred based on dichotomous behavioral responses. At this point,

we would not claim that the model’s parameter values reflect neuronal variables. Rather, we

offer an interpretation of sensory attenuation as a causal inference process. However, sensory

attenuation shows interesting dynamical patterns in motion capture [28] and EEG [71] which

we can account for in a sequentially structured model. The BCI model’s fit with these phenom-

ena needs to be investigated in future studies. While the model passed initial validation proce-

dures, future effort needs to be directed towards thorough testing and empirical validation of

our model. For instance, experimental work is necessary to study how precisely model param-

eters are affected by specific experimental manipulations. The test-retest reliability of individ-

ual-level parameters across time and across experiments needs to be established. If successful,

the BCI model could be applied to study altered sensory attenuation in clinical populations. As

previously mentioned, failures of sensory attenuation have been connected to false inferences
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about agency and body ownership in schizophrenia [32, 34–37]. In future efforts, our compu-

tational model may be expanded towards formalizing aberrant Causal Inference in patients

with psychosis or heightened levels of psychosis proneness. When applied to data from clinical

populations, variational BCI may help deepening our understanding of the computational

mechanisms underlying decreased sensory attenuation in individuals with psychosis. If repli-

cated, the neurobiological basis of sensory attenuation deficits in psychosis can be guided by

computational markers derived from our model. Secondary somatosensory cortex and the

right temporoparietal junction (TPJ) can serve as a candidate ROI [68, 72]. However, reliable

neural- and computational-level profiles distinguishing healthy controls from individuals with

schizophrenia could be more challenging than it appears from the current literature (i.e., pub-

lication bias). In a recent study using flash-beep stimuli, medicated patients with schizophrenia

showed neurocomputational signatures of Bayesian causal inference mostly comparable to

healthy controls [73]. For further validation of our model, and for an extension towards clini-

cal populations, it is crucial to identify reliable experimental paradigms that produce robust

inter-individual differences in causal inference- and sensory attenuation. Voss and colleagues

[37] have further demonstrated that sensory attenuation can be manipulated by applying

repetitive TMS pulses over primary motor cortex. If future studies can uncover a neurobiologi-

cal basis for the parameters governing variational BCI, their manipulation using TMS could be

of high scientific and therapeutic interest. Using transcranial direct current stimulation

(tDCS) improvements in delay detection [74] and delay adaptation [75] had been already

shown in patients with schizophrenia spectrum disorders. However, the BCI could improve

our understanding of which parameter exactly contributed to these initial findings.

Similarly, aberrant sensory attenuation has been reported for individuals with functional

psychogenic movement disorders [70]. Understanding the computational and neurobiological

basis governing aberrant movement patterns in this population may generate novel hypotheses

and be of interest for clinical applications in the future.

Conclusion

A range of cognitive functions has been successfully described by BCI, including multisensory

perception, motor learning and body ownership. We here presented a model based on varia-

tional message passing and BCI that captures empirical patterns of sensory attenuation across

different experimental paradigms and perceptual modalities. The model provides individual-

level, quantitative predictions on psychophysical aspects of sensory attenuation and achieves a

good quantitative fit with group-level behavioral markers. We accommodate a core function

of motor behavior within a unifying, neurobiologically plausible computational framework,

where sensory attenuation stems from actively inferring an internal cause for sensory

information.
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