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According to a long-standing hypothesis in motor
control, complex body motion is organized in terms of
movement primitives, reducing massively the
dimensionality of the underlying control problems. For
body movements, this low-dimensional organization
has been convincingly demonstrated by the learning of
low-dimensional representations from kinematic and
EMG data. In contrast, the effective dimensionality of
dynamic facial expressions is unknown, and dominant
analysis approaches have been based on heuristically
defined facial ‘‘action units,’’ which reflect
contributions of individual face muscles. We
determined the effective dimensionality of dynamic
facial expressions by learning of a low-dimensional
model from 11 facial expressions. We found an
amazingly low dimensionality with only two movement
primitives being sufficient to simulate these dynamic
expressions with high accuracy. This low dimensionality
is confirmed statistically, by Bayesian model
comparison of models with different numbers of
primitives, and by a psychophysical experiment that
demonstrates that expressions, simulated with only
two primitives, are indistinguishable from natural ones.
In addition, we find statistically optimal integration of
the emotion information specified by these primitives
in visual perception. Taken together, our results indicate
that facial expressions might be controlled by a very
small number of independent control units, permitting

very low-dimensional parametrization of the associated
facial expression.

Introduction

It is a long standing hypothesis in human motor
control that the central nervous system (CNS) relies on
a low-dimensional organization to produce complex
and flexible movements (Bizzi, Cheung, d’Avella,
Saltiel, & Tresch, 2008; Flash & Hochner, 2005).
According to this hypothesis, a low number of
invariant modules (usually referred to as motor
primitives or synergies) are linearly combined to
generate the desired motor behavior. Although several
definitions of primitives have been given in the
literature, each one relying on a different mathematical
model, they can be divided in two main categories,
namely spatial and temporal synergies. Spatial muscle
synergies have been, for instance, defined as groups of
muscles covarying together in time (Cheung et al.,
2009; Ting & Macpherson, 2005; Torres-Oviedo &
Ting, 2007), while temporal primitives have instead
been described, in the muscle space, as temporal
profiles of muscle activations (Chiovetto, Berret, &
Pozzo, 2010; Dominici et al., 2011; Ivanenko, Poppele,
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& Lacquaniti, 2004). Similarly, in the kinematic and
kinetic space, primitives have been defined as temporal
patterns of degrees-of-freedom covariation (Berret,
Bonnetblanc, Papaxanthis, & Pozzo, 2009; Chiovetto &
Giese, 2013; Kaminski, 2007). The relevance of motor
synergies has been widely demonstrated by the analyzes
accomplished on the kinematic and electromyographic
data associated with a large set of movements
including, for instance, hand movements (Santello,
Flanders, & Soechting, 1998, 2002), arm reaching
movements (d’Avella, Portone, Fernandez, & Lacqua-
niti, 2006), or more complex whole-body motor
behaviors (Chiovetto et al., 2010; Chiovetto & Giese,
2013; Ivanenko et al., 2004). There is, however, still
another important class of complex movements that
has not been studied in this context: facial expressions.
In contrast to many other goal-oriented movements,
dynamic facial expressions are interesting because they
form a crucial signal for social interaction in primates,
e.g., conveying emotional states (Niedenthal, Mermil-
lod, Maringer, & Hess, 2010). The main goal of our
study was to investigate the existence of a possible low-
dimensional organization underlying the generation of
emotional facial expressions and to understand how the
primitives at the base of such a synergistic organization
contribute to the generation of an emotional percept.

A considerable amount of effort has been spent on
finding good spatial synergies for facial movements.
Early approaches were based on principal component
analysis (PCA; Kalberer & Gool, 2001; Kshirsagar,
Molet, & Magnenat-Thalmann, 2001). However, it was
soon recognized that facial movements encode relevant
information in higher order statistical dependencies,
and hence independent component analysis (ICA) was
employed for extracting such synergies, both for
animation (Mueller, Kalberer, Proesmans, & Gool,
2005) and for recognition (Bartlett, Movellan, &
Sejnowski, 2002).

Temporal primitives for facial movements are much
less studied, but the relevance of time for facial
expression processing has been noted (Bartlett, 2010).
Most animation approaches encode the dynamics by
storing key-poses from spatial synergies with spline
interpolation of different orders between these poses
(Dobs et al., 2014; Ezzat, Geiger, & Poggio, 2002; Jack,
Garrod, Yu, Caldara, & Schyns, 2012; Kalberer &
Gool, 2001; Kshirsagar et al., 2001; Mueller et al.,
2005). For recognition, hand-crafted spatio-temporal
Gabor filters have been shown to be slightly superior to
purely spatial Gabor filters (Bartlett et al., 2006;
Littlewort et al., 2011; Wu, Bartlett, & Movellan,
2010). However, with the notable exception of Delis et
al. (2016), there is very little work attempting to find
temporal synergies in facial movements.

The most well-established approach used in psy-
chology to taxonomize human facial expression is the

so-called FACS (Facial Action Coding System) devel-
oped by Ekman and Friesen in the late 70s (Ekman &
Friesen, 1978). In this framework, every facial expres-
sion, including emotional expressions (Ekman et al.,
1987; Ekman, Friesen, & Ellsworth, 1972), is decom-
posed and analyzed in terms 44 elementary movements,
referred to as Action Units (AUs), each of which is
generated by the action of one or more facial muscles.
AUs can therefore be seen as spatial primitives (similar
to the ones defined in Chiovetto, Berret, Delis, Panzeri,
& Pozzo, 2013; Ting & Macpherson, 2005) that, after
being scaled in time, can be superimposed to generate
the desired facial expression. Despite of its widespread
use, however, we consider FACS an incomplete
description of facial movements, because it mainly
provides a spatial description of facial expressions,
ignoring the organization in the temporal domain. The
importance of dynamics in the perception of emotional
whole-body movements and temporal expressions has
been indeed demonstrated by several recent studies
(Roether, Omlor, Christensen, & Giese, 2009; Reinl &
Bartels, 2014). Consequently, we expected similar
results for facial movements. In addition, the dimen-
sionality provided by FACS might still be substantially
higher than the dimensionality of the space of dynamic
facial expressions, when such a space is parametrized in
a highly efficient manner. The dimensionality of the
FACS was originally derived based on anatomical
constraints, motivated by the isolated activation of
individual facial muscles. In addition, the original
FACS aimed to promote a universal and interculturally
valid system of coding elements, and not to the minimal
parametrization of typical expressions in natural
settings. The goal of this study was to find automat-
ically the dimensionality of a group of typically
occurring facial expressions by parametrizing them in
terms of a minimum number of learned movement
primitives. In addition, we wanted to study how such
primitives contribute to the perception of emotional
styles from facial actions.

We addressed these questions by combining a novel
machine learning algorithm for the learning of move-
ment primitives (Chiovetto, d’Avella, & Giese, 2016;
Chiovetto & Giese, 2013) and a motion-retargeting
system for 3D facial animation (Curio et al., 2006;
Curio et al., 2010), which is based on 3D models of
FACS. Exploiting this parametrization of the 3D
structures of facial expressions, we determined a
minimum number of spatio-temporal primitives that
capture the major part of the AU variance associated
with emotional facial expressions. The estimated
primitives were used to generate stimuli for a psycho-
physical experiment assessing classification rates and
emotional expressiveness ratings for stimuli containing
combinations of the extracted components. We inves-
tigated how the emotional content carried by the
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different components extracted from the facial move-
ment is integrated in perception. Specifically, we
investigated different cue fusion models, including
Bayesian ones inspired by Ernst and Banks (2002) and
Körding et al. (2007), trying to account for the obtained
experimental results. We found that only two spatio-
temporal primitives (in contrast to the 44 AUs) were
sufficient for an almost perfect reconstruction of the
original expressions. In addition we found that each
component contributed significantly to all tested
expressions. This small number of necessary primitives
is confirmed by psychophysical experiments and by
results derived by Bayesian model comparison (Endres,
Chiovetto, & Giese, 2013). This finding implies that the
efficient dimensionality of the space of dynamic facial
expressions, especially for the ones that are frequently
used, might be much smaller than what is suggested by
the FACS.

In the following, we first describe the face animation
system that we used to generate our experimental
stimuli. Then we describe the computational methods
that we used to estimate a minimal number of spatio-
temporal movement primitives to approximate our
data. This is followed by a description of the visual
stimulus generation, the psychophysical experiments,
and statistical methods applied for their analysis.
Finally we also describe different cue fusion models
that were fitted to our data.

Methods

Facial animation platform

To identify the AU time-varying activation coeffi-
cients (weights) associated with several emotional facial
expressions and to generate the visual stimuli for the
psychophysical experiments, we used a facial animation
system that was previously developed (Curio et al.,
2006; Curio, Giese, Breidt, Kleiner, & Bülthoff, 2008).
The method is based on a morphable face model
generated from 3D face scans. Our animation method
is characterized by two main steps. The first step
consists on approximating the face movements, re-
corded with a motion capture system, by a linear
superposition of static peak frames of 3D facial AUs
according to the FACS. For each time step t, a vector
of morphing weights W*(t) was identified, which
specifies how much the individual AUs contribute to
the approximation of the present expressions. The
second step of the method synthesizes dynamic facial
expressions by linearly combining 3D scans of the AU
peak frames with the same vector W*(t), to create
photo-realistic animations. In the following, we explain
these two steps briefly (see Curio et al. 2006; Curio et

al., 2008; de la Rosa, Giese, Bülthoff, & Curio, 2013)
for more details. We did not model any spatial rotation
or translation of the head, and all the expressions were
displayed with the same orientation of the head in
space.

AU motion capture model fitting

To compute the temporal evolutions of the morph-
ing weights of the AUs for a specific dynamic
expression, a standard least-square optimization prob-
lem was solved. In brief, for each time instant t, the
error between the kinematic vector of the facial
expression and the kinematic vector resulting by the
superposition of the vector representing the AUs (that
were previously recorded) was minimized over each
weighting coefficient Wi(t). See Figure 1, left side. In
the following, we indicate by ME(t) the kinematic data
associated with the facial expression and by ~MEðtÞ the
approximated facial kinematics. Let MN indicate the
vector of the static neutral reference face and MAU,i(t)
the kinematic vector associated with the ith Action
Unit. The weights were estimated by solving the
nonnegative least-square problem

minimize
WiðtÞ

MEðtÞ � ~MEðtÞ
�� ��2

¼ MEðtÞ � MN þ
XN
i¼1

WiðtÞMAU;iðtÞ
 !�����

�����
2

subject to WiðtÞ � 0; i ¼ 1; . . . ;N: ð1Þ
for every time step. N indicates the total number of AU
(in our case N ¼ 17). The computed optimal weight
vectors are denoted by W*(t). The nonnegativity
constraint is justified by the fact that AUs, as
equivalent of muscle activations, should always be
nonnegative. The time course of the AU activation
coefficients were obtained solving this optimization
problem separately for all time steps t instead of solving
the optimization over all time steps simultaneously.
Both optimization approaches provide, however,
equivalent solutions given the linearity of the problem.
Figure 2 shows examples of these time courses for two
different emotional expressions, respectively disgust
and happy.

Synthesis of facial expression animation

The optimal AU vectors W*(t) were used to generate
photorealistic dynamic facial expressions. This was
achieved by superimposing, at each time instant t, the
3D scans of the shapes of the single AUs modulated by
the morphing weights in Wi*(t). See Figure 1, right.
The shapes of the single action units were recorded
from one single actor that executed the action units
individually. As a consequence, all the facial expres-

Journal of Vision (2018) 18(4):13, 1–19 Chiovetto, Curio, Endres, & Giese 3

Downloaded From: https://jov.arvojournals.org/ on 11/15/2018



Figure 1. Overview of our facial animation system: Motion capture data of the expression ME is approximated by a superposition of

action units Mi with the mixing weights Wi. The estimated linear weights W* define the linear weights of the 3D shapes Si of

individual AUs, which are linearly combined together to obtain the animated face shape S. The figure was adapted from (Curio et al.,

2006), according to the ACM (Association for Computing Machinery) copyright policy and rules.

Figure 2. Estimated morph weight time courses Wi*(t) of expression ‘‘disgusted’’ (left) and ‘‘happy’’ (right) for each AU. The figure was

adapted from de la Rosa, Giese, Bülthoff, and Curio (2013), according to the ARVO (Association for Research in Vision and

Ophthalmology) copyright policy and rules.
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sions generated for this study were always associated
with the same identity. Indicating by SE(t) the 3D shape
of the reconstructed face (parametrized by 3D poly-
gons), by SN the shape associated with a neutral
reference face and by SAU,i the 3D scan of the shape
corresponding to the peak of the ith AU, expressions
were computed using the equation

SEðtÞ ¼ SN þ
XN
i¼1

W�i ðtÞSAU;iðtÞ ð2Þ

In order to further reduce the dimensionality of the
functions Wi*(t) over time, we applied unsupervised
learning techniques.

Dimensionality reduction

To investigate the spatio-temporal structure un-
derlying emotional dynamic facial expressions, we
used the approach that is illustrated in Figure 3. We
used unsupervised dimensionality reduction tech-
niques to obtain a low-dimensional description of the
spatio-temporal structure of the AU coefficients
associated with different emotional expressions. In
order to generate training data, all identified AU
profiles were first segmented in time. Only the
temporal interval starting at the initiation of the facial
movement until the time of peak expression was
considered. The AU temporal profile within this time
interval was then standardized to a temporal window
with T¼ 100 time steps. The dimensionality reduction
techniques were applied to the data matrix X, whose
rows consist of the identified AU temporal profiles
W*(t) associated with all facial expressions that were
produced by a professional actor. W*(t) was sampled

at T points in time, resulting in a size of X of 561 (17
AU 3 11 expressions 3 3 repetitions) by 100 time
samples. Facial expressions considered were facial
scrunch, mouth opening, agreement, confusion, dis-
agreement, disgust, fear, happiness, and surprise,
thinking for problem solving, and thinking to re-
member. The first method that we applied for
dimensionality reduction was Nonnegative Matrix
Factorization (NMF), as developed by D. D. Lee and
Seung (1999). The second method is called FADA
(Fourier-based Anechoic Demixing Algorithm), which
we developed (Chiovetto & Giese, 2013) inspired by
the previous work by Omlor and Giese (2007a, 2007b).
Differently from NMF, which is based on an
instantaneous mixing model, the FADA algorithm is
based on an anechoic mixture equation, Equation 3,
as used in acoustics for the modeling of acoustic
mixtures in reverberation-free rooms (Bofill, 2003;
Emile & Common, 1998; Yilmaz & Rickard, 2004).
This model assumes that Ns observable acoustic
signals xi (i ¼ 1, 2,...Ns) are caused by the superpo-
sition of P acoustic source functions (signals) sj(t),
where time-shifted versions of these source functions
are linearly superposed with the mixing weights aij.
The time shifts are specified by the time delays sij, and
in the acoustical model are determined by the
traveling times of the signals. The model has the
following mathematical form:

W�
i ðtÞ ¼

XP
j¼1

aijsjðt� sijÞ ð3Þ

Note that for the special case that sij¼ 0 for all pairs
(i, j), this Equation 3 coincides with the classical
instantaneous mixing model underlying NMF, except
for the positivity constraints. As the anechoic algorithm

Figure 3. Figure summarizing the procedure underlying the generation of the artificial AU temporal profiles based on Equation 3. The

parameters of the anechoic mixing model are learned from a set of AU profiles associated with several emotional facial expressions

via unsupervised learning. The learned parameters are then modified to generate synthetic AU coefficients to use for rendering of

new facial expressions to use as visual stimuli. The right panel in the figure illustrates the first three identified components.

Journal of Vision (2018) 18(4):13, 1–19 Chiovetto, Curio, Endres, & Giese 5

Downloaded From: https://jov.arvojournals.org/ on 11/15/2018



used by Omlor and Giese (2007a, 2007b), FADA is
based on Equation 3 but it includes additional
smoothness priors for the source functions. The
introduction of such priors is justified by the observa-
tions that biological data usually have limited band-
width and by the fact that such priors improve
substantially the robustness of the estimation method.
A detailed description of the FADA algorithm can be
found in the Supplementary material.

By construction, the values of the AU activation
profiles are nonnegative. The FADA algorithm does
not include a nonnegativity constraint for the identified
source functions. To overcome this discrepancy, the
FADA algorithm was not applied directly to the matrix
X but to the matrix dX/dt, the rows of which are the
derivatives of the AU profiles in the matrix X. Once the
components were identified, the original data were
approximated by combining the integrals of the
identified components. The constant values to add to
the components after their integration were identified
using an optimization procedure minimizing the error
between actual and reconstructed data. An additional
constraint was also imposed on the constant parame-
ters in order to assure the nonnegativity after summa-
tion of the corresponding integrated source functions.

Visual stimulus generation and psychophysical
experiments

In this study we carried out two experiments. First
we carried out a ‘‘Turing test’’ in order to investigate
to what extent the approximation of facial expressions
generated using our model could be perceived as
natural and human-like. A Turing test is a method,
commonly used in the field of artificial intelligence, for
determining how well a computer (or artificial agent)
is capable of imitating human-like performance or
behavior. In addition, we also carried out a classifi-
cation and rating experiment, aiming to study how
different spatio-temporal primitives of facial expres-
sions are integrated in perception. We recruited 12
participants (age ranged from 21 to 43 years, mean ¼
28.4). The participants had normal vision or correct-
ed-to-normal using contact lenses or glasses. Partici-
pants gave their written, informed consent form prior
to the experiment. The study was conducted in line
with Max Planck Society policy and was previously
approved by ethics committee of the University of
Tübingen.

For the generation of the visual stimuli for the
psychophysical experiments, we exploited the graph-
ical animation platform described above (Figure 1).
More in detail, facial expressions were generated
using the morphing weight trajectories W*(t) ob-
tained either from the motion capture data through

the optimization procedure (described by Equation
1), or reconstructed mixing the temporal sources sj
identified by the FADA algorithm based on the
anechoic mixture, Equation 3. For the psychophysical
experiments, only 3 of the 11 initial expressions were
rendered, namely fear, disgust, and surprise. To test
the invariance of the shapes of the identified sources sj
across expressions, we used a leave-one-out approach.
More specifically we compared the sources identified
from the data associated with each single emotion,
with the ones identified from all the other expressions.
To compute the similarity between two sets of
sources, we followed an iterative procedure. For each
pair of sources in the two groups we first computed,
for each temporal delay between the sources, the
similarity index S, quantified as the dot product
between two components, normalized with respect to
their norms. The index S represents the cosine of the
angles between the vectors identified by the two
components. When the index is equal to 1, the
components are proportional to each other, while S¼
0 implies that they are orthogonal. We then removed
from the data the pair of sources with the highest S
value and repeated this procedure until only one pair
of sources was left. We found that, on average, the
similarity between the groups of sources was S¼ 0.96
6 0.02, indicating a very high level of invariance of
the shapes of the sources across expressions.

Turing test

In order to determine the minimum number P of
source functions that is required for the generation of
photorealistic emotional expressions based on Equa-
tion 3, we designed a Turing test. Participants sat in
front of a screen and were presented a series of visual
stimuli. Each stimulus consisted of two rendered facial
animations appearing side-by-side on the screen and
showing one of three emotional expressions (disgust,
fear, and pleasant surprise). One was rendered using
the original kinematic data collected during the motion
capture recordings. The other one was generated based
on Equation 3 using either P¼ 1, P¼ 2 or P¼ 3 source
functions. A series of examples of the visual stimuli
used for the Turing test can be found in the
Supplementary material. At any presentation of the
stimuli, the order of the positions (left/right) of the
two animations was chosen randomly, and the two
animations ran simultaneously for three times. After
the presentation of the stimulus, participants were
asked to choose which one of the two animations was
most natural. The aim of this experiment was to
identify the minimum number P from which original
and synthetic expressions became indistinguishable.
Twelve subjects participated in the experiment. Each
participant was presented a total of 108 stimuli (3
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emotions 3 3 levels of model complexity 3 12
repetitions). Once all the data were collected, we
computed, for each model complexity P and for each
emotion, the probability that participants could
discriminate between original and synthesized expres-
sion as the ratio between the number of correct
answers over the total number of stimulus presenta-
tions. A discrimination probability equal to 0.5
(chance level) indicates that participants could not
discriminate correctly which of the two stimuli was the
original emotional expression.

In order to test whether the visual stimuli that we
generated were actually distinguishable from ‘‘natural’’
stimuli animated with motion capture data, we
classified the stimuli using an ideal observer model.
This model parametrized the face pictured in individual
frames by PCA and applied a SVM classifier for the
distinction between natural and model-based anima-
tions. Opposed to the participants, this classifier could
distinguish between natural and approximated anima-
tions with high reliability (on average, the probability
of correct classification was 0.99 6 0.04).

Classification and rating experiment

The goal of the second experiment was to determine
the contribution of the individual source functions to
the class of facial expressions. Once the model
complexity P was determined, we generated another set
of visual stimuli by varying the contribution of each of
the P source function sj for the synthesis of W*(t). To
this end we introduced P additional morphing param-
eters cj � [0, 0.33, 0.66, 1] in Equation 3 so that

W�ðtÞ ¼
XP
j¼1

cjaijsjðt� sijÞ ð4Þ

Since we found that P¼ 2 is sufficient (see Results),
we generated 48 visual stimuli in total (42 morphing
levels by 3 emotions). Each participant was presented
with one of these stimuli, one at the time, and was
asked to indicate, pressing one out of three buttons,
which emotion such stimulus corresponded to and to
rate the intensity of the stimulus by choosing a integer
R between 0 and 6. Each stimulus was presented 15
times. The aim of this experiment was to test the extent
to which each source function sj contributed to the
perception of emotional content. The probability with
which participant could discriminate correctly the
emotion associated with the presented facial expression
was computed, for each morphing level, as the ratio
between the correct number of answers over the total
number of times the stimulus was presented. To avoid
biases in the data due to subjective differences among
the participants in the judgment of the emotional
content, for each participant the ratings were normal-

ized to [0, 1], applying the following formula:

Rst ¼
R� Rmin

Rmax � Rmin
: ð5Þ

where Rmin and Rmax indicate respectively the minimal
and maximal ratings given by the participant.

Statistics

A 3 3 3 repeated measure analysis of variance
(ANOVA) was carried out in order to investigate any
influence of the emotion type (disgust, fear, and
pleasant surprise) and model complexity (one, two, or
three sources) on the capability of the participants to
discriminate between actual and recorded expressions
and the ones rendered with the AU reconstruction
provided by Equation 3. For all ANOVAs in this study,
Greenhouse–Geisser adjustment was used when the
data violated the sphericity assumptions. A one-sample
Wilcoxon signed-rank test was then used to assess, for
each expression and for each model complexity,
whether participants could discriminate between the
actual animated expression and the one based on the
model. Separately for each expression, 4 3 4 repeated
measure ANOVAs were used to investigate statistically
significant effects of the morphing parameters c1 and c2
(values: 0, 0.33, 0.66, and 1) on the classification and
rating performance of the participants. All statistical
tests were implemented using SPSS (V.22; SPSS, Inc.,
Chicago, IL). For all tests the significance level was set
to 5%.

Model type and order selection

To determine whether human facial emotion per-
ception is (approximately) Bayes-optimal, we com-
pared human perception results from psychophysical
experiments to Bayesian model selection. More specif-
ically, we applied an approximate Bayesian model type
and order (i.e., number of sources) selection criterion,
which we called LAP, based on a Laplace approxima-
tion to the model evidence (Laplace, 1774; Bishop,
2007). In brief, the criterion is based on the optimiza-
tion of the following log-probability function:

LAP ¼ logðpðXjH?
M;MÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

log�likelihood

þ logðpðH?
MjMÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

log�prior

þ dimðHÞ
2

logð2pÞ � 1

2
logðjHjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

log�posterior�volume

ð6Þ

where X is the observable data, HM is a vector of model
parameters for a model indexed by M, M is a tuple
(model type, model order) in which the model type is
either a smooth anechoic mixture determined with the
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FADA algorithm (Chiovetto & Giese, 2013) or a
synchronous (i.e., undelayed) mixture computed with
NMF, H?

M is a tuple of optimized parameters, and H is
the Hessian matrix of second derivatives with respect to
H?

M. Once we have evaluated Equation 6 for all M, we
can select that M (i.e., the model type and the model
order, which maximizes the model evidence, since we
have no a-priori preference for any M.

In the analysis, we compared the LAP criterion to
two other standard model complexity estimators: the
Bayesian information criterion (BIC; Schwarz, 1978)
and the Akaike information criterion (AIC; Akaike,
1974). A detailed description of the derivation of the
LAP, AIC, and BIC criteria can be found in the
Supplementary material and in Endres et al. (2013).

Cue fusion models

The FADA algorithm can discover modular move-
ment primitives, i.e., simple component movements
that are linearly combined to form complex natural
movements (see Equation 3). Since we are interested in
the perception of facial emotion expressions, we
wondered in which form the individual primitives
contribute to the perception of emotions, and how the
contributions of different primitives interact. To this
end, we investigated the hypothesis that the primitives
can be viewed as ‘‘cues’’ that are fused by the observer
to generate a unified percept. In the domain of
multimodal perception, it has been demonstrated that
human performance can come close to a Bayesian ideal
observer in haptic-visual or audio-visual cue integra-
tion tasks (Ernst & Banks, 2002; Körding et al., 2007),
or proprioceptive-visual integration informed by an
internal forward model (Beck, Endres, Lindner, &
Giese, 2014). It can be shown (see Supplementary
material) that in our case the observer is described by
the following linear model:

RðC1;C2Þ ¼ b1RðC1; 0Þ þ b2Rð0;C2Þ þ b0 ð7Þ
where the cues C1 and C2 are the amplitude-scaled
versions of the movement primitives, which can be
achieved by multiplying the emotion-specific weights
Wj,i for primitive i with a constant (positive) factor, the
bi are scalar coefficients and R is the perceived emotion
strength associated with a specific facial expression.
More specifically, it can be shown that b1¼ b2¼ 1 and
therefore that

RðC1;C2Þ ¼ RðC1; 0Þ þ Rð0;C2Þ � b0 ð8Þ
We hypothesized therefore that the expected emo-

tional strength rating for C1, C2 . 0 can be computed
by summing up the strength ratings measured when one
of the cues is zero, minus a bias term b0. Given the
existence of some evident nonlinear saturation effects

for high morphing levels (c1, c2; see Figure 4), we also
tested a cue fusion model with an output nonlinearity
of the form

~RðC1;C2Þ ¼ f RðC1;C2Þð Þ
:¼ z0 1� exp �z1RðC1;C2Þð Þð Þ ð9Þ

where ~RðC1;C2Þ is the rating reported by the partici-
pants, and R(C1, C2) is the rating predicted by the
linear Bayesian cue fusion model, Equation 8. Com-
bining therefore Equation 9 with Equation 8, we obtain
the following equation for the predicted rating with
output nonlinearity:

~RðC1;C2Þ ¼
f f�1 RðC1; 0Þð Þ þ f�1 Rð0;C2Þð Þ � b0

� �
: ð10Þ

Results

Turing test, classification and rating
experiments

Using the NMF and FADA algorithm, we per-
formed dimensionality reduction on the temporal
profiles associated with the activation coefficients of 17
AUs characterizing 11 different dynamic facial expres-
sions. The identification of the AU activation coeffi-
cients was carried out by optimizing the kinematic
matching between actual and synthesized expressions
(Curio et al., 2006). For each dimensionality reduction
algorithm separately, we used either one, two or three
source functions to approximate the AU activation
coefficients associated with three facial expressions
(disgust, fear, and pleasant surprise) and use them to
generate synthesized facial expression to use as stimuli
of the Turing test to determine the minimum number of
components needed to generate facial expressions that
were indistinguishable from the actual ones. For the
Turing test based on the source functions identified
using NMF, we test 13 participants (results are shown
in Figure 4A). Data were analyzed using a 3 3 3
repeated measure ANOVA with emotion (disgust, fear,
and pleasant surprise) and model complexity (1, 2, or 3
sources) as factors and it revealed a significant main
effect of the emotion displayed on the percentage of
correct classification, F(1.31, 1.44)¼10.88, p¼0.003, gp
¼0.48. A one sample Wilcoxon signed-rank test (see the
results in Table 1) indicated that the participants could
never discriminate above chance level between the
actual recorded expressions and the ones obtained
using the data predicted by the model when the
displayed emotions were disgust and fear. In the case of
surprise, differently, they could discriminate above
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chance when either one or two sources were used in the
model. The Turing test based on the sources identified
using the FADA algorithm was run on 12 other
participants (results are shown in Figure 4B). Even in
this case, data were analyzed using a 3 3 3 repeated
measure ANOVA with emotion and model complexity
as factors, and it revealed a significant main effect of
the model complexity on the percentage of correct
classification, F(2, 22)¼ 12.64, p , 0.001, gp¼ 0.54. A
one-sample Wilcoxon signed-rank test (see Table 1)
indicated that the participants could discriminate
between the recorded expressions and the ones ob-
tained using the data predicted by the model only when
one single source was used to render the facial
expressions (Figure 4A). In all these cases, the observed

probability was always statistically significantly higher
than chance level.

In order to access the contribution of each compo-
nent to the expressiveness of the synthesized facial
movements, we designed a classification and rating
experiment. The two groups of participants that took
part in the Turing tests were presented also with
synthesized facial expressions obtained by combining
two morphed temporal components according to either
the instantaneous linear mixture model (and identified
using the NMF algorithm) or the anechoic model (and
identified using the FADA algorithm). They were then
asked to report which expression they had been
presented and to rate the level of expressiveness of the
facial animation. Regarding the classification perfor-
mance, participants were able to recognize with very

Figure 4. Results of the Turing tests. (A) For each tested expression, the probability with which participants were able to discriminate

between the actual recorded expression from the one rendered by using the estimated temporal AU profiles based on the

instantaneous mixture of the sources identified using NMF as function of the number P of sources is shown. Horizontal dashed lined

indicate the chance level (probability¼ 0.5), at which original and reconstructed expressions are indistinguishable. Asterisks indicate

significant differences from chance level. (B) Probabilities with which participants were able to discriminate between the actual and

rendered expressions by using the estimated temporal AU profiles based on Equation 3 as function of the number P of sources.

Disgust Fear Surprise

1 source 2 sources 3 sources 1 source 2 sources 3 sources 1 source 2 sources 3 sources

NMF Z ¼ 38,

p ¼ 0.654

Z ¼ 37,

p ¼ 0.872

Z ¼ 29,

p ¼ 0.417

Z ¼ 57,

p ¼ 0.416

Z ¼ 32,

p ¼ 0.343

Z ¼ 35.5,

p ¼ 0.483

Z ¼ 72.5,

p ¼ 0.008*

Z ¼ 80.5,

p ¼ 0.014*

Z ¼ 58.5,

p ¼ 0.125

FADA Z ¼ 52,

p ¼ 0.011*

Z ¼ 19.5,

p ¼ 0.41

Z ¼ 16,

p ¼ 0.233

Z ¼ 32,

p ¼ 0.048*

Z ¼ 53,

p ¼ 0.266

Z ¼ 16.5,

p ¼ 0.253

Z ¼ 48.5,

p ¼ 0.031*

Z ¼ 23,

p ¼ 0.127

Z ¼ 30.5,

p ¼ 0.759

Table 1. Results of the Wilcoxon signed-rank tests. Note: *, signifies the cases in which the discrimination probability was significantly
different from chance level.
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high precision the presented emotion as long as one of
the morphing parameters was different from 0 (i.e., as
long as c1 . 0 or c2 . 0). Results from the expressions
generated using the instantaneous mixture of the NMF
sources are shown in Figure 5A. For each expression, a
4 3 4 repeated measure ANOVA with c1 and c2 (taken
the values 0, 0.33, 0.66, and 1) as factors revealed a
significant main effect on the percentage of correct
classification of both factors. In addition, these main
effects were always qualified by an interaction between
the factors (see Table 2). Similarly to the instantaneous
case, participants were able to recognize with very high
precision the presented emotion as long as one of the
morphing parameters was different from 0 and also
when the rendered expressions were based on AU
coefficients resulting from the anechoic mixture of the
sources functions identified using the FADA algorithm
(Figure 5B). Even in this case, a 43 4 repeated measure
ANOVA with c1 and c2 as factors revealed, for each
expression, a significant main effect on the percentage
of correct classification of both factors. Also the
interaction effect was always significant (see Table 2).

The results of the rating experiments associated with
the NMF algorithm are shown in Figure 6. For each
expression, a 4 3 4 repeated measure ANOVA with c1
and c1 as factors revealed a significant main effect on
the ratings of both c1 and c2. The interaction effect was
significant only for disgust and surprise (see Table 3).
Concerning the expressions based on the anechoic
mixture of the sources identified with the FADA

algorithm, the results of the rating experiments (Figure
6B) showed that participants increased their ratings
approximately linearly with the values of the morphing
parameters. For each expression, a 4 3 4 repeated
measure ANOVA with c1 and c2 as factors revealed a
significant main effect on the ratings of both factors.
The analysis also revealed that these main effects were
in most of the cases qualified by an interaction between
the factors (see Table 3).

Model selection

To discriminate whether an anechoic model based on
the combination of source functions that can be shifted
in time could account for the data more efficiently than
a classic instantaneous mixture model, we applied a
generalized version of a Bayesian model selection
criterion based on Laplace-approximation (LAP crite-
rion) that we previously developed (Endres et al., 2013).

We used the LAP criterion to select the best model
type and order on a per trial basis. A trial of our
experiment consisted of J¼ 17 time-courses of AU
activities, and we analyzed a total of 21 trials. We tested
both a FADA and a synchronous model with I ¼ 1; 2;
. . . ; 5 sources. The FADA model had a cutoff-frequency
of 0.15 fN, where fN is the Nyquist frequency of the data;
we took the same f0 for the wave kernel of the LAP. The
synchronous model was not regularized for smooth
sources (f0 ! ‘). We aimed for 90% explained variance

Figure 5. Results of expression classification. (A) The graphs show, for each expression and morphing level determined by the pair (c1,
c2), the average probability with which participants could recognize the actual emotion from the expression generated using the

temporal functions identified using the NMF algorithm. (B) Results of expression classification relative to the expressions that were

based on the anechoic mixture of the source functions identified using the FADA algorithm.
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all models. The parameters m, S of the gamma prior on
the weights and the k of the exponential distribution on
the delays are estimated from the data after source
extraction. See Supplementary material for more de-
tailed information. To put our results into the context of
well-known model selection schemes, we repeated our
analysis with the Akaike Information Criterion (Akaike,
1974) and the Bayesian Information Criterion (Schwarz,
1978). All three criteria prefer the anechoic model in

every trial, as shown in Figure 7, middle. However, as
depicted in Figure 7, right, BIC and AIC would pick
models with a larger number of sources than LAP,
which yields an average I¼ 1.95 6 0.50 sources (SEM¼
0.11). Therefore, the only criterion which is consistent
with the perceptual Turing-test results described above is
LAP: Human observers reach chance discrimination
level at two sources. A scree plot (Figure 7, left) shows a
similar result for FADA algorithm (two sources are

Figure 6. Results of expression rating. Each graph shows the average normalized rating values for each expression in function of each

morphing level when the generation of the rendered expressions was based either on the temporal source functions identified using

the NMF (A) or FADA algorithm (B).

Figure 7. Model comparison results on facial expression data prefer the anechoic mixture with two sources. We compared models

with our Laplace approximation to the model evidence (LAP) and two standard plug-in estimators, the Bayesian information criterion

(BIC), and the Akaike information criterion (AIC). We analyzed the data trial-by-trial, where one trial is comprised of 17 time-courses

of AU activities and the complete data set consisted of 21 trials. (A) Scree plot of the VAF as a function of the number of sources

(primitives, components) for synchronous (NFM) and delayed (FADA) models. (B) Model type selection. All three criteria agree on

every single trial that the anechoic model is a better explanation of the data than the synchronous one. (C) Model order (number of

sources) selection. AIC and BIC typically prefer models with a larger number of sources. On average, LAP yield an average model order

across participants of I ¼ 1.95 6 0.50, which is consistent with human perception.
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best), but provides no clear answer for the synchronous
NMF model.

Based on these results, for the rest of the analysis we
factorized data according to an anechoic model with
one to three components (see Figure 3 for the shapes
the first three components).

Cue fusion

We compare the three cue fusion models described
above: the general, but inconsistent, linear model
described by (Equation 7, ‘‘lin’’ in Figure 8), the
restricted linear model which follows from the
Bayesian cue fusion model with normality assump-
tions (Equation 8, ‘‘Bay’’), and the Bayesian model
with output nonlinearity (Equation 10, ‘‘Bay þNL’’).
Models are compared by cross-validation with vari-
ance accounted for (VAF) as the score on held-out
data, which are all data points of one morphing level
(c1, c2), averaged across all levels. For each (c1, c2), we
trained the models on the data from all other
morphing levels. Furthermore, to establish an upper
bound on the performance of any model that predicts

mean ratings, we computed the mean rating for each
subject and emotion. Results are shown in Figure 8.
Each plot depicts the average predicted VAFs for one
participant, averaged across all emotions. Error bars
indicates standard deviations. The horizontal line in
each plot indicates the average upper bound. All
models are on average below the bound; the negative
VAF in one participant is a consequence of the cross-
validation procedure: The data used for learning the
model parameters are disjoint from the data used for
evaluation. The linear Bayesian model tends to
perform worse than the general linear model. The
performance difference is significant (p , 0.01,
Wilcoxon signed rank test) in four participants,
indicated by a star in the figure. The nonlinear model
shows no significant difference to the general linear
model in any of the participants. Furthermore, its
VAF predictions are close to the maximally expectable
ones (horizontal lines) in most participants. We can
therefore conclude that a Bayesian cue fusion model
with output nonlinearity is a good description of the
computational process with integrates facial move-
ment primitives for emotion recognition.

Figure 8. Cross-validation results. Shown is the VAF in the emotion ratings, averaged across emotions. One plot per subject. Error bars

indicates standard deviations across emotions. The horizontal line in each graph represents the maximal average VAF, computed

assuming that the mean ratings of each morphing level (c1, c2) are known, i.e., an upper bound on the performance of any model that

predicts mean ratings. The abbreviation ‘‘lin’’ represents linear, but inconsistent model, Equation 8. The abbreviation ‘‘Bay’’
represents the linear Bayesian model, Equation 8. ‘‘Bayþ NL’’ represents the Bayesian model with saturating output nonlinearity,

Equation 10. Stars indicate significant differences (p , 0.01) between linear and Bayesian models, evaluated with a Wilcoxon signed

rank test. For details, see text.
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Discussion

In this study we aimed to identify the low-
dimensional organization of the spatio-temporal kine-
matic variability of facial expressions. To this end, we
applied we applied Nonnegative Matrix Factorization
(NMF; D. D. Lee & Seung, 1999) and a blind source
separation algorithm (FADA; Chiovetto et al., 2016;
Chiovetto & Giese, 2013) to approximate the temporal
profiles of the AU activation coefficients by superpo-
sition of a very small number of source components,
defining movement primitives. Using these techniques
and a new Bayesian model selection criterion (Endres et
al., 2013), we then investigated which generative model
was more suitable to describe the data and the
minimum number of invariant components required
for a good approximation of a variety of facial
expressions. In addition, we studied how information
from the different primitives about emotion is inte-
grated in visual perception. We found that only two
primitives of the anechoic mixing model were sufficient
for an accurate approximation of more than 10 facial
expressions. The information contributions of the
different primitives were integrated by a mechanism
that can be modeled as a linear cue integration model,
or by a Bayesian fusion model with appropriate
nonlinearity.

Dimensionality reduction and model selection

Inspired by other studies in motor control (Bizzi et
al., 2008; Flash & Hochner, 2005) suggesting that the
human central nervous system relies on a low-
dimensional organization to simplify motor control
and learning, we applied the NMF and FADA
algorithm to the temporal profiles of the AU coeffi-
cients underlying a set of eleven emotional facial
expressions. Unexpectedly we found that a model with
only two time-shiftable movement primitives could
account for the majority of the variance (more than
90% in total, see Figure 7) suitable for the generation of
photorealistic facial animations that were, as demon-
strated by the Turning test, indistinguishable from the
facial expressions generated by using the recorded
kinematics. This result was consistent with an estima-
tion of the complexity of the underlying model using a
model comparison approach (Endres et al., 2013).
Complementing the large number of studies in the
motor control literature, we showed in this study not
only that emotional dynamic facial expression can be
approximated by a low-dimensional kinematic organi-
zation, but also that the modules at the base of such
organization play a role in perception.

Our analysis relied on the taxonomization of
emotional facial expressions according to the FACS
system developed by Ekman and Friesen (1978). We
used the activation coefficients of the AUs as input for
the dimensionality reduction algorithms. The low-
dimensional organizations that we identified, therefore,
do not dismiss and cannot replace the FACS as a
modular framework to characterize emotional facial
expressions. Rather, they complement the FACS
system, revealing how the AUs (which provide mainly a
spatial description of facial expressions) are synergis-
tically recruited over time according to well-defined
temporal activation profiles in order to convey a
specific emotional content.

In the last three decades, a lot of effort has been
spent in computer graphics to develop advanced
computational models to use for the generation of
realistic, 3D facial animations (Parke, 1972; Y. Lee,
Terzopoulos, & Waters, 1995; Parke & Waters, 2008).
Multiple physically based methods have been for
instance proposed that try to simulate facial muscles
and skin to animate face models (Kähler, Haber,
Yamauchi, & Seidel, 2002; Sifakis, Selle, Robinson-
Mosher, & Fedkiw, 2006; Terzopoulos & Waters,
1990). These physically based approaches are, however,
associated with high computational complexity. Our
approach is mathematically much simpler, and can be
extended easily to reactive real-time animations (Mu-
kovskiy, Land, Schack, & Giese, 2015). The combina-
tion of the AUs of FACS system with the spatio-
temporal primitives provided by the FADA algorithm
provides a very compact parametrization of the
emotional space associated with facial movement,
which might be also interesting for analysis applica-
tions.

It is widely accepted that emotional and affective
stimuli, including emotional facial expressions, can be
coded in a low-dimensional space spanned by two
primary dimensions, valence and arousal (Lang,
Greenwald, Bradley, & Hamm, 1993; Larsen & Diener,
1992; Russell, 1980). Valence defines whether the
stimulus is perceived as emotionally ‘‘positive’’ or
‘‘negative.’’ In opposition, arousal defines the level of
physical response that the stimulus elicits and can vary
from calming or soothing to exciting or agitating. In a
very interesting study, Boukricha and colleagues
(Boukricha, Wachsmuth, Hofstätter, & Grammer,
2009) have studied how the AU space maps onto the
one spanned by valence and arousal. A very interesting
extension could be to extend this approach to
movement primitives and their weights as studied here.

In addition to emotional content, dynamic facial
movements have been shown to convey also important
information about identity (Girges, Spencer, &
O’Brien, 2015; Hill & Johnston, 2001; Knappmeyer,
Thornton, & Bülthoff, 2003; Thornton & Kourtzi,
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2002). Currently, there are two main hypotheses
regarding how facial motion aids identification pro-
cesses (O’Toole, Roark, & Abdi, 2002): One, the
‘‘supplemental information hypothesis,’’ according to
which idiosyncratic facial movements facilitate identi-
fication. According to this hypothesis, different people
may express the same emotion with slightly different
facial expressions, and these slight differences may be
learned and used to discriminate between different
identities. By contrast, the ‘‘representation enhance-
ment hypothesis’’ states that facial motion contributes
to develop a more accurate 3D face representation.
Indeed, facial motion might provide additional infor-
mation about 3D structure. Our low-dimensional
parametrization of facial expressions might be inter-
esting to study the question of identity perception from
the viewpoint of spatial versus temporal variation,
which are encoded separately by the mixing weights
and the time delays of the model.

The main result of our study is that, according to the
behavioral data as well as with respect to the statistical
analysis of the model accuracy, the anechoic model
(described by Equation 3) was more suitable for
approximating the data than the classic instantaneous
mixture model that underlies NMF. This is probably a
consequence of an underlying low-dimensional struc-
ture in the control of independent groups of muscles.
Our experiments showed that, when the visual stimuli
were generated by using an instantaneous mixture
model using classic NMF (D. D. Lee & Seung, 1999)
instead of the anechoic one, only one single component
was sufficient to create photorealistic emotional stimuli
for ‘‘disgust’’ and ‘‘fear,’’ while three components had
to be used for ‘‘surprise.’’ Other qualitative differences
were found for the results concerning the classification
and rating experiments. Classification accuracy was
reduced, and the linear relationship between morphing
parameters and emotional ratings was less marked.
Also the average similarity between the components
extracted by the two algorithms was quite high (S¼
0.90 6 0.03). The observed differences between the two
model types must thus be due to the presence of time
delays in the anechoic mixture model, i.e., the type of
invariance that is assumed by the model architecture.

In a recent study, Delis and colleagues (Delis et al.,
2016) used a tri-factor decomposition algorithm to
identify the low-dimensional spatio-temporal organi-
zation underlying the categorization of dynamic facial
expressions defining the six classic emotions (happy,
surprise, fear, disgust, anger, sad). In their analysis, the
authors first reduced the dimensionality of the data to
code each emotion in terms of a set of invariant AU
groups and temporal synergies (the spatial and
temporal components) and then used linear-discrimi-
nant analysis to find the boundaries that discriminate
the six emotions. They also demonstrated the depen-

dence of emotion-recognition accuracy on the stimulus
temporal dynamics. Although some of the results
reported by Delis and colleagues are similar to those
described here (such as, for instance, the existence of a
low-dimensional manifold underlying emotional facial
expressions), the two studies differ in important
aspects, thus making them complementary. First of all
the two studies differ on the methods that were used to
identify the AU profiles associated with different facial
expressions. In the present study the AU activation
profiles were identified using an optimization procedure
minimizing the error between the original expressions
and the ones obtained superimposing the kinematics
associated to each single AU. Differently, in Delis et al.
(2016) the AU profiles were first randomly generated
and combined, and the corresponding facial animations
were then classified and rated by human participant
during a psychophysical experiment. The second
difference between the two studies concerns the
generative model used to decompose the data. While
the FADA algorithm finds invariance only across time,
the space-by-time decomposition sets invariance con-
straints also in the AU space. It would be interesting in
the future to investigate more in detail what are the
advantages and disadvantages associated with the use
of one model with respect to the other.

Cue fusion

Besides the identification of the low-dimensional
architecture underlying the kinematics of emotional
facial expressions and its psychological validation, the
other remarkable results of our study is the findings
regarding the way how the kinematic components
identified with FADA are integrated in perception. We
tested the hypothesis that the primitives can be seen as
‘‘cues’’ that are fused by an observer to generate a
unified percept. Over the past 15 years, a large body of
experimental evidence has shown that multistory
integration in humans often occurs in a Bayesian-
optimal fashion (Clark & Yuille, 2013; Ernst & Banks,
2002). That is, unimodal estimates are combined into a
weighted average, where each weight of each unimodal
estimate depends on the relative precision of the
unimodal information. In this way, the theoretically
highest reliability is achieved, higher than the one
obtainable from each individual sensory modality.

We found that the emotional strength ratings are
consistent with a Bayesian cue fusion model, where
the weights of the individual FADA primitives act as
cues or features supporting emotion perception. A
saturating output nonlinearity, which maps percepts
onto ratings, increased the cross-validation perfor-
mance of the Bayesian cue fusion model close to its
maximally possible value. This result is interesting, as
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it suggests that kinematic sources that we identified
might have a perceptual representation that might be
interpreted as complex features or ‘‘channels’’ speci-
fying emotion-specific information in the recognition
of dynamic faces. A cue-fusion approach similar to the
one we used here was already shown to be successful
in the study of emotion conveyed by different styles of
walking.

Limitations of the study

The results of our study are limited by a number of
technological constraints. First, the identification of the
single AUs was based on the recording of the 3D
kinematics of a limited number of reflective markers,
applied onto a series of key points spread over the
facial surface. For animation, the motion of the face
surface within these points was interpolated, and this
interpolation might have led to the loss of movement
variability that may be present in real faces. In
addition, the morphable graphical model that we used
for this study comprised only 17 out of 44 total AUs.
One may argue that these constraints may have affected
the dimensionality reduction analysis that we carried
out. However, the high level of approximation quality
of the motion of the spatial locations within the key
markers was already proven previously (Curio et al.,
2006). In addition, the unsupervised learning methods
were not applied directly to the 3D spatial trajectories
of the markers but to the AU activation coefficients,
which implicitly encode an average (rather than point-
specific) behavior. Moreover, only a subset of AUs is
emotion-specific (Friesen & Ekman, 1983) and such
AUs were all included in our model. Based on these
considerations, we can therefore conclude that the very
compact organization that we identified is not a mere
consequence of the technological constraints of our
experimental setup.

An obvious limitation of this study is the small
number of tested emotions. The estimation of the
primitives was based on 11 emotional expressions; but
cue fusion, due to the limitation set by the duration of
the experiments, was constrained to only three
emotions. We used, however, a within subject design,
where each participant performed indeed both tasks
(classification and rating) on all three expressions.
This procedure maximized the sensitivity of out
studies, on cue integration and of the Turing test. In
addition, the expressions were captured under highly
controlled laboratory conditions, maximizing expres-
siveness.

Keywords: dynamic facial expressions, emotions,
synergies, motor primitives, emotion perception

Acknowledgments

The research leading to these results has received
funding from, Koroibot FP7-ICT-2013-10/611909; EC
FP7-ICT-248311 AMARSi; DFG GI 305/4-1, DFG
GZ: KA 1258/15-1; CogIMon H2020 ICT-23-2014/
644727, HFSP RGP0036/2016. Cristóbal Curio was
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