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Abstract

Predictions are combined with sensory information when making choices. Accumulator models have conceptualized predictions
as trial-by-trial updates to a baseline evidence level. These models have been successful in explaining the influence of choice
history across-trials, however, they do not account for how sensory information is transformed into choice evidence. Here, we
derive a gated accumulator that models the onset of evidence accumulation as a combination of delayed sensory information
and a prediction of sensory timing. To test how delays interact with predictions, we designed a free-choice saccade task where
participants directed eye movements to either of two targets that appeared with variable delays and asynchronies. Despite
instructions not to anticipate, participants responded before target onset on some trials. We reasoned that anticipatory
responses reflected a trade-off between inhibiting and facilitating the onset of evidence accumulation via a gating mechanism as
target appearance became more likely. We then found that anticipatory responses were more likely following repeated choices,
suggesting that the balance between anticipatory and sensory responses was driven by a prediction of sensory timing. By fitting
the gated accumulator model to the data, we found that variance in within-trial fluctuations in baseline evidence best explained
the joint increase of anticipatory responses and faster sensory-guided responses with longer delays. Thus, we conclude that a
prediction of sensory timing is involved in balancing the costs of anticipation with lowering the amount of accumulated evidence
required to trigger saccadic choice.

NEW & NOTEWORTHY Evidence accumulation models are used to study how recent history impacts the processes underlying
how we make choices. Biophysical evidence suggests that the accumulation of evidence is gated, however, classic accumulator
models do not account for this. In this work, we show that predictions of the timing of sensory information are important in con-
trolling how evidence accumulation is gated and that signatures of these predictions can be detected even in randomized task
environments.

anticipatory saccades; free choice; gated accumulation; predictive processing; saccadic choice

INTRODUCTION

Pattern recognition is important for adaptive behavior.
Sometimes, the patterns we observe are representative of
causal relationships in our environment, so we can use this
knowledge to adapt the way we process sensory information
and inform predictions about future events (1–3). Indeed,
both empirical evidence and theoretical accounts point to-
ward the importance of predictive feedback on even the
earliest stages of sensory processing (4–6). However,
although predictions are often studied under conditions
where they have an adaptive purpose, predictions may
also be based on relationships that arise spuriously. In

laboratory environments, it is common to randomize the
presentation of sensory data such that information from one
trial does not have predictive value for the subsequent trial.
Despite this, people often show evidence for history effects,
even when this confers no obvious advantage. Although his-
tory effects in randomized tasks have been extensively stud-
ied in the psychological sciences (7–14), less is known about
how history effects influence the sensorimotor transforma-
tions that occur as wemake decisions in real time.

Reaction times between the presentation of a sensory
stimulus and the execution of a saccadic eye movement are
thought to be determined by the time it takes to integrate
sensory information from a baseline to a threshold (15–23).

Correspondence: B. Caie (brandon.caie@queensu.ca).
Submitted 25 January 2024 / Revised 6 March 2024 / Accepted 12 February 2025

www.jn.org 0022-3077/25 Copyright© 2025 The Authors. Licensed under Creative Commons Attribution CC-BY 4.0.
Published by the American Physiological Society.

1159

J Neurophysiol 133: 1159–1175, 2025.
First published February 19, 2025; doi:10.1152/jn.00041.2024

Downloaded from journals.physiology.org/journal/jn at UB Marburg (137.248.041.237) on July 3, 2025.

https://orcid.org/0009-0009-5015-2639
https://orcid.org/0000-0001-9756-9655
https://orcid.org/0000-0003-4274-1272
https://orcid.org/0000-0002-2297-3271
mailto:brandon.caie@queensu.ca
https://crossmark.crossref.org/dialog/?doi=10.1152/jn.00041.2024&domain=pdf&date_stamp=2025-2-19
http://www.jn.org
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1152/jn.00041.2024


In decision-making tasks reported through eye movements,
predicting the likelihood of one alternative favoring another
has traditionally been accounted for through shifts in the
baseline evidence (18, 21, 24–26), although a direct and unique
link has been questioned (27–29). Reinforcement-learning
approaches have since been applied to explain how predic-
tions influence eye movements through trial-trial updating of
baseline evidence (30, 31), thus casting baseline evidence as a
readout of a prediction that is updated on a trial-trial basis
according to the outcome of a choice. However, baseline evi-
dence is a fixed model parameter, aligned to the experimen-
tally controlled onset of a stimulus, that abstracts over the
sensory processing that occurs before evidence accumulation
(32)—it has no obvious relationship to a biophysical process.
Thus, it is unclear how discrete trial-trial baseline updating in
classic accumulator models is related to sensory processing
that occurs before evidence accumulation, and how this may
lead to the observation of discrete baseline evidence shifts in
classic accumulator models.

Predicting the timing of future sensory information is
informed by prior experience (33–35). One natural timing
problem faced in the evidence accumulation process is
transmission delay between the onset of sensory information
in the environment and its relay to regions thought to be
involved in evidence accumulation, such as the frontal eye
fields (36, 37) and the lateral intraparietal area (38, 39). In the
visual system, it is generally known that different brain
regions must adapt preparatory activity to account for varia-
tions in latency (40–43). Although timing the onset of the
evidence accumulation process is an important component
of decision-making (44, 45), any sensory processing that
occurs prior to evidence accumulation is typically not
addressed in models within the accumulator framework. An
exception to this is the gated accumulator model of the
visual-motor cascade in the frontal eye fields (46, 47),
wherein transient responses to visual activity trigger the
onset of the evidence accumulation. Thus, instead of
describing the onset of evidence accumulation with a
fixed baseline plus some sensory delay, the onset of the
decision process is explicitly modeled as a consequence
of upstream visual processing. However, this activity has
been considered as a purely feedforward process, so the
role of history effects are not well understood.

Here, we show behavioral data from a free-choice sac-
cade experiment that suggests a prediction of sensory tim-
ing is combined with delayed visual information to trigger
the onset of evidence accumulation. To explain this, we
developed a gated accumulator model, in which a continu-
ously fluctuating baseline evidence signal is combined with
delayed sensory information to trigger the onset of evi-
dence accumulation. By explicitly modeling the delay inter-
val with baseline fluctuations, the model captures expected
reaction time distributions for multiple delay intervals con-
currently, and can additionally account for anticipatory
response distributions arising from baseline fluctuations in
the absence of external stimuli. To test how predictions
derived from previous trials may be reflected in the gating
process, we designed a free choice saccade task where par-
ticipants had to balance withholding anticipatory responses
with responding as fast as possible to one of two choice tar-
gets that were presented with variable asynchrony. A choice

history analysis suggested that the outcome of the previous
trial, despite randomization, influenced the balance between
anticipatory and sensory-guided reaction times. By fitting the
gated accumulator model to choice history data, we show that
the gated accumulator could capture both anticipatory and
sensory-guided reaction times, and that trial-trial updates to
the variance in baseline dynamics best explained the influence
of recent history on reaction times. This suggests that evidence
accumulation during saccadic choice is gated by combining
delayed sensory information with predictions from previous
trials, even in randomized protocols, to adapt the timing of
accumulation onset. Furthermore, this suggests that variabili-
ty in the baseline dynamics underlying gated accumulation
may be subject to trial history effects.

METHODS

Free Choice Experimental Procedures

Participants.
Six participants took part in the study. All had normal or cor-
rected-to-normal vision. The participant gave written consent
before undergoing the procedure. The study was conducted
with an experimental protocol approved by Health Sciences
Research Ethics Board, which adheres to the principles of
the Canadian Tri-council Policy Statement on Ethical
Conduct for Research Involving Humans and the princi-
ples of the Declaration of Helsinki (2013).

Task.
We adapted a free choice saccade task, first introduced by
Schiller and Chou (48) and further studied by Noudoost and
Moore (49) and Soltani et al. (50). The subject began by fixat-
ing on a central target projected onto a screen (20 in.
Mitsubishi Diamond Pro [16 � 12 in.] 1,280 � 1,024 pixels,
60 Hz, contrast 75.2%, brightness 0%). Two targets, one in
each visual field, were then presented with randomly
assigned temporal asynchrony values (16 ms, 33 ms, 66
ms, and 99 ms) and onset times drawn from U (750 ms,
1,250 ms). The subject was instructed to look at either tar-
get, so long as it was done as fast as possible, without
anticipating. The subjects were informed prior to the be-
ginning of the experiment that the targets would come up
at different times relative to each other. The subject was
instructed to blink in between trials to minimize disrup-
tion of stimulus perception. The script for the task was
written in MATLAB using Psychtoolbox.

Data acquisition and filtering.
We collected a total of 80,550 trials from 52 sessions across
our six participants. During each trial, eye movements
were tracked via EyeLink 1000 Tower Mount (SR Research,
Mississauga, ON, Canada) with a 1,000 Hz infrared camera
that tracked retinal position. Retinal position was cali-
brated before each session. The EyeLink apparatus was
placed 60 cm from the screen containing the saccade tar-
gets. Saccades were calculated offline using a saccade
detection algorithm with a velocity criterion of 50�/s, and
were individually verified through a custom visual mark-
ing program. Trials where the tracker lost the eye (either
through tracking error or participant lapse) were excluded.
Trials were also excluded if the eye position deviated more
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than 15� from the horizontal. The first saccade following
target onset, or the first saccade within 3� of the future tar-
get position prior to target onset, were taken to calculate
the saccadic reaction time and endpoint error. Saccades
with a positive endpoint horizontal position were given a
choice value of 1, and saccades with a negative endpoint
horizontal position a choice value of 0.

Psychometric fitting.
All data analysis was performed using custom scripts in
Python. Psychometric functions were fit using the Psignifit
toolbox with a Bayesian Inference fitting procedure (51).
We fit psychometric functions to a cumulative Gaussian
distribution. Choices occurring before 70 ms (sensory delay
cutoff) after target onset were discounted from psychometric
fitting. To compare the slopes of the psychometric func-
tions across choice sequences, we bootstrapped the mar-
ginal distribution that estimates the slope parameter and
used the position in the choice sequence as an ordinal
variable to fit a linear regression model. The model there-
fore tests the hypothesis that there is a linear relationship
between the slope of the psychometric function and the
position in the choice sequence, against the null model
that they are independent.

Statistical testing of differences in reaction times.
Qualitatively, we observed an increase in specific portions of
the distribution of reaction times as a function of choice his-
tory and delay intervals. From the perspective of our model-
ing framework, causal change in the underlying process may
influence certain portions of the observed reaction time distri-
bution without changing typical summary statistics such as
the mean reaction time. Thus, analysis of variance tests were
not appropriate to analyze the effects that may not be mani-
fest as changes tomean reaction times. To avoid this issue, we
chose to take the standard deviation as a metric that would be
sensitive to changes to anticipatory and express saccades. To
estimate the confidence interval around the standard devia-
tion, we bootstrapped each reaction time distribution 1,000
times and computed the 95% confidence interval of the stand-
ard deviation. We then compared each successive choice
sequence and determined if the intervals overlapped.

Fitting to free choice saccade data.
We fit a gated accumulator model (see, Gated Accumulation of
Sensory Timing Expectations Accounts for Choice History and
Anticipation) to reaction time data from the free choice saccade
task. We used differential evolution, a stochastic optimization
technique in the Scipy optimization toolbox, to fit a parameter
set for each delay bin. This algorithm allowed us to avoid local
minima in the parameter space that interfere with gradient-
based methods. We used the “best1bin” search method, with a
maximum of 1,000 iterations performed, population size of 15,
recombination constant of 0.7, and convergence tolerance of
0.01. The five parameters of the gated accumulation model
were given the following boundary conditions

h : ð0:4; :8Þ; j : ð0:3; 1:3Þ;rOU : ð:05; :2Þ;
lr : ð3=1000;6=1000Þ;rr : ð1=1000;4=1000Þ: ð1Þ

Before fitting, five alignment points for delay times were
chosen (evenly spaced between 750 and 1,250 ms), and

reaction time data were discretized into these five bins rela-
tive to the delay time (first target onset). Thus, each data set
contained five overlapping reaction time probability distri-
butions. A model was then generated with a target onset
time at each of these five delay times. To obtain a model
error, the Kullback–Leibler divergence between each delay
bin (model vs. data) was summed across the five delay bins.
It was this summed error that was used as a cost function for
the differential evolution algorithm.

XN
i¼1

DKLðPijjQiÞ ð2Þ

DKLðPijjQiÞ ¼
X
x2X

PðxÞlog PðxÞ
QðxÞ
� �

� k; ð3Þ

where i is the delay bin start, generated by N equal spacings
between 750 and 1,250 ms, Pi(x) is the reaction time model
probability for delay bin i and reaction time bin x, Qi(x) is
the same for the data probability distribution, and k was a
constant scaling term to prevent numerical underflow.
The discrete model probability was calculated from the
full probability density function by sampling 100,000
times from the continuous model over the same set of 50
discrete reaction time bins as the data histogram was com-
puted from.

RESULTS
We designed a free choice saccade task (see, Free Choice

Experimental Procedures) where participants had to rapidly
respond to the onset of sensory information while withhold-
ing anticipatory responses. Each trial begins with a central
fixation period drawn from a uniform distribution between
750 and 1,250 ms (Fig. 1A). This period was followed by the
appearance of two visual targets, one in each visual hemi-
field. The targets appeared at different times relative to each
other, with the target onset asynchrony (TOA) randomized
across nine discrete values 0, þ /� 16, 33, 66, 99 ms. Positive
asynchrony values will denote the right target appearing
prior to the left, and negative asynchrony values will denote
the left target appearing before the right. Participants were
instructed to direct a saccade to either target as fast as possi-
ble, without anticipating. Although both delay and TOA
were randomized, any given sample of trials from a uniform
distribution may have biased statistics in the spatial/across-
trial (target location) and temporal/within-trial (target onset
and asynchrony) domain (Fig. 1, C andD).

Choice Probability Is History-Dependent

Psychometric analysis revealed that choices are probabilistic
with respect to the magnitude of asynchrony (Fig. 1B). Choice
behavior binned by asynchrony indicated a progressive
increase in rightward choices when the right target appeared
earlier. The binned choice data was fit to a sigmoidal curve
with a psychometric fitting procedure using Psignifit (52).
Note in this analysis only choices occurring after the target
onset plus a minimum delay of 70 ms were included, as is of-
ten standard when excluding anticipatory trials (40, 53).
Synchronous targets resulted in choices closest to chance
with respect to left or right direction, whereas a target
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appearing well before another increased the likelihood of
response toward it. This indicated that participants were
aware of the task instructions and that the range of TOAs
used in the task were sufficient to evoke a change in choice
direction probability.

In randomized tasks, trials are uncorrelated, so analysis of
behavior often rely on treating trials as statistically inde-
pendent. However, it is common to infer patterns in short
sequences of randomized information (7, 9). In our task,
there is no inherent advantage to relying on information
from past trials, but each choice trial is embedded in a
unique sequence. A binary choice tree for five trials in the
free choice task is schematized in Fig. 2A. For future analy-
ses, we compared sequences of choice repetitions to the
same target direction, and sequences of choices alternating
targets, as measures of choice sequences with a stereotyped
local structure that may induce bias away from the true gen-
erative statistics of the task (54). Figure 2, B and C shows a
histogram of the number of repetitions and alternations in
the present data set. Because the data become increasingly
limited with higher sequence number, analyses were con-
ducted up to a sequence length of 5.

Psychometric analysis (see, Psychometric fitting) revealed
that choice probability was influenced by the number of pre-
vious repetitions and alternations. In Fig. 2E, psychometric
fits to group-averaged repetition data are plotted as a function
of repetition number (blue gradient), showing a progressive
decrease in the slope of the sigmoid function. We interpret
this as indicating that following choice repetitions, partici-
pants relied less on the TOA of the current trial, and more on
information derived from past trials. To quantify this, we esti-
mated parameters of the psychometric function using a
Bayesian procedure (see, Psychometric fitting). We then boot-
strapped estimates of the slope from the resulting probability

distribution over the slopes, and performed a Kruskal–Wallis
to ask if the parameter estimates came from the same distri-
bution (F¼ 2,829.13, P¼ 0). This suggests that the distribution
of best-fitting psychometric slopes changed across repetitions.
We performed this same analysis for sequential alternations,
finding that choice probability was also not constant (F ¼
476.23, P¼ 9.18� 10�102).

In addition to the TOA, we also assessed the role of the
delay interval. We next assessed whether the length of the
delay interval influenced choice probability. To do this, we
performed the same binning procedure as previously outlined
for choice sequence, but instead, we binned the delay period
into five equally spaced intervals between 750 ms and 1,250
ms. The resulting psychometric functions are shown in
Fig. 2D. Again, we performed a Kruskal–Wallis test, which sup-
ported the qualitative observation that the best-fitting psycho-
metric functions were not constant when separating data by
the length of the delay interval (F ¼ 384.77, P ¼ 5.43 �10�82).
In combination, these analyses support the conclusion that
both choice sequence and delay time influenced choice
behavior.

Choice History Jointly Influences Anticipation and the
Accumulation of Choice Evidence

Analysis of reaction time distributions provides a window
into the processes underlying saccade triggering (18, 32, 36).
To better understand how the choice process evolved
throughout the trial, we therefore performed a reaction time
analysis of the free choice saccade task based on the delay
interval and previous trials. Saccades are often grouped into
three classes based on reaction time: anticipatory responses
that occur before stimulus onset, sensory-guided responses,
and an “express saccade” regime that lies between the two
(55). In the psychometric analyses, only choices occurring
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Figure 1. Free choice saccade task. A: par-
ticipants-directed saccades to either of
two free choice targets as fast as possible,
with a randomized delay time and target
onset asynchrony (TOA). B: group-aver-
age psychometric function, depicting the
probability of right target (y-axis) as a func-
tion of TOA. C: across-trial task statistics.
Depicted is a random walk (left), showing
the probability of right target selection, be-
ginning at 0.5, across different hypotheti-
cal blocks. D: within-trial task statistics.
Depicted is the probability of the first tar-
get appearing as a function of the delay
time of the trial.
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after sensory onset plus a minimum delay of 70 ms were
considered (40), so as to analyze the role of target onset
asynchrony. However, this was only a subset of the total
behavior; while participants were asked to try not to
anticipate, they were also asked to go as fast as possible, so
in a subset of trials participants responded before target
appearance.

First, we assessed the influence of the length of the delay
interval on anticipatory and sensory-guided responses.
Figure 3 plots the cumulative distributions of reaction times
split into five equally sized delay bins between 750 and 1,250
ms. We aligned the distributions in two ways. First, we
aligned relative to the onset of the target, and plotted antici-
patory responses as negative time relative to this (Fig. 3A).
Next, we aligned the data to the onset of the trial, such that
each delay bin will have a mixture of onset times bounded
within the delay bin (Fig. 3B). In each view, it can be seen
that anticipatory responses increase, and sensory-guided
responses get faster, when the delay interval was longer (23,
56). Qualitatively, this resulted in a broadening of the distri-
bution as a function of the delay interval, since an increase
in anticipatory responses corresponds with an increase in

the early tail of the distribution. To quantify this, we ran-
domly sampled from each distribution and bootstrapped the
empirical standard deviation, and computed the 95% confi-
dence interval for each. This supported the conclusion that
reaction time variance was dependent on the delay interval.

We next analyzed reaction times as a function of choice
history (sequential repetitions and alternations). Figure 4
plots the reaction times aligned to the target dependent on
how many previous repetitions (Fig. 4A) and alternations
(Fig. 4B) preceded the current trial. Here, it can be seen that
sequential repetitions were associated with an increase in
anticipatory responses, as seen in the cumulative proportion
lying before the dashed line indicating target onset, and
faster posttarget responses. However, this speed advantage
was negated for responses in the median range, and even
reversed for later responses, consistent with the idea that
choice sequence influenced an association with baseline evi-
dence in accumulator models (57, 58). This effect was detecta-
ble but noticeably diminished in magnitude for alternations,
consistent with the idea that sequence effects may operate
over different timescales when targets alternate (54). In sum-
mary, our results suggest that reaction times were jointly
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influenced by choice history and the delay time of the trial.
By analyzing reaction times not by summary statistics such as
the mean or median, and instead viewing entire distributions
relative to different onset times, we were able to conclude a
joint influence of delay time and the previous trial on early
and express saccade responses.

Modeling Saccade Triggering as a Gated Accumulation

The gating of inputs to different neural structures is an
established mechanism of information transfer in the
brain (59). In the study by Purcell et al. (46), the accumula-
tion of evidence favoring one of several choice alternatives
is hypothesized to be gated below some threshold for sali-
ency, allowing for the selective accumulation of informa-
tion in the presence of a continuous stream of changing
visual scenes. It is commonly thought that such evidence is
integrated or amplified toward a threshold, upon which a cor-
responding motor command is produced (32, 60). Models of
the accumulation process have served a dual role, bridging
an algorithmic explanation of the heavy-tailed distributions
characteristic of reaction times with a mechanistic explana-
tion of the delayed ramping activity of single neurons in
regions of the brain such as the frontal eye fields (36, 61). In

recognizing both the necessity and empirical evidence for the
control of the accumulation process by a gating mechanism,
Purcell et al. (46) extended the descriptive capacity of accu-
mulator models to explicitly include the visual transforma-
tions occurring before the onset of evidence accumulation,
thereby replacing the discrete baseline evidence of tradi-
tional accumulator models (such as the drift-diffusion
model, LATER model, and linear ballistic accumulator)
with a continuous visual transformation.

In this section, we derive a gated accumulator that receives
a continuous input to an evidence accumulator during the
delay interval of a trial. We first decompose the model into
two sections: a section explaining the baseline dynamics, or
how baseline evidence fluctuates throughout the trial before
the onset of sensory information, and a section explaining
the evidence accumulation. Then, we explain how these proc-
essesmay be linked by a gatingmechanism, and howwe com-
bine the two processes algorithmically to obtain a single
probability density for reaction times.

Baseline dynamics.
We first describe the baseline dynamics (Fig. 5) that evolve
throughout the delay interval of a trial before the onset of a
visual stimulus. We chose an Ornstein-Uhlenbeck (OU)
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process to model the baseline dynamics for the free-choice
saccade data. This was chosen because it is a well-character-
ized dynamical system with tractable properties that can
describe the evolution of a stochastic process from a baseline
value to a steady state. However, it should be noted that this
does not constitute an argument for the necessity of an OU-
like process in the neural processes underlying gated accumu-
lation, merely its sufficiency to describe the data. The OU pro-
cess is a stochastic differential equation that describes the
time evolution of a random variable changing proportionally
to the distance from an expectedmean (Fig. 2). Let B1, B2,. . .Bn

be a set of processes that evolve as a time series during a trial
of length T0:Tmax ¼ 2,000, where bi ¼ b1, b2, . . .bn is a single pro-
cess satisfying the stochastic differential equation

dbt ¼ kðh� btÞdt þ rBdWt; ð4Þ
where k is the drift rate, h is the steady-state baseline the pro-
cess reverts to as time approaches infinity, andW is a Wiener
process scaled by rB.

We further assume that if this system reaches the expected
baseline h before the onset of a choice target, then an anticipa-
tory responses is triggered. Thus, the rate k dictates if and
how close to h the system reaches before target onset, and
thus if an anticipatory response is triggered. The anticipatory
response distribution is thus defined by the first-passage

problem where the threshold is equal to the long-run mean h,
which is described by Lipton and Kaushansky (62) as the solu-
tion to the problem

TA;C ¼ inf ft � 0: Bt ¼ AjX0 ¼ Cg ð5Þ

with change of variables

~t ¼ kt

�C ¼
ffiffiffiffiffi
2h

p

rB

ðC� hÞ

�A ¼
ffiffiffiffiffi
2h

p

rB
ðA� hÞ

: ð6Þ

The anticipatory density function for the case where
�A ¼ 0 is known.

PBðtÞ ¼ k

ffiffiffi
2
p

r
� j �Cj � exp ð�htÞ

ð1� exp ð�2htÞÞ3=2

� exp �
�C
2 � exp ð�2htÞ

2 � ð1� exp ð�2htÞÞ

 !
: ð7Þ

Because �A ¼ 0 is equivalent to setting the threshold cross-
ing A to equal h, this equation becomes the first passage time
solution for when the threshold A ¼ h. Thus, this equation
describes the probability density of how long it takes the OU
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process to reach the long-run mean h, scaled by the rate pa-
rameter k.

A graphical depiction of the baseline dynamics of a sam-
ple OU process is depicted in Fig. 6. In Fig. 6A, different
instances of the same OU parameter set are plotted in the
blue traces, with each evolving according to the difference
between its current state and a mean reversion parameter
h ¼ 1.5 at a rate according to kwith variance rB. We can solve
analytically for the first passage time for a given parameter
set, yielding our anticipatory response function, as the time
it takes to reach the steady state (Eq. 4). In addition, we have
a Gaussian probability density of baseline activity at each
time point throughout the delay period (Fig. 6C), which we
will use to model a distributed evidence integration process
with variability in the baseline, as in the study by Nakahara
et al. (57).

Evidence accumulation.
We next describe the integration of evidence to a threshold
following the onset of sensory information. For simplicity,
we chose to describe the evidence accumulation process that
occurs after the onset of a choice target as minimally as pos-
sible, so as to focus on the effects of input during the delay
period. A simple and interpretable evidence accumulation
model is the linear approach to threshold with ergodic rate
(LATER) model (18, 58, 63). The LATER model captures
reaction time as a deterministic signal with variability
across trials using three free parameters. Any single trial is
determined by

s ¼ rt ð8Þ
where t is the response time, s is the threshold-baseline dif-
ference, and r is the rate of rise. The distribution of reaction
times can be derived using process parameters μr, the mean
rate of rise, s the distance from baseline to threshold, and rr,
the variance of the rate of rise

PLðtÞ ¼ 1
t2

1ffiffiffiffiffiffi
2p

p
lr=s

exp � 1

2ðrr
s Þ2

 !
1
t
� lr

s2

� �" #
: ð9Þ

In the LATER model, the baseline is a single value, and
the variance required to explain a distribution of reaction
times comes from trial-trial variance in the integration
rate. Although the LATER model fits the majority of a reac-
tion time distribution, it does not account for anticipatory
responses and the short latency reaction times typical of eye
movements, often termed “express saccades” (58). To treat
the entire reaction time distribution under this framework,
and crucially the responses close to the time of target onset, a
derivation of the LATER model with variance to the baseline
value was proposed (57). This “extended LATER” model has
an analytical solution for the reaction time probability density
if the prior is Gaussian,NðlsrsÞ

PEðtÞ ¼ t þ r1a2
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Figure 5. Gated accumulation of choice evidence. A: schematic of a linear approach to threshold with ergodic rate (LATER) model. Sensory evidence is
integrated upon a baseline level of choice evidence toward a movement-triggering threshold. The strength of sensory evidence typically controls the av-
erage rate of rise. Variability in the rate of rise yields variability in reaction times (top curve). Time in the model begins relative to the onset of a repeated
stimulus. B: extended LATER model (eLATER), with variance in the baseline giving rise to a distributed integration process. The resulting probability den-
sity function is integrated over the threshold-baseline distribution. C: gated accumulation. Baseline dynamics, governed by an Ornstein-Uhlenbeck pro-
cess, are combined with the delay time of a given trial to yield a joint distribution of anticipatory and sensory-guided reaction times. D: circuit diagram of
a two-alternative gated accumulation process, with the baseline dynamic B combined with visual transients V to trigger evidence accumulation E.
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The extended LATER model allows us to calculate reac-
tion time distributions for different distributions of baseline
activity, rather than using the single baseline parameter in
the LATER model. Because of this, we can then model the
expected reaction time distribution for different delay
lengths by combining the extended LATER model with a
time-varying baseline dynamic.

Combining evidence accumulation with baseline
dynamics via gating.
We next describe how the two previously described proba-
bility density functions, the anticipatory response distri-
bution PB derived from the baseline dynamics, and the
evidence accumulation distribution PE, are combined into
a common process with a single probability density func-
tion. We first treat the simplest case, where only a single
target onset time is used. Thus, we need to compute the
anticipatory first passage problem for the OU process, and
the mean and variance of the process itself at the correspond-
ing delay time, which we will use as the mean and variance to
the baseline Gaussian distribution in the extended LATER
model. We can thus compute themean of the extended LATER
baseline μr at time t as the expectation of the Ornstein-
Uhlenbeck process, which is well-known

E½xðtÞjx0� ¼ x0e
�jt þ hð1� e�jtÞ ð11Þ

and the covariance

COV½XðsÞ;XðtÞ� ¼ r2

2h
ðe�hjt�sj � e�hðsþ tÞÞ; ð12Þ

where s ¼ 0 and t ¼ y. To convert the rising baseline of the
OU process into a threshold-baseline distance for the
extended LATER model (where a smaller value indicates a

shorter distance and thus a faster time to threshold and reac-
tion time), we translate μr as

lrðtÞ ¼ 1� xðtÞ ð13Þ
where μr is bounded between 0 and 1. Thus, while adding
four free parameters from the OU process, we reduce two
free parameters from the extended LATER process pT by
allowing the OU process to control the baseline Gaussian at a
given target onset time t. We can then define the gating pro-
cess,G, as a combination of the anticipatory first passage dis-
tribution PB, and the extended LATER solutions PL for a
distribution of delay intervalsD over the interval ½a;b�.

G ¼ PA þ
ðb
a

PEðt0 ¼ DÞdD

A key distinction between the way in which we have
derived this model and other evidence accumulator models
is that by explicitly accounting for the delay interval and an-
ticipatory responses, the onset of sensory information is no
longer a fixed, experimentally controlled parameter that
references t ¼ 0, or t ¼ 0 plus some fixed sensory delay pa-
rameter. Instead, the model output is the combination of the
parameters of the model and the chosen delay times.

Figure 7 depicts a cartoon scenario illustrating the impact
of the delay time of a given trial on the outcome of different
baseline dynamics. If two different baseline dynamics, depicted
in dark and light blue respectfully, were aligned relative to the
onset of a stimulus but had different delay times (Fig. 7A), they
may produce identical baselines at the time of target onset, and
as such not be dissociable. However, if the same baseline dy-
namics were shifted such that the common starting time was
the trial, and not the target, the same baseline dynamics would
lead to an observable difference in reaction times (Fig. 7B). This
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highlights that distinctions between underlying processes can
be masked by the way in which reaction time data is aligned,
whereas identical processes can result in quantitatively differ-
ent behavior if the temporal statistics of the task are appropri-
ately varied.

Gated Accumulation of Sensory Timing Expectations
Accounts for Choice History and Anticipation

Biophysically motivatedmodels of evidence accumulation
have suggested that the onset of accumulation is gated to
prevent prepotent responses to the continuous stream of
sensory inputs we are subject to in natural visual scenes
(46, 47). We derived a model in which the gating of evi-
dence accumulation is not driven solely by delayed sen-
sory information, but also by within-trial fluctuations in
baseline evidence dynamics. Here, we show that trial-trial
changes in the baseline dynamics can account for the de-
pendence of reaction times on choice history that was
observed empirically.

To do this, we fit the group-averaged reaction time data to
the gated accumulator model, split up by choice repetitions
so as to isolate the strongest observed effect of choice history
(see, Fitting to free choice saccade data). Themodel fitting pro-
cedure yielded a joint probability density function for reaction
time data continuously throughout the trial period, which was
post hoc binned into five delay quantiles for visualization.
Figure 8 depicts the result of the model fitting. In Fig. 8A, the
baseline dynamics for the best fitting model are shown (the
mean baseline is shown in the black trace, with the shaded
blue depicting the standard deviation of the baseline at each
time point, and the dotted line depicting the threshold).

Here, a dependence of the model fitting results on the
choice repetition sequence on the variance of the baseline
dynamic rB was observed. There was a progressive increase
in rB as repetitions increased (R1rB : 0:112; R2rB : 0:119;
R3rB : 0:127; R4rB : 0:157; R5rB : 0:183;), whereas no consist-
ent trend was observed in the other baseline dynamics pa-
rameters h or κ, nor the sensory integration parameters μr or
rr. This indicates that the trial-trial changes observed in the
reaction time data may not be best explained by shifts in
the baseline per se, but the variance in the process that gives
rise to its average value. As a result, the model best explains

the data by a combination of increased anticipatory responses
due to a higher variance in the baseline OU process, and a
higher variance in resulting threshold-baseline distance in
the eLATER sensory integration process.

To further illustrate the consequences of this result, we
simulated the result of a sequential updating scheme, where
single parameters of the baseline dynamic were updated
according to the expected probability of repetition in a
Markov process tracking the choice direction outcome.
Figure 9A depicts this process (left), with the resulting repeti-
tion probability approximating a random walk (right),
wherein the expected value remains constant, but the var-
iance of the process increases—as such, any given process
becomes more likely to have diverged from the expected
value as the trial numbers increase, despite the expected
value remaining constant. Figure 9,B–D plots the baseline dy-
namics (left), anticipatory distributions (middle), and cumula-
tive reaction time distributions (right) for two delay times
(750 ms and 1,250 ms) for sequential updating of h (Fig. 9B),
kappa (Fig. 9C), and rB (Fig. 9D). Here, two observations
should be noted. First, it can be seen that all three parameters
can result in changes to the proportion of anticipatory
responses, although this may only be apparent if the delay
time is sufficiently long to realize this. However, each parame-
ter update has a differential effect on the resulting baseline
evidence distributions at different delay times, influencing
the trajectory of the evidence accumulation process.

In light of this, the finding that the variance of the base-
line, rB, bets explained the choice repetition results should
be appraised. Like the other parameters, rB can result in an
increased anticipatory density. However, each parameter
has a differential influence on the evidence accumulation
process. Theta influences the average baseline, which may
or may not be in turn influenced by the delay time, depend-
ing on the rate parameter κ. In contrast, the variance param-
eter rB influences the variance of the baseline and the
anticipatory density function. Taken together, this suggests
that the choice repetition effects were best explained by a
combination of increased anticipatory responses and an
increased variance of the threshold-baseline distance in the
extended LATER model, as has been previously reported to
underlie pre-target processes such as prediction (57).
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Figure 7. Inferring difference in baseline dynamics depends on starting point. A: two trials where baseline dynamics (high rate parameter: light blue, low
rate parameter: dark blue) with the same delay time reach the different baseline levels, resulting in distinct accumulation processes. B: two base-
line dynamics with different delay interval lengths, resulting in identical baseline evidence at target onset, and thus indistinguishable reaction time
distributions.
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DISCUSSION

In this paper, we combined behavioral experiments with
computational modeling to show that predictions of sensory
timing influence how evidence accumulation is gated during
saccadic choice, even in a randomized task where history
effects may not be expected. In a free choice saccade task to
randomized targets presented with variable delays and vari-
able asynchronies (48, 49, 64). We found evidence for an
interaction between trial history effects based on the choice
sequence, and the influence of the delay period (observed
via anticipatory responses and delay-dependent changes to
evidence accumulation). We developed an extended version
of a gated accumulator model (46, 47) to account for this
behavior. In doing so, this work provides a technical
advancement on the evidence accumulation framework by
explicitly modeling reaction times in reference to a delay
interval, rather than as aligned to the onset of a stimulus.
This allowed us to estimate latent dynamics in the baseline
of an evidence accumulator that may go unobserved in clas-
sic accumulator models that align the decision process to the
onset of a repeated stimulus. By fitting the model to data, we
found that different phenomena in saccadic choice—antici-
pation, urgency, and history effects—could be accounted for
in our data through variance in the baseline dynamics occur-
ring prior to the onset of evidence accumulation.

Anticipating the timing of sensory information is useful
when interacting with recurring patterns in the environment
(65), particularly in the presence of delays. In this study, we
found that anticipation reflected a balance between lowering

the amount of evidence required to trigger a saccade and in-
hibiting movement generation prior to the appearance of
sensory information. The onset of evidence accumulation
has been suggested to be under active control and subject to
task-specific modulation (44, 45), but in the analysis of choice
tasks, anticipatory responses are usually treated as outliers to
be discard—as such, the relationship between anticipation
and the evidence accumulationmay have been underappreci-
ated. When it has, anticipation has been explained as arising
from an independent and parallel process (66), supporting
claims for a mechanistic division between proactive and reac-
tive processing (67, 68). In contrast, our model explicitly links
anticipatory processing and evidence accumulation as a de-
pendent process, in accordance with our experimental evi-
dence. However, future work is required to assess whether the
dependence of baseline evidence and anticipatory response
generation is strictly coupled by a common physical
process, or only coupled through a joint correlation with
another unmeasured factor (69).

We also report urgency-like effects in our task, that is, a
decrease in reaction time as a function of the length of the
delay period. We reason this reflected the increasing probabil-
ity of a target appearing in our task as time goes on. In accu-
mulator frameworks, urgency has classically been associated
with a change in the rate of evidence integration (56). An
additional class of models eschews evidence accumulation
altogether, instead arguing that urgency is represented as
an independent signal that is combined with sequentially
sampled sensory information (60). Differentiating these
models empirically has been a matter of debate (70–72). As
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we have not performed a formal model comparison with
other potential post-target dynamics, it is unclear to what
degree the models can be dissociated empirically through
behavioral data alone, particularly without manipulating
the strength of sensory information over time (60). Thus,
caution is warranted in interpreting the mathematical

form of the accumulation process we model as a necessary
component of neural processing, rather than a sufficient
explanation of the data we present.

The trial-to-trial use of prediction we show evidence for is
suboptimal with respect to the instructions and statistics of
the task. This sort of sequential dependency is often likened
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to model-free learning, i.e., updating behavior purely based
on the outcome of the previous choice. The alternative,
model-based learning, requires forming an internal repre-
sentation of the statistics of a task. Model-free strategies
have been the de facto metaphor for incremental learning in
neural systems (73–76), whereas “models” are invoked to
explain the learning of more complex structures (77–83).
Model-free strategies, defined this way, are particularly use-
ful for novel or volatile environments, as they can adapt to
structures that may not be known a priori. For example, a
model-free learner in our task could track the recent history
of the free choice task with a trial-trial update of the proba-
bility of the left target appearing before the right. The disad-
vantage of such an approach in our task is that while this
may be a good approach to learn the average statistics of the
task, the probability of being biased from the mean on any
single trajectory would approximate a random walk, thus it
would actually increases over time (84). Thus, a model-free
learning algorithmmay do a poor job of learning the statistics
of the task if given few opportunities to do so, and sequential
biases in randomized tasks would emerge as a by-product of
the learning process.

Environmental changes occur over multiple timescales
(85, 86), so the time horizon with which that change is con-
sidered is critical in the ongoing evaluation of behavior (87,
88). When making inferences about model-free or model-
based learning, it can be convenient to categorize learning
by the timescales over which they change: model-free behav-
ior closely resembles the immediate past, whereas model-
based learning may not. It is worth noting that while model-
free learning is based on the recent past, learning based on
the recent past is not all model-free. Although model-free
learning refers to an update based solely on the outcome of a
previous event, fast-timescale updating could reflect a
nuanced model of the volatility of an environment, where
rapid switching is favored in or outside the contexts of a lab-
oratory task. Although we may be able to quantify the time-
scale of learning through correlating choices with recent and
long-term history, this does not mean we can falsify the gen-
erative model (69), where what appears to be a suboptimal
lingering effect of the previous trial may actually be the out-
put of a learning rule of arbitrary complexity. Indeed, even
in simple neural circuits such as those studied in the classic
studies of the crab and lobster stomatogastric ganglia, very
different physical processes (i.e., synaptic conductances)
were shown to be capable of leading to similar emergent cir-
cuit properties (prinz_similar_200, 89). Such redundancy
should similarly be considered in future work evaluating his-
tory-dependence in gated accumulation—can multiple dif-
ferent across-trial learning schemes describe trial-averaged
data equally well? Thus, while we can conclude that our
gated accumulation model can describe the trial-averaged
statistics of history-dependence we observe, our results do
not determine anything about specific learning rules or cost
functions that gave rise to the history-dependence, nor why
participants failed to behave in an algorithmically random
fashion.

Our model is statistical in nature, but was inspired by a
biophysical model that was originally proposed as a model of
the transformation of visual information into accumulated
evidence in the frontal eye fields (FEF) (46, 47). Recording

single-neuron activity following the onset of a visual stimuli
evokes transient changes to the firing rate of some FEF neu-
rons (40, 47) at latencies between 50 and 100 ms. These “vis-
ual” neurons (but see Ref. 90) are thought to be located in
superficial cortical layers, which receive visual input from
intraparietal sulcus (91, 92), extrastriate cortex (93, 94), and
the mediodorsal nucleus of the thalamus (95), among others.
Pyramidal cells in layer V FEF, on the other hand, innervate
the superior colliculus (96) and basal ganglia (97); neurons of
this category are thought to correspond withmovement neu-
rons (97–99), which begin a ramping discharge after the vis-
ual response, reaching a threshold firing rate that correlates
with saccade onset (36, 100). Given the similar profiles of
these motor neurons and accumulator models, it has been
suggested that the delay in FEF motor neuron activity
reflects a transformation of visual information into a
motor command. Gated accumulation in FEF was pro-
posed as a mechanism by which ongoing visual transients
are filtered from the accumulation of evidence, allowing
only salient information to be passed on. The model cap-
tures the timecourse of firing rates from visual and motor
neurons in different speed-accuracy conditions. The neu-
ral implementation of such transformations are a matter
of debate (47, 101).

Our work suggests that the temporal dynamics of this
transformation involve a prediction of sensory timing sensi-
tive to trial by trial changes. Classically, the striatum is asso-
ciated with trial by trial learning (75, 102–107). In the
striatum, the substantia nigra tonically inhibits collicular ac-
tivity necessary for saccade generation; this inhibition is
released following bursting activity from the caudate, which
is reciprocally connected to cortical regions responsible for
saccade planning, such as FEF (108). Thus, in addition to
reinforcement learning, the striatum is also thought to be
important for balancing the facilitation and inhibition of
motor plans. Layer V of FEF is reciprocally connected with
the striatum (109, 110). Pharmacological manipulation of do-
pamine D2 receptors, primarily found in deep layers, in FEF
resulted in a trial-trial repetition bias in the same free choice
saccade task used in this paper, whereas D1 receptors, dis-
tributed throughout cortex, resulted in an alternation bias
that is typically correlated with sensory processing (50,
111), suggesting that the behavioral dissociation observed
in the saccadic system between these biases has a physical
correlate.

The striatum is also implicated in timing behavior.
Electrophysiological evidence suggests that monkey stria-
tum amplifies decision dynamics in cortex as a function
of urgency (112). Timekeeping deficits are also correlated
with damage to the striatum in humans, along with classi-
cal symptoms of impaired movement initiation (for
review, see Ref. 113). So in addition to inhibition of move-
ment and reward-based learning, there is evidence for
striatal involvement in temporal processing. Schall et al.
(47) suggested the striatum as a potential physiological
source for providing an inhibitory signal to movement
neurons based on the strength of ongoing visual informa-
tion, along with axo-axonal shunting and intermediary
interneurons within FEF. In our model fitting results, we
found that the variance in the baseline dynamics of the
gated accumulator best explained the choice repetition
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data. Given the importance of spiking variability on pre-
paratory eye movement signals in FEF, future work may
assess if and how this variability is modulated by trial
history.

Our modeling work adds to a growing list of varieties of
accumulator models, many of which have very different epis-
temic intents. Accumulator models in this respect are in a
somewhat unique position, in the sense that they are used as
both an abstraction of a physical process that makes predic-
tions about mechanisms, and a statistical model that is used
to differentiate underlying physical processes across groups
or individuals. Perhaps as a result of this, most formulations
of accumulator models contain a mixture of theoretical and
technical arguments that combine to fit a reaction time distri-
bution. Technical assumptions are usually justified by mathe-
matical convenience rather than logic or theory, yet are
necessary to constrain models such that the selective influ-
ence of parameters or different model classes (collapsing
bounds, baseline variability, etc.) can be dissociated by data.
Indeed when these models have technical assumptions
removed, they are redundant in the sense that they can repre-
sent any reaction time distribution even when restricting
some degrees of freedom (114).

Part of the difficulty in dissociating models and model
parameters comes from an additional degree of freedom that
must be allowed when one is forced to consider nonstationar-
ity as an additional source of variability. Previously, it has
been suggested that baseline evidence in an accumulator
framework can be thought of as analogous to a prior belief
over the likelihood of one of a limited number of choice alter-
natives (18, 61), motivating the adoption of reinforcement
learning approaches to model trial-trial variability in saccadic
reaction times (31, 115, 116). We showed in behavioral data
that anticipatory and sensory-guided reaction times are
jointly influenced by choice history. In our model, we can
account for this dependency by allowing the parameters of
the baseline dynamic to remain free across fits to choice
sequence data. This is a claim for sufficiency of trial-trial vari-
ability to capture sequence effects for a specific data set, how-
ever, it does not rule out history-dependent variance in
sensory integration, as has been reported elsewhere (27, 117).
Without ground-truth knowledge of a system’s dynamics, it is
difficult to estimate the cause of trial-trial variance in model
parameters, simply because the hypothesis space over poten-
tial models becomes intractable when forced to consider each
individual trial as a singularly observable outcome of a class
of models that is inherently stochastic and designed to
explain ensembles of trials (118).

Because of this, we wish to elaborate on the distinction
between our analysis of choice history, and any conclusions
that may be drawn with respect to the functional form of
underlying history-dependence. What we do report is a de-
pendence on the outcome of previous trials on anticipatory
and sensory-guided reaction times for a particular task.
From the perspective of the instructions of the task, history
effects may be considered to denote some form of subopti-
mality in the decision process—as the task statistics were
randomized, information from the previous trial contained
no evidentiary value beyond providing a single sample of the
task statistics. Arguments for why history effects persist
in different tasks are numerous. Some have argued that

history effects in randomized experiments (often binary
series) reflect a capacity limitation of the system (119–121).
Others reframe the question in the context of optimality
by considering these history effects as carry-over from
rational behavior in other contexts where statistical regu-
larity is more prevalent, or question if bias is truly present
(122–124). From our data, there is little to be concluded
about why history effects are present here, simply because
the number of sufficient explanations is such that redun-
dancy is likely (89), and falsification is a challenge (69).
However, we can conclude that saccadic choice was not inde-
pendent of previous trials, and this history-dependence could
be explained by a gated accumulation model driven by a pre-
diction of the timing of future sensory information.
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