See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306077454

Model selection for the extraction of EMG synergies

Poster · April 2014

CITATION	READS
1	64
4 authors, including:	
Dominik Endres	Andrea D'Avella
Philipps University of Marburg	Università degli Studi di Messina
69 PUBLICATIONS 692 CITATIONS	86 PUBLICATIONS 4,763 CITATIONS
SEE PROFILE	SEE PROFILE
Martin A. Giese	
University of Tuebingen	
370 PUBLICATIONS 5,114 CITATIONS	
SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Project KoroiBot View project

Project Motor Control View project

All content following this page was uploaded by Enrico Chiovetto on 12 August 2016.

The user has requested enhancement of the downloaded file.

Hertie-Institut für klinische Hirnforschung

Model selection for the extraction of EMG synergies

Centre for Integrative Neuroscience

Enrico Chiovetto¹, Dominik Endres¹, Andrea d'Avella² and Martin Giese¹

1- Section for Computational Sensomotorics, Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Centre for Integrative Neuroscience, University Clinic Tübingen, Tübingen, Germany. 2- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy.

Introduction

It has been shown that the electromyographic (EMG) patterns underlying complex movements can be approximated by the combinations of a small number of muscle synergies [1, 2]. Different definitions of muscle synergies have been given, which translate into either synchronous or noninstantaneous generative models [3]. However, how to choose a specific model and how to identify < Emin, Emin = 1x10-4. its parameters, such as the number of synergies, still remain open questions [4]. For this study we extracted different kinds of synergies from simulated EMG data sets with known statistical properties. We then applied a series of model selection criteria to discriminate the actual synergistic models underlying the ground-truth data sets and to identify the actual number of synergies. We could in this way compare model selection performance across the different criteria.

Additional model selection criteria

Linear Regression Criterion (LRC): Linear regression procedure to identify the value of N above which the VAF curve is essentially straight. A series of linear regressions is performed, starting from a regression on the entire VAF curve and progressively removing the smallest N value from the regression interval. The mean square residual errors of the different regressions are then compared and the optimal number of synergies N* is selected as the first N* value corresponding to a regression line from N to Nmax with a mean square error

Elbow Criterion (EC): Approximation of the curve indicating the amount of variance accounted for (VAF) with 2 line segments. Position of the 'elbow' determined by the minimum least square error computed over all N values.

Akaike Information Criterion: AIC =

$$= -2(\log(p(D \mid \Theta^*, S, M))) - \frac{1}{2}\dim(\Theta)$$

 $BIC = -2(\log(p(D | \Theta^*, S, M)) - \frac{1}{2}\dim(\Theta \log(N)))$

Methods Results Models of muscle synergies and synthetic EMG data sets Temporal syn. data sets Spatial syn. data sets TV syn. data sets LRC - EC LRC - EC LRC - EC

For each synergistic organization we generated 20 artificial EMG data sets. Temporal waveforms generated starting from renewal stochastic processes. Weighting coefficients and temporal delays withdrawn from random exponential distributions. Data were generated by combining N = 4artificial synergies according to the models above. Each data set consisted in the simulated activity of 10 muscles collected during 25 trials. T = 100 time samples. Data corrupted with signals dependent noise ($R^2 = 0.85$, between noisy and noiseless data).

FADA algorithm

All definitions of primitives can be derived from a unique generative model, usually referred to as anechoic mixture model

$$x_i(t) = \sum_{j=1}^N \alpha_{ij} \cdot s_j(t - \tau_{ij})$$

They differ from each other only by additional constraints imposed on the parameters of the model (e.g. non-negativity or equality constraints, presence of delays). We started from previous work developed in our lab [7] to design a new and more efficient algorithm for the identification of motor synergies based on Fourier series decomposition of the EMG signals[8-10]. Approximating the signal and the delayed sources by truncated Fourier series we obtain

$$x_{i}(t) = \sum_{k=-M}^{M} c_{ik} e^{ikt} \qquad s_{j}(t-\tau_{ij}) = \sum_{k=-M}^{M} v_{jk} e^{-ik\tau_{ij}} e^{ikt}$$

where M is an integer and C_{ik} and V_{ik} belong to the complex space. The last equations allows to derive the following iterative EM algorithm

Model selection criteria

MODEL SELECTION

- Development of a new Bayesian criterion [4] based on Laplace approximation (LAP) for:
- Model selection
- Estimation of model complexity (# of primitives)
- Most likely type of smoothness prior
- Non-negativity is imposed with a rectifying function $y = -\log(1 + e^{\alpha y})$

Log likelihood of data (Laplace approximation):

$$\log(p(D \mid S, M)) \approx \log(p(D \mid \Theta^*, S, M)) + \log(p(\Theta^* \mid S, M)) + \frac{F}{2}\log(2\pi) - \frac{1}{2}\log(|H|)$$

Example: estimate of complexity

- D: data
- S: number of primitives
- M: model type (PCA, ICA,
 - Anechoic, ...)
- Θ : parameter vector
- *F*: number of estimated
- parameters
- *H*: Hessian (from Laplace approximation)

The graphs of the VAF provide information about the generative model underlying a given EMG data set

• AIC and LAP provide reliable model selection performance when the modular organizations underlying the EMG data sets rely on either spatial or temporal synergies.

DETERMINATION OF THE NUMBER OF SYNERGIES

Once the underlying model is chosen LRC can always identify, on average, the exact number of synergies. EC revealed less reliable than LRC

LAP always outperformed AIC and BIC and provides the right number of synergies

References

- [1] Bizzi E, Cheung VCK, d'Avella A, Saltiel P and Tresch M. Combining modules for movement. Brain Research Reviews, vol. 57, no. 1, pp. 125-133, 2008.
- [2] Flash T and Hochner B. Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol, vol. 15, no. 6, pp. 660-666, 2005.
- [3] Chiovetto E, Berret B, Delis I, Panzeri S and Pozzo T. Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies. Front Comput Neurosci, vol. 7, p. 11, 2013.
- [4] Endres DM, Chiovetto E, Giese MA. Model selection for the extraction of movement primitives. Front Comput Neurosci, vol. 7, pag 185, 2013.
- [5] Tresch MC, Jarc A. The case for and against muscle synergies. *Curr Opin Neurobiol*, vol. 19, no. 6, pp. 601-7, 2009.
- [6] d'Avella A, Saltiel P and Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci, vol. 6, no. 3, pp. 300-308, 2003.
- [7] Omlor L and Giese MA. Anechoic Blind Source Separation using Wigner Marginals. Journal of Machine Learning Research, vol. 12, pp. 1111-1148, 2011.
- [8] Chiovetto E, d'Avella A, Giese MA. A comprehensive framework for the identification of motor primitives. Submitted.
- [9] Chiovetto E, d'Avella A, Giese MA. A unifying framework for the identification of kinematic and electromyographic motor primitives. NMC meeting, Puerto Rico, 2013.
- [10] Chiovetto E and Giese MA. Kinematics of the coordination of pointing during locomotion. *Plos One*, vol. 8, no. 11:e79555. doi: 10.1371/journal.pone.0079555, 2013.

Acknowledgements: This work was supported with funds from EU project AMARSi (FP7-ICT-611909 🚶) and by the German Federal Ministry of Education and Research (BMBF; FKZ: 01GQ1002)