
Bayesian and Information-theoretic

Tools for Neuroscience

PhD Thesis

Dominik M. Endres

dme2@st-andrews.ac.uk

School of Psychology, University of St Andrews,

St Andrews KY16 9JP, U.K.

October 14, 2006

Abstract

The overarching purpose of the studies presented in this report is the exploration

of the uses of information theory and Bayesian inference applied to neural codes.

Two approaches were taken: Starting from first principles, a coding mechanism is

proposed, the results are compared to a biological neural code. Secondly, tools from

information theory are used to measure the information contained in a biological

neural code.

Chapter 3: The REC model proposed by Harpur and Prager [33] codes inputs

into a sparse, factorial representation, maintaining reconstruction accuracy. Here I

propose a modification of the REC model to determine the optimal network dimen-

sionality. The resulting code for unfiltered natural images is accurate, highly sparse

and a large fraction of the code elements show localized features. Furthermore, I

propose an activation algorithm for the network that is faster and more accurate

than a gradient descent based activation method. Moreover, it is demonstrated that

asymmetric noise promotes sparseness.

Chapter 4: A fast, exact alternative to Bayesian classification is introduced.

Computational time is quadratic in both the number of observed data points and

the number of degrees of freedom of the underlying model. As an example applica-

tion, responses of single neurons from high-level visual cortex (area STSa) to rapid

sequences of complex visual stimuli are analyzed.

Chapter 5: I present an exact Bayesian treatment of a simple, yet sufficiently

general probability distribution model. The model complexity, exact values of the

expectations of entropies and their variances can be computed with polynomial effort

given the data. The expectation of the mutual information becomes thus available,

too, and a strict upper bound on its variance. The resulting algorithm is first

tested on artificial data. To that end, an information theoretic similarity measure

is derived. Second, the algorithm is demonstrated to be useful in neuroscience by

studying the information content of the neural responses analyzed in the previous

chapter. It is shown that the information throughput of STS neurons is maximized

for stimulus durations ≈ 60ms.

Declarations

I, Dominik Endres, hereby certify that this thesis, which is approximately 30000

words in length, has been written by me, that it is the record of work carried out

by me and that it has not been submitted in any previous application for a higher

degree.

October 14, 2006 signature:

I was admitted as a part-time research student in Feb. 1998 and as a candidate for

the degree of PhD in Feb. 1998; the higher study for which this is a record was

carried out in the University of St Andrews between 1998 and 2004.

October 14, 2006 signature:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and

Regulations appropriate for the degree of PhD in the University of St Andrews and

that the candidate is qualified to submit this thesis in application for that degree.

date: signature of supervisor:

In submitting this thesis to the University of St Andrews I understand that I am

giving permission for it to be made available for use in accordance with the regula-

tions of the University Library for the time being in force, subject to any copyright

vested in the work not being affected thereby. I also understand that the title and

abstract will be published, and that a copy of the work may be made and supplied

to any bona fide library or research worker.

October 14, 2006 signature:

Contents

1 Introduction 5

1.1 Tools for neuroscience: information theory and Bayesian inference . . 5

1.2 An apology to the reader . 7

1.3 Publications . 7

1.4 Acknowledgments . 7

2 Methods 9

2.1 Notation . 9

2.2 Gradient descent . 10

2.3 Probability theory . 12

2.3.1 Cox’s axioms and Jayne’s Desiderata 14

2.3.2 Bayesian Inference . 15

2.3.3 The limit of certainty: deductive and plausible reasoning . . . 16

2.3.4 Probability distributions and densities 18

2.4 Information theory . 19

2.4.1 Joint, conditional and relative entropy 21

2.4.2 Mutual information . 22

2.4.3 Differential entropy . 23

2.5 Bayesian methods . 25

2.5.1 Inferring model parameters . 25

2.5.2 Choosing the prior . 26

2.5.3 Kullback-Leibler divergence in Bayesian inference 27

2.6 Approximation techniques . 30

2.6.1 Maximum likelihood (ML) and maximum a-posteriori (MAP) 30

2.6.2 Laplace approximation . 31

2.6.3 Monte-Carlo methods . 32

1

2.6.4 Variational methods . 32

3 Occam’s razor for factorial codes 34

3.1 Introduction . 34

3.2 The network . 36

3.2.1 Activation algorithms . 39

3.2.2 Gradient descent with clipping 39

3.2.3 Sequential updating . 40

3.2.4 Quadratic programming . 40

3.3 Learning . 42

3.4 Results . 44

3.4.1 Comparison of activation algorithms 44

3.4.2 Pruning . 45

3.4.3 Overcompleteness . 47

3.4.4 Quantitative comparison to V1 data and the generative model

by Olshausen & Field . 52

3.5 Discussion . 60

3.5.1 The relationships between sparseness, overcompleteness, inde-

pendence and redundancy reduction 62

3.6 Asymmetric noise: a sparseness-promoting factor 64

3.7 Conclusion . 68

4 Information extraction from neural spike trains I:

Bayesian Bin Classification 70

4.1 Introduction . 70

4.2 Bayesian classification . 72

4.3 A simple model for P (y|~w) . 73

4.3.1 Why do the mapping f(~w) 7→ x first? 74

4.3.2 A bin model for P (y|x) . 75

4.4 Computing p({{cj
y}}|{zj}, M) . 78

4.5 Computing p({zj}|M) . 79

4.6 Computing the evidence . 79

4.6.1 Integrating over {zj} . 79

2

4.7 Comparison to other classification methods 82

4.8 Application to neural spike data . 86

4.8.1 Multiple datasets, joint and marginal expectations 88

4.9 Results on artificial data . 88

4.10 RSVP results . 93

4.10.1 How similar are cells? . 93

4.10.2 Latencies and response durations 97

4.11 Conclusion . 99

4.11.1 Algorithm . 99

4.11.2 STSa neuron populations adapt their processing speed to the

presentation rate . 100

5 Information extraction from neural spike trains II:

Bayesian Bin Distribution Inference and Mutual Information 107

5.1 Introduction . 107

5.2 Bayesian binning . 109

5.3 Computing the prior p({(Pm, km)}|M) 111

5.4 Computing the evidence . 112

5.5 Evaluating the model posterior P (M |D), the predictive distribution

P (k|M, D) and its variance . 115

5.6 Inferring probability densities . 116

5.7 Model selection versus model averaging 116

5.8 Computing the entropy and its variance 118

5.8.1 Computing E [Pm′ log(Pm′)|{km}, M, D] 119

5.8.2 Computing E [Pm′ log(∆km′)|{km}, M, D] 120

5.8.3 Computing the variance . 121

5.8.4 Computing E
[
P 2

m′ log2(Pm′)|{km}, M, D
]

. 122

5.8.5 Computing E [Pm′Pm′′ log(Pm′) log(Pm′′)|{km}, M, D] 122

5.9 An information-theoretic similarity measure 123

5.10 Examples . 125

5.10.1 The limit K → ∞ . 134

5.11 Extension to multiple classes . 137

5.12 Computing the mutual information and an upper bound on its variance138

3

5.13 Sparse Priors . 142

5.13.1 Can (or should) finite-size effects be avoided? 148

5.14 RSVP results . 150

5.14.1 Mutual information and information transmission rate 150

5.14.2 Temporal structure of the mutual information 152

5.14.3 Is the mutual information zero? 153

5.15 Conclusion . 156

5.15.1 Algorithm . 156

5.15.2 The information throughput of STSa neurons is maximized at

SOA ≈ 60 ms . 158

6 Overall conclusion 160

Appendices 162

A Proof of minimum property 162

B Convergence of sequential updating 165

C Population decoding 170

D Dirichlet densities 172

D.1 Normalization Integral of a Dirichlet density 172

D.2 Marginal densities . 174

D.3 Derivatives of Gamma and Beta functions 174

D.4 An upper bound on the variance of a sum of random variables 178

D.5 Some identities for squares of sums 179

E Proof of the metric properties of Dpq 180

E.1 Motivation . 180

E.2 Proof of metric properties of DPQ 181

E.3 Asymptotic approximation . 184

E.4 Discussion . 184

Bibliography 189

4

Chapter 1

Introduction

We live in the information age: one can hardly look around and not see some device

designed for the storage, transmission and processing of information. Computers in

every office, TVs and radios at home, PDAs and pagers in many people’s pockets.

In case one happens to forget this basic truth about modern life, the obnoxious

ringtone of some mobile phone is guaranteed to remind him or her rather sooner

than later.

Yet the most complex known information processing system, the one which

helped to design and build the aforementioned ones, is still poorly understood: the

human brain. The advancement of its understanding is the objective of neuroscience,

which has gained tremendous momentum in the past few decades. Neuroscience is

not limited to the study of the human brain: the nervous systems of other species

are also under investigation.

1.1 Tools for neuroscience: information theory

and Bayesian inference

There are many facets of neuroscience. Unlike more ’classical’ disciplines like physics

or chemistry, which have had relatively clearly defined domains of study, neuro-

science has attracted researches with various and seemingly disparate backgrounds.

The reasons for that are manyfold. One probable cause is that it is a relatively young

field. Perhaps more important, though, is the fact that the brain can be approached

on many different levels, ranging from the sub-atomic to the macroscopic, or from

5

the purely descriptive to the study of its functional organization.

One of the aims of this thesis is to contribute to the understanding of the way

in which the brain processes visual information. To that end, methods and princi-

ples from two other disciplines will be employed: information theory may loosely

be defined as the mathematical study of information transmission and storage. Its

fundamental concepts were developed by C. Shannon [83]. Probably his greatest

contribution was the realization that information, properly defined, can be mea-

sured. Consequently, he developed what he called the ’mathematical theory of

communication’ [82]. Information theory will be used in two ways in this thesis:

1. In chapter 3, a (visual) coding scheme will be motivated by information-

theoretic principles. The resulting codes turn out to be similar to those em-

ployed by the early processing stages of the mammalian visual system. Fur-

thermore, it will be demonstrated that the presence of noise in the information

transmission process promotes sparse codes.

2. In chapter 5, a method will be developed for the information theoretic analysis

of small and noisy datasets. As an example application, it will be applied to

responses of neurons in area STSa (a high level visual cortex area) to complex

visual stimuli.

Bayesian inference is the provably best way of reasoning in the presence of uncer-

tain and incomplete information [54]. It is named after its founding father, Rev. T.

Bayes [5], who pondered the question of how to determine whether a coin used for

tossing is ’fair’, i.e. shows heads or tails with equal probability. After a long period

of hibernation, it has enjoyed a revival in the last century [14, 43]. In this thesis, it

will be used to develop an optimal method for information extraction from neural

spike trains (more generally speaking, the algorithm presented in chapter 4 is an

exact Bayesian classification scheme). Moreover, it is also an essential ingredient of

the method for information theoretic response analysis (chapter 5).

Chapter 2 contains a brief overview of the mathematical methods needed for the

understanding of the following chapters, along with a short introduction to Bayesian

inference and information theory.

6

1.2 An apology to the reader

I hope that the work presented in this thesis is found interesting by neuroscientists,

and that the developed methods may be considered useful for future research. Since

I am very hesitant to use a method which I do not fully understand, and assuming

that the reader feels similarly, I placed heavy emphasis on explaining the methods

in detail. The resulting presentational style may be deemed lengthy and ponderous

by a pure mathematician. However, to the mathematically inclined neuroscientist,

mathematics is a research tool, not an end in itself. Thus, many things which appear

’trivial’ and ’obvious’ to the former, may require explanation if to be understood by

the latter without undue effort. In finding the right balance between brevity and

clarity, I am heavily indebted to Peter Földiák and Johannes Schindelin for their

feedback. Most lengthier calculations and proofs have been relegated to various

appendices.

1.3 Publications

The main findings of chapter 3 have been printed [20] and presented at the ICANN’99

conference. Large parts of chapter 5 have appeared in the IEEE Transactions on

Information Theory [22, 21]. The original work contained in these publications has

for the most part been carried out by me, the co-authors contributed by posing

the problems and, in the case of [22], by helping me with the correct mathematical

formulation. We plan to publish another article focussing on the neuroscientific

results obtained with the Bayesian Bin Distribution Inference method.

Moreover, a publication containing the theoretical development of chapter 4 and

the resulting neuroscientific findings has been submitted.

1.4 Acknowledgments

While a thesis is written by one person, it is contributed to by many. First and

foremost, I’d like to thank Peter Földiák. At the beginning of my work at St.

Andrews, he posed a number of challenging questions to me, some of which sub-

sequently turned into the research projects that are documented here. He let me

7

develop my own ideas, always providing constructive criticism and pointing me in

the right direction whenever I got stuck. I very much enjoyed his style of supervision,

and sincerely hope that I did not overly strain his patience, when my theoretical

investigations took me a little off course at times.

The neurophysiological recordings used in this thesis are a result of an earlier

project by Christian Keysers, David Perret, Peter Földiák and Dengke Xiao. I am

grateful to D. Xiao and C. Keysers for supplying me with the data and explaining

the formatting details to me. Furthermore, I’d like to thank D. Perret and Mike

Oram for their feedback on my ideas and results. I would like to thank M. Oram

for his constructive comments on my first-year report, too.

I also owe a debt of gratitude to Johannes Schindelin, with whom I enjoyed many

stimulating discussions, who proofread drafts of this thesis and who helped me to

clarify several notational issues.

Moreover, I’m very thankful to Jennifer, my wife, for her patience and support

all along. Finally, I’d like to thank my parents for all their support throughout my

education.

8

Chapter 2

Methods

The research presented in this report was carried out using a variety of computational

methods. In this chapter, the key concepts necessary to comprehend their working

are outlined. For a more in-depth understanding, the reader is referred to the

references given for each method. However, basic knowledge of linear algebra, one-

dimensional calculus and probability theory are required.

2.1 Notation

Unless stated otherwise, the following notation will be used throughout this thesis:

• x, y, z denote real variables.

• ~x is a vector, whose components are real numbers.

• A is a M × N matrix.

• A,B,C are propositions, e.g. A=’A neuron in area STSa begins transmitting

stimulus-related information 100 ms after the stimulus onset’.

• P (A|B) the conditional probability that proposition A is true given that propo-

sition B is true.

• Logical operators: AB = A and B, A + B = A or B, Ā = not A, A ⇒ B =

A implies B.

• p(x) is the probability density of x. Likewise p(~x). Probability densities will

be denoted by a lower-case p, probabilities by P .

9

2.2 Gradient descent

A number of learning algorithms for artificial neural networks can be formulated as

a minimization problem of a function of many variables (i.e. weights, biases etc.).

In many cases, this function depends on its variables in a differentiable way. A

necessary condition for a minimum of a differentiable function f(x) of one variable

defined on IR is that it’s first derivative be zero at xmin, the point where the minimum

is located:

f ′(xmin) =
df(x)

dx

∣
∣
∣
∣
x=xmin

= 0 (2.1)

If the function depends on more than one variable, the concept of the derivative needs

to be suitably generalized for this condition to be applicable. This generalization is

the gradient. The following derivation aims at making the idea plausible, a strict

mathematical treatment can be found in [9].

Since the derivative f ′(x0) is the incline of a tangent on f(x) at x0, the function

can be approximated by

f(x0 + ∆x) ≈ f(x0) + ∆f(x0) (2.2)

where

∆f(x0) = f ′(x0)∆x (2.3)

This approximation (also known as a Taylor expansion to first order, see [9])

gets the better, the smaller ∆x.

Consider now a function g(x1, x2, . . . , xN) of N variables. Here, eqn. 2.2 becomes

g(x1+∆x1, x2+∆x2, . . . , xN +∆xN) ≈ g(x1, x2, . . . , xN)+∆g(x1, x2, . . . , xN) (2.4)

where

∆g(x1, x2, . . . , xN) =

N∑

i=1

∂g(x1, x2, . . . , xN)

∂xi

∆xi (2.5)

∂g

∂xi
is the partial derivative of g(x1, x2, . . . , xN) with respect to xi. It is computed

by the same rules as the derivative of a function of one variable, all variables xj , j ∈
{1, 2, . . . , N} where j 6= i are treated as constants. Example: Let

g(x1, x2) = x2
1 + x1x2 + 2x2

2 (2.6)

Then
∂g(x1, x2)

∂x1
= 2x1 + x2 (2.7)

10

and
∂g(x1, x2)

∂x2

= x1 + 4x2 (2.8)

Lumping all the xi, ∆xi and ∂g

∂xi
together in three vectors, ~x = (x1, x2, . . . , xN),

~∆x = (∆x1, ∆x2, . . . , ∆xN) and ~h = (∂g(x1,x2,...,xN)
∂x1

,
∂g(x1,x2,...,xN)

∂x2
, . . . ,

∂g(x1,x2,...,xN)
∂xN

),

eqn. 2.5 becomes

∆g(~x) = ~h ~∆x
T

(2.9)

i.e. ∆g(~x) is the inner product of ~h and ~∆x. Now one could ask: Which vector ~∆x

gives rise to the greatest ∆g(~x)? Clearly, the longer ~∆x, the greater the absolute

value of ∆g(~x). So instead, let’s try to find the ~∆x which produces the greatest

∆g(~x) amongst all possible ~∆x of equal length. Since the inner product of two

vectors can also be expressed by their lengths and the angle between them, another

form of eqn. 2.9 is

∆g(~x) = |~h|| ~∆x| cos(α) (2.10)

where α is the angle between |~h| and | ~∆x|. As the length of ~∆x is fixed, ∆g(~x)

will assume its maximum when the cosine of α is maximal, i.e. at α = 0. In other

words, ∆g(~x) is maximal, if ~∆x is parallel to ~h and oriented in the same direction.

Moreover, ∆g(~x) is directly proportional to |~h|. Since eqn. 2.4 states that ∆g(~x) is

the change of g(~x) brought about by a small displacement given by ~∆x, the direction

of ~h tells us in which direction to go for maximal increase of g(~x), its length is a

measure for the magnitude of this increase.

The vector ~h is called the gradient of g(~x), it is usually denoted by

∇g(~x) =
∂g(~x)

∂~x
= (

∂g(~x)

∂x1

,
∂g(~x)

∂x2

, . . . ,
∂g(~x)

∂xN

) (2.11)

It shares (and generalizes) the following qualities with (of) the derivative f ′(x) of a

function f(x) of one variable:

1. ∇g(~x) points in the direction of the steepest incline of g(~x). In the one-

dimensional case, there are only two directions: To the left and to the right.

If f ′(x) > 0, then f(x) increases when going to the right, if f ′(x) < 0, it

decreases.

2. |∇g(~x)| is a measure of the magnitude of the increase. |f ′(x)| is a measure of

the steepness of the slope of f(x).

11

3. f ′(x) = 0 is a necessary condition for an extremum of f(x). Similarly, when

∇g(~x) = ~0, there is no direction (to first order) in which g(~x) increases at this

point - which is a necessary condition for an extremum in a more-than-one

dimensional space as well.

In order to find a minimum of g(~x), one could, starting from some point ~x0, follow

the direction of the negative gradient (i.e. the direction of the steepest decline)

until |∇g(~x)| = 0. This is the basic idea behind all gradient descent algorithms.

In practice, however, it will be difficult to hit exactly the point where the gradient

vanishes, because a step cannot be infinitesimally small, since then the algorithm

would take infinitely long to reach the minimum. Hence, a downward step is usually

taken to be proportional to the gradient (so that steps get smaller when the minimum

is approached) and some step size parameter η (the ’learning rate’ in the neural

networks community). The termination criterion is commonly of the form |∇g(~x)| <

ǫ, where ǫ is some small positive constant. A typical implementation of a simple

gradient descent algorithm would hence look somewhat like this:

1. Choose ~x0 (starting point), η (step size), and ǫ (termination threshold).

2. Set ~x = ~x0

3. Set ~∆x = −η∇g(~x)

4. Set ~x = ~x + ~∆x

5. if |∇g(~x)| ≥ ǫ, goto step 3

6. Return ~x

Additionally, it is common to define a maximum number of steps after which the

algorithm terminates, even if ǫ has not been reached.

2.3 Probability theory

Logic, which was first systematically developed by Aristotle in the 4th century B.C.,

provides the scientist with the conceptual tools of deductive reasoning. Given certain

12

propositions, it enables one to draw conclusions. However, in natural science, as op-

posed to mathematics, one does seldom (if ever) have the luxury of certainty, which

is necessary for its application. When conducting measurements, factors beyond

the experimenter’s control will inevitably influence the results. What’s worse, these

influences will usually not only be uncontrollable, they will also be unpredictable.

Thus, another mode of reasoning is required, one that enables us to draw the best

possible conclusions given the uncertitudes we have to contend with. This ’doctrine

of chances’, as it was referred to by Rev. Thomas Bayes [5] almost 300 years ago,

finds its modern counterpart in probability theory. Set down in axiomatic form by

Kolmogorov [9], it has subsequently led to the accelerated development of statistics,

which is considered indispensable for the analysis of experimental data.

While the axioms of probability (and thus, the theory deduced from them) stand

largely undisputed, there has been quite a debate as to its meaning. Broadly speak-

ing, there are two positions:

• Frequentist. Also known as ’sampling theory’, this approach views probabil-

ity as the limit of relative frequency. Imagine the prototypical example: a coin

is being tossed N times, and the number of times nh it shows ’heads’ upon

landing is recorded. The relative frequency of ’heads’ is then fh = nh

N
. By

virtue of the weak law of large numbers [9], fh converges in probability to Ph,

the probability of ’heads’, if N → ∞:

lim
N→∞

P (|fh − Ph| < ǫ) = 1 (2.12)

where ǫ is some arbitrarily small positive number. Tossing the coin constitutes

a ’random experiment’, which avails one of a sample drawn from the proba-

bility distribution (Ph, Pt) (i.e. the probabilities of observing heads or tails,

respectively). Hence the name ’sampling theory’. The outcome of a toss is

an instance of a random variable. In the frequentist perspective, probabilities

can only be assigned to random variables.

• Bayesian. Here, probability is ”...regarded as a real-number-valued measure

of the plausibility of a proposition when incomplete knowledge does not allow

us to establish its truth or falsehood with certainty.” [52]. The important key-

word is ’proposition’. In the Bayesian view, probabilities are not restricted to

13

random variables. They can be assigned to hypotheses as well, such as ’The

coin is biased in favor of heads’ or ’A neuron in area STSa begins to transmit

stimulus-related information 100 ms after the stimulus onset’. This does not

imply that the truth or falsehood of the proposition in question is subject

to random fluctuations, it only aims at quantifying the (subjective) uncer-

tainty associated with the veracity of a statement due to a lack of information.

The rules of probability theory can then be used to compute the plausibilities

of logical compositions of such statements, and, most importantly, how the

probabilities change when new data become available. This process is called

Bayesian inference.

2.3.1 Cox’s axioms and Jayne’s Desiderata

The proof that degrees of belief (or plausibility) can be described by probabilities

was given in [14]. If one is willing to accept the Cox axioms (see e.g. [54]), then one

is also forced to accept probability theory as the ’grammar’ of plausible reasoning.

Instead of listing these axioms here, it is perhaps more instructive to consider the

basic desiderata of plausible reasoning as presented in [43]:

1. Degrees of plausibility are represented by real numbers.

2. Qualitative correspondence with common sense.

3. (a) If a conclusion can be reasoned out in more than one way, then every

possible way must lead to the same result.

(b) All of the available evidence relevant to a question is taken into account.

(c) Equivalent states of knowledge are represented by equivalent plausibility

assignments.

Desideratum 1 could in principle be replaced by the weaker requirement of a total

order, i.e. that the plausibility assignments (=probabilities) to any two propositions

can be compared [43], but the resulting theory would then be less manageable in

practice. Desiderata 2, 3a and 3c give rise to the sum an product rules for probability.

Suppose we had 3 propositions A, B and C. Then

P (AB|C) = P (A|BC)P (B|C) = P (B|AC)P (A|C) (2.13)

14

1 = P (A|C) + P (Ā|C) (2.14)

0 ≤ P (A|C) ≤ 1 (2.15)

Those rules are all that is needed to conduct inference. It is easy to show that

P (A|C) = 1 if A is true with certainty, and likewise that P (A|C) = 0 if A is false

with certainty. Furthermore, if A does not depend on B, i.e. P (A|BC) = P (A|C),

then P (AB|C) = P (A|C)P (B|C). In this case, A and B are said to be independent.

Proposition C stands for the evidence (desideratum 3b) relevant for the determina-

tion of P (A|C) etc.. It is important to note that all probability assignments are

based on such prior information, at least in the Bayesian view. This is the reason

why, for the better part of the last century, many mathematicians and scientists

have rejected the Bayesian perspective as ’subjective’, and, as a remedy, the fre-

quentist interpretation of probability was claimed to be the only valid one, because

it was deemed to be more objective. However, as argued in [52], this undertaking

has largely failed. What scientists are usually interested in is assessing the proba-

bility of various hypotheses, given a set of observed data. And it is precisely this

kind of question which the frequentist approach cannot answer, because, by its very

definition, probabilities can not be assigned to hypotheses.

In the author’s opinion, the basic desiderata are sufficiently compelling to justify

the use of probability theory for inference in science. Moreover, since it was proven

in [14] that any other set of rules would lead to a violation of the Cox axioms, and

thus be in contradiction with these desiderata, it follows that probability theory is

the only suitable tool for conducting inference.

2.3.2 Bayesian Inference

The original objective of Bayesian Inference, in the words of Rev. T. Bayes [5], is

”Given the number of times ion which an unknown event has happende

and failed:

Required the chance that the probability of its happening in a single trial

lies somewhere between any two degrees of probability that can be

named.”

15

In other words, given the observed frequencies, what are the corresponding proba-

bilities? This is an instance of a more general class of problems, namely: given a set

of data, how plausible is some hypothesis? Those questions can be answered using

probability theory. From the product rule (eqn. 2.13) follows

P (A|BC) =
P (B|AC)P (A|C)

P (B|C)
(2.16)

which is know as Bayes’ rule or Bayes’ theorem. Sometimes it is also referred to as

the law of inverse probability, because it states how P (A|BC) is to be converted into

P (B|AC). Now suppose that B is a statement about a measurement of some kind,

and A is a proposition which has a logical connection to B, e.g. a possible cause of B,

or something that frequently coincides with B for reasons unknown. Information of

this kind, represented in C, is called prior information. Moreover, C must allow for

the assessment the probability of A before observing B. Thus, P (A|C) is called the

prior probability of A, or just the prior. P (B|AC) is also needed, since it quantifies

how likely B is deemed given A and C, it is referred to as the likelihood. P (B|C)

could either be a part of the prior information as well, or, more customary, P (B|ĀC)

is known. It is then possible to evaluate P (B|C) via eqn. (2.14):

P (B|C) = P ((A + Ā)B|C) = P (AB|C) + P (ĀB|C)

= P (B|AC)P (A|C) + P (B|ĀC)P (Ā|C)

= P (B|AC)P (A|C) + P (B|ĀC)(1 − P (A|C)) (2.17)

P (B|C) is called the evidence of the data. The reasons for this name will become

clear later. P (A|BC) is the posterior probability of A, so named because it tells how

probable A becomes once the veracity of B has been established.

Bayesian Inference – for the most part – boils down to nothing more than the

inversion of a conditioning via eqn. (2.16).

2.3.3 The limit of certainty: deductive and plausible rea-

soning

In the limit of certainty, probability theory reduces to deductive reasoning. Consider

e.g. the strong syllogism

16

A ⇒ B

A=true

B=true

Translated into probabilities, the implication becomes

1 = P (AB̄|C)

= 1 − P (AB̄|C)

= 1 − P (B̄|AC)P (A|C)

= 1 − (1 − P (B|AC))P (A|C)

⇒ P (B|AC) = 1

i.e. B is true with certainty as soon as A is observed to be true. As an example of

plausible reasoning, the weak syllogism, which is a mode of reasoning often employed

in science for the purpose of hypothesis generation

A ⇒ B

B=true

A becomes more plausible

can be expressed as

1 = P (AB̄|C)

⇒ 0 = P (AB̄|C)

= P (B̄|AC)P (A|C)

= (1 − P (B|AC))P (A|C)

=

(

1 − P (BA|C)

P (A|C)

)

P (A|C)

=

(

1 − P (A|BC)P (B|C)

P (A|C)

)

P (A|C)

= P (A|C) − P (A|BC)P (B|C)

⇒ P (A|BC) =
P (A|C)

P (B|C)
︸ ︷︷ ︸

≤1

≥ P (A|C) (2.18)

Thus, as soon as B is observed to be true, A becomes more plausible. The probability

of A does not change, however, if C already contained the information that B is

17

true: in that case P (B|C) = 1, and nothing is gained by observing B. This process

of updating probabilities after observing data is referred to as Bayesian learning.

Note also that eqn. (2.18) implies that C must be such that P (A|C) ≤ P (B|C). In

other words, if one believes firmly in the validity of an implication A ⇒ B, then one

must also be sure that A is less likely than, or at most as likely as, B a priori. This

corresponds to the common-sensical notion that A is one of the reasons which can

lead to B, but not the only conceivable one. More on the correspondences between

probability theory and classical logic can be found in [43].

2.3.4 Probability distributions and densities

The concept of random variables, so central to the frequentist approach, can be

incorporated quite naturally into the Bayesian perspective. For the purposes of this

thesis, the added generality of a measure-theroetic approach to probability offers

little benefit. Thus, the following definitions will suffice:

• Discrete random variable. X is a discrete random variable, if it can

take on countably many values xi. Each xi can be assumed with probabil-

ity P (X = xi|C). P (X = xi|C) is the probability distribution of X, which

has the properties

– ∀xi : P (X = xi|C) ≥ 0

–
∑

{xi}
P (X = xi|C) = 1

• Continuous random variable. X is a continuous random variable, if every

instance of X ∈ IR. X is distributed according to p(x|C), the probability

density of X, which has the properties

– P (X ∈ [x, x + dx]|C) = p(x|C)dx

– ∀x ∈ IR : p(x|C) ≥ 0

–
∫∞

−∞
p(x|C)dx = 1

As before, C is the prior information on which the probability assignments are

based. X = xi is just another statement, namely ’X takes on the value xi’. Therefore,

random variables can be treated within the Bayesian framework. The normalization

18

condition
∑

{xi}
P (X = xi|C) = 1 can be derived from the sum and product rules

on the condition that the statements are mutually exclusive, which is obviously

a sensible requirement – X cannot take on more than one value at once. The

usual shorthand for P (X = xi|C) is P (xi), where prior information C on which the

probability assessments are based is implicitly assumed. It will be used whenever

unequivocally possible.

The generalization to a real-valued random variable is also straightforward and

requires little comment. The density must be integrable (let’s say in the Riemannian

sense [9], even though that is not the most general possible condition). What should

perhaps be noted is that a further generalization to random variables which are

vectors of real numbers is easily accomplished by replacing every occurrence of x

with ~x. Consequently, the normalization integral would then have to extend over

IRm, where m is the dimensionality of ~x.

2.4 Information theory

Information theory is concerned with the theoretical aspects of information trans-

mission, storage and, to some (small) extent, processing. This discipline was founded

by C. Shannon [83], who also addressed and solved its most fundamental problems.

Since the brain is an information processing system, it is natural to try to apply

information theoretic principles and results in order to understand its functions.

The following short overview will be phrased in terms of random variables, but the

reader should keep in mind that each of those could be replaced by a set of mutually

exclusive propositions.

The most central information theoretic quantity is entropy. In [82], it is argued

that a general measure H of uncertainty of a random variable, whose probability

distribution P (xi) = Pi, i = 1, . . . , N is assumed to be known , should fulfill the

following conditions:

1. H should be a continuous function of the Pi, i.e. if the probabilities change

only by a small amount, then the uncertainty measure should qualitatively

reflect the magnitude of this change.

2. If all the Pi are equal, then H should be a monotonically increasing function

19

of N . When uncertainty is understood as the number of questions one has

to ask about X before its exact value is determined, then this number should

grow with the number of possibilities.

3. H should not depend on the specific set of questions asked. Imagine sequences

of questions were constructed that successively narrowed down the possible

values of a given instance of X. The final determination of X must be the

same for all such sequences. As an example, suppose N = 3. Then a possible

first question would be ’is X = x1?’. Having received the answer ’yes’ (which

would happen with probability P1), no more information would be needed. If,

however, the answer was ’no’ (with probability 1−P1), then a second question

would be in order, e.g. ’is X = x2?’. Thus, it is required of H that

H(P1, P2, P3) = H(P1, 1 − P1)
︸ ︷︷ ︸

1st question

+(1 − P1) H(
P2

1 − P1
,

P3

1 − P2
)

︸ ︷︷ ︸

2nd question

(2.19)

This property is also called ’grouping’ [13].

It can be proven [82] that the only form of H compatible with these conditions

is

H({Pi}) = −K

N∑

i=1

Pi log(Pi) (2.20)

where K is some positive constant that determines the units of H. Alternatively, K

can be included in the logarithm via a change of basis

K log(x) = logexp(1
K

)(x) (2.21)

Common choices for the basis are:

• 2, in which case H is measured in bit. A bit is one ’yes/no’ information.

• e, the basis of the natural logarithm. The unit is then nats. 1 bit ≈ 0.6931

nats.

Since 0 ≤ Pi ≤ 1, and limx−>0+ x log(x) = 0, it is apparent that H ≥ 0 with equality

if and only if one Pi = 1 and all the others are 0. Thus, the entropy is zero only

20

if there is no uncertainty about X. It is customary to denote the entropy by the

random variable, not the probability distribution, i.e.

H({Pi}) = H(X) (2.22)

An important property of H is its relationship with codelength. It can be shown [13]

that the minimum expected number of ’yes/no’ (i.e. binary) questions which need

to be answered to determine X is between H(X) and H(X) + 1, when the latter is

measured in bit. Since entropy can be written as an expectation as well

H(X) = −E [log(P (x))] (2.23)

it follows that,

− log2(P (xi)) (2.24)

is the number of bits needed to encode the message X = xi. In the terminology

of information theory, each xi is a symbol or code element. The set of all symbols

comprises the alphabet used for message encoding.

2.4.1 Joint, conditional and relative entropy

If a probability distribution is defined for two random variables X and Y, the joint

entropy is given by

H(X, Y) = −
∑

xi

∑

yj

P (xi, yj) log(P (xi, yj)) (2.25)

If X and Y are independent, then

H(X, Y) = −
∑

xi

∑

yj

P (xi)P (yj) (log(P (xi)) + log(P (yj)))

= H(X) + H(Y) (2.26)

Likewise, the conditional entropy is

H(X|Y) = −
∑

xi

∑

yj

P (xi, yj) log(P (xi|yj)) (2.27)

Another important quantity is relative entropy or Kullback-Leibler divergence. Sup-

pose we had two probability distributions P (x) and Q(x) for the same random vari-

able, then

D(P (x)||Q(x)) =
∑

xi

P (xi) log

(
P (xi)

Q(xi)

)

(2.28)

21

It can be shown that (e.g. via Jensen’s inequality [13])

D(P (x)||Q(x)) ≥ 0 (2.29)

with equality if and only if P (x) = Q(x) for all possible x. This is known as Gibbs’

inequality [54], and it is one of the most central inequalities in information theory.

D(P (x)||Q(x)) can thus be seen as measure for how much P (x) deviates from Q(x).

Kullback-Leibler divergence has a number of interpretations, perhaps the most com-

mon one being that of coding inefficiency: given a random variable is distributed ac-

cording to P (x), it is possible to construct a code with average codelength H(P (x)).

If instead a code optimized for Q(x) was used, then the expected codelength would

be −∑xi
Pi log(Qi). Thus, the inefficiency – the superfluous codelength due to using

a suboptimal code – is

−
∑

xi

Pi log(Qi) −
(

−
∑

xi

Pi log(Pi)

)

= D(P (x)||Q(x)) (2.30)

Note that D(P (x)||Q(x)) will diverge whenever Qi = 0 and Pi 6= 0. This indicates

that the optimal code for X under Q(x) is not only suboptimal, but actually un-

suitable for representing X under P (x): impossible values of X under Q(x) (Qi = 0)

would not need to be coded. If those values are possible under P (x), then a new

coding scheme is definitely necessary.

2.4.2 Mutual information

Mutual information is defined as

I(X; Y) =
∑

xi

∑

yj

P (xi, yj) log

(
P (xi, yj)

P (xi)P (yi)

)

(2.31)

where P (xi) =
∑

yj
P (xi, yi) and likewise for P (yj). Since it can be written as

I(X; Y) = D(P (xi, yj)||P (xi)P (yi)), it follows that

I(X; Y) ≥ 0 (2.32)

with equality if and only if P (xi, yj) = P (xi)P (yi) for all xi and yi [13]. Another

way of expressing it is

I(X; Y) =
∑

xi

∑

yi

P (xi, yi) log(
1

P (xi)
) +

∑

xi

∑

yj

P (xi, yj) log

(
P (xi, yj)

P (yi)

)

22

= −
∑

xi

P (xi) log(P (xi)) +
∑

xi

∑

yj

P (xi, yj) log(P (xi|yi))

= H(X) − H(X|Y) (2.33)

i.e. the difference between the uncertainties about X before and after observing

Y. Thus, it quantifies the reduction in uncertainty due to the knowledge of Y, or,

in other words, it measures how much can be learnt about one random variable

given another. For symmetry reasons, eqn. (2.33) could also have been written as

I(X; Y) = H(Y) − H(Y |X), whence the adjective ’mutual’.

For given H(X), I(X; Y) assumes a maximum when H(X|Y) = 0, i.e. when

X is a function of Y. In this case (which also includes the identity function X =

Y), I(X; Y) = H(X). This opens up another perspective on entropy: instead

of interpreting it as uncertainty, it can also be seen as the maximum amount of

information that can be gained about a random variable (i.e. everything that is not

already encoded in its probability distribution). Thus, entropy is sometimes called

self-information of X.

Mutual information is an important quantity in neuroscience. In this thesis, it

will be employed to assess the information which a neural response carries about a

visually presented stimulus.

2.4.3 Differential entropy

The concept of entropy can be generalized to continuous random variables, if some

care is taken [13]. Since entropy measures the average amount of information re-

quired to specify an instance of a random variable exactly, it will in general be ∞
if the random variable can take on infinitely many values. To see how this problem

arises, assume a continuous random variable X was distributed according to the

density p(x). Also, suppose that one could measure this variable with an accuracy

∆x across the whole (finite) domain of X. The probability Pi of observing X in an

interval of width ∆x centered around xi is then Pi = p̃(xi)∆x, where p̃(xi) is the

mean density in this interval. The entropy of the observations xi thus obtainable

would then be given by (note that
∑

i Pi = 1, i.e. the intervals are assumed to be

non-overlapping):

H(X) = −
∑

i

Pi log(Pi) (2.34)

23

= −
∑

i

p̃(xi)∆x log(p̃(xi)∆x) (2.35)

= −
∑

i

p̃(xi)∆x log(p̃(xi)) − log(∆x) (2.36)

Let us now consider the limiting case of exact observations, i.e. the limit ∆x → 0:

lim
∆x→0

H(X) = −
∫

dx p(x) log(p(x)) − log(∆x)
︸ ︷︷ ︸

−∞

= ∞ (2.37)

where the integration extends over the domain of X. Thus, the entropy will diverge,

which indicates that knowing a continuous quantity exactly requires generally an in-

finite amount of information. This is highlighted by the fact that the diverging term

describes the measurement accuracy ∆x. Therefore, it is not possible to define the

entropy of a continuous random variable. However, it is possible to measure the dif-

ference between entropies of continuous variables under certain conditions: assume

a second random variable Y was distributed according to p(y), and measurable with

the same accuracy as X, ∆x. Then

H(X) − H(Y) = −
∑

i

p̃(xi)∆x log(p̃(xi)) − log(∆x)

+
∑

i

p̃(yi)∆x log(p̃(yi)) + log(∆x)

=
∑

i

p̃(xi)∆x log(p̃(xi)) +
∑

i

p̃(yi)∆x log(p̃(yi)) (2.38)

Taking the limit ∆x → 0 might now very well be possible, because the diverging

term in eqn. (2.37) has cancelled out. Thus, the differential entropy of X ∈ IR with

density p(x) is defined as

h(X) = −
∫ ∞

−∞

p(x) log(p(x)). (2.39)

This expression cannot be interpreted anymore as an information content or an

uncertainty measure. Unlike entropy, which is a quantity on a proportional scale

(i.e. statements like ’under P (X), X’s information content is twice as high as under

Q(X)’ can be meaningfully made), it lives on an interval scale. That implies that

only the difference between two values has meaning, hence the name ’differential

entropy’. For a mathematically more precise treatment of the limiting process, see

[13].

Mutual information, being a difference between differential entropies in the con-

tinuous case, can thus be interpreted as before. The same is true for relative entropy.

24

2.5 Bayesian methods

In the following section, a brief outline of the most common Bayesian methods for

data modeling will be given. A popular way of understanding those methods is to

imagine the models as generators of the data. This generation process is governed

by a set of parameters (in the case of parametric models). Bayesian inference is then

applied to infer those parameters from a set of observed data.

2.5.1 Inferring model parameters

Assume we had reason to believe that an observable X was distributed according to

p(x|~θ, M). ~θ is a vector of parameters, whose values determine the exact shape of the

density function. In the case of the well-known Gaussian density, ~θ would have two

components, one being the mean and the other one the variance. M denotes the part

of the prior information which is not encoded in ~θ, e.g. how the components of ~θ are

to be interpreted. One might find it unnecessary to explicitly state this dependency

on M , and indeed, it is customary in the literature not to do so. However, as we

will shortly see, this can mislead one into believing that Bayesian Inference was able

to provide unconditional answers, which it cannot. p(x|~θ, M) is called the likelihood

function or the noise model [7].

Furthermore, assume that we also knew how to choose the prior p(~θ|M). How this

is accomplished is the subject of the next subsection. If we now observe a (multi)set

D of instances of X, D = {x0, . . . , xN}, then we can, if the xi are independent, write

the density of D as

p(D|~θ, M) =
∏

i

p(xi|~θ, M) (2.40)

Using Bayes’ rule, the posterior density of ~θ then is

p(~θ|D, M) =
p(D|~θ, M)p(~θ|M)

p(D|M)
(2.41)

where

p(D|M) =

∫

d~θp(D|~θ, M)p(~θ|M) (2.42)

is called the evidence [54] for the model class specified by M. Had M been omitted,

this would appear to be the probability (density) of the data, independent of any

25

model class assumption. This ’absolute’ probability would be a nonsensical quantity

in the context of Bayesian inference.

The process of integrating out unwanted variables (~θ in eqn. (2.42)) is called

marginalization, the name ’evidence’ is motivated by the following observation: sup-

pose we also considered another model class, denoted by Q. In order to decide which

model class offers the better explanation for the data, we would have to evaluate

the posterior probabilities

P (M |D, R) =
p(D|M)P (M |R)

p(D|M)P (M |R) + p(D|Q)P (Q|R)
(2.43)

P (Q|D, R) =
p(D|Q)P (Q|R)

p(D|M)P (M |R) + p(D|Q)P (Q|R)
(2.44)

where R stands for the information that only the (mutually exclusive) model classes

M and Q are take into account, and p(D|M, R) = p(D|M) was assumed, i.e. the

probability density of the data is fully specified once the model class is known. In

the absence of further information, the priors would be chosen as

P (M |R) = P (Q|R) =
1

2
(2.45)

which is an example of a non-informative prior. If P (M |D, R) is greater (smaller)

than P (Q|D, R), M (Q) would be the model class of choice. With the non-informative

prior, this is equivalent to comparing P (D|M) and P (Q|M). Hence the name ’evi-

dence’.

Once the posterior (eqn. (2.41)) is known, several other quantities of interest

can be computed, e.g. the expectation of ~θ:

E
[

~θ
]

=

∫

d~θ ~θp(~θ|D, M) (2.46)

or the predictive density

p(x|D, M) = E
[

p(x|~θ, M)
]

=

∫

d~θp(x|~θ, M)p(~θ|D, M) (2.47)

where, in accordance with the model assumption, the equality p(x|~θ, M) = p(x|~θ, M, D)

was used.

2.5.2 Choosing the prior

The uniform model prior eqn. (2.45) was chosen according to the principle of indif-

ference, which dates back to Bernoulli. According to this principle, when the only

26

information available about a set of alternatives is that one of them must be true,

then each of them should be assigned the same probability. Those are then called

non-informative probabilities or least informative probabilities [52]. The principle

of indifference is a special case of the principle of maximum entropy, which states

that, given information C about the distribution of X, the latter should always be

chosen such that the entropy

H = −
∑

i

P (X = xi|C) log(P (X = xi|C)) (2.48)

assumes a maximum. It is not hard to see that, if C only specifies the number

of possible values X can take on, maximum entropy reduces to the principle of in-

difference. There are several ways to justify the maximization of H, ranging from

Shannon’s original argument [82] (entropy is the most general measure of uncer-

tainty) to demonstrating that this criterion is obtained by requiring the content

of C be invariant under very general transformations [84]. Those and more have

been reviewed in [43]. It should be noted, however, that while the arguments for a

maximum entropy approach are compelling if X is a discrete random variable, the

situation is less clear for continuous X. Here, it is usually not a priori clear which

scale to choose, and thus other methods of determining the prior are often used [6].

In practice, another approach is often used when choosing priors, namely that

of conjugacy. A prior is said to be conjugate to the posterior if both have the same

functional form [7]. This is especially useful when this form allows for the evaluation

of interesting integrals (such as eqn. (2.42)) in a closed form. It is often possible to

make this choice so that the prior fulfills the maximum entropy condition when its

parameters approach some limit [54]. Nevertheless, conjugacy is mostly employed

for mathematical convenience.

2.5.3 Kullback-Leibler divergence in Bayesian inference

As explained above, D(P (x)||Q(x)) measures the inefficiency of encoding a random

variable distributed according to P (x) with a code optimized for Q(x). Assume

Q(x) was the prior of X, and P (x) its posterior. Then, D(P (x)||Q(x)) would tell

us how much more efficient we can represent X given the information acquired

by Bayesian inference. Conversely, it measures the additional information needed

27

to represent the posterior knowledge under the prior, i.e. the information gain.

Therefore, Kullback-Leibler divergence is frequently used to quantify ’learning’. As

an example, consider the weak syllogism from section 2.3.3: The prior was P (A|C),

the posterior P (A|BC) = P (A|C)
P (B|C)

(i.e. the probabilities after the message ’B is true’

has arrived). Thus,

DA = P (A|BC) log

(
P (A|BC)

P (A|C)

)

+ P (Ā|BC) log

(
P (Ā|BC)

P (Ā|C)

)

= −P (A|C)

P (B|C)
log(P (B|C)) +

(

1 − P (A|C)

P (B|C)

)

log

(
1 − P (A|C)

P (B|C)

1 − P (A|C)

)

(2.49)

Compare this expression with the Kullback-Leibler divergence between the prior and

posterior of B, P (B|C) and P (B|BC):

DB = P (B|BC) log

(
P (B|BC)

P (B|C)

)

+ P (B̄|BC) log

(
P (B̄|BC)

P (B̄|C)

)

= − log(P (B|C)) (2.50)

This is just the length of the message ’B is true’ coded under the prior, which is

exactly the information that gave rise to the posterior. Note that

1 ≥ P (A|C)

P (B|C)
≥ P (A|C)

⇒ 0 ≤ 1 − P (A|C)

P (B|C)
≤ 1 − P (A|C)

⇒ 0 ≤
1 − P (A|C)

P (B|C)

1 − P (A|C)
≤ 1

⇒ log

(
1 − P (A|C)

P (B|C)

1 − P (A|C)

)

≤ 0

Whence

DA ≤ −P (A|C)

P (B|C)
log(P (B|C))

≤ − log(P (B|C)) = DB (2.51)

Thus, the infomation gain w.r.t. A is always smaller than, or at most as large as, that

w.r.t. B, which is the information-theoretic expression of the intuitive notion that

this syllogism is ’weak’. The maximum gain is DA = − log(P (B|C)) if P (A|C) =

P (B|C), in this case P (A|BC) = 1 (see eqn. (2.18)) and the syllogism becomes a

strong one. The gain approaches a minimum as P (A|C) → 0, P (B|C) 6= 0, here,

nothing is learned by observing B.

28

As noted above, D(P (x)||Q(x)) can diverge if P (x) > 0 and Q(x) = 0 for

some x. In the context of Bayesian inference, that means that under the posterior,

X = x is a possible value, whereas it was deemed impossible under the prior.

Divergence of D(P (x)||Q(x)) thus indicates an inconsistency between the prior and

the posterior. If inference is conducted properly, this will of course not happen. It

is, however, possible for the Kullback-Leibler divergence to become very large, if a

highly informative dataset is available.

Noisy information transmission as a classification problem

Assume a discrete alphabet comprised of the xi was used to transmit messages of

the form ’X = xi’, and that the (prior) probability distribution P (X = xi) = P (xi)

of a typical message was known to the receiver. Due to noise in the transmission

process, the receiver cannot fully trust his observations, rather, he knows how likely

it is that a given symbol is replaced by another one in transport, quantified by

P (Y = xj |X = xi) = P (xj |xi), where Y is the symbol he receives. He then is faced

with a classification task, namely that of deciding which message was really sent.

To that end, he would employ Bayes’ theorem to compute

P (xi|xj) =
P (xj |xi)P (xi)

∑

x′
i
P (xj |x′

i)P (x′
i)

(2.52)

and pick the xi which maximizes this probability.

The information gained on receiving the message Y = xj is given by the Kullback

divergence

D(P (xi|xj)||P (xi)) (2.53)

because eqn. (2.52) and P (X = xi) represent the receiver’s state of knowledge

after and before the observation, respectively. The average information gain can

be computed by averaging (2.53) over all possible observations, weighted by their

probabilities P (xj) =
∑

xi
P (xj|xi)P (xi):

E [D(P (xi|xj)||P (xi))]

=
∑

xj

P (xj)D(P (xi|xj)||P (xi))

=
∑

xj

P (xj)
∑

xi

P (xi|xj) (log (P (xi|xj)) − log (P (xi)))

29

=
∑

xj

∑

xi

P (xi, xj) log (P (xi|xj)) −
∑

xj

∑

xi

P (xi, xj) log (P (xi))

= −H(X|Y) + H(X)

= I(X; Y) (2.54)

In other words, the average amount of information transmitted through a noisy

channel is given by the mutual information between input and output. If the prior

distribution is chosen such that I(X; Y) is maximized for a given noise, then this

mutual information is called the channel capacity [82]. Moreover, it follows that

mutual information is also a measure for expected classification performance.

2.6 Approximation techniques

Thus far, Bayesian inference is a straightforward process: choose model(s), apply

sum & product rules, (eqn. (2.14) and eqn. (2.13)), get result(s). But the devil is in

the detail: evaluating integrals like (2.42), (2.47) or (2.46) is often very difficult, or

even infeasible (e.g. they involve numerical integrations over several hundred vari-

ables). This gave rise to the development of various approximation techniques, the

most important of which will now briefly be reviewed. For notational ease, the exam-

ples will consider only densities of one-dimensional variables θ, but generalizations

to ~θ ∈ IRm are possible.

2.6.1 Maximum likelihood (ML) and maximum a-posteriori

(MAP)

ML and MAP are the simplest approximations to Bayesian learning. In integrals

like (2.46), one might hope that the largest contributions to the expectation would

come from regions where the posterior density is high. Therefore, the location of its

maximum is used as an estimate of E [θ]. Since this location does not change when

the posterior is subjected to a monotonic transformation, it is customary to look for

the minimum of its negative log instead:

θ̄ = minθ − log (p(θ|D, M)) (2.55)

This is known as MAP, or maximum a-posteriori. Taking the logarithm has the

added avantage of increased numerical stability, because probability densities can

30

become very small, or be very sharply peaked. This may cause potential problems

with optimization techniques having a finite step size and accuracy, such as computer

implementations of gradient-based algorithms.

If the prior in eqn. (2.41) is uniform, finding the posterior maximum becomes

equivalent to finding the maximum of the likelihood p(D|θ, M), in which case the

technique is called ML (maximum likelihood). Both approaches suffer from several

deficiencies, the worst one probably being that they simply might not be good

approximations, if the posterior is not sharply peaked. Another drawback is their

noninvariance under transformations of variables [54]. Nevertheless, they are still

being used with some success in practical inference tasks, such as neural network

training.

2.6.2 Laplace approximation

Assume the posterior density (2.41) had only one maximum. Laplace approxima-

tion [31] replaces the true density with a second-order logarithmic approximation

centered at this maximum (located at θm):

log (p̃(θ|D, M)) ≈ log (p(θm|D, M)) +
1

2

∂2 log (p(θ|D, M))

∂θ2

∣
∣
∣
∣
θ=θm

(θ − θm)2 (2.56)

The first-order term of the expansion is zero, because θm is the location of an ex-

tremum. Since the approximative density p̃(θ|D, M) has to be normalized, the

zeroth-order term doesn’t matter either. Thus, setting − ∂2 log(p(θ|D,M))
∂θ2

∣
∣
∣
θ=θm

= 1
σ2

and inverting the logarithm on both sides, one finds that

p̃(θ|D, M) =
1

N(σ)
exp

(

−(θ − θm)2

2σ2

)

(2.57)

where N(σ) is the normalization constant. This is the well-known Gaussian distri-

bution [9] with N(σ) =
√

2πσ2.

Laplace approximation works well if the density in question is unimodal (i.e. has

only one maximum), reasonably symmetric, and fulfills the differentiability require-

ments necessary for the second-order expansion. Note that it is sufficient to know

a quantity proportional to the true distribution, because a factor only changes the

zeroth-order term. Thus, this method can still be applied when the normalization

constant is unavailable.

31

2.6.3 Monte-Carlo methods

Monte-Carlo (MC) methods are basically ways of inspired sampling. For example,

if the expectation of θ under the posterior is the quantity of interest, then one might

try to devise a procedure for drawing a (probably large) number N of samples θi,

and then compute

θ̄ =
1

N

N∑

i=1

θi (2.58)

as an approximation to the true expectation E [θ]. The variance of θ̄ then depends

only on the variance of θ and N, and not on the dimensionality of the problem.

This is a property which has contributed somewhat to the appeal of MC meth-

ods. The main problem, however, is the sampling. In the one-dimensional case,

there are various techniques: transformation method, rejection sampling [76] and

importance sampling [54] to name a few. What they all have in common is that

they won’t work well in higher-dimensional problems, either because they cannot

be generalized, or due to exponential scaling properties, i.e. the N (and thus, the

computational time) required until a representative sample of the density has been

collected grows exponentially with the dimensionality. This can be remedied by the

Metropolis algorithms [55] and refinements thereof, such as Gibbs sampling [57] and

slice sampling [59]. These approaches construct successive sample points via Markov

chains, hence they are often referred to as MCMC methods.

The current popularity of MCMC is probably due to their ability to generate

representative samples from virtually any density, which, in concert with the speedily

increasing performance of modern computers, avails one of the possibility to evaluate

very complex models, even if only approximately. In this thesis, however, they will

not be used (except for comparisons) and thus not be discussed in great detail. For

an excellent review, see [57].

2.6.4 Variational methods

The idea underlying variational methods is simple: if the true density p(θ|D, M) is

too complicated to handle, choose a more manageable density p̃(θ|~γ) and determine

~γ so that some suitable defined distance measure between the two is minimized

[45]. A common choice is the Kullback divergence D(p̃(θ|~γ)||p(θ|D, M)). Since

32

p(θ|D, M) is often so complex that it cannot even be normalized, it is replaced by

p(D|θ, M)p(θ|M), which differs from the posterior only by a factor p(D|M). The

objective function for the minimization therefore is

F =

∫

dθp̃(θ|~γ) log

(
p̃(θ|~γ)

p(D|θ, M)p(θ|M)

)

= D(p̃(θ|~γ)||p(θ|D, M)) − log (p(D|M)) (2.59)

which is also known as the variational free energy, due to a formal correspondence

with statistical thermodynamics, where similar techniques had been developed for

the description of complex systems [54]. Since the Kullback divergence is always

positive, F is an upper bound on − log (p(D|M)). This bound will be reached when

p̃(θ|~γ) is equal to the true posterior. Therefore, exp(−F) is an approximation to the

evidence for M .

If eqn. (2.59) is rewritten in a slightly different form

F = D(p̃(θ|~γ)||p(θ|M)) −
∫

dθp̃(θ|~γ) log (p(D|θ, M)) (2.60)

then an interpretation of Bayesian inference as a (meaningful) optimization problem

becomes apparent: the first term on the r.h.s. quantifies how much must be learned

to advance from the prior to the prospective posterior p̃(θ|~γ). The second term is

the expectation of the log likelihood under the prospective posterior. Thus, F will

be small if:

1. the posterior deviates little from the prior, i.e. most prior believes are main-

tained and

2. the log likelihood is large, i.e. the data are explained well.

Therefore we might say that Bayesian inference is the best compromise between

preserving what we know already and explaining new data as well as possible.

The main difficulty in applying a variational method to a problem lies in finding

a good form for p̃(θ|~γ). Once this has been accomplished, however, solutions can

usually be computed faster than via MCMC methods, even though the latter can in

principle give better results if one is prepared to be very patient.

It should be noted that there is another approach to variational inference [42]

which aims at computing upper and lower bounds on probabilities, which are then

minimized and maximized to find close approximations of the true distribution.

33

Chapter 3

Occam’s razor for factorial codes

3.1 Introduction

What is sparse coding and why is it interesting? As yet, there seems to be no unique

definition of sparseness, but a code is usually called sparse if most of its symbols are

unused in the encoding of a single given input. Translated into the terminology of

neural networks applied to the coding of images (or any other type of input), that

means that in the firing pattern which represents one image, only a few out of a

possibly large number of units are active.

The second requirement is that the code be evenly distributed, i.e. on average

every unit gets activated approximately equally often, such that each unit is inactive

for most inputs. For continuous-valued units, that means that the probability den-

sity function which describes the distribution of each unit’s output value is unimodal

with a sharp peak at zero. If this was not a necessary condition, then any code could

be ’sparsified’ by adding plenty of symbols (or units) to it which are never used.

These two requirements are also referred to [65] as population sparseness and

single-unit sparseness (or lifetime sparseness). It is important to note that they do

not necessarily imply each other: given that a code is sparse on a single-unit level, it

need not be sparse on a population level. Consider e.g. the extreme case where all

units behave like exact copies of one single unit: this code might exhibit single-unit

sparseness (even though its usefulness is questionable), but it would not fulfill the

requirement for population sparseness. Conversely, as stated above, adding plenty

of unused units to any neural code will induce population sparseness, but it would

fail to bring about single-unit sparseness. When examining a given neural code, it

34

is therefore important to test for the two types of sparseness separately.

Sparse codes are interesting for a number of reasons: Firstly, when data are coded

sparsely, subsequent classification tasks can be greatly simplified [11]. Since each

code symbol corresponds to some feature of the data and only a few of these features

are present in a given input [28], classification based on the presence or absence of

these features is likely to be easier than classification based on the original data. For

example, if one wants to determine whether a given picture shows a face or not, the

absence or presence of a nose will in most cases be sufficient information. Secondly,

when considering biological neural networks, the idea of ’load distribution’ across

the available hardware is quite an appealing one [34]. This load distribution could

also be achieved by a dense code (i.e. one where most units are participating in the

coding of an input), which would have the advantage of utilizing the full storage and

transmission capacity of a neural network. However, as argued in [30, 29], learning a

dense code is time-consuming and pattern recognition is slow as well. Furthermore,

if multiple inputs are presented simultaneously, then there is a good chance that a

sparse representation of these inputs will not overlap, and thus the inputs will still be

distinguishable. This would be much harder to achieve with a dense representation.

Thirdly, if the code is sufficiently sparse, it could also be used for data compression.

Building on a framework by Daugmann [16] and Pece [75], Harpur and Prager

[33, 34, 35] constructed a neural network, which they termed the REC model (see

fig. 3.1), capable of discovering sparsely distributed representations by using the

principle of redundancy reduction. This principle states that the mutual information

between code symbols should be as small as possible. Given a deterministic encoder

(i.e. no noise is produced in the coding process), the entropy of the data before and

after coding has to be equal, if no information is to be lost. If there is no mutual

information between code symbols, then the sum of their individual entropies will

be equal to the total entropy of the encoded data, otherwise their sum will be larger.

By applying downward pressure on the entropy of the units of the REC model while

requiring a faithful representation of the data at the same time, mutual information

between units will be ’squeezed out’ and the resulting code will hence contain little

or no redundancy.

One way of applying this downward pressure is to penalize high absolute values

35

of the units’ outputs, which will give rise to an output probability density that peaks

at zero. Hence the resulting code fulfills the first condition for sparseness. Whether

the second one is met as well depends on the structure of the data, but for natural

images this seems to be the case.

Olshausen and Field [63, 64] employed a similar technique for efficient coding of

natural images and showed how the resulting response functions of the units relate

to the properties of simple cells in the mammalian primary visual cortex.

In order to model the function of later stages of visual processing in mammals,

the activation patterns of this network could be used as an input to another one of

similar architecture. It would therefore be advantageous if these patterns could be

calculated fast. Moreover, not only speed but also accuracy would be an important

issue if the network was to be used in practical applications, such as image compres-

sion. In the following, the derivation of an algorithm will be presented which achieves

both goals with less computational effort than gradient descent based minimizers.

In addition, an extension to the REC model will be discussed, specifically ad-

dressing the problem of how to find the correct number of independent causes of the

data (here, ’causes’ stands for code symbols necessary to represent the data). The

resulting learning algorithm prunes all units which are not necessary for the coding,

i.e. which do not contribute significantly to the quality of the code. Sparseness

is promoted but not enforced, i.e. the code will only be sparse if the data allow

for it. An extension of this scheme so as to grow units, should the coding not be

satisfactory, is possible.

3.2 The network

The network (fig. 3.1) which was used here has a similar architecture to the REC

model proposed by Harpur and Prager [35]. It consists of M units, each of which

has N inputs, the receptive fields (RFs) for different units are fully overlapping.

The weight vector (of dimensionality N) for unit i is denoted by ~Wi, | ~Wi| = 1.

Unlike the original network interpretation of the REC model, this network has lateral

connections Lij = − ~Wi
~Wj , which are a consequence of the error function that is

being minimized when the network is activated (see (3.5) and (3.6)). Thus, when

the ~Wi change, the Lij do so accordingly. For a given input vector ~X, the output of

36

| | | |s s s

s s s&%
'$

&%
'$

&%
'$E

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������������������

������������������������������

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

b
b

b
b

b
b

b
bb

b
b

b
b

b
b

bb
b

b
b

b
b

b
b

b
b

b
b

b
b

b
bb

b
b

b
b

b
b

bb
b

b
b

b
b

b
b

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

X1 X2 X3

W11 WMN

O(A1) O(A2)

L1M

O(AM)

XN

Figure 3.1: A network interpretation of the REC model. X1, . . . , XN are the

input terminals. Each unit computes the output from its activation Ai via the

transfer function O(A). The symmetric and bidirectional lateral connections

are given by Lij = − ~Wi
~Wj .

a unit is given by

Oi = O(Ai) (3.1)

Ai = ~X ~Wi +

M∑

j=1,j 6=i

LijOj (3.2)

where Ai is the activation of unit i and O(A) (see fig. 3.2) is a piecewise linear

activation function with a dead-zone of width λi around 0, i.e.

−λi ≤ Ai ≤ λi : Oi = 0

|Ai| > λi : Oi = Ai − λisign (Ai) (3.3)

Here and in the following the sign () function is defined as

x > 0 : sign (x) = 1 (3.4)

x = 0 : sign (x) = 0

x < 0 : sign (x) = −1

37

-1 -0,5 0 0,5 1

A
-1

-0,5

0

0,5

1

O
(A

)

Figure 3.2: The units’ activation function for λi = 0.5

When an input vector is presented to the network, its outputs need to be determined

such that the equations (3.1) and (3.2) are fulfilled simultaneously for all units.

Harpur and Prager define an error function to measure reconstruction accuracy

and sparseness. The error function that governs the dynamics of this network is

similar, but a different λi was used for each unit which is determined by learning:

E =
1

2

(

~X −
M∑

j=1

~WjOj

)2

︸ ︷︷ ︸

Erecon

+

M∑

j=1

λj|Oj|
︸ ︷︷ ︸

Esparse

(3.5)

Erecon measures the reconstruction accuracy, and Esparse is the sparseness penalty. If

(3.1) and (3.2) are fulfilled for all units, then this error function assumes a minimum.

This can readily be seen by evaluating the derivate of E with respect to Oi (for a

detailed proof, see appendix A):

∂E

∂Oi

= − ~X ~Wi +
M∑

j=1

~Wi
~WjOj + λisign (Oi) (3.6)

If Oi 6= 0 at the minimum, then, by substituting (3.3) and (3.2) into (3.6) (noting

that in this case sign (Oi) = sign (Ai)), one finds that (3.6) vanishes, which is a

necessary condition for a minimum of a function with a continuous first derivative.

38

Here, it is a sufficient condition as well as 3.5 is always positive. Should the output

(at the minimum) be zero, however, then the minimum is located at a point where

(3.6) is not continuous. In this case it is sufficient to require that

lim
Oi→0+

∂E

∂Oi

> 0 and

lim
Oi→0−

∂E

∂Oi

< 0 (3.7)

which is fulfilled because
∣
∣
∣

∂E
∂Oi

∣
∣
∣
Oi=0

= |Ai| < λi. It is this discontinuity which gives

rise to the dead-zone of the activation function: Whenever the activation of a unit

is in the interval [−λi, λi], the minimum of the error function is located at Oi = 0.

The error function (3.5) is similar to that which governs the dynamics of a

Hopfield network [36, 37] and it can indeed be proven that when (3.1) and (3.2)

are used for asynchronous sequential (one unit at a time) updating of the network’s

outputs, that the minimum of E forms a stable attractor. The proof is similar to

that for an Hopfield network (see appendix B).

As the λi control the interval of activation in which the units are inactive, a unit

will not respond to any input should its λi become very large. It is then possible

to prune this unit without altering the code, since the code symbol it represents is

then never used.

3.2.1 Activation algorithms

Three different activation algorithms were compared with respect to their speed,

accuracy and sparseness of the resulting code. The employed sparseness measure

is given by the number of inactive units (i.e. units with zero output). This is a

suitable definition if the network is to be used for image coding and compression, as

the outputs of inactive units need not to be stored.

3.2.2 Gradient descent with clipping

The first algorithm that was tried was an extension of simple gradient descent.

Consider the case where Oi = 0 for some i at the minimum. As the sparsifier (i.e.

the sparseness-promoting penalty term λi|Oi|) is not differentiable at this point,

simple gradient descent would lead to oscillations in Oi around 0 with an amplitude

39

that depended on the chosen step size. In order to avoid this, it simply sets Oi = 0

whenever the absolute value of the corresponding activation |Ai| < λi.

A good starting point for the search is Oi = 0 ∀i = 1 . . .M because a large

fraction of the units can expected to be inactive at the minimum if the code is

sparse.

3.2.3 Sequential updating

The aforementioned similarity between the REC model and a Hopfield network

suggests to try an activation mechanism that works for the latter. Updating one

unit at a time according to

Anew
i := ~X ~Wi −

M∑

j=1,j 6=i

~Wi
~WjO

old
j (3.8)

Onew
i := O

(
Anew

i

)
(3.9)

Oold
i := Onew

i (3.10)

will always cause E to decrease or remain unchanged. Initially, it sets Ai = ~X ~Wi

and Oi = 0. Between two successive updates of one unit every other unit is reac-

tivated. This process is repeated until either the network settles down in a stable

configuration or a certain number of activation cycles is completed. Note that this

algorithm does not require a choice of step size, which is a potential advantage. For

a proof of convergence, see appendix B.

3.2.4 Quadratic programming

The error function 3.5 is quadratic in the Oi. Hence, quadratic programming tech-

niques [25] can be employed for the minimization. These algorithms require a con-

tinuous first derivative of the function under consideration and converge to a point

where the gradient vanishes. As S(Oi) = |Oi| is not differentiable at Oi = 0, the

minimum will not be found if it is located at a point where some of the Oi = 0.

As mentioned above, in order to identify a minimum the gradient doesn’t need to

vanish, it is sufficient to require that conditions 3.7 hold. Lets assume it was already

known that ∀i ∈ I0 = {i1, . . . , iK} : Oi = 0 and ∀i ∈ I1 = {iK+1, . . . , iM} : Oi 6= 0,

I0 ∩ I1 = ∅, I0 ∪ I1 = {1, . . . , M}. The sets I0 and I1 contain the indices of all

40

inactive and all active units, respectively. The minimum with respect to the M −K

non-zero activations ~̂O =
(
OiK+1

, . . . , OiM

)T
would then be determined by setting

the gradient of E with respect to these activations to zero, yielding

A ~̂O = ~b − λ ~s (3.11)

where A =
(

~WiK+1
, . . . , ~WiM

)T

·
(

~WiK+1
, . . . , ~WiM

)

, ~b =
(

~WiK+1
, . . . , ~WiM

)T

· ~X

and ~s = (siK+1
= sign

(
OiK+1

)
, . . . , siM = sign (OiM))T . The sign (x) function is here

defined as

sign (x) =







1 : x ≥ 0

−1 : x < 0
(3.12)

Of course, it is not a priori clear, which Oi will be zero and which will not.

Thus, an iterative procedure has to be employed that produces configurations of I0

and I1 and terminates, when a configuration is consistent with conditions 3.7 and

3.11. A good initial guess is I1 = ∅, because, as mentioned above, quite a large

fraction of the Oi will be zero at the minimum. Putting all these considerations

together leads to the following algorithm (in step 2, a simplification to the general

quadratic programming algorithm was used as the Oi are decoupled with respect to

the constraints) :

41

1. Set K = M , I0 = {1, . . . , M}, I1 = ∅

2. Determine the minimum ~̂O =
(
OiK+1

, . . . , OiM

)T
of E (eqn. 3.5) subject

to the constraints ∀i ∈ I0 : Oi = 0 and ∀i ∈ I1 : (sign (Oi) = si ∨ Oi =

0) using a simplified version of the active set quadratic programming

technique [25].

3. Update I0 → I0 ∪ {i|Oi = 0 ∧ i ∈ I1} and I1 → I1 \ {i|Oi = 0 ∧ i ∈ I1}.
Update ~̂O and ~s by removing all the components that have become 0.

4. Calculate

σ = max
i∈I0

(
sign

(
z+

i

)
· sign

(
z−i
)
min(|z+

i |, |z−i |)
)

(3.13)

where z+
i = limOi→0+

∂E
∂Oi

and z−i = limOi→0−
∂E
∂Oi

. If σ > 0, then con-

dition (3.7) is violated and the corresponding Oi 6= 0 at the minimum.

Thus, update I0 → I0 \ {Oi}, I1 → I1 ∪ {Oi}, decrement K by one, add

a component to ~̂O and ~s → (~s| − sign
(
z+

i

)
) and goto step 2.

5. Return ~̂O, I0, and I1.

6. End.

3.3 Learning

The learning process is best understood if the network is viewed as generator of

the data. For a given configuration of network parameters ~O = (O1, . . . , ON), ~λ =

(λ1, . . . , λN) and W = (~W1, . . . , ~WN) the probability that it produces the output ~X

is assumed to have Gaussian density, since this is the maximum entropy density for

random noise with fixed variance:

p(~X| ~O,~λ,W) =
1

√
2π

N
exp



−1

2

(

~X −
M∑

j=1

~WjOj

)2


 (3.14)

The prior probability density for the outputs is a product of exponential distributions

(this is a consequence of the linear sparsifier):

p(~O|~λ,W) = ΠM
j=1

λj

2
exp(−λj |Oj|) (3.15)

42

i.e. the outputs are assumed to be mutually independent. Multiplying (3.14) with

(3.15) yields the probability for ~X and ~O given ~λ and W, its negative logarithm

− ln(p(~X, ~O|~λ,W)) =
1

2

(

~X −
M∑

j=1

~WjOj

)2

︸ ︷︷ ︸

Erecon

+
M∑

j=1

λj |Oj| −
M∑

j=1

ln(λj)

︸ ︷︷ ︸

Esparse

+
N

2
ln(2π)

(3.16)

is the quantity that is being minimized when the network is activated, as it is (except

for contributions that do not depend on the outputs) equal to (3.5). The outputs

that minimize (3.16) for input vector ~Xr will be denoted as ~Or in the following.

For a given training set of examples X = (~X1, . . . , ~XR), ~λ and W are then

determined by minimizing

Etot = E [Er]X = −E
[

ln
(

p(~Xr, ~Or|~λ,W)
)]

X
(3.17)

subject to the constraint

| ~Wi| = 1 (3.18)

The average is performed over all examples in the training set. Stochastic gradient

descent (a variation of simple gradient descent where the examples are presented

in random order) was used to carry out the minimization, the necessary derivatives

are:

∂Er

∂λi

= |Or
i | −

1

λi

(3.19)

∇ ~Wi
Er = −

(

~Xr −
M∑

j=1

~WjO
r
j

)

Or
i (3.20)

As can be seen in (3.19), the derivative of Er with respect to λi consists of two

terms. The first term pulls (when gradient descent is performed) λi towards smaller

values, the second term pulls towards higher ones, the stronger, the smaller λi is.

This is where the pruning arises: If a unit hardly ever has an Oi 6= 0, the second part

of (3.19) will dominate and λi will grow boundlessly. Hence, the unit will not get

activated at all and can be pruned. For numerical stability and model comparison

purposes (see discussion below), an upper bound on λi was imposed. The precise

value of this bound is not critical, as long as it’s high enough (say e.g. 102) to

guarantee that the unit does not get activated once its λi has grown to this value.

43

A lower bound on λj has to be imposed as well to make sure that it does not

become negative, in that case p(~X, ~O|~λ,W) would no longer be a probability density.

The assumption of mutually independent outputs in (3.15) might seem invalid,

especially at the early stages of learning. However, Harpur and Prager argued in

[35] that a factorial form of the prior probability in conjunction with a suitable

constraint on the overall output entropy (here given by the quadratic part of E

which measures the quality of reconstruction) will eventually give rise to a factorial

posterior probability of the outputs.

3.4 Results

3.4.1 Comparison of activation algorithms

Natural image data were used to compare the performances of the three activation

algorithms, so as to determine which one would be preferable in practical appli-

cations of the network. The results in this section were partly presented on the

ICANN99 conference (see [20]). Here, the λi were not adjusted according to 3.19 in

the course of learning, but held fixed at a value of 0.5. This due to the fact that at

this stage the pruning framework had not been developed.

The quadratic programming algorithm was used as a benchmark for the other

two methods since the computational time it needs to terminate cannot be adjusted.

On the computer which was used for the simulations (a Silicon Graphics worksta-

tion) it took between 0.44 s (at the beginning of training) and 0.034 s (towards the

end of training) to converge, 0.074 s on average. This considerable time difference

is due to the fact that it will generally converge faster if the code is sparser. Both

the gradient descent as well as the sequential updating algorithms require always

the same amount of time per step. The average convergence time allowed for ap-

proximately 38 gradient steps or 33 complete cycles of sequential updating, after

which these two activation methods were terminated, regardless of whether they

had converged to their final fixed points or not.

Table 3.1 shows the averaged squared reconstruction error per pixel and the

average fraction of active units per example after training with 40000 examples.

44

activation method reconstruction error fraction of active units

gradient descent 0.031 0.18

sequential updating 0.030 0.11

quadratic programming 0.030 0.11

Table 3.1: Comparison of activation algorithms after training with 40000 ex-

amples w.r.t. the reconstruction error per pixel and the fraction of inactive

units per example. Averages computed over 100 examples. For details, see

text.

Quadratic programming and sequential updating produce codes which are almost

equally sparse, whereas gradient descent does not do quite as good: For a given

patch, it leaves ≈ 1.6 times as many units activated as the other two. Yet the

average reconstruction errors per pixel are comparable.

As quadratic programming and sequential updating seem to do equally well, one

might wonder why one would want to implement the former, which is much more

complicated. The answer is that is about twice as fast (0.034 s compared to 0.074 s

in this case) once the basis vectors have converged. Thus, if one wants to use this

network in practice, quadratic programming seems to be the preferable choice of

algorithm.

The runtime of the quadratic programming method appears to scale with the

number of active units, whereas sequential updating scales with the number of units

in the network. Thus, one would expect the gain of the former over the latter to

increase with the network size, providing that the number of units used to encode a

given input remains the same.

3.4.2 Pruning

The network was first tested on an artifical data set created by a fixed network

of similar architecture. Although this ’teacher/student’ scenario might seem rather

contrived, it is quite useful for determining whether the learning algorithm works as

desired. The teacher network had M = 3 units with N = 9 outputs, the units were

randomly activated with a probability distribution given by (3.15). Its weights were

45

normalized random vectors. The student had initially N = 9 units with M = 9

inputs, it was activated using the quadratic programming technique. After training

on 100000 examples with a learning rate of 0.002 for the weights and 0.0002 for the

~λ, the algorithm had pruned six units. This difference in the learning rate is due to

the fact that the weights have to be stationary in comparison to the λ adaptation

process for good results. At the present time, upper bounds for the learning rate

have not been determined. The remaining three related to the units of the teacher

as shown in the table below. Here, ~W t
i
~W s

i is the overlap of the i-th weight vector of

the teacher with the corresponding vector of the student. The student’s units were

sorted for maximum overlap with the teacher.

unit 1 2 3

teacher λi 0.10 0.15 0.20

student λi 0.10 0.16 0.21

~W t
i
~W s

i 0.99 0.98 0.98

Both the weights and the ~λ model the teacher’s parameters fairly well.

Secondly, the algorithm was run on image data. Training was performed on

43 natural images (people, natural scenes etc.), each image patch was individually

normalized to zero mean and unit variance. Each unit had a RF of 13 × 13 pixels,

the fields were fully overlapping. Initially, the network had 169 units, all λj were

set to 0.5. After training on 200000 examples with a learning rate of 0.005 for the

weights and 0.0005 for the ~λ (here, a λi was only updated when the corresponding

Oi 6= 0, which turned out to give better reconstruction), the algorithm had pruned

31 units (a unit was considered inactive if it’s mean activation was smaller than

0.01).

In fig. 3.3 a picture, which was not part of the training set, and its reconstruction

are shown. Although the code is highly sparse on a population level (only ≈ 11%

of the units are active for a given patch), the reconstruction resembles the original

still fairly well. Numerically speaking, the code accounts for about 95% of the data

variance.

Figure 3.4 shows the evolution of the average total error, the average reconstruc-

tion error and the sparseness penalty (see eqn. (3.16)) in the course of training.

Note that Erecon is not monotonically decreasing: there is a minimum at ≈ 5000

46

Figure 3.3: A picture (left) and its reconstruction (right).

examples, then it increases until ≈ 95000 examples. However, Esparse is decreas-

ing in that range, such that the total error E is also decreasing. This highlights

the fact that the network is not just trying to minimize the reconstruction error,

but seeks to achieve a compromise between good reconstruction and sparseness, as

defined by eqn. (3.5). Consequently, stopping after ≈ 5000 examples, when a min-

imum of Erecon is reached, would not be conducive to the overall goal of learning a

representation of the data which is both faithful and sparse.

3.4.3 Overcompleteness

It is well established that V1 contains significantly more cells than it receives inputs.

While ratios differ between 25:1 [62] and 100:1 [24], there certainly is a consensus

that the factor is (a lot) greater than one. In [65], the authors conjectured that

this increase of code elements is used to re-represent the visual input in a sparser,

overcomplete form. A code is said to be overcomplete whenever the number of code

elements exceeds the number of possible values of the quantity to be encoded. In

the case of the network used here, that means that the number of basis vectors M

is greater than the number N of pixels in each unit’s RF.

To determine the network’s behavior in the overcomplete case, it was trained on

examples drawn from natural images. Each example was individually normalized

to zero mean and unit length. Furthermore, the λi were held constant at 0.5 and

pruning was not applied to force the network into developing an overcomplete code.

47

0 50000 1e+05 1,5e+05
examples

0

100

200

E

0,1

0,2

E
re

co
n

0

0,4

0,8

E
sp

ar
se

Figure 3.4: Evolution the sparseness penalty (see eqn. (3.16)) per basis vector

Esparse

M
(top graph), the reconstruction error per pixel Erecon

N
(middle graph)

and the total error E (bottom graph) in the course of training. All values

averaged over 2000 examples.

The learning rate was initially set to 0.005, and gradually reduced to 0.0005 in the

second half of training. This was found to be necessary to get the basis vectors to

converge in the overcomplete case.

Table 3.2 shows the degree of overcompleteness (i.e. the factor k such that

M = k × N), the number of training examples, the average squared reconstruction

error per pixel and the average fraction of active units per example. All networks

had RFs consisting of 13x13 pixels. The fraction of active units per example can

be regarded as a measure for population sparseness, which appears to be roughly

inversely proportional to the degree of overcompleteness. The average squared recon-

struction error per pixel decreases with increasing overcompleteness as well, which

is an indication that the added units are actually used by the network, i.e. the code

is not only sparse on a population level, but also on a single-unit level.

Stronger evidence of single-unit sparseness development can be seen in fig. 3.5,

which shows the average output E [|Oi|] per example for each unit in the 4x over-

48

overcompleteness training examples rec. error fraction of active units

complete 200000 0.037 0.16

2x 400000 0.026 0.077

4x 1600000 0.021 0.041

Table 3.2: Comparison of network performances for different degrees of over-

completeness. All networks had RFs with N = 169, i.e. 13x13 pixels. Over-

completeness is the factor between N and the number of units M , ’complete’

means M = N . Shown are the number of training examples, the average

squared reconstruction error per pixel, and the average fraction of active units

per example, which is a measure for population sparseness. Averages computed

over 2000 examples.

complete network. In the early stages of training, population sparseness is increased

by decreasing each unit’s average output (red line vs. dashed green line). Lateron,

single-unit sparseness is developed by distributing the average outputs more evenly

across the units (dashed green line vs. black line).

The resulting RFs for a 4x overcomplete network are shown in fig. 3.6. They are

qualitatively similar to the pruned, complete and 2x overcomplete RFs: many are

localized, and virtually all are oriented.

49

0 100 200 300 400 500 600 700
unit number i

0

0,1

0,2

0,3

0,4

0,5

0,6

|O
i|

start of training
intermediate
end of training

Figure 3.5: Average output E [|Oi|] per example for all units of the 4x over-

complete network at the beginning of training (red line), after 20000 examples

(dashed green line) and at the end of training (black line, 1600000 examples).

For each curve, the units were ordered descendingly by E [|Oi|], thus the unit

numbers i differ between curves. In the early stages of training, population

sparseness is increased by decreasing each unit’s average output. Lateron,

single-unit sparseness is developed by distributing the average outputs more

evenly across the units.

50

Figure 3.6: The basis vectors of a 4 times overcomplete network after 1600000

examples. The vectors are ordered from top left (greatest E [|Oi|]) to bottom

right (smallest E [|Oi|]) and the grayscales are individually normalized.

51

0.0083 0.077 0.16 0.17 0.24 0.26

accept reject

Figure 3.7: Each image represents a RF (left half) from the 2x overcomplete

network and the fitted Gabor function (right half). Below the images are the

corresponding fit errors. Fits with an error smaller than 0.17 were accepted,

the rest was rejected.

3.4.4 Quantitative comparison to V1 data and the genera-

tive model by Olshausen & Field

For a more quantitative comparsion of the learned RFs, Gabor functions

g(xr, yr, σx, σy, λ, φ) = exp

(

− x2
r

2σ2
x

− y2
r

2σ2
y

)

cos
(

2π
xr

λ
+ φ
)

(3.21)

xr = (x − x0) cos(θ) + (y − y0) sin(θ) (3.22)

yr = −(x − x0) sin(θ) + (y − y0) cos(θ) (3.23)

were least-square fitted to the RFs. x, y are the coordinates within a RF, x0, y0

are the origin coordinates of the gabor function, θ is the rotation angle between

the coordinate systems of the RF and the gabor function, σx, σy are the standard

deviations of the Gaussian envelope in xr and yr direction, λ is the wavelength and

φ is the phase angle. Gabor functions have long been regarded as models for RFs

of simple cells from V1 [44].

The majority of the RFs could be fitted well by Gabor functions, there were

however a number of cases in which no good match could be found. The fit error

limit Elim for acceptance/rejection was determined by visual inspection of the RFs

(normalized to unit length) and fitted Gabors of the 2x overcomplete network. As

illustrated in fig. 3.7, Elim = 0.17 was found to be a reasonable value.

Furthermore, the generative model described in [63, 64, 66] and, in a similar

52

form, in [50], which will be called the OF model in the following, was trained on the

same images for comparison. The OF model is similar to the one described in this

thesis, except for the sparsifier (Esparse of eqn. (3.5)), which is now

Esparse = λi log
(
1 + O2

i

)
(3.24)

In [66], the authors trained their network on whitened natural images. Due to the

statistical structure of natural images, whitening essentially boosts spatial frequency

components in the mid to upper range. Since it was found in [77, 62] that the RFs of

[66] overrepresent higher spatial frequencies (as compared to V1 RFs from macaque

monkeys), I decided to work with non-whitened images. The λi were all set to 0.5.

network # accepted # rejected

pruned 135 3

complete 168 0

2x overcomp. 318 20

4x overcomp. 542 143

OF complete 156 13

OF 2x overcomp. 223 115

Table 3.3: Number of accepted and rejected Gabor fits (Elim = 0.17) for each

of the tried networks.

Table 3.3 shows the number of accepted and rejected Gabor fits for each of the

tried networks. The OF network was not tested in a 4x overcomplete scenario,

because I could not find a parameter setting which would lead to convergence of the

basis vectors. The fraction of rejected fits increases with overcompleteness, at the

current time it is not clear why this should be so and whether it could be remedied.

Spatial frequency distribution and aspect ratios

In neurophysiological experiments, spatial frequency is usually measured in cy-

cles/degree. Since it is not sensibly possible to translate pixels into degrees, I chose,

like [77], to compute the scale-free quantity

nx =
σx

λ
(3.25)

53

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 >0.8
cycles/std.dev.

0

0,1

0,2

0,3

0,4

fr
ac

tio
n

of
 u

ni
ts

macaque V1
complete
2x overcomplete
4x overcomplete
OF complete
OF 2x overcomplete
pruned

Figure 3.8: Spatial frequency distribution of the RFs of the tried networks

compared to RFs from macaque V1 from [77]. The nx = σx

λ
(see eqn. (3.21))

were binned into 9 bins, the first eight of which had a width of 0.1 and their

centers located at the points indicated at the abscissa. The last bin contained

all observations > 0.8.

where σx is the standard deviation of the Gaussian envelope of the Gabor function

in xr direction and λ is its wavelength (see eqn. (3.21)). This quantity measures

the number of cycles (of the cosine part of the Gabor function) that fit into one

standard deviation σx.

The distributions of nx for the different networks, along with data from macaque

V1 from [77], are plotted in fig. 3.8. All networks’ nxs are found largely in the same

range as the macaque V1 data, but the peak at 0.25 is reproduced by neither of

them.

Table 3.4, second and third column, lists the average nx and their standard errors.

Cat V1 data were obtained from [44]. My network’s average values (complete, 2x

and 4x overcomplete) are closer to macaque V1 than cat V1, the 4x overcomplete

network matches the macaque V1 value within one standard error. The OF network

veers towards the cat V1 value, the 2x overcomplete one is within a standard error

54

network avg. nx std.err. nx avg. AR std.dev. AR

pruned 0.547 0.013 1.36 0.40

complete 0.253 0.011 1.67 0.19

2x overcomp. 0.316 0.012 1.25 0.35

4x overcomp. 0.2985 0.0090 1.42 0.13

OF complete 0.396 0.017 1.69 0.48

OF 2x overcomp. 0.436 0.014 2.04 0.65

macaque V1 0.284 0.016 1.35 0.18

cat V1 0.479 0.037 1.62 0.73

Table 3.4: Second and third column: average cycles per standard deviation nx

of the fitted Gabor functions and their standard errors. Fourth and fifth col-

umn: average aspect ratio (AR) and standard deviation, computed by fitting

a line through the origin of a σx, σy (see eqn. (3.21)) scatterplot. Standard de-

viation of the aspect ratio was calculated from the unexplained variance after

the fit. Macaque V1 data from [77], cat V1 data from [44].

of cat V1 data. The pruned network’s nxs are significantly higher.

The fourth and fifth colum of table 3.4 show the average aspect ratios (AR) and

their standard deviations of the fitted Gabor functions, computed by fitting a line

through the origin of a σx, σy (see eqn. (3.21)) scatterplot1. The standard deviation

of the aspect ratio was calculated from the unexplained variance after the fit. The

4x overcomplete network, as well as the pruned one, are the closest matches for the

macaque V1 data, whereas the complete OF network shows the smallest difference

to cat V1. However, given the large unexplained variances, it is not possible to make

a definite statement at this time. What can be said with some certainty is that all

networks produce average aspect ratios in the same range as those found in V1.

1In a number of instances, σy of the best fit was found to be much larger than the radius of the

RF, e.g. when the RF contained a single edge that ran across it. In those cases, the variation of the

fit error w.r.t. σy was also very slight whenever σy was greater than the radius of the RF, making

it impossible to determine a single best σy . These Gabor fits were excluded from the aspect ratio

analysis.

55

Position tiling and rotation angle distribution

Figure 3.9, top, shows the spatial tiling. Each symbol represents the center coordi-

nates x0, y0 (see eqn. (3.21)) of one fitted Gabor function. The black box outlines

the boundaries of the RF. Most Gabor centers lie within the RF. The distribution

inside the RF appears largely uniform, with the 4x overcomplete network exhibiting

a weak central tendency. The distribution becomes denser with increasing over-

completeness, i.e. position space is more evenly covered as units are added to the

network. The spatial tiling of the OF network exhibited the same characteristics.

In fig. 3.9, bottom, the distribution of the rotation angle θ is plotted. All

network show a tendency towards horizontal and vertical orientation. This might

be the result of a bias from the dataset used for training.

56

-5 0 5 10 15 20
x [pixels]

-5

0

5

10

15

20

y
[p

ix
el

s]

2x overcomplete
4x overcomplete
complete

-10 -8 -6 -4 -2 0 2 4 6 8 10
rotation angle Θ in π/22 rad

0,05

0,1

0,15

0,2

fr
ac

tio
n

of
 u

ni
ts

complete
2x overcomplete
4x overcomplete
OF complete
OF 2x overcomplete
pruned

Figure 3.9: Top: position tiling. Each symbol represents the center location

x0, y0 of a fitted Gabor function (see eqn. (3.21)). The black box outlines the

boundaries of the RF. Bottom: Distribution of rotation angles θ ∈ [−π
2
, π

2
].

Each bin had a width of π
11

, the bin center values are plotted on the abscissa

in units of π
22

.

57

Spatial phase distribution

π/24 3π/24 5π/24 7π/24 9π/24 11π/24
phase φ[rad]

0

0,1

0,2

0,3

0,4
fr

ac
tio

n
of

 u
ni

ts
macaque V1
complete
2x overcomplete
4x overcomplete
OF complete
OF 2x overcomplete
pruned

Figure 3.10: Spatial phase distribution of the networks compared to macaque

V1 data from [77]. The phase angles φ were first mapped onto the interval

[0, π
2
], then binned into 6 bins, each of which had a width of π

12
. The values on

the abscissa denote the bin centers. For details, see text.

The spatial phase distributions of the networks are compared to V1 data in fig.

3.10. Prior to binning, the phase angles φ were transformed into the interval [0, π
2
]

via the following symmetries of the cosine part of eqn. (3.21) [77]:

g(xr, yr, σx, σy, λ, φ) = g(xr, yr, σx, σy, λ, φ + 2π) (3.26)

g(xr, yr, σx, σy, λ, φ) = −g(xr, yr, σx, σy, λ, φ + π) (3.27)

g(xr, yr, σx, σy, λ, φ) = −g(−xr, yr, σx, σy, λ, π − φ) (3.28)

Eqn. (3.26) follows from the periodicity of the cosine function, and allows for a

mapping of φ onto the interval [0, 2π] without changing the RF. Eqn. (3.27) states

that φ can always be chosen within [0, π] if sign changes are ignored. Since sign

changes do not alter the basic shape of the RF, this transformation can be applied.

Finally, a further restriction of φ on the interval [0, π
2
] is possible via eqn. (3.28)2,

2Eqn. (3.28) can be derived using cos(π
2

+ α) = − sin(α) = sin(−α) = −(− sin(−α)) =

58

if RF differences attributable to mirror symmetries around the xr-axis are also dis-

carded. The remaining information in φ is then the phase relative to the xr origin,

i.e. RFs with φ close to 0 have even symmetry and may be thought of as ’line

detectors’ (σy ≫ σx) or ’blob detectors’ (σy ≈ σx), whereas RFs with φ ≈ π
2

have

odd symmetry, thus these units are responsive to edges.

As can be seen in fig. 3.10, simple cells in macaque V1 tend towards the extremes

of the phase angle. In contrast, the complete network learns mostly edge detectors.

This trend is less pronounced in the 2x overcomplete network, and is reversed in

the 4x overcomplete one. The phase angle distribution of the complete OF network

reproduces the peaks at φ = 0 and φ = π
2
, but the 2x overcomplete OF network has

mostly RFs with even symmetry.

network edge/line ratio

pruned 0.71

complete 3.54

2x overcomp. 1.01

4x overcomp. 0.84

OF complete 0.52

OF 2x overcomp. 0.33

macaque V1 0.81

Table 3.5: Ratios of edge vs. line detectors for the different networks and

macaque V1 [77]. Values computed by dividing the sum of the last two bins

in fig. 3.10 by the sum of the first two bins.

For further comparsion, table 3.5 lists the ratios of edge vs. line detectors of

the different networks. These values are the quotients of the sums of the last two

bins of fig 3.10 and of the first two, i.e. the number of RFs with φ ∈ [8π
24

, π
2
] divided

by the number of RFs with φ ∈ [0, 4π
24

]. The pruned network’s ratio is comparable

to the macaque V1 value. The complete, 2x and 4x overcomplete networks tend

towards the macaque V1 ratio with increasing overcompleteness. In contrast, the

OF network seems to move away from it.

− cos(π
2
− α).

59

3.5 Discussion

The presented algorithm has two main features: Firstly, it learns a sparse code

when the data allow for it (e.g. natural pictures) and a non-sparse code otherwise,

as in the case of the teacher/student scenario. Secondly, it is able to determine the

number of units necessary for good coding. In general, a code will be called ’good’

if the mutual information between the data and the code is high. A simple way

of promoting this, as proposed here, is to include the reconstruction error in the

error function. Furthermore, for reasons of limited bandwidth of transmission lines

and/or limited storage space, codes are often required to contain as little redundancy

as possible, or, in terms of information theory, the entropy of the data after coding

should be minimized. One way of achieving this is ensuring that the code alphabet

contains only as many letters (here: units) as needed, and that each letter’s entropy

is low. The algorithm reaches the second goal by assuming a prior probability for the

units which is peaked around zero and the first goal through pruning unnecessary

units. The pruning process is an approximate form of Bayesian model comparison

(see section 2.5.1 and[53]). One is looking for the model with the highest posterior

probability:

p(M,~λ,W|{ ~X}) =

∫

d ~Op(~O, M,~λ,W|{ ~X)} (3.29)

Where { ~X} denotes the set of all input vectors and M is the number of units. The

integrand on the right hand side can be rewritten as

p(~O, M,~λ,W|{ ~X}) =
p({ ~X}| ~O, M,~λ,W)p(~O|M,~λ, ~W)p(M,~λ,W)

P ({ ~X})
(3.30)

The term p({ ~X}| ~O, M,~λ,W) is the likelihood of the data set, which in my case

is the product of the individual likelihoods (3.14) of each example, p(~O|M,~λ, ~W)

is the prior of the activations (3.15) and p(M,~λ,W) is the model prior. As one

prefers models with a small number of units, each unit can be assigned a cost, or,

in Bayesian terms, a prior probability. There is neither an upper nor a lower bound

for the number units a priori, so a good assumption would be that the total prior

probability for M units is proportional to the prior probability Pu for a single unit

to the M-th power, i.e. the more units, the more unlikely the model. There is,

however, no a priori preference for any values of the λi nor for the ~Wi (except that

they be normalized), hence the model prior is equal to P M
u except for a normalization

60

constant. The part of the density (3.30) which is relevant to learning (P ({ ~X}) does

not depend on the model parameters) can then be rewritten as:

p(~X| ~O, M,~λ,W)p(~O|M,~λ, ~W)P (M) (3.31)

When, in the course of learning, a unit turns out to be never (or at least hardly

ever) activated, its contribution to the likelihood of the data will vanish, whereas it

still reduces the posterior probability of the model by its presence alone (because

P M
u < P M−1

u) . Thus, pruning this unit increases the probability of the model.

However, the above presented comparisons indicate that pruning, at least in the

form presented here, does require future refinement. In several instances (spatial

frequency, aspect ratio and edge/line ratio) it was the 4x overcomplete network

which provided RFs whose properties were closest to those of macaque V1 RFs. It

would seem necessary to invest more research effort into an exact Bayesian learning

scheme for the λi, or at least into a better approximation than the one presented here.

Something to that end, albeit for learning the basis vectors, has been undertaken in

[50]. Moreover, the prior over the λi, which is in my approximation assumed to be

uniform, should also be reconsidered.

The OF network’s RFs are generally more dissimilar to macaque V1 RFs than

those of my network, but in two cases (spatial frequency and aspect ratio) they seem

to be reasonably close to cat V1, which was also reported in [63, 64].

The observed convergence acceleration of the inner loop (i.e. the pattern recog-

nition process) towards the end of learning also emphasizes an important property

of sparse codes. Neurophysiological evidence suggests that the visual system of pri-

mates does not spend much time on having feedback loops converge. Indeed, it has

been argued that there might be hardly any recurrent connections participating in

the generation of a representation of an image in area STS [69]. If the neural code

was dense, convergence could potentially take very long, because many units have

to ’agree’ on a joint stable state, with each neuron contributing some output. In

contrast, in the sparse case, only a few units take part in this competition, and

therefore, convergence is faster.

61

3.5.1 The relationships between sparseness, overcomplete-

ness, independence and redundancy reduction

As already mentioned in section 3.1, single-unit sparseness does not necessarily

imply population sparseness. However, the former can be a sufficient condition for

the latter if combined with the requirement of statistical independence amongst the

code elements: given that each code element has a probability p ≪ 1 of being used in

the encoding of an input (i.e. the code is sparse on a single-unit level), and assuming

that the code elements are independent (i.e. no redundancy between them) of each

other, then the distribution of active units is binomial [9]. Hence, the fraction of

active units per input would be

fa =
N(active)

N
=

Np ±
√

Np(1 − p)

N
= p ±

√

p(1 − p)

N
(3.32)

i.e. population sparseness results, because p ≪ 1 by assumption and the standard

deviation vanishes as N → ∞.

The same reasoning can be used to demonstrate that independence alone implies

neither form of sparseness. Assume p = 0.5 and independence. Thus, the code is

not sparse on a single-unit level. Furthermore, fa = 0.5 ±
√

0.5
N

, i.e. no population

sparseness with certainty as N → ∞.

Population and single-unit sparseness together don’t imply independence: as-

sume a variable X could take on the values {1; 2; . . . ; M} with equal probability

p. A given instance of X is now encoded into a binary vector ~Y = (y1; . . . ; yM) in

such a way that ym = 1 for X = m and all other components 0. Then, if M is

large enough, the code will be sparse on a single-unit level, because p = 1
M

. It will

also be population sparse, because exactly one unit is active for any given input.

Because of this property, however, the code elements (i.e. the components of ~Y) are

not independent: the probability that two of them are active at the same time is 0,

whereas p2 > 0. It therefore also follows that population sparseness or single-unit

sparseness alone are not sufficient to imply independence.

The aforementioned X → ~Y coding scheme is overcomplete: ~Y could potentially

represent 2M different X, but only M are possible. Hence, overcompleteness doesn’t

necessarily promote independence. While one may be fairly confident that it will in-

crease population sparseness, it might not help towards single-unit sparseness: imag-

62

ine ~Y was extended so as to have K > M components, with ∀K ≥ m > M : ym = 0.

Then, population sparseness would have increased, but not single-unit sparseness,

because the activation probability for the ym would no longer be as evenly dis-

tributed as in the case K = M . This observation emphasizes the need for a good

pruning scheme: from a sparseness perspective, there seems to be an optimal degree

of overcompleteness, its (sensible) maximum is reached when additional units can-

not increase the mutual information between input and output. Overcompleteness

may be beneficial to independence under certain conditions: consider the teacher-

student scenario from section 3.4.2, and assume the teacher network had only N = 2

outputs, but M = 9 units. If the student network was to learn an independent code

for these outputs, it would likewise have to have M = 9 units, i.e. it would be over-

complete. I would therefore conclude that the question whether overcompleteness

and independence together are sensible coding goals cannot be answered a priori,

rather, the answer depends on the data.

63

3.6 Asymmetric noise: a sparseness-promoting fac-

tor

The above presented arguments (section 3.1) in favor of sparse coding focus on the

noiseless case. In a real brain, however, this is an unlikely situation. Information

transmission through and processing in biological neurons is fraught with uncertain-

ties. The employed coding schemes should reflect this fact, if optimal use is to be

made of the available hardware.

As detailed in section 2.5.3, mutual information is a measure for the quality

of the code, i.e. I(~X; O1, . . . , OM) quantifies how much information the network’s

outputs contain about the input vector on average. If the code is factorial, and

the units’ noises are mutually independent given the input, then, by virtue of eqn.

(2.26)

I(~X; O1, . . . , OM) = H(O1, . . . , OM) − H(O1, . . . , OM | ~X)

=

M∑

i=1

H(Oi) −
M∑

i=1

H(Oi| ~X)

=
M∑

i=1

I(Oi; ~X) (3.33)

Hence, if one is looking for the optimal code under these conditions, then one can

study one unit at a time. To keep things simple, only binary units are considered,

i.e. they can transmit either 0 (inactivity) or 1 (firing). The encoding process can

then be decomposed into two steps: first, a deterministic mapping from the input to

the ’true’ Õi is performed. This mapping is assumed to be information-preserving,

i.e. ~X can be reconstructed from the Õi. Second, the Õi are distorted by noise to

yield Oi (see fig. 3.11), resulting in some 0s being turned into 1s (with probability

q) and vice versa (with probability p). The scenario of the second step is widely

know as ’the binary channel with noise’ in information theory [13].

The sparseness S will be measured by the average fraction of inactive units after

the deterministic encoding step. Because the code is factorial

S =
1

M

M∑

i=1

P (Õi = 0) =
1

M

M∑

i=1

Si (3.34)

Now the optimal Si for a given unit will be computed. By virtue of eqn. (3.33), the

mutual information will be maximimzed by the same Si for each unit: ∀Si : S = Si.

64

 ̀̀

 ̀̀

l
l
l
l
l
l
l
l
l
l
lbbSS,

,
,
,
,
,
,
,
,
,
,��
""1

0

1

0

1-P

1-Q

Q

P

Figure 3.11: A binary channel with noise. Q is the probability of observing

’1’ when the input was ’0’, and vice versa for P . The noise is asymmetric if

Q 6= P . In this case, sparse codes are optimal. For details, see text.

Noting that

P (O = 0|Õ = 0) = 1 − Q , P (O = 1|Õ = 0) = Q (3.35)

P (O = 0|Õ = 1) = P , P (O = 1|Õ = 1) = 1 − P (3.36)

P (Õ = 0) = S , P (Õ = 1) = 1 − S (3.37)

P (O=0) = S(1−Q) + (1−S)P , P (O=1) = SQ + (1−S)(1−P) (3.38)

the mutual information between O and Õ is given by

I(O; Õ) = H(O) − H(O|Õ)

= − (S(1 − Q) + (1 − S)P) log (S(1 − Q) + (1 − S)P)

− (SQ + (1 − S)(1 − P)) log (SQ + (1 − S)(1 − P))

+S ((1 − Q) log(1 − Q) + Q log(Q))

+(1 − S) (P log(P) + (1 − P) log(1 − P)) (3.39)

A necessary condition for an extremum w.r.t S is that the first derivative of I(O; Õ)

vanishes:

∂I(O; Õ)

∂S
= H(P)−H(Q)− (1− (Q+P)) log

(
S(1 − Q) + (1 − S)P

SQ + (1 − S)(1 − P)

)

!
= 0 (3.40)

where H(P) = −P log(P) − (1 − P) log(1 − P) and likewise for H(Q). Setting

C = exp

(
H(P) − H(Q)

1 − (P + Q)

)

(3.41)

one finds that

Sm =
C(1 − P) − P

(C + 1)(1 − (Q + P))
(3.42)

65

is the location of the extremum. Since I(O; Õ) ≥ 0 with equality if S = 0 or S = 1,

the extremum must also be a maximum.

Fig. 3.12, top, shows the optimal sparseness as a function of P for four different

values of Q. A code is sparse if Sm > 0.5, which is the case when P > Q. Sm

reaches its maximum for Q = 0 and P → 1, i.e. when firing is observed (O = 1),

the unit has fired with certainty (Õ = 1), whereas inactivity is harder to detect. In

that case, eqn. (3.41) becomes

C =
exp

(
−P
1−P

log(P)
)

1 − P
(3.43)

The value of the exponent in the limit P → 1 can be determined by applying

l’Hôpital’s rule [9]:

lim
P→1

−P

1 − P
log(P) = lim

P→1

− log(P) − 1

−1
= 1 (3.44)

Thus, C diverges and the limit of eqn. (3.42) is

lim
P→1

Sm = lim
P→1

(
C(1 − P)

(C + 1)(1 − P)
− P

(C + 1)(1 − P)

)

= 1 − lim
P→1

P

exp
(

−P
1−P

log(P)
)

+ 1 − P

= 1 − 1

e
≈ 0.63212 (3.45)

Therefore, the maximum sparseness of a factorial code that can be motivated by

noise alone is about 63%. While that is not nearly as much as the 84%-94% observed

in the coding of natural images (see table 3.2), it still serves as an indication that

noisy transmission in real neurons might be a sparsness promoting factor.

The mutual information I(O, Õ) is depicted in fig. 3.12, bottom. As one would

expect, it decreases with increasing noise. For q = 0, the information gains (i.e.

the Kullback divergences between P (Õ) and P (Õ|O)) on receiving ’1’ (dotted line)

and ’0’ (dashed line) are plotted, too. As the code becomes sparser, progressively

more information is conveyed through firing, and less by inactivity. This is a typical

feature of sparse codes, which makes them appealing in neurophysiological terms:

generating a neural spike requires energy. This energy is best spent when as much

information as possible is transmitted in the process. Indeed, it has been demon-

strated [3] that V1 and IT neurons exhibit firing rate distributions that maximize

the information throughput for a fixed rate of energy expenditure.

66

0 0,2 0,4 0,6 0,8 1
P

0,4

0,45

0,5

0,55

0,6

0,65

S m

Q=0
Q=0.125
Q=0.25
Q=0.375

0 0,2 0,4 0,6 0,8 1
P

0

0,5

1

1,5

I [
bi

t]

Q=0
Q=0.125
Q=0.25
Q=0.375

Figure 3.12: Top: optimal sparseness Sm as a function of P for four different
values of Q (for the definition of P and Q, see fig. 3.11). The maximum
S = 1 − 1

e
is reached for Q = 0 and P → 1 (i.e. when firing is observed, the

unit has fired with certainty, whereas inactivity is harder to detect). Bottom:
Transmitted information decreases with increasing noise level. For Q = 0, the
information gains on observing ’1’ (dotted line) and ’0’ (dashed line) are plot-
ted, too. When the code is sparse, the bulk of the information is transmitted
through firing.

67

3.7 Conclusion

The above described network performs feature extraction on a scale defined by the

dimensionality of the basis vectors (e.g. the size of the image patches). Since the

learned RFs appear to model V1 RFs more closely with increasing overcompleteness,

it would be interesting to investigate whether higher M:N ratios than the 4:1 studied

here lead to even better agreement with experimental data – especially given the

25:1 ratios inferred from cat brain data [62]. However, this would only be feasible

with significantly faster computational resources than those which I have currently

at my disposal (on a 3GHz Pentium 4 system, the 4x overcomplete model took ≈ 4

days to learn).

In contrast to the network studied here, the visual cortex consists of more than

one layer of neurons. It has been observed in [66] that stacking two OF networks

with the same number of basis vectors on top of each other results in the top one

learning an identity mapping between inputs and outputs. Something similar could

be expected for my network. To integrate features on a larger scale, the top net-

work would at least have to combine the outputs from several image patches of the

lower network. More importantly, the question how the outputs are combined needs

to be addressed. In [41], it was demonstrated that a square-and-add nonlinearity,

inspired by a model of V1 complex cells proposed in [39], leads to top layer units

that show some phase and position invariance in their RFs. Alternatively, one could

also constrain the outputs of the bottom layer to positive values only, which is neu-

rophysiologically plausible, since real neurons can not produce negative signals. In

that case, one might expect the bottom layer to develop antagonistic pairs of feature

detectors. The top layer could then simply marginalize over suitably chosen groups

of bottom-layer outputs to generate responses that are invariant under certain trans-

formations. Another interesting way of incorporating architectural constraints in a

multilayer network model of the early visual system was explored in [90]: the optic

nerve of many mammals has significantly less fibers than V1 has cells. Combining

this observation with synaptic and firing rate energy constraints was shown to give

rise to response characteristics of the simulated retina and V1 units which resem-

ble those found in neurophysiological data. However, getting hierarchical networks

to learn is not easy, if not generally infeasible. Thus, one will have to resort to

68

approximations, e.g. the Helmholtz machine [18].

Given the fact that asymmetric noise is a sparseness-promoting factor, it might

be interesting to investigate whether this asymmetry is present in biological neurons

and how much sparseness one would expect from it. There is reason to believe that

that might be so: assuming that a neuron’s firing behavior can to some degree be

described as a Poisson process (i.e. the probability of spike generation is constant

per unit time, with the probability being a monotonically increasing function of the

neuron’s activation), and that another neuron receiving these spikes merely counts

how many of them arrive in a given time window, then, no matter how high the

firing probability pfire, there is always a chance that the receiver gets no input. On

the other hand, if pfire = 0, then no spike will be generated with certainty. In other

words, the situation in real brains might resemble that of the limit studied in section

3.6.

69

Chapter 4

Information extraction from

neural spike trains I:

Bayesian Bin Classification

4.1 Introduction

In the following two chapters, two Bayesian methods will be developed for informa-

tion extraction from small and/or noisy datasets. As an example application, they

will be employed to extract features from neural spike trains and to quantify the

information contained therein. The experimental setup is schematically depicted in

fig. 4.1, for a detailed description see [47, 48]: a monkey is presented with a visual

stimulus, labelled y, which evokes a neural response that is recorded in the form of

a spike train, i.e. a temporally ordered sequence of time indexes. Each time index

marks the occurrence of a spike. This spiketrain is subjected to a function f() which

condenses it into a quantity x that contains as much information as possible about

y. x will be used in three ways:

1. The Bayesian Bin Classification algorithm (BBCa), which is the subject of

this chapter, can be used to compute P (y|x), i.e. the most probable y given x

can be determined. This kind of classification task must also be performed in

some way by the brain, when visual object recognition is carried out.

2. If y is known, the function f() can be inferred. More precisely, assume that

f() = f(x, ~θ), where ~θ is a vector of parameters whose values determine the

70

shape of f(). For example, if f() counted the number of spikes in a temporal

window, ~θ would contain the start and end positions of this window. Given

experimental data, the BBCa can then be used to compute the posterior dis-

tribution of ~θ. It would then be possible to pick the best ~θ in a maximum-

a-posteriori sense. However, one can also evaluate various expectations under

the posterior, such as means and variances of the compontents of ~θ. This will

be done so as to provide not only the expected f(), but also a measure of its

reliability. Knowing the posterior of ~θ (and thus, of f()) enables one to draw

conclusions about how the brain encodes stimulus-related information. The

necessary ’feedback signal’ (see fig. 4.1) is provided by the BBCa as well.

3. Given y and x from the inferred f(), the mutual information I(x; y) can be

inferred, i.e. the amount of information a neuron transmits about a stimu-

lus. This will be done via the Bayesian Bin Distribution Inference (BBDIa)

algorithm, subject of the next chapter.

One might wonder why two separate algorithms are necessary. Wouldn’t it be

sufficient to infer the mutual information for a given f() and then search for the func-

tion that maximizes I(x; y)? The answer is no. As explained in section 2.3.1, only

the formalism of probability theory is suitable for conducting (Bayesian) inference

(or any formalism isomorphic to it). Since mutual information is not a probability,

it is thus ruled out for the purpose of inferring the posterior distribution of f(). To

do that, the possible choices for f() need to be weighted by a probability. Moreover,

this probability needs to be a measure of classification performance if we are to learn

which f()s are suited for carrying out the classification task and which ones are not.

The most natural choice is thus P (y|x), which will be high if, for given x and y,

correct classification can be done with some certainty.

It might be argued that, since P (y) is determined by the experimental setup,

one could also try to infer p(x|y) instead and convert it via Bayes’ rule into P (y|x).

However, this approach is likely to meet with computational difficulties: p(x|y) will

usually be parameterized in some fashion. After the posterior distributions of these

parameters have been inferred from the data, the marginalizations necessary for the

determination of the posterior distribution of f() are, in most cases, going to be

intractable. Thus, two methods will be presented: BBCa, which allows for an exact

71

stimulus y spiketrain x = f(spiketrain) BBCa

inference

stimulus classification

BBDIa, mutual information I(x;y)

P (y|x)

Figure 4.1: Schematic representation of the RSVP (rapid serial visual presen-

tation) experiment and its evaluation. A monkey is presented with a visual

stimulus y which evokes a neural response that is recorded in the form of a

spike train. This spiketrain is subjected to a function f() which condenses it

into a quantity x that contains as much infomation as possible about y. The

BBCa then allows for the computation of P (y|x) and thus, for the determina-

tion of the most probable y. Conversely, if y is known, f() can be inferred and

subsequently the mutual information I(x; y), too.

evaluation of the posterior distribution of f(), and BBDIa, which avails one of an

exact Bayesian estimate of the mutual information.

Nevertheless, mutual information is an infomation-theoretic measure of average

classification performance (see section 2.5.3). Thus, one would expect that proba-

bilistic classification measures should be closely related to it. That this is indeed so

will be demonstrated in the next chapter.

4.2 Bayesian classification

Bayesian classification is a widely used method in many fields of scientific inference

and engineering. Suppose one wanted to determine whether an object Ok belonged

to any one of C classes. To do so, a vector of features ~wk is observed (which is in

the following assumed to be a vector of real numbers), which is hoped to contain the

information necessary to assign a class label yk to the object in question. Usually,

due to noise in the measuring process or incompleteness of the available information,

this cannot be done with certainty. Hence, one tries to estimate the probability

72

P (yk| ~wk) that the object belongs to class yk ∈ {1, . . . , C}. A common method –

Bayesian classification – estimates the class-conditional densities p(~w|y, ~θy) (~θy are

the parameters of the density model for class y) and then uses Bayes’ theorem to

predict

P (y|~w, ~θ1, . . . , ~θC) =
p(~w|y, ~θy)P (y)

∑

y′ p(~w|y′, ~θy′)P (y′)
(4.1)

where P (y) is the probability of Ok belonging to class y prior to observing ~w.

The correct way – from a Bayesian perspective – to do away with the dependency

of the l.h.s. on the ~θy, is to integrate them out of the prediction:

P (y|~w, D) =

∫

~θ1

d~θ1 . . .

∫

~θC

d~θCP (y|~w, ~θ1, . . . , ~θC)p(~θ1, . . . , ~θC |D) (4.2)

p(~θ1, . . . , ~θC |D) is the probability density of the ~θy given previously observed data

D (comprised of pairs (~wk, yk)) and any other available prior information regard-

ing them (the implicit dependency on the model class is omitted here and in the

following).

Performing integrals of this type is generally very difficult. Therefore, a variety

of approximation methods for their evaluation have been derived in the past (see

section 2.6 for a brief overview). In the following, it will be demonstrated how the

problem can be circumvented (at least in part) by directly inferring P (y|~w) from

the data.

4.3 A simple model for P (y|~w)

Assume one had a multiset of K labeled feature vectors D = {(~wk, yk)}. The

classification task can then be decomposed into two steps:

1. Find a suitable mapping f(~w) 7→ x, x ∈ [0, 1], such that x contains all the

information from ~w that pertains to the classification,

2. Infer the probabilities P (y|x, Df), where Df = {(xk, yk)} are the data after

the ~wk have been mapped onto the xk through f(.).

While step 1 is by no means trivial, the following arguments will focus mostly

on step 2. It should be noted, however, that step 1 is always possible (to any given

73

degree of accuracy)1, because the number of classes C is assumed to be finite. Ways

of finding f(.) are discussed in section 4.11.1.

4.3.1 Why do the mapping f(~w) 7→ x first?

The mappings f(~w) 7→ x and subsequently from x to y might always be possible,

but is it also desirable to take this route? To answer this question, let’s take a look

at decision making in the presence of uncertainty. At the current stage of develop-

ment of exact Bayesian Inference techniques it is (to the author’s knowledge) rather

unlikely to find a model for P (y|~w, ~θ1, . . . , ~θC) that is both of sufficient generality

to be applicable to a variety of practical inference problems and integrable in a

closed form. Thus, one would employ one of the above mentioned approximation

techniques. They all require – to some degree or another – to pick some (or one, in

the cases of MAP and ML) models included in the model class that is considered

and discard the rest. By doing so, one ’contrives’ information that one doesn’t re-

ally have (namely that certain models can be excluded), its amount is given by the

Kullback divergence between the posterior density p({~θy}|D) = p(~θ1, . . . , ~θC |D) and

the modified posterior density after making the decision p({~θy}|C). This difference

diverges in the cases of MAP and ML, which might offer an explanation as to why

these methods often perform so poorly, especially when only a very small dataset is

available.

Now assume ~θy was split in two parts: ~θy = (~θE
y , ~θA

y). The first part contains all

those degrees of freedom for which the integration can be carried out directly. To

tackle the second part, an approximation technique is being used. Correspondingly,

1The most general information which ~w can contain about y is given by the probability dis-

tribution P (y|~w). For C = 2, choose f(~w) 7→ x such that P (y = 1|x) = x. For C = 3, the

possible probability distributions can be represented by points inside a 2 dimensional simplex (i.e.

a triangle). If the desired accuracy is ǫ, then cover the triangle by smaller triangles of width

and height < ǫ, enumerate those small triangles in some fashion (e.g. such that the probabili-

ties change as smoothly as possible between successive triangles) and map this enumeration in an

order-preserving way onto x. Each possible value of x then represents a probability distribution.

The generalization of this procedure to any finite C is straightforward. While it may not be the

best way of performing f(~w) 7→ x, it serves as an indication that this mapping is always possible

for a given ǫ.

74

- x

z0 z10 1

Figure 4.2: An example model. The interval between 0 and 1 is divided into

three bins at points z0 and z1. Within each bin j ∈ {0, 1, 2}, x is mapped onto

P (y|x) = cj
y, which are constant within the bin. Two classes are possible, their

probabilities are indicated by the solid and dashed lines.

decompose the posterior densities as

p({~θy}|D) = p({~θE
y }|{~θA

y }, D)p({~θA
y }|D) (4.3)

p({~θy}|C) = p({~θE
y }|{~θA

y }, C)p({~θA
y }|C) (4.4)

Then the Kullback divergence can be written as

DDC =

∫

d~θA
y p({~θA

y }|C)

∫

d~θE
y p({~θE

y }|{~θA
y }, C) log

(

p({~θE
y }|{~θA

y }, C)p({~θA
y }|C)

p({~θE
y }|{~θA

y }, D)p({~θA
y }|D)

)

= E
[

D(p({~θE
y }|{~θA

y }, C)||p({~θE
y }|{~θA

y }, D)
]

+ D(p({~θA
y }|C)||p({~θA

y }|D))

= DE + DA (4.5)

where the expectation for DE in the second line is carried out w.r.t. p({~θA
y }|C). If

the first part of the decomposed posterior is treated exactly, then DE = 0, because

p({~θE
y }|{~θA

y }, D) = p({~θE
y }|{~θA

y }, C). Otherwise, DE > 0, because it is the expecta-

tion of a Kullback divergence. It follows that one should perform exact integrations

if possible, in order to keep the errors which one introduces through making approx-

imations at a minimum. Furthermore, in the decomposition suggested here, f() can

likely be modeled in a simpler manner, because it no longer needs to deal with the

mapping onto the class labels. As noted above, this mapping is always possible.

4.3.2 A bin model for P (y|x)

To carry out step 2, the following model will be employed:

75

Divide the interval [0, 1] by M points zj , so as to get M + 1 bins (see fig. 4.2).

Within each bin, the probability P (y|x) is assumed to be constant w.r.t. x. There

are C such probabilities per bin, denoted by cj
y = P (y|x ∈ (zj−1, zj]), where y is the

class and j is the bin (bin j is the interval between zj and zj−1, bin 0 is the interval

between 0 and z0, hence bin M is the interval between zM−1 and 1). This is not as

restrictive as it may seem at first, since it is possible to approximate any continuous

function with arbitrary accuracy by a piecewise constant function, given that the

number of bins is not limited: Define fn(x) 7→ f(ξ

n
), where ξ is the greatest integer

smaller than x · n. Since f is continuous, limn→∞ fn(x) = f(x).

The cj
y are normalized with respect to the classes within their bin, i.e.

∀j ∈ {0, . . . , M} :
∑

y

cj
y = 1

{cj
y} denotes the set of these x-conditional probabilities in bin j.

For a given configuration of M ,{zj} and {{cj
y}}, the probability of the dataset

then becomes (assuming that the data points have been drawn independently of

each other):

P (D|{{cj
y}}, {zj}, M) =

∏

k

c
jxk
yk ; (4.6)

where jxk
is the bin that contains xk = f(~wk). Once observed, one can easily reorder

the data points so that xk < xk+1, i.e. the data is ordered according to xk, which

will be assumed from here on.

Classifying a new feature vector ~w′ involves evaluating

P (y′|x′, Df) =
P (D′

f)

P (Df)

=

∑

M P (D′
f |M)P (M)

∑

M P (Df |M)P (M)
(4.7)

where D′
f is the data(multi)set with (x′ = f(~w′), y′) added to it, i.e. D′

f = Df ∪
{(x′, y′)}, and P (M) is the prior probability for a model with M bin boundaries

in [0, 1]. The sums run over all values of M which one chooses to include into the

calculation. This choice could be made (in the case of uniform P (M)) by selecting

those M that have a high enough evidence P (Df |M) to contribute significantly

to (4.7). As y′ is the quantity to be determined, one has to evaluate (4.7) for all

possible values of y′ and then pick the one with the highest probability, to minimize

the chance of misclassification.

76

Thus, one needs to compute P (Df |M), i.e. the evidence for a model with M bin

boundaries:

P (Df |M) =

∫

d{zj}
∫

d{{cj
y}} p(Df , {{cj

y}}, {zj}|M)

=

∫

d{zj}
∫

d{{cj
y}} P (Df |{{cj

y}}, {zj}, M)p({{cj
y}}|{zj}, M)p({zj}|M)

(4.8)

where

∫

d{zj} =

∫ 1

0

dzM−1

∫ zM−1

0

dzM−2 . . .

∫ z1

0

dz0 (4.9)

∫

d{cj
y} =

∫ 1

0

dc
j
0

∫ 1

0

dc
j
1 . . .

∫ 1

0

dc
j
C−1δ(1 −

C−1∑

y=0

cj
y) (4.10)

∫

d{{cj
y}} =

∫

d{c0
y}
∫

d{c1
y} . . .

∫

d{cM
y } (4.11)

The way the integration boundaries are chosen in (4.9) ensures that the ordering of

the zj is maintained, and the Dirac-delta function in (4.10) enforces normalization

of the probabilities in bin j.

It is also possible, in a similar fashion, to determine confidence intervals on the

predicted probabilities, via

Var [P (y′|x′, Df , M)] =
P (D′′

f |M)

P (Df |M)
−
(

P (D′
f |M)

P (Df |M)

)2

(4.12)

where D′′
f is the data(multi)set with the point (x′, y′) added twice2 .

Since p({{cj
y}}|{zj}, M) and p({zj}|M) do not depend on the data Df , they are

prior densities which will be assigned in the following way:

• p({zj}|M) depends on M only insofar as 0 ≤ j < M . Furthermore, it will be

assumed that zj ≤ zj+1, i.e. the zj are ordered, but otherwise no preferences

for their locations in the interval [0, 1] will be expressed in the prior. It will also

be assumed that, apart from the ordering, they are independent of each other.

2Var [(P (y′|x′, Df , M))] = E
[
P (y′|x′)2

]
− E [P (y′|x′)]

2
, where the expectations are w.r.t the

posterior of P (y′|x′). This posterior is given by the integrand of (4.8) divided by (4.8). To compute

the expectation of P (y′|x′), multiply the posterior by c
j
x
′

y′ , where jx′ is the bin containing x′ and

integrate. By virtue of (4.6), this is computationally equivalent to adding the point (x′, y′) to the

data(multi)set. Likewise, to compute the expectation of the square of P (y′|x′), add this point

twice, thus yielding the expectation of
(

c
j
x
′

y′

)2

.

77

The prior thus becomes p({zj}|M) =
∏

j p(zj), where p(zj) = pz = const > 0

if zj ≤ zj+1 and 0 otherwise.

• p({{cj
y}}|{zj}, M) =

∏

j

∏

n p(cj
y), i.e. the prior densities of the x-conditional

probabilities in bin j are independent of the locations of the bin boundaries

zj and independent of each other, except for the constraint that the cj
y be

normalized w.r.t. the classes. Hence, it will be assumed that the p(cj
y) = pc

are constant and equal (subject to the normalization constraint).

4.4 Computing p({{cj
y}}|{zj}, M)

The prior p({{cj
y}}|{zj}, M) has to be normalized w.r.t. {{cj

y}}, i.e.

∫

d{{cj
y}}p({{cj

y}}|{zj}, M) = 1 (4.13)

Since the sets {cj
y} are assumed to be independent of each other, the integration

over each set can be performed independently of the others. In the following, the

superscript j (which denotes the bin) will therefore be dropped. As 0 ≤ cy ≤ 1, one

needs to compute integrals of the form

I(l0, . . . , lC−1) =

∫ 1

0

dc0(c0)
l0 . . .

∫ 1

0

dcC−1(cC−1)
lC−1 ×

× pC
c δ(1 −

C∑

y=0

cy) (4.14)

where lc means the number of data points which belong to class c, and the δ-function

ensures that the set of cy are always a probability distribution. This yields the well

known result for the normalization constant of a Dirichlet density (see e.g. [40] or

appendix D)

I(l0, . . . , lC−1) = pC
c

∏

y ly!

(
∑

y ly + C − 1)!
(4.15)

The integral over the prior then becomes:

∫

d{{cj
y}}p({{cj

y}}|{zj}, M) = (I(0, . . . , 0)pC
c)M+1 (4.16)

Hence, pc = (C − 1)!
1
C and the prior is

p({{cj
y}}|{zj}, M) = (C − 1)!M+1 (4.17)

78

4.5 Computing p({zj}|M)

This prior is subject to the normalization constraint

∫

d{zj}p({zj}|M) = 1 (4.18)

Since p({zj}|M) is assumed to be constant,

p({zj}|M) = M ! (4.19)

4.6 Computing the evidence

Now the evaluation of (4.8) can be continued. Assume that one chose a particular

binning of the interval [0, 1], represented by the set {zj}. It then becomes possible

to carry out the integrations over the {{cj
y}}:

p(Df |{zj}, M) =

∫

d{{cj
y}}P (Df |{{cj

y}}, {zj}, M)
︸ ︷︷ ︸

eqn.(4.6)

p({{cj
y}}|{zj}, M)

︸ ︷︷ ︸

eqn.(4.17)

(4.20)

Due to the assumed form of the prior and of the model, this probability is a

product, consisting of one factor for each bin. Each factor is of the same form as

(4.15), the exponents of each cn being the number of data points (in the following

denoted by ljn) belonging to class n in the bin j, i.e. the posterior of the cn is a

Dirichlet density . Hence one finds

P (Df |{zj}, M) =
M∏

j=0

(C − 1)!I(lj0, . . . , l
j
C−1)

︸ ︷︷ ︸

Ik1,k2

(4.21)

where xk1
, ..., xk2−1 are the data points in bin j.

What remains is the integration over all possible configurations of bins:

P (Df |M) =

∫

d{zj}P (Df |{zj}, M) p({zj}|M)
︸ ︷︷ ︸

eqn.(4.19)

(4.22)

4.6.1 Integrating over {zj}

Note that the integrand of (4.22) is constant as long as the zj move between data

points. Only when a bin boundary crosses over a data point does its value change.

79

Hence, this integral can be written as a sum. Each summand is the product of the

integrand and the total volume occupied by the zj for that value of the integrand.

Let

x̂k,m :=
(xk − xk−1)

m

m!
(4.23)

with x−1 = 0 and xK = 1. If the zj are distributed in such a way that at most one

zj lies between two adjacent data points, then the total volume occupied by this

configuration is the product of the differences between the two data points enclosing

zj , i.e. the product of the corresponding x̂k,1. In case there are several of the zj

between the same two adjacent data points, the contribution to the volume will be

x̂k,m, where m is the number of zj found in this interval. This follows directly from

the ordering constraint imposed upon the zj .

Now assume M = 1. With CC,M := (C − 1)!M+1M !, (4.22) then becomes:

P (Df |M = 1) = CC,1 ·
K∑

k=0

I0,k x̂k,1Ik,K
︸ ︷︷ ︸

Êk,1

(4.24)

For M = 2, it would be:

P (Df |M = 2) = CC,2 ·
K∑

k=0

I0,k x̂k,2Ik,K
︸ ︷︷ ︸

Êk,2

+ CC,2 ·
K−1∑

k=0

I0,k x̂k,1

K∑

κ=k+1

Ik,κ Iκ,Kx̂κ,1
︸ ︷︷ ︸

Êκ,1

︸ ︷︷ ︸

Ênew
k,1

=αx̂k,1

(4.25)

Êk,m is the sub-evidence of a sub-model with m bin boundaries (not counting those

at 0 and 1) which includes only the points xi ≥ xk−1, and α is the sum over all sub-

models from the previous M which include only points to the right of xk. Therefore,

when M = 2, the evidence for M = 1 can be evaluated as well with little extra

computational overhead. Furthermore, while computing P (Df |M = 1), one also

evaluates the first part of P (Df |M = 2), i.e. those configurations where both zj

lie between the same two data points. Then the array Êk,1 can be reused for the

computation of the second part, where the zj are between different pairs of data

points. One can proceed in this fashion until the desired M is reached (see fig. 4.3).

More generally: when evaluating the contribution of a sub-model which has m0 bin

boundaries between xk and xk+1, and m bin boundaries to the right of xk+1, then

80

�
�

�
�

�
�

�
�

,
,

,
,

,
,

,
,

,

!!!!!!!!!!!!!!!!!!!

���������������

!!!!!!!!!!!!!!!!!!

���������������

�����������������������

#
#

#
#

#
#

#
#

#
#

�
�

�
�

�
�

�
�

E0,m E1,m E2,m m. . .

. . .

EK−m,m EK+1−m,m

E1,m+1E0,m+1 E2,m+1 EK−m,m+1 EK+1−m,m+1 m + 1...

M

Figure 4.3: When evaluating the evidence contribution of sub-models with

m + 1 bin boundaries, one of which is found between xk and xk+1, then all

contributions of models with more than one bin boundary between xk and xk+1

can be evaluated reusing α (see text). The arrows indicate which sub-evidences

sum up to a sub-evidence for more than m bin boundaries.

one can reuse α to compute the contributions of all sub-models which have m1 > m0

bin boundaries between xk and xk+1, because they differ only by a factor x̂k,m0
(for

m0 boundaries) versus x̂k,m1
(for m1 boundaries).

Should M > K, then it is not possible to construct submodels which have at

least one data point between adjacent zj . Thus, the iteration over M can be stopped

earlier. In pseudo-code:

1. For k := 0 to K, m := 1 to M : compute Êk,m := Ik,Kx̂k,m

2. For m := 1 to M : initialize Em :=
∑K

k=0 I0,kÊk,m

3. For m := 2 to min(M, K + 1), k := 0 to K + 1 − m:

(a) For µ := m to M : reset Êk,µ := 0

(b) For µ := m to M

i. Compute α :=
∑K+2−m

κ=k+1 Êκ,µ−1Ik,κ

ii. For ν := µ to M : add αx̂k,ν−µ+1 to Êk,ν

(c) For µ := m to M : add I0,kÊk,µ to Eµ

4. return Em

81

This yields P (Df |m) = Em · CC,m for all 1 ≤ m ≤ M . A close look at step

3(b)i reveals that the computational complexity is O(K2M2), because one expects

M < K for real world applications, or even M ≪ K.

This way of organizing the calculation is computationally similar to the sum-

product algorithm for factor graphs [49]. The ’messages’ passed on from one m-level

to the next are Êκ,µ−1, whereas within one level, a sum over all the ’messages’ from

the previous level is performed.

4.7 Comparison to other classification methods

The performances of two other classification methods, support vector machines

(SVM) and Gaussian process classification (GPC), were compared to that of the

BBCa. SVMs [88, 89] have enjoyed great popularity due to their successes in many

applications, e.g. handwritten digit recognition [12] or 3D object recognition [8].

They operate by mapping the feature vectors ~w (see section 4.2) into a higher (or

infinite) dimensional space and then finding a hyperplane in that space that sep-

arates all mapped ~ws belonging to one class from the rest. There is usually more

than one such hyperplane, in which case the one with the maximum margin (i.e.

the distance to the nearest points on either side) is selected. Classification of pre-

viously unseen data is performed by determining on which side of the hyperplane

the mapped ~w is found. For the comparison presented here, libsvm 2.8 3 was used.

This package also includes a python script which performs data scaling and model

selection for a C-SVM using a radial basis function kernel (for details, see [38]).

Gaussian processes were originally designed for regression problems [54]. In brief,

the idea is to define a Gaussian process prior over a function space such that the

joint density of any number of points drawn from the functions in this space is

a multivariate Gaussian. If the noise model (i.e. the probability density of the

observed data given the values produced by the Gaussian process) is also Gaussian,

then the predictions for new data points can be evaluated analytically in polynomial

time. This is often the case in regression tasks. In classification problems, however,

the predictions have to be probabilities of class lables, which necessitates the use

of a ’squashing function’ that maps [−∞,∞] onto [0, 1]. A popular choice for two-

3available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

82

class scenarios is the logistic sigmoid 1
1+exp(−x)

, where x is the value predicted by

the Gaussian process. Multi-class problems can e.g. be tackled by the softmax

function [92]. Unfortunately, the required integrations can now no longer be carried

out analytically, and thus approximations must be employed. For the comparsion

presented here, the Monte-Carlo approach implemented in the package fbm-2004-

11-10 4[58] was used.

Training and test data were generated by simulating a neuron’s response to

eight stimuli. The ’strongest’ stimulus evoked 60 spikes/s, the ’second strongest’

40 spikes/s, the ’weakest’ 15 spikes/s and the remaining stimuli evoked 30 spikes/s.

Responses were recorded over a time window of 100 ms, during which the firing

rate did not change. The resulting average firing rate was used as the input to the

three algorithms. The classification target was the stimulus label. All stimuli were

presented equally often. This rather simple scenario was chosen so as to allow for

an a-priori determination of the expected classification performance limits.

The BBCa was trained with a maximum number of 50 intersections. Both a

uniform prior over the number of intersections M and a prior ∝ 1
M2 (i.e. the prior

probability for a model is inversely proportional to the computational effort required

to evaluate it) were tried, they produced very similar results. For the GPC, prior

(hyper)parameters for the covariance function need to be chosen. I experimented

with various settings and eventually chose a covariance function comprised of a lin-

ear part and a squared-exponential part. The linear part was given by a gaussian

prior with standard deviation 10 and mean 0. The scale and relevance parameters

of the exponential part were Gaussian with mean 0 and variances drawn from broad

inverse-gamma distributions with mean 20 and 5, respectively. For details of the

possible prior choices, the reader is referred to the extensive documentation of the

fbm-2004-11-10 package. Changing these prior parameters within 2 orders of mag-

nitude did not affect the classification performance in any substantial way. As noted

above, the SVM package contained python scripts to perform parameter selection

via cross-validation in an automated manner.

The average percentage of correctly classified stimuli as a function of the trials

per stimulus (i.e. the number of times a response to a given stimulus appeared in

4available at http://www.gaussianprocess.org

83

1 10 100
examples per class

12.5

15

17.5

20

22.5

24.5

%
 c

or
re

ct
 g

ue
ss

es
SVM
GPC
BBCa

Figure 4.4: Comparison of the percentages of correctly classified stimuli as a

function of the number of trials per stimulus. Black circles: BBCa, red squares:

SVM, blue diamonds: GPC. Error bars are standard errors computed from

100 repetitions. The theoretical performance limits are 12.5 % (uninformed

guess based only on prior knowledge of the stimulus distribution) and ≈ 24.5%

(best possible expected performance if the response generating distributions

were known). Especially in the neurophysiologically relevant range of only a

few available trials per stimulus, the BBCa outperforms SVM and GPC. For

details, see text.

the training set) is shown in fig. 4.4. For a given number of trials per stimulus, each

classifier was first trained on a training data set, then its performance was evaluated

on a test data set containing 100 trials per stimulus. This procedure was repeated

on 100 different training/test data sets to allow for an evaluation of means and

standard errors. Since all 8 stimuli were equally likely, one expects a performance

of 12.5 % based on this information alone. If the response-generating distributions

were known, the optimal performance as predicted by Bayes’ rule would be ≈ 24.5%.

All three methods seem to converge towards this value, even though GPC is doing

notably worse than the other two. For 1000 trials per stimulus, BBCa and SVM

have virtually reached the theoretical optimum (not shown). However, especially in

84

the neurophysiologically relevant range of only a few available trials per stimulus,

BBCa outperforms both SVM and GPC. This indicates that BBCa is a more suitable

method for neural response classification than the other two. Moreover, as detailed

below, it allows for an exact evaluation of the evidence eqn. (4.8), which is necessary

if subsequent stages of Bayesian inference are to be conducted without introducing

approximation errors. This is an additional advantage which SVM cannot offer.

85

4.8 Application to neural spike data

To see the algorithm in action, it was used to analyze RSVP (rapid serial visual

presentation) spike train data recorded from single cells of area STSa of the visual

cortex of monkeys. These data were obtained through [48]. The monkey was pre-

sented with a continuous stream of natural pictures which were drawn from a set of

eight different images selected for each neuron and the resulting firing pattern was

recorded. This raw signal was turned into distinct samples, each of which contained

the spikes from −250 ms before to 500 ms after the stimulus onset. The temporal

resolution of the recording was 1 ms. Time indexes were aligned to the stimulus

onset. Here and in the following, a ’dataset’ denotes the collection of responses of a

cell to a given stimulus set. A ’datapoint’ or ’trial’ is a stimulus-response tuple. The

’target stimulus’ is the stimulus identity to be determined from a given response (i.e.

the class label in the classification task). The stimuli were presented multiple times

in pseudorandom order. Table 4.1 shows some of the characteristics of the available

data. Stimulus onset asynchrony (SOA) is the time difference between the onsets of

two consecutive stimuli. In all datasets used here for analysis, the stimuli were pre-

sented without gaps. Thus, SOA was equal to the duration of the stimulus. There

was one dataset available for a given cell and SOA, but not all cells were tested at

all SOAs. The stimulus set for a given dataset was chosen from 68 complex stimuli

prior to recording. For a more detailed description of the recording procedure, see

[48, 47].

A conventional way of decoding such spike trains, i.e. determine the stimuli from

the neural resposes, is to count spikes in a time window. Let this window be denoted

by f0(l, e), where l and e are the first and last time indexes included. The signal

extracted from a spike train s(ti), −250 ms ≤ ti ≤ 500 ms, s(ti) ∈ {0; 1} is then

x =

∑e
ti=l s(ti)

e − l + 1
(4.26)

i.e. the average firing rate. To find the expected window by means of Bayesian

analysis, it is necessary to evaluate the posterior

P (f0(l, e)|D) =
P (D|f0(l, e))P (f0(l, e))

∑

l

∑

e≥l P (D|f0(l, e))P (f0(l, e))
(4.27)

where D is the set of recorded spike trains. The summation in the denominator runs

over all start/end times which one chooses to include. All possible values of l ≥ lmin

86

SOA no. of cells avg. no. of trials per stimulus

222 ms 40 24

112 ms 42 48

56 ms 40 92

42 ms 28 136

28 ms 40 190

14 ms 28 353

Table 4.1: Number of cells and trials per stimulus for each of the available

stimulus onset asynchronies (SOA). SOA is the time difference between the

onsets of two consecutive stimuli. Average trials per stimulus are rounded to

the next nearest integer. There was one dataset available per cell and SOA.

Each dataset contained responses to a set of 8 stimuli.

and e ≤ emax were assumed to be equally likely prior to observing data, with the

restriction l ≤ e.

First, P (D|f0(l, e)) must be evaluated. To do so, all spiketrains in the dataset

were subjected to the transformation (4.26), thus yielding Df . This transformed

dataset was then fed into the classification algorithm. Hence, the evidences P (D|m, f0(l, e))

became available. Assuming P (m, f0(l, e)) = P (m)P (f0(l, e)), i.e. the prior over the

number of bins is independent of the prior over the window parameters, one can then

write

P (D|f0(l, e)) =

M1∑

m=M0

P (D, m|f0(l, e)) =

M1∑

m=M0

P (Df |m)P (m) (4.28)

where M0 and M1 are the minimum and maximum number of bin boundaries, re-

spectively. In this application, it was sufficient to choose M0 = 0 and M1 = 10,

because the maximum of P (D|m, f0(l, e)) was in most cases between m = 1 and

m = 7. The evidence P (D) is obtained by summing the numerator over all l, e and

m.

With this posterior, one can evaluate the expectations

E [l] =
∑

l

∑

e≥l

P (f0(l, e)|D)l (4.29)

Var [l] =
∑

l

∑

e≥l

P (f0(l, e)|D)l2 − E [l]2 (4.30)

87

and likewise for e and e − l + 1. This yields the expected latency, window end and

window width, along with their variances.

4.8.1 Multiple datasets, joint and marginal expectations

In neurophysiological experiments, the number of stimulus repetitions that can be

achieved is often quite limited. Thus, pooling data from different runs, possibly

recorded in response to different stimulus sets, is desirable. If the parameters to be

estimated can be expected to have similar values across datasets, then (4.28) can be

replaced by

P ({Dj}|f0(l, e)) =
∏

j

M1∑

mj=M0

P (Df
j|mj)P (mj) (4.31)

where j runs over all datasets, assuming that the datasets were drawn independently.

This allows for the computation of expectations of the joint distribution.

When pooling data from the same cell recorded at different presentation rates,

it would seem sensible to assume that the latencies should be more alike than the

response durations. Thus, one would compute a single latency by marginalization:

P ({Dj}, f0(l, .)) =
∏

j

∑

ej≥l

M1∑

mj=M0

P (Dj|mj , f0(l, ej))P (mj)P (f0(l, ej))(4.32)

P (f0(l, .)|{Dj}) =
P ({Dj}, f0(l, .))
∑

l P ({Dj}, f0(l, .))
(4.33)

where the denominator of the r.h.s. of (4.33) is the evidence of this hypothesis (i.e.

all datasets have the same latency but different response durations). Thus

E [l] =
∑

l

P (f0(l, .)|{Dj})l (4.34)

Likewise, an evaluation of the overall response duration can be performed by marginal-

izing over the latencies.

4.9 Results on artificial data

The algorithm was tested on artificial data first. Those were generated by a simu-

lated neuron having a response latency of 100 ms and a response length of 100 ms.

The firing probability, i.e. the probability of observing an event in a given time bin,

was assumed to be maximal at the beginning of the response. It then decreased by

88

50% within 50 ms, and stayed constant at that value for the remaining 50 ms. The

maximum firing rates were 60 spikes/s for the ’strongest’ stimulus, 40 spikes/s for

the ’second strongest’, 15 spikes/s for the ’weakest’ and 30 spikes/s for the rest (5

stimuli). These values resemble those found in the real data. Similar to the RSVP

data analyzed below, stimuli were presented without gaps. Therefore, firing rates

before the response latency and after the response offset were assumed to evoked by

another, randomly drawn stimulus. Fig. 4.5, top, shows the results. For the anal-

ysis, it was assumed that the neuron starts responding somewhere between 50 ms

and 150 ms after the stimulus onset, and that the response offset is found between

50 ms and 150 ms after the latency.

Even for a dataset containing as little as 10 trials per stimulus (i.e. the number

of times each stimulus was presented), the expected window boundaries are close

to their real values. The standard deviations are small enough (≈ 20 ms) to yield

useful results in neurophysiological experiments. As the number of trials per stimulus

grows, the standard deviations decrease and the expected start/end positions move

closer to their real values. From 100 trials per stimulus onward, the correct window

parameters are determined by the algorithm almost with certainty.

The results for different numbers of datasets are depicted in fig. 4.5, bottom.

Each dataset contained 10 trials per stimulus. The behavior is similar to that

observed in fig. 4.5, top. Performance at 3 datasets with 10 trials per stimulus each

is comparable to 1 dataset with 32 trials per stimulus. It appears that the total

number of available trials (i.e. number of trials per stimulus in a dataset × number

of datasets) is the determining factor for the quality of the results. At 3 and 10

datasets, the expected start positions are a few ms before the response onset. This

indicates that it is better for classification performance to include a few time bins

from the response to the previous stimulus than to exclude the first few ms from the

response to the target stimulus, which are the most informative.

Classification performance for two datasets of different sizes is plotted in fig.

4.6. If a stimulus was to be identified by the response it evoked, one would pick

the stimulus that maximizes P (s|x), where s is the stimulus and x is the response.

At 10 trials/stimulus, the only distinction possible is that between ’strongest’ (x >

44.5), ’weakest’ (x < 11.5) and ’rest’. At 316 trials per stimulus, 4 classes can be

89

separated: ’weakest’ (x < 18.0), ’2nd strongest’ (32.0 ≤ x < 36.5) and ’strongest’

(x ≥ 36.5). The range 18.0 ≤ x < 32.0 would then be assigned to ’rest’. The optimal

decision boundaries, which can be computed via Bayes’ rule from the generating

distributions, are: ’strongest’, if x ≥ 40.0, ’2nd strongest’, if 30.0 ≤ x < 40.0, ’rest’,

if 20.0 ≤ x < 30.0 and ’weakest’ if x < 20.0. Note that these are in good agreement

with the boundaries found by the BBCa.

90

10 32 100 316
trials per stimulus

0

50

100

150

200

250

300

w
in

do
w

 s
ta

rt
/e

nd
 p

os
iti

on
 [

m
s]

1 3 10 32
number of data sets

0

50

100

150

200

250

300

w
in

do
w

 s
ta

rt
/e

nd
 p

os
iti

on
 [

m
s]

10 30 100 320
total number of trials per stimulus

Figure 4.5: Top: expected window start (circles) and end (squares) as a func-

tion of the number of trials per stimulus. Bottom: expected window start

(circles) and end (squares) as a function of the number of datasets. Each

dataset contained 10 trials per stimulus. Error bars are ± 1 standard devia-

tion. Averages computed over at least 100 runs.

91

0 25 50 75 100
firing rate [spikes/s]

0

0,1

0,2

0,3

0,4

P(
s|

x)
strongest
2nd strongest
weakest
rest

0 25 50 75 100
firing rate [spikes/s]

0

0,1

0,2

0,3

0,4

0,5

P(
s|

x)

strongest
2nd strongest
weakest
rest

Figure 4.6: Expected classification performances for two datasets of different

sizes. Top: 10 trials/stimulus. The only distinction possible is that between

’strongest’ and ’weakest’ and ’rest’. Bottom: 316 trials/stimulus. Here, 4

classes (’strongest’, ’2nd strongest’, ’weakest’ and ’rest’) can be separated.

92

4.10 RSVP results

4.10.1 How similar are cells?

The available data contained measurements for 6 different stimulus onset asyn-

chronies (SOA): 14 ms, 28 ms, 42 ms, 56 ms, 112 ms and 222 ms. As explained

above, here SOA is the time interval between the onsets of two consecutive stim-

uli. In the following, the terms ’information latency’ (IL) and ’information response

duration’ (IRD) refer to the time indexes of the window start and window length

as determined by the classification algorithm. The term ’response latency’ (RL)

denotes the time index at which a response was detected by a method described in

hypothesis H2 (see below). Six hypotheses were compared:

H1 joint: for a given SOA, all cells have the same IL and IRD. While previous re-

sults (see e.g. [48]) indicate that this assumption is likely to be wrong, it served

as a ’null hypothesis’ against which the other hypotheses were compared.

H2 IL=RL: this is a popular hypothesis in neurophysiology. The response latency

was determined on a dataset by dataset basis by a method described in [48]:

The spike train is smoothed by a Gaussian of width 10 ms to yield a spike

density function. Its mean µ and standard deviation σ are computed in a time

window of 250 ms directly prior to the stimulus onset. The RL is defined as

the first 1 ms time bin after which the spike density function exceeds µ+2.58σ

for at least 25 ms. Moreover, the response duration was taken to be equal to

the stimulus duration.

H3 latency: for a given SOA, all cells have the same IL, but possibly different

IRDs. This assumption allows for the computation of an overall IL as a func-

tion of the presentation rate.

H4 window length: for a given SOA, all cells have the same IRD, but possibly

different ILs. This assumption allows for the computation of an overall IRD

as a function of the SOA.

H5 single: for a given SOA, each cell has a different IL and IRD.

93

H6 latency per cell: each cell has an IL, which does not change with the presen-

tation rate. The IRD may change with the presentation rate. This hypothesis

is similar to the one used in [48] for the determination of the latency of each

cell.

For H2, only the datasets with SOAs 42 ms - 222 ms were used, since the faster

presentation rates do in most cases not yield enough signal to allow for a determi-

nation of the RL. Thus, two sets of comparisons were performed: the first included

H1, H2, H3, H4 and H5 (left half of table 4.2), the second H1, H3, H4, H5 and H6

(right half of table 4.2).H1 was used as the point of reference for all others, i.e.

log10(evidence) gain of HX = log10(evidence of HX)

− log10(evidence of H1) (4.35)

42 ms - 222 ms 14 ms - 222 ms

hypothesis log10(evidence) gain log10(evidence) gain

H1 0.00 0.00

H2 47.5 -

H3 167.6 199.3

H4 301.9 400.5

H5 367.1 494.4

H6 - 456.7

Table 4.2: Evidence comparisons for the different hypotheses described in the

text. log10(evidence) gains are computed w.r.t the evidence of H1. For the

evidence comparisons in the left half of the table, only recordings with SOAs

between 42ms - 222ms were used, because the shorter presentation rates do

in most cases not yield enough signal to allow for a determination of the RL.

For the comparisons in the right half, recordings at all available SOAs were

included.

As expected, H1 is the most unlikely one. IL=RL already results in a substan-

tial evidence gain (being ≈ 1047 times more probable). However, compared to the

remaining hypotheses, it can still safely be discarded, indicating that this way of

information extraction will yield suboptimal results.

94

Comparing H3 and H4 shows that the IRDs seem to be more alike than the ILs,

indicating that the latency depends more strongly on the cell (and perhaps on the

stimulus parameters) than the response duration does. This is consistent with H6

being more probable than either of them. Nevertheless, as noted above, they serve

to compute the expected ILs and IRDs across all cells.

H5, despite its additional degrees of freedom (one IL and IRD per cell and SOA),

appears to provide the best explanation of the data. In other words, both IL and IRD

depend strongly on both the cell and the SOA. This result should not be understood

to mean that averaging over cells will generally yield meaningless results, but rather

that when such averaging is performed (e.g. to compute information flows), it is

advisable to compute the IL and IRD anew for each cell and SOA.

Figure 4.7 shows the expected classification performance for a single cell at SOA

56 ms. Three stimuli can be separated. Ranking was done by expected certainty of

stimulus identification, i.e. by the probability P (s|f0(l, e)) that stimulus s had been

presented given the response computed from the spike train via f0(l, e). Thus, the

’second best’ stimulus is not the one with the second strongest response, but rather

the one with the weakest (this way of ranking stimuli is different from [48], where

stimuli were ordered by response strength). This begets the question: is information

transmitted through not firing as well as through firing, and if so, how much? If the

neural code implemented by the visual system is sparse, an assumption for which

experimental evidence has been collected [3], then the analysis presented in section

3.6 implies that there should hardly be any information conveyed by neural silence.

Moreover, note that even the ’best’ stimulus can only be classified correctly with

a probability of at most ≈ 0.3. While this allows for a decision with greater certainty

than a decision based solely on prior knowledge (p = 0.125 for 8 stimuli), it is still

fairly low. In a ’best’ vs. ’rest’ decision task, one would therefore always choose

’rest’. Thus, additional information is required if the stimulus is to be identified.

That that is possible at SOA 56 ms has been shown in [48] via human psychophys-

ical experiments using the same stimulus set as that employed for the single-cell

recordings which yielded the data for the analysis presented here.

95

0 50 100 150
spikes / sec

0

0,05

0,1

0,15

0,2

0,25

P(
 s

 |
 f

0(l
,e

)
)

best
2nd best
3rd best

Figure 4.7: Expected classification performance for cell 144.4. Three stimuli

can be separated. Stimulus ranking was done by P (s|f0(l, e)), i.e. the best

stimulus is the one which can be identified with the greatest certainty given

the response computed from the spike train via f0(l, e). For details, see text.

96

4.10.2 Latencies and response durations

The overall ILs and IRDs computed via H3 and H4, respectively, are shown in fig.

4.8. In accordance with previous results on the same data [48], the IRD increases

with the SOA. For SOAs greater than ≈ 50 ms, the IRD was found to be shorter

than the SOA, this behavior is reversed for shorter SOAs. This appears at first

contradictory to [48], where the response was reported to outlast the SOA by ≈ 60

ms. That might, however, be due to a difference in method: in the aforementioned

study, response offset was defined as the start of the first 30 ms time window in which

all 1 ms bins failed a t-test (p>0.05) performed on the spike density functions of the

best stimulus and all other stimuli together. In contrast, the approach presented

here calculates the expected response length by averaging over all possible windows

weighted by their classification performance. Therefore, it will tend to exclude

parts of the response which, while they may still contain some information about

the stimulus, will decrease the signal-to-noise ratio compared to the ’better’ parts

available. Thus, the windows can be expected to be somewhat shorter. That the

excluded part does indeed contain some information about the stimulus will be

demonstrated in sections 4.11.2 and 5.14.2 where the temporal structures of the

classification evidence and the mutual information are analyzed.

The IL seems to increase with the SOA, too. For SOA=41 ms and 14 ms record-

ings were made only on a subset of the available cells, this might offer an explanation

for the slight increase of the IL at 41 ms SOA compared to 56 ms SOA. Nevertheless,

the overall trend of the IL is still clearly discernible. The large standard deviation

of the IL at 14 ms SOA also indicates that at this very high presentation rate,

classification information in the response becomes increasingly hard to localize.

Furthermore, note that RL ≥ IL (within standard error) for all SOAs for which

RL could be determined. Yet, as demonstrated in section 4.11.2, the information

flow does seem to begin at the IL. This indicates that beginning the response analysis

at the RL might truncate a rather informative part of the signal. The reason for

the increase of RL with SOA might be due to the fact that both the mean and the

standard deviation of the firing rate, averaged across stimuli, tend to increase with

SOA. This would, in turn, lead to a higher RL.

97

14 28 42 56 112 222
SOA [msec]

0

50

100

150

200

IR
D

 [
m

se
c]

14 28 42 56 111 222
SOA [msec]

50

100

150

la
te

nc
y

[m
se

c]

Figure 4.8: Top: Expected IRDs ± one standard deviation, averaged over all

cells. The solid line marks the SOA. IRD is shorter than the SOA when the

latter is ≥ 56 ms, and longer for SOAs ≤ 46 ms. Bottom: Expected ILs ±
one standard deviation (circles) and average RLs (squares). Shorter stimuli

appear to result in a quicker information flow onset. For 42 ms and 14 ms

SOA, data were available only for a fraction of the cells that were tested at

the other SOAs.

98

4.11 Conclusion

4.11.1 Algorithm

The presented algorithm exactly computes evidences and expected classification

probabilities with a computational effort of O(K2M2), where K is the number of

data points and M +1 is the number of bins. This is significantly faster than a näıve

approach of simply trying all possible permutations of the bin boundaries between

the data points, which would take O(MK). This acceleration is accomplished by

reusing intermediate results. Moreover, it yields the evidence of the data given the

considered model class, which is here quantified by M , the number of bin boundaries.

This evidence, which is required if further stages of inference are to be performed,

is usually not available when using methods that compute the class-conditional

probabilities first and convert them afterwards into the probabilities of the class

labels via Bayes’ theorem.

Note that the expected probabilities (4.7) are, by virtue of (4.8) and (4.23)

polynomials of order M in x: for example, (4.25) is quadratic. The coefficients of

these polynomials change whenever x passes over a data point, in such a way that

P (y|x) remains continuous. Thus, one could also look at this algorithm as a form

of piecewise Bayesian polynomial interpolation.

As mentioned above, finding a suitable mapping from the feature vector onto

a scalar, f(~w) 7→ x, is generally not trivial. Most likely, exact inference of f(~w)

will not be possible, and thus an approximation scheme needs to be employed. No

matter which technique one decides to try, it will usually be necessary to evaluate a

quantity proportional to

p(f(~w)|D) (4.36)

i.e. (4.27) with f0(l, e) replaced by f(~w). The denominator of (4.27) will probably

be intractable, but the numerator is readily accessible, once a prior over the pos-

sible functions has been chosen. Then, a Monte-Carlo technique can be applied to

determine e.g. the expected f(~w).

Another possibility, which might speed up the inference process, is to find the

maximum of (4.36) w.r.t. f(~w) via a gradient-based technique. Lets assume f(~w) =

f(~w, ~θ), where ~θ is a vector of parameters that governs the exact form of f(~w, ~θ).

99

Since (4.8) is a polynomial in the xk, its gradient w.r.t the xk can be evaluated by

an algorithm similar to that described above. Thus, using the chain rule,

∇~θ
log(p(f(~w, ~θ)|D)) =

K−1∑

k=0

∂ log(P (D|f(~w, ~θ)))

∂xk

∇~θ
f(~wk, ~θ) + ∇~θ

log(p(θ)) (4.37)

∂ log(P (D|f(~w,~θ)))
∂xk

can, by virtue of (4.28), be computed via the derivative of (4.8) w.r.t

xk. p(~θ) is the prior of ~θ. ∇~θ
f(~wk, ~θ) depends on the exact functional form of

f(~w, ~θ). Assuming, for instance, that it is a feedforward neural network with a

single output, then ~wk would be the vector of inputs for the k-th example, xk the

resulting output and ~θ stands for the weights. ∇~θ
f(~wk, ~θ) could then be computed

by some variant of the backpropagation algorithm [81], and thus gradient ascent on

∇~θ
log(p(f(~w, ~θ)|D)) becomes feasible. Once the weights maximizing the posterior

have been determined, refinements are of course possible, such as using a Laplace

approximation for the weight posterior, or Monte-Carlo techniques. The important

point is that, since a feedforward network with sigmoid transfer functions can model

any continuous mapping onto a scalar to any desired degree of accuracy given that

the number of hidden units is allowed to grow [15], one might hope that this approach

could in principle solve any classification task for which f(~w, ~θ) can be reasonably

well approximated by a continuous function.

The applicability of the algorithm for the analysis of neural spike train data has

been demonstrated. It yields useful results even when only O(10) trials per stimulus

are available, which can usually be accomplished in recordings of single cells. Thus,

analyses can be conducted not only on a population level, but also on a cell by cell

basis.

4.11.2 STSa neuron populations adapt their processing speed

to the presentation rate

It is well known that response latencies differ notably between cells in STSa [48,

69]. In addition, it has been shown [70] that latency encodes information about

the contrast with which a stimulus is presented. It has been demonstrated (fig.

4.8) that there appears to be a quasi-monotonic relationship between IL and SOA,

i.e. the shorter the presentation time, the faster the information flow onset. The

found ILs are within the boundaries established by other investigators: in [69] it is

100

demonstrated that the latency in STSa cells should be ≥ 71 ms. One might wonder

how the visual system accomplishes this adaptation, and if it is an adaptation at all:

in [69], it has been argued that the information flow from retinal output to STSa has

to be predominantly feedforward in order to achieve the observed short latencies.

On the other hand, it is known from experiments with artificial neural networks [35,

20, 26] that lateral or feedback connections can give rise to sparse, almost factorial

neural codes that facilitate pattern recognition and bear a qualitative resemblance

to the behavior of cells in V1. If those feedback connections are employed by the

visual system, then it is unlikely that the later processing stages would wait until

the earlier ones have converged, i.e. there would be a signal arriving in STSa even

though V1 is still busy making sense of its input. This early signal could convey

some information about the stimulus, but not as much as the later part, which

would become available if the stimulus was presented long enough. Presuming this

happened in the visual system, then one would expect that the method used here for

the determination of the best window should focus on the later part of the response

if the SOA is long enough, and move the IL forward when the SOA is reduced. To

shed some light on this hypothesis, see fig. 4.9: here, the logarithm of the evidence

(4.28) divided by the number of data points is plotted for l + 10 ms = e, i.e. the log

evidence for a 10 ms sliding window (thin dotted lines) and also its running average

over 11 ms (thick lines). This quantity will be high if good classification is possible,

and low otherwise. Thus its value indicates how much information the spike count

carries about the stimulus. The log evidence values have been aligned so that their

average in the interval -250 ms ≤ e-IL ≤ -150 ms is 0. The responses in this time

interval should contain no information about the stimulus, given that the longest

IL was ≈ 116 ms (for SOA 222 ms), and can thus provide baseline values for the

curves. Note that the rising slopes which indicate the onset of the information flow

are almost perfectly aligned with each other for SOAs 222 ms, 112 ms and 56 ms.

Since the IL at SOA 222 ms is ≈ 13 ms larger than those at SOA 112 ms and 56 ms,

this indicates that the cell population really begins transmitting later at the longest

SOA. The maximum, too, appears to be reached later, which might be taken as

another piece of evidence that some form of adaptation is taking place.

The situation is similar for the three shorter SOAs. Even though the rising slopes

101

for 42 ms and 28 ms are not perfectly aligned, their temporal offset is certainly

smaller than ≈ 7 ms, which is the difference in their ILs. This is true to an even

stronger degree for the shortest SOA: IL(SOA=28 ms)-IL(SOA=14 ms) ≈ 33 ms,

yet their rising slopes are within a few ms of each other.

One might still wonder if there is some signal before the IL, which is discarded by

the analysis method used here, because it is too noisy. This is also unlikely, as can be

seen in table 4.3, where some of the features of fig. 4.9 are listed. The information

onset (ION) and offset (IOFF) relative to the IL were computed in the following

manner: to estimate a noise level, the standard deviation σν of each curve in the

time interval -250 ms ≤ e-IL ≤ -150 ms was computed. ION and IOFF are the start

and end time (rounded to the next nearest ms) of the interval in which the baseline-

aligned log evidences are consistently greater than 2.58σν . In other words, ION

marks the beginning of stimulus-related information, whereas IOFF marks the end.

Within standard errors, ION coincides well with IL, i.e. there is very little evidence

for information transmission before IL. Thus, an ’early part’ of the response could

not be detected.

IOFF outlasts IRD (the latter is indicated by the arrows in fig. 4.9) quite sig-

nificantly for the longer SOAs. This difference decreases with decreasing SOA, and

disappears (within standard error) for SOA 14 ms. One might thus say that with

respect to the duration of the signal which is best suited for stimulus identification

(i.e. IRD), the cell population shows a transient response at the longer SOAs, and a

sustained response at the shorter ones. The latter part of the response (i.e. between

IRD and IOFF) might perhaps be employed by the cell population to signal that ’the

stimulus is still there’, but since the stimulus identity has already been established

(as well as possible) by that time, this latter part needs not be as informative (and

could thus possibly be produced with less energetic effort). When the total duration

of the information transmission is considered, the response is sustained (fifth column

of table 4.3): IOFF-SOA is always greater than 0 ms. Given that the sliding window

was 10 ms long, this indicates that the response outlasts the stimulus at most by a

few ms.

As noted above, IRD < SOA if SOA >≈ 50 ms. Thus, for longer stimuli, the

visual system should be able to separate the responses to successive stimuli, because

102

-200 -100 0 100 200 300
e-IL [ms]

0

0,005

0,01

0,015

lo
g(

ev
id

en
ce

)
pe

r
da

ta
 p

oi
nt

222 ms
112 ms
56 ms
42 ms
28 ms
14 ms

Figure 4.9: log(P (Df |f0(e − 10 ms, e)) per data point, i.e. log evidence per

data point in a sliding time window of length 10 ms (thin dotted lines) and

their running averages in an 11 ms window (thick lines). Values are aligned

so that the average for e-IL < -150 ms are zero. There is no indication of

stimulus-related information when e < IL. The arrows indicate the end of the

optimal time window for stimulus discrimination. Some information seems to

be transmitted after that, but including this latter part of the response would

reduce classification performance.

103

SOA ION IOFF IOFF-IRD IOFF-SOA

222 0 ± 0.91 238 ± 0.91 65.5 ± 8.9 16 ± 0.91

112 -3 ± 2.9 118 ± 2.9 37.8 ± 3.2 6 ± 2.9

56 -3 ± 0.44 73 ± 0.44 25.8 ± 2.1 17 ± 0.44

42 0 ± 0.26 58 ± 0.26 13.2 ± 1.4 16 ± 0.26

28 1 ± 0.14 41 ± 0.14 3.4 ± 0.76 13 ± 0.14

14 7 ± 6.9 25 ± 6.9 2.1 ± 7.2 11 ± 6.0

Table 4.3: Second and third column: population averages of the information

onset (ION) and offset (IOFF) relative to the IL. Those are defined as the start

and end of the time interval within which the log evidence per datapoint in a

10 ms sliding window (see fig. 4.9) is consistently greater than the noise level.

ION coincides well with IL. The part of the response after IRD but before

IOFF (fourth column) contains some information about the stimulus, but will

yield suboptimal classification performance. In the fifth column, the difference

between IOFF and SOA is shown. Given that the sliding window was 10 ms

long, it is likely that the information-carrying response outlasts the stimulus

duration by a few ms. For details, see text.

IRD is the duration of the response needed for best stimulus discrimination. This

is no longer the case for the shorter SOAs: here responses to stimuli will begin to

overlap, and thus optimal classification performance can no longer be attained.

One possible mechanism that might explain the observed variations in IL and

IRD is threshold adaptation or, to the same end, residual activation: suppose the

firing threshold of the cell increased with SOA. Then it would begin to fire sooner

as the SOA decreases, and also longer w.r.t SOA. It is currently unclear what might

bring about such an adaptation. But if one assume that the cell behaves to some

degree like a ’leaky integrator’, then in the shorter SOA conditions, when it is

exposed to a ’good’ stimulus, there might still be some activation left from its last

presentation. This activation would have ’leaked’ out of the cell had the SOA been

longer.

As shown in fig. 4.7, the probability of correctly identifying the stimulus given

104

the response computed from the spike train via f0(l, e) does not exceed 0.3 (this

result is of course conditioned on the cell and the stimulus set). The cell from

whose responses this classification graph was computed is a fairly average specimen

of the population that was sampled. It is thus evident, that even for a stimulus

set as limited as the one used in this experiment, more information is required

to identify the stimulus with reasonable certainty (say, 99%). This information

would become available if one observed not the activity of a single cell, but that

of a population. As demonstrated in [27, 68], combining the signals of a few cells

via Bayes’ theorem on the assumption that their responses (given the stimulus)

are conditionally independent can yield the desired increase of certainty. Since

simultaneous multi-cell recordings were not available to me, I proceeded from the

assumption that other neurons in the relevant population behaved similarly to the

one in question, in that they are able to tell the same ’best’ stimulus with the same

certainty. Using Bayes’ theorem, one thus obtains (for a derivation, see appendix

C)

P (s = sb|x1, . . . , xN) ≤ P N
b

P N
b + (1−Pb)N

(C−1)N−1

(4.38)

where x1, . . . , xN are the responses of the (hypothetical) population, sb is the ’best’

stimulus, Pb the probability of correctly identifying it from the output of a single cell,

and C is the size of the stimulus set. A uniform prior over the stimuli within the set

was assumed. (4.38) is fulfilled with equality if the cells behave like ’grandmother

cells’ [4], i.e. the probability for correctly identifying another stimulus s 6= sb is

1−Pb

C−1
. This probability approaches 0 for large C, in other words: each cell responds

only to one stimulus.

Setting Pb = 0.3 and C = 8 and plotting P (s = sb|x1, . . . , xN) (given the ’grand-

mother cell’ assumption) over N yields fig. 4.10. In the best case, as little as six

independent ’confirmations’ of the stimulus identity are enough to be more than

99% certain. This lends further credibility to the hypothesis that the visual system

employs sparse codes for the representation of stimuli [29], because only a small

number of units needs to be active to code a given stimulus. It should be noted,

however, that the small number of units necessary for reasonable certainty is likely

due to the unrealistically small stimulus set (8 stimuli). As explained in [68], the

visual system does not have the luxury of knowing the prior distribution which an

105

experimenter chooses. Hence, the number of neurons involved in the representation

of a stimulus can be expected to be somewhat larger, estimates are of O(100) [69].

0 2 4 6 8 10
N

0

0,2

0,4

0,6

0,8

1

P(
s|

x 1,..
.,x

N
)

Figure 4.10: Probability of correctly identifying a stimulus given the responses

of a (hypothetical) population of cells of size N . For details, see text.

106

Chapter 5

Information extraction from

neural spike trains II:

Bayesian Bin Distribution

Inference and Mutual Information

5.1 Introduction

Computing entropies and mutual information from data of limited sample size, such

as recordings of mammalian brain cell activity, is a difficult task. A related prob-

lem is the estimation of probability distributions and/or densities. In fact, once a

good density estimate is available, one could also expect the entropy estimates to

be satisfactory1. One of the several approaches proposed in the past is kernel based

estimation, having the advantage of being able to model virtually any density, but

suffering from a heavy bias [80]. Another category consists of parameterized esti-

mation methods, which choose some class of density function and then determine a

set of parameters that best fit the data by maximizing their likelihood. However,

maximum likelihood approaches are prone to over-fitting. A common remedy for

this problem is cross-validation [85], which, while it appears to work in many cases,

can at best be regarded as an approximation.

1Note, however, that a good density estimate is not a prerequisite for a satisfactory entropy

estimate [61].

107

Over-fitting occurs especially when the size of the dataset is not large enough

compared to the number of degrees of freedom of the chosen model. Thus, as a com-

promise between the two aforementioned methods, mixture models have recently

attracted considerable attention [87]. Here, a mixture of simple densities (Gaus-

sians are quite common) are used to model the data. The most popular method for

determining its parameters is Expectation Maximization [19], which, while having

nice convergence properties, is still aiming at maximizing the likelihood. The ques-

tion of how to determine the best number of model parameters therefore remains

unanswered in this framework. Some progress has been made in this direction by em-

ploying Dirichlet process mixture models [60]. Nevertheless, exact solutions are hard

to come by with this approach, so one is usually required to use MCMC (Markov

Chain Monte Carlo) techniques (see section 2.6.3) for the estimation of quantities of

interest. Two other noteworthy approaches to dealing with the overfitting problem

are MML [91] (Minimum Message Length) and MDL [78] (Minimum Description

Length), which are similar to Bayesian inference.

In this chapter, an exactly tractable model will be presented. In section 5.2, the

model is introduced. While still simple in construction, it is sufficiently general to

model any distribution (or density), which will be illustrated in section 5.10, along

with a discussion of some of the model’s limiting properties. Sections 5.3 and 5.4

describe the computational framework for iterating over all possible choices of the

model’s parameters in polynomial time, which is a necessary prerequisite for the

Bayesian estimation of entropies and the mutual information. The developed BBDI

algorithm can then be applied directly to perform model selection and probability

distribution/density inference (see sections 5.5 to 5.7). Thus, while density estima-

tion was not the motivation for the development of the BBDIa, it can be used to

that end with little extra effort. In section 5.8, the BBDIa is extended to yield exact

expectations of entropies and their variances. Thus, an exact expectation of the mu-

tual information and a strict upper bound on its variance can be computed as well,

as shown in sections 5.11 to 5.13. In section 5.13, the performance of the algorithm

is also compared with two competing methods. Finally, in section 5.14, it is used

for an information-theoretic evaluation of the same neural spike train data which

were studied in the previous chapter. To that end, the expected temporal windows

108

s ss s s s s s s
s

4 5 76 8 92 31

P0

0

P1 P2

P

X

Figure 5.1: An example configuration for K = 10 values of X, three bins

(M = 2 interval boundaries), containing the probabilities Pm. Here, P (0) =

P (1) = P (2) = P0

3
, P (3) = . . . = P (8) = P1

6
, P (9) = P2. The points indicate

which values of X belong to a bin. The algorithm iterates over all possible

configurations to find the expected probability distribution and other relevant

averages.

as determined by the BBCa from the last chapter are employed to compute the

cells’ responses, and the mutual information between response and stimulus label is

evaluated.

5.2 Bayesian binning

Suppose X was a discrete random variable , which could take on the values k =

0, . . . , K − 1. Furthermore, assume that a notion of similarity between any two

instances x1, x2 of X could be quantified in a meaningful way by x1 − x2. It is

then natural to try to model the distribution of X by M + 1 ≤ K contiguous, non-

overlapping bins, such that the bins cover the whole domain of X. Each bin has a

probability Pm, m = 0, . . . , M , subject to the normalization constraint
∑M

m=0 Pm =

1. This probability is evenly distributed amongst the possible values of X in the bin

(see fig. 5.1). If a bin ends at km and the previous one at km−1, then

∀km−1 < k ≤ km : P (X = k) =
Pm

∆km

(5.1)

with ∆km = km−km−1, k−1 = −1 and kM = K−1, i.e. the first bin starts at X = 0

and the last one includes X = K − 1. Assume now a multiset D = {x1, x2, . . . , xN}

109

of N points drawn independently from the distribution which is to be inferred was

available. Given the model parameterized by M and {(Pm, km)}, the probability of

the data then is given (up to a factor) by a multinomial distribution

P (D|M, {(Pm, km)}) =

M∏

m=0

(
Pm

∆km

)nm

(5.2)

where nm is the number of points in bin m. One might argue that a multinomial fac-

tor should be inserted here if the data points are not ordered. This would, however,

only amount to a constant factor that is cancelled out when averages (posteriors,

expectations of variables etc.) are computed. It will therefore be dropped. The

factors ∆k−nm
m express the intention of modeling ∆km possible values of X by the

same probability. From an information theoretic perspective, we are trying to find

a simpler coding scheme for the data while preserving the information present in

them: The message ’X = k’ for all k : km−1 < k ≤ km would be represented by a

code element of the same length log
(

∆km

Pm

)

. In contrast, were the ∆k−nm
m absent,

then the message ’X = k’ for each k : km−1 < k ≤ km would be represented by the

same code element, i.e. an information reduction transformation would have been

applied to the data.

Next, the evidence of a model with M bins will be computed, i.e. P (D|M).

It is obtained by multiplying the likelihood (eqn. (5.2)) with a suitable prior

p({(Pm, km)}|M) to yield p(D, {(Pm, km)}|M). This density is then marginalized

w.r.t. Pm and km, which is done by integration and summation, respectively. The

summation boundaries for the km have to be chosen so that each bin covers at least

one possible value of X. Since the bins may not overlap, k0 = 0 . . .K − 1 − M ,

k1 = k0 + 1 . . .K − M etc.. Because the Pm represent probabilities, their integra-

tions run from 0 to 1 subject to the normalization constraint, which can be enforced

via a Dirac δ() function:

P (D|M) =
∑∑

{k}

∫ 1

0

d~PP (D|M, {(Pm, km)})p({(Pm, km)}|M) (5.3)

where
∫ 1

0

d~P =

∫ 1

0

dP0

∫ 1

0

dP1 . . .

∫ 1

0

dPMδ(1 −
M∑

m=0

Pm) (5.4)

110

and
∑∑

{k}
=

K−1−M∑

k0=0

K−M∑

k1=k0+1

. . .

K−2∑

kM−1=kM−2+1

(5.5)

Note that the prior p({(Pm, km)}|M) is a probability density, because the Pm are

real numbers.

5.3 Computing the prior p({(Pm, km)}|M)

The prior will be assumed to be non-informative, i.e. all possible configurations of

{(Pm, km)} are equally likely prior to observing the data. The prior can be written

as

p({(Pm, km)}|M) = p({Pm}|{km}, M)P ({km}|M) (5.6)

Note that the second factor on the r.h.s. is not a probability density, because there

is only a finite number of configurations for the km. In the following, it shall be

assumed that the probability contained in a bin is independent of the bin size, i.e.

p({Pm}|{km}, M) = p({Pm}|M). This is certainly not the only possible choice, but a

common one: in the absence of further prior information, independence assumptions

can be justified, since they maximize the prior’s entropy. Thus, eqn. (5.6) becomes

p({(Pm, km)}|M) = p({Pm}|M)P ({km}|M) (5.7)

Since all models are to be equally likely, the prior is constant (denoted by c(M))

w.r.t. km and Pm, and normalized:

∑∑

{k}

∫ 1

0

d~P

︸ ︷︷ ︸
1

M!

×c(M) = 1 (5.8)

Carrying out the integrals is straightforward (see (D.8) with all nm = 0) and yields

the normalization constant of a Dirichlet distribution. The value of the sums is

given by (using the identity
∑b

i=0

(
a+i

i

)
=
(

a+b+1
b

)
)

K−1−M∑

k0=0

. . .

K−2∑

kM−1=kM−2+1

1 =
K−1−M∑

k0=0

. . .

K−3∑

kM−2=kM−3+1

(K − 2 − kM−2)

=

K−1−M∑

k0=0

. . .

K−3∑

kM−2=kM−3+1

(K − 2 − kM−2)!

(K − 3 − kM−2)!1!

111

T
T
T
T
T
T
T
T

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

bbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaa

HHHHHHHHHHHHHHH

@
@

@
@

@
@

@
@

. . .

. . .

a(0, 0) a(1, 1) a(1, 2) M̃ = 1

M̃ = 2a(0, 0) a(1, 1) a(2, K − 1)a(2, K − 2)

a(1, K − 1)a(1, K − 2)

a(2, 2)

Figure 5.2: After all the evidence contributions a(M̃, K̃) have been evaluated

to compute the evidence of a model with M̃ intersections, they can be reused

to compute the a(M̃ + 1, K̃). The arrows indicate which a(M̃, K̃) enter into

the calculation for an a(M̃ + 1, K̃).

=

K−1−M∑

k0=0

. . .

K−3−(kM−3+1)
∑

i=0

(1 + i)!

i!1!

=

K−1−M∑

k0=0

. . .

K−4∑

kM−3=kM−4+1

(
K − 2 − kM−3

K − 4 − kM−3

)

=

(
K − 1

K − M − 1

)

=

(
K − 1

M

)

(5.9)

This is of course just the number of possibilities of distributing M ordered bin

boundaries across K − 1 places. Due to the assumed independence between Pm and

km, it is possible to identify

p({Pm}|M) = M ! (5.10)

P ({km}|M) =
(K − M − 1)!M !

(K − 1)!
(5.11)

and thus the prior is

c(M) =
(K − M − 1)!M !2

(K − 1)!
(5.12)

5.4 Computing the evidence

To compute (5.3), rewrite it as

P (D|M) =
∑∑

{k}
P (D|{km}, M)P ({km}|M) (5.13)

112

where

P (D|{km}, M) =

∫ 1

0

d~P

M∏

m=0

(
Pm

∆km

)nm

p({Pm}|M) (5.14)

Given a configuration of the {km}, the {nm} are fixed, and thus the integrals can

be carried out (see (D.8) and 5.10) to yield the normalization integral of a Dirichlet

distribution:

P (D|{km}, M) =

M∏

m′=0

(km′ − km′−1)
−nm′ ×

∏M

m=0 nm!

(N + M)!
M !

=
M !

(N + M)!

M∏

m=0

nm!

∆knm
m

(5.15)

For a speedy evaluation of the sums in (5.13), consider the following iterative scheme:

let

a(0, K̃) =
n0!

(K̃ + 1)n0

(5.16)

where n0 is the total number of data points for which k ≤ K̃ (i.e. the number of

points in the current bin 0). Furthermore, define

a(M̃ + 1, K̃) =

K̃−1∑

k̃=M̃

a(M̃, k̃)
nM̃+1!

(K̃ − k̃)n
M̃+1

(5.17)

where nM̃+1 is the total number of data points for which k̃ < k ≤ K̃ (i.e. the number

of points in the current bin M̃ + 1). In other words, to compute the contribution to

(5.13) which has M̃ +1 bin boundaries in the interval 0, . . . , K̃, let boundary M̃ +1

move between position M̃ (because the previous M̃ boundaries must at least occupy

the positions 0, . . . , M̃ − 1) and K̃ − 1 (because bin M̃ + 1 must at least have width

1). For each of these positions, multiply the factor for bin M̃ +1 (which ranges from

k̃ + 1 to K̃) with the contribution for M̃ bin boundaries in the interval 0, . . . , k̃ and

add.

By induction, one hence obtains

a(M̃, K̃) =
K̃−1∑

k
M̃−1

=M̃−1

k
M̃−1

−1
∑

k
M̃−2

=M̃−2

. . .

k1−1∑

k0=0

M∏

m=0

nm!

∆knm
m

=
K̃−M̃∑

k0=0

. . .

K̃−1∑

k
M̃−1

=k
M̃−2

+1

M∏

m=0

nm!

∆knm
m

(5.18)

Inserting (5.15) into (5.13) and using (5.11) yields

P (D|M) =
(K − M − 1)!M !2

(K − 1)!(N + M)!
a(M, K − 1) (5.19)

113

This way of organizing the calculation is computationally similar to the sum-product

algorithm [49], the messages being passed from one M̃ -level to the next are the

a(M̃, K̃), whereas within one level, a sum over the messages from the previous level

(times a factor) is performed.

To compute a(M, K − 1), all the a(M − 1, K̃), M − 1 ≤ K̃ < K − 1 are needed

(see fig. 5.2). While calculating them, a(M−1, K−1) can be evaluated just as well,

which does not increase the overall computation complexity. Thus the evidences for

models with less than M intersections are obtained with little extra effort. Moreover,

in an implementation it is sufficient to store the a(M, K̃) in an one-dimensional array

of length K that is overwritten in reverse order as one proceeds from M − 1 to M

(because a(M−1, K−2) is no longer needed once a(M, K−1) is computed etc.). In

pseudo-code (where the getCount(k1,k2) function returns the number of observed

points for which k1 < k ≤ k2):

1 Initialize a[0...K-1]:=0,evidences[0...M]:=0

2 for k:=0 to K-1 do

(a) n:=getCount(-1,k)

(b) a[k]:= n!
(k+1)n

3 evidences[0]:=a[K-1]/N!

4 for m:=1 to M do

(a) if m=M then lb:=K-1 else lb:=m

(b) for k:=K-1 downto lb do

i. a[k]:=0

ii. for kk:=m-1 to k-1 do

A. n:=getCount(kk,k)

B. a[k]:=a[k]+a[kk]× n!
(k−kk)n

(c) evidences[m]:=a[K-1]× (K−1−m)!m!2

(K−1)!(N+m)!

Step 4a is not essential, but it saves some computational effort: once the main loop

4 reaches M , only a(M, K − 1) needs to be calculated. The a(M, k < K − 1) would

114

only be necessary, if the evidence for M + 1 bin boundaries were to be evaluated.

In a real-world implementation, it might be advisable to construct a lookup-

table for getCount(k1,k2)!/(k2 − k1)getCount(k1,k2), since these quantities would

otherwise be evaluated multiple times in step 4(b)iiB, as soon as M > 2.

A look at the main loop (4.) shows that the computational complexity of this

algorithm is O(MK2) (provided that M ≪ K, i.e. the number of bins is much

smaller than the number of possible values of X), or more generally O(K3) (because

M ≤ K − 1). This is significantly faster than the naive approach of simply trying

all possible configurations, which would yield O(KM).

5.5 Evaluating the model posterior P (M |D), the

predictive distribution P (k|M, D) and its vari-

ance

Once the evidence is known, one can proceed to determine the relative probabilities

of different M , the model posterior :

P (M |D) =
P (D|M)P (M)

P (D)
(5.20)

where P (M) is the model prior and P (D) =
∑

m P (D|m)P (m). P (M |D) is needed

for model comparsion purposes. The sum over m includes all models which one

chooses to include into the inference process, therefore the conditioning on a partic-

ular m is marginalized. It is thus customary to refer to P (D) as ’the probability of

the data’. This is somewhat misleading (as noted already in section 2.5.1), because

P (D) is still not only conditioned on the chosen set of m, but also on the general

model class under consideration (here: probability distributions that consist of a

number of bins).

The predictive distribution of X, i.e. the Bayesian estimate of the distribution

which generated the data, can be calculated via the evidence as well. Note that

P (k1, k2, . . . , kR|M, D) = E [P (k1)P (k2) . . . P (kR)|M, D] (5.21)

i.e. the joint predictive probability of k1, k2, . . . , kR is the expectation of the product

of their probabilities given M and D. Thus, if the value of the predictive distribution

115

of X at a particular k′ is to be determined, simply add this k′ to the multiset D.

Call this extended multiset D′ = D ∪ k′, then

P (k′|D, M) =
P (D′|M)

P (D|M)
(5.22)

The choice of P (M) will usually be non-informative (e.g. uniform), unless there is

reason to prefer certain models over others.

Likewise, to obtain the variance, and thus a confidence interval on P (k′|D, M),

add k′ twice: D′′ = D ∪ k′ ∪ k′. Then

Var [P (k′|D, M)] =
P (D′′|M)

P (D|M)
−
(

P (D′|M)

P (D|M)

)2

(5.23)

5.6 Inferring probability densities

The algorithm can also be used to estimate probability densities. To do so, replace

all occurrences of ∆km with (∆km)∆x, where ∆x is the interval between k and

k + 1. This yields a discretized approximation to the density. The discretization is

just another model parameter which can be determined from the data:

P (∆x|D) =

∑

M p(D|M, ∆x)P (M)P (∆x)
∑

∆x

∑

M p(D|M, ∆x)P (M)P (∆x)
(5.24)

where
∑

∆x runs over all possible values of ∆x which one chooses to include. p(D|∆x)

is computed in the same fashion as P (D) in (5.20) for a given ∆x, except that the

data are now assumed to be continuous, hence the probability turns into a density.

The dependence of P (D|M, ∆x) on ∆x is through K (see (5.3)): if one tries to

find a suitable discretization of the interval [0, b], then K = b
∆x

.

5.7 Model selection versus model averaging

Once P (M |D) is determined, it can be used to choose M. A fairly common procedure

is to select the M for which P (M |D) is maximized, usually referred to as MAP. It

is closely related to the maximum likelihood approach (the only difference being

that now the posterior is maximized, not the likelihood) and suffers from similar

deficiencies. Strictly speaking, selecting a single model versus all others is only

permitted if P (M |D) = 1 for this model and P (M |D) = 0 for the rest. It is,

116

however, unlikely that this situation will be encountered (unless in some limiting

cases, for which one needs not bother to employ probability theory at all). Rather,

there will be various M with nonzero probability. From a Bayesian point of view, it

is then required to include all those (denoted by the set {M}) into any prediction,

weighted by their corresponding model posteriors. The predicted probability for

X = k then becomes

P (k|D, {M}) =
∑

m∈{M}

P (k|D, m)P (m|D)

=
∑

m∈{M}

P (D′|m)

P (D|m)

P (D|m)P (m)
∑

m′∈{M} P (D|m′)P (m′)

=

∑

m∈{M} P (D′|m)P (m)
∑

m∈{M} P (D|m)P (m)
(5.25)

The drawback of this scheme is that, if |{M}| is very large, it might take a long

time to carry out the necessary computations. Therefore, one would like to be able

to reduce the number of models that need to be taken into account.

One possible approach is based on probabilistic considerations. Suppose one

splits the set {M} in two parts, {M}i containing those models which are to be

included, and {M}e = {M}\{M}i. The probability of each set given the data can

then be computed:

P ({M}i|D) =

∑

m∈{M}i
P (D|m)P (m)

∑

m∈{M} P (D|m)P (m)
(5.26)

P ({M}e|D) = 1 − P ({M}i|D) (5.27)

(The implicit conditioning on the model class has again been omitted). Now, in

analogy to the significance levels of orthodox statistics, choose an α, which is to

represent the probability of accidentally rejecting models although they provide a

good description of the data. Then, {M}i would be constructed so that

P ({M}i|D) ≥ 1 − α (5.28)

The straightforward way of doing this is to start with an empty set and iteratively

add the models from {M}e that lead to a maximum increase of P ({M}i|D).

Another approach is to look at the entropy H of the distribution comprised

of P ({M}i|D) and P ({M}e|D). Measured in bits, it has to be in the interval

[0, 1]. Entropy is the most general measure of uncertainty of a random variable. It

117

therefore tells how much information one has to ’contrive’ when one chooses one

set and discards the other. One would thus keep adding models to {M}i until the

entropy is low enough (using the same scheme as before). What exactly ’low enough’

means, is, as in the case of significance levels, a matter of convention.

These two methods of model selection are of course closely related to each other,

via

H = α log2(α) + (1 − α) log2(1 − α) (5.29)

Provided that P ({M}i|D) ≥ 0.5, it is thus possible to compute an entropy for each

α, and vice versa.

5.8 Computing the entropy and its variance

To evaluate the entropy of the distribution P (X), the entropy of (5.1) is computed

first:

H(P (X|M, {Pm, km})) = −
K−1∑

k=0

P (k|M, {Pm, km}) log(P (k|M, {Pm, km}))

= −
M∑

m=0

km∑

k=km−1+1

Pm

∆km

log

(
Pm

∆km

)

= −
M∑

m=0

Pm log(Pm) +

M∑

m=0

Pm log(∆km) (5.30)

where log(x) is the natural logarithm. This expression must now be averaged over

the posterior distributions of {(Pm, km)} and possibly M to obtain the expectation

of H(P (X|D)). Instead of carrying this out for (5.30) as a whole, it is easier to do

it term-by-term, i.e. to calculate the expectations of Pm log(Pm) and Pm log(km −
km−1). Generally speaking, if one wants to compute the average of any quantity

that is a function of the probability in a bin m′ for a given M , one can proceed in

the following fashion: call this function f(Pm′). Its expectation w.r.t. the {Pm}is
then

E [f(Pm′)|{km}, M, D] =

∫ 1

0
d~Pf(Pm′)P (D|{(Pm, km}, M)

I({km})
(5.31)

where, by virtue of (5.14) and (D.8)

I({km}) =

∫ 1

0

d~PP (D|{(Pm, km}, M)

118

=
1

(N + M)!

M∏

m=0

nm!

∆knm
m

(5.32)

because p({Pm}) is a constant, otherwise it would have to be included in the integra-

tions. Note that, as far as the counts in the bins nm are concerned, E [f(Pm′)|{km}, M, D]

depends only on nm′ (and possibly N , the total number of datapoints). This can be

verified by integrating the numerator of (5.31) over all Pm, m 6= m′. Therefore

E [f(Pm′)|M, D] =
∑∑

{k}

∫ 1

0

d~Pf(Pm′)p({(Pm, km)}|M, D)

=

∑∑

{k}P ({km})p({Pm})E [f(Pm′)|{km}, M, D] I({km})
P (D|M)

(5.33)

When (5.32) is inserted here, it becomes apparent that this expectation has the same

form as (5.13) after inserting (5.15). Combined with the fact that E [f(Pm′)|{km}, M, D]

depends only on nm′ , this means that the above described iterative computation

scheme (eqns. (5.16) and (5.17)) can be employed for its evaluation. All one needs

to do is to substitute nm′ ! → nm′ !E [f(Pm′)|{km}, M, D], i.e. (5.17) is replaced by

a(M̃ + 1 = m′, K̃) =
K̃−1∑

k̃=M̃

a(M̃, k̃)
nm′ !

∆k
nm′

m′

E [f(Pm′)|{km}, M, D] (5.34)

where ∆km′ = K̃ − k̃. The a(M̃, K̃) for M̃ 6= m′ are the same as before. Note that

(5.34) can also be used if f(Pm′) depends not only on Pm′ , but also on the boundaries

of bin m′ (i.e. km′−1 and km′). Generally speaking, (5.34) can be employed whenever

the expectation of a function (given M and D) is to be evaluated, if this function

depends only on the parameters of one bin.

For fixed {km}, some of these expectations have been computed before in [40].

5.8.1 Computing E [Pm′ log(Pm′)|{km}, M, D]

Using (5.1) and defining q({km}) =
∏M

m=0 ∆k−nm
m one obtains

E [Pm′ log(Pm′)|{km}, M, D] =
q({km})

∫ 1

0
d~PP

nm′+1
m′ log(Pm′)

∏

m6=m′ P nm
m

I({km})
(5.35)

To compute the integrals, note that
∫ 1

0

d~PP
nm′+1
m′ log(Pm′)

∏

m6=m′

P nm

m

=
∂

∂nm′

∫ 1

0

d~PP
nm′+1
m′

∏

m6=m′

P nm

m (5.36)

119

which is, by using (D.8), (D.6) and (D.30)

=
∂

∂nm′

Γ(nm′ + 2)
∏M

m6=m′ Γ(nm + 1)

Γ(
∑M

m=0 nm + M + 2)

=
∂

∂nm′

Γ(nm′ + 2)Γ(
∑

m6=m′ nm + M)

Γ(
∑M

m=0 nm + M + 2)

∏M

m6=m′ Γ(nm + 1)

Γ(
∑

m6=m′ nm + M)

=
∂B(nm′ + 2,

∑

m6=m′ nm + M)

∂nm′

∏M

m6=m′ Γ(nm + 1)

Γ(
∑

m6=m′ nm + M)

=

∏M

m=0 nm!

(N + M)!

nm′ + 1

N + M + 1
hN+M+1

nm′+2 (5.37)

where B(a, b) is the Beta function, Γ(a) is the Gamma function (see appendix D for

details), and

hb
a =

b∑

i=a

1

i
(5.38)

is the difference between the partial sums of the harmonic series with upper limits

a − 1 and b. The first part of (5.37) is the normalization integral of the density of

the Pm. Hence, their entropy for fixed {km} is given by (5.37) divided by (D.8)

E [H({Pm})|{km}, M, D] =

M∑

m=0

nm + 1

N + M + 1
hN+M+1

nm+2 (5.39)

which is a rational number. In other words, entropy changes in rational increments

as we observe new data points.

Thus,

E [Pm′ log(Pm′)|{km}, M, D] =
nm′ + 1

N + M + 1
hN+M+1

nm′+2 (5.40)

5.8.2 Computing E [Pm′ log(∆km′)|{km}, M, D]

Here,

E [Pm′ log(∆km′)|{km}, M, D] =
q({km}) log(∆km′)

∫ 1

0
d~PP

nm′+1
m′

∏

m6=m′ P nm
m

I({km})
(5.41)

and, by using the same identities as above,

E [Pm′ log(∆km′)|{km}, M, D] =
nm′ + 1

N + M + 1
log(∆km′) (5.42)

120

5.8.3 Computing the variance

To compute the variance, the square of the entropy is required:

H2(P (X|M, {Pm, km})) =

(

−
K−1∑

k=0

P (k|M, {Pm, km}) log(P (k|M, {Pm, km}))
)2

=

(
M∑

m=0

Pm log(Pm) −
M∑

m=0

Pm log(∆km)

)2

=

M∑

m′=0

P 2
m′ log2(Pm′)

+ 2

M∑

m′=0

M∑

m′′=m′+1

Pm′Pm′′ log(Pm′) log(Pm′′)

+

M∑

m′=0

P 2
m′ log2(∆km′)

+ 2

M∑

m′=0

M∑

m′′=m′+1

Pm′Pm′′ log(∆km′) log(∆km′′)

− 2

M∑

m′=0

P 2
m′ log(Pm′) log(∆km′)

− 4

M∑

m′=0

M∑

m′′=m′+1

Pm′Pm′′ log(Pm′) log(∆km′′) (5.43)

Hence, one needs to evaluate the expectations of

1 P 2
m′ log2(Pm′). See 5.8.4.

2 Pm′Pm′′ log(Pm′) log(Pm′′). See 5.8.5.

3 P 2
m′ log2(∆km′). Can be evaluated along the same lines as (5.42) and yields

(nm′ + 1)(nm′ + 2)

(N + M + 1)(N + M + 2)
log2(∆km′) (5.44)

4 Pm′Pm′′ log(∆km′) log(∆km′′). Follows from (D.8) by replacing nm′ with nm′+1,

nm′′ with nm′′ + 1 and yields

(nm′ + 1)(nm′′ + 1)

(N + M + 1)(N + M + 2)
log(∆km′) log(∆km′′) (5.45)

5 P 2
m′ log(Pm′) log(∆km′). Can be evaluated along the same lines as (5.40) and

yields
(nm′ + 1)(nm′ + 2)

(N + M + 1)(N + M + 2)
hN+M+2

nm′+3 log(∆km′) (5.46)

121

6 Pm′Pm′′ log(Pm′) log(∆km′′). Can be evaluated along the same lines as (5.40)

and yields
(nm′ + 1)(nm′′ + 1)

(N + M + 1)(N + M + 2)
hN+M+2

nm′+2 log(∆km′′) (5.47)

5.8.4 Computing E
[
P 2

m′ log2(Pm′)|{km}, M, D
]

Since
∂2B(a + 1, b + 1)

∂a2
=

∫ 1

0

dx log2(x)xa(1 − x)b (5.48)

the same method of calculation as above can be employed. Thus, noting (D.31) one

obtains:

E
[
P 2

m′ log2(Pm′)|{km}, M, D
]

=
(nm′ + 1)(nm′ + 2)

(N + M + 1)(N + M + 2)

[(

hN+M+2
nm′+3

)2

+ 2h
N+M+2
nm′+3

]

(5.49)

where

2h
b
a =

b∑

i=a

1

i2
(5.50)

5.8.5 Computing E [Pm′Pm′′ log(Pm′) log(Pm′′)|{km}, M, D]

To compute this expectation, one needs to evaluate

∫ 1

0

d~PP
nm′+1
m′ P

nm′′+1
m′′ log(Pm′) log(Pm′′)

∏

m6=m′,m′′

P nm

m

=
∂2

∂nm′∂nm′′

(
∫ 1

0

d~PP
nm′+1
m′ P

nm′′+1
m′′

∏

m6=m′,m′′

P nm

m

)

(5.51)

and then divide it by a normalization constant (see (D.8)). The integrals in the last

expression can be rewritten, using Beta functions, to yield

B(nm′ + 2, nm′′ + 2)B(nm′ + nm′′ + 4, NR + M − 1) × R (5.52)

where NR =
∑

m6=m′,m′′ nm and R is the part that does not depend upon nm′ and

nm′′ and thus is not affected by the differentiation:

R =

∏

m6=m′,m′′ nm!

(NR + M − 2)!
(5.53)

122

Using (D.30), (D.31) and (D.32) yields

∂2

∂nm′∂nm′′

B(nm′ + 2, nm′′ + 2)B(nm′ + nm′′ + 4, NR + M − 1)

=
∂2B(nm′ + 2, nm′′ + 2)

∂nm′∂nm′′

B(nm′ + nm′′ + 4, NR + M − 1)

+
∂B(nm′ + 2, nm′′ + 2)

∂nm′

∂B(nm′ + nm′′ + 4, NR + M − 1)

∂nm′′

+
∂B(nm′ + 2, nm′′ + 2)

∂nm′′

∂B(nm′ + nm′′ + 4, NR + M − 1)

∂nm′

+
∂2B(nm′ + nm′′ + 4, NR + M − 1)

∂nm′∂nm′′

=
(

h
nm′+nm′′+3
nm′+2

)(

h
nm′+nm′′+3
nm′′+2

)

+ 2h
nm′+nm′′+3
1 − π2

6

+
(

h
nm′+nm′′+3
nm′+2

)(

hN+M+2
nm′+nm′′+4

)

+
(

h
nm′+nm′′+3
nm′′+2

)(

hN+M+2
nm′+nm′′+4

)

+
(

hN+M+2
nm′+nm′′+4

)2

+ 2h
N+M+2
nm′+nm′′+4

=
(

h
nm′+nm′′+3
nm′+2 + hN+M+2

nm′+nm′′+4

)(

h
nm′+nm′′+3
nm′′+2 + hN+M+2

nm′+nm′′+4

)

+ 2h
N+M+2
1 − π2

6

=
(

hN+M+2
nm′+2

)(

hN+M+2
nm′′+2

)

+ 2h
N+M+2
1 − π2

6
(5.54)

The desired expectation can thus be computed in two runs of the iteration: first, let

E [f(Pm′)|{km}, M, D] = (nm′ + 1)hN+M+2
nm′+2 (5.55)

E [f(Pm′′)|{km}, M, D] = (nm′′ + 1)hN+M+2
nm′′+2 (5.56)

and divide the result by (N + M + 1)(N + M + 2).

Second, let

E [f(Pm′)|{km}, M, D] = (nm′ + 1) (5.57)

E [f(Pm′′)|{km}, M, D] = (nm′′ + 1) (5.58)

and multiply the result with 2hN+M+2
1 −π2

6

(N+M+1)(N+M+2)
.

5.9 An information-theoretic similarity measure

In the next section, the above described algorithm will be shown in action. To

that end, data were generated from some known densities, which were then used

123

for inference. To test the algorithm’s performance, a distance measure between

densities (or distributions) will be used, which is motivated in the following way:

suppose an impartial observer was told that either p(x) or q(x) was the density which

generated the data. Given no more information, the prior probabilities for each of

them being the correct density would then be assigned as P (p(x)) = P (q(x)) = 1
2
.

Upon observing a datapoint x1, this knowledge would be updated via Bayes’ rule,

giving rise to the posterior

P (p(x)|x1) =
p(x1)P (p(x))

p(x1)P (p(x)) + q(x1)P (p(x))
=

p(x1)

p(x1) + q(x1)
(5.59)

P (q(x)|x1) =
q(x1)P (q(x))

p(x1)P (p(x)) + q(x1)P (p(x))
=

q(x1)

p(x1) + q(x1)
(5.60)

The amount of information thus received can be quantified by the Kullback diver-

gence (see section 2.5.3) between posterior and prior:

D = P (p(x)|x1) log

(
P (p(x)|x1)

P (p(x))

)

+ P (q(x)|x1) log

(
P (q(x)|x1)

P (q(x))

)

=
p(x1)

p(x1) + q(x1)
log

(
2p(x1)

p(x1) + q(x1)

)

+
q(x1)

p(x1) + q(x1)
log

(
2q(x1)

p(x1) + q(x1)

)

(5.61)

The observer may now ask ’How much can I expect to learn from observing x1, given

what I already know?’. This expected information gain is obtained by averaging eqn.

(5.61) over the expected distribution of x1 (given the prior knowledge, i.e. before

the observation of x1 is made), which is p(x1)P (p(x)) + q(x1)P (q(x)):

D2
pq =

∫

dx1
1

2
(p(x1) + q(x1))D

=
1

2

∫

dx1p(x1) log

(
2p(x1)

p(x1) + q(x1)

)

+ q(x1) log

(
2q(x1)

p(x1) + q(x1)

)

=
1

2

(

D

(

p(x)

∣
∣
∣
∣

∣
∣
∣
∣

1

2
(p(x)+q(x))

)

+ D

(

q(x)

∣
∣
∣
∣

∣
∣
∣
∣

1

2
(p(x)+q(x))

))

(5.62)

In other words, the expected information gain is the average of the Kullback diver-

gences between p(x) and q(x) and the expected distribution of x given the prior. It

is symmetric in p(x) and q(x) and vanishes if p(x) = q(x). Moreover, it was shown

in [22], that its square root fulfills the triangle inequality (hence the square in eqn.

(5.62)), i.e. Dpq is a metric. The proof, along with a coding-theroetic motivation

and some of its properties, can be found in appendix E. For the current purpose,

the most important of these are:

124

• The maximum of D2
pq, measured in bit, is 1. It is reached when p(x) and q(x)

are distinct, i.e. such that a sample drawn from one density could not possibly

have come from the other. In this case, one datapoint is enough to decide

which density generated it.

• Nmin = 1
D2

pq
(D2

pq again measured in bit) is a lower bound on the sample size

needed to ascertain which density gave rise to the data.

5.10 Examples

Fig. 5.3 shows examples of the predictive density and its variance, compared to

the density from which the data points were drawn (K = 100, M = 5, data point

abscissas were rounded to the next lower discretization point), as well as the model

posteriors P (M |D). The prior P (M) was chosen uniform over the maximum range

of M , here M = 0, . . . , 992. Inference was conducted with α = 0.01 (see eqn. 5.28).

Note that the curves that represent the expected density plus/minus one standard

deviation are not densities anymore. Furthermore, probability densities do not need

to be ≤ 1, but they have to be normalized, i.e. the integral of the density over

the whole domain of the random variable which it describes must be 1. The data

were produced by first drawing uniform random numbers with the generator sran2()

from [76], those were then transformed by the inverse cumulative density (a method

also described in [76]) to be distributed according to the desired density. For very

small datasets (fig. 5.3, top left), only the largest structures of the distribution

can vaguely be seen (such as the valley between 0.15 and 0.58). Furthermore, the

density peaks at each data point (at 0.7, two points were observed very close to

each other). One might therefore imagine the process by which the density comes

about as similar to kernel-based density estimates. It does, however, differ from a

kernel-based procedure insofar as that the number of degrees of freedom does not

necessarily grow with the dataset, but is determined by the data’s structure. The

model posterior (fig. 5.3, top right) is very broad, reflecting the large remaining

2On a 2.6Ghz Pentium 4 system running SuSE Linux 8.2, computing the evidence took ≈ 0.26s

(without initializations). The algorithm was implemented in C++ and compiled with the GnU

compiler.

125

uncertainties due to the small dataset. Models with 0 ≤ M ≤ 97 were included in

the predictions.

With 100 data points (fig. 5.3, second row), more structures begin to emerge

(e.g. the high plateau between 0.58 and 0.68), and the variance decreases, as one

would expect. The model posterior exhibits a much narrower maximum, here the

included models were those with 4 ≤ M ≤ 17.

At 1000 data points (fig. 5.3, third row), all structures of the original density are

modelled, and the variance is yet smaller. The algorithm is now fairly certain about

the correct number of intersections, 5 ≤ M ≤ 8, with a maximum at 5. Moreover,

due to this restriction on the degrees of freedom, the predicted density no longer

looks like a kernel-based estimate. It should be noted that in a small number of

instances (≈ 2.6%, estimated from results on 1000 datasets), the algorithm fails to

discover the peak at 0.14, and consequently the posterior maximum is at M = 4.

This can happen if, due to random fluctuation, a dataset does not contain enough

points in the vicinity of the peak to justify a separate bin at this location.

At 10000 data points (fig. 5.3, bottom row), all structures of the distribution are

faithfully modelled and the variance of the predicted density is nearly zero.

Fig. 5.4 depicts density estimates from a mixture of two Gaussians. Even though

these densities can – strictly speaking – not be modelled anymore by a finite number

of bins, the method still produces fairly good estimates of the discretized (K = 100)

densities. Observe how the maximum of the posterior (fig. 5.4, right column) shifts

towards higher values as the number of data points grows. The algorithm thus picks

a range of M which, depending on the amount of available information, is best suited

for explaining the underlying structure of the data.

For a more quantitative representation of the relationship between N and the

’closeness’ of expected and true densities, fig. 5.5, black diamonds, shows the value

of D2
pq where p(x) is the expected density and q(x) is the discretized true density.

This expected information gain goes to zero, following approximately a power law

in N (with exponent ≈ −1 for the bin density and ≈ −0.72 for the mixture of

Gaussians). Therefore, given a large enough dataset, expected and true density

cannot be distinguished anymore. Moreover, in the case of the bin density, the gain

is inversely proportional to the number of data points. In other words, the decision

126

as to which density the sample was drawn from becomes twice as hard when N is

doubled.

As noted above, 1
D2

pq
is a lower limit on the number of datapoints which are

needed to determine which density is the generating one. For the bin density, this

lower limit is roughly equal to N , i.e. an impartial observer would need as many

datapoints to decide between p(x) and q(x) as were used to infer p(x). In the case

of the mixture of Gaussians, the minimum number of datapoints is somewhat lower,

but still growing with N .

Furthermore, fig. 5.4 also shows the performances of two kernel-based density

estimation methods: a mixture of (at most) 20 Gaussians (MOG) (red circles) and a

Dirichlet process [23] mixture of Gaussians (DP-MOG) (green squares). The latter

can be understood as the former in the limit of infinitely many mixture components,

and should thus be able to model virtually any density. I used the implementation

provided in the package fbm-2004-11-10 [60]. When the true density is comprised

of bins, the BBDIa outperforms the other two methods significantly. This might be

expected, since the BBDIa can model the true density exactly, whereas the other

two methods cannot. What is somewhat remarkable is the BBDIa performance

when the true density is a mixture of two Gaussians. Now the MOG and the DP-

MOG outperform the BBDIa, since they are able to model the true density exactly.

However, their performance gain is never quite as high as that of the BBDIa in the

bin density scenario. Moreover, for relatively small datasets (up to ≈ 100 points)

which are customary in neurophysiological experiments, the BBDIa performance is

comparable to that of the other two methods.

In fig. 5.6, the expected differential entropies (see section 2.4.3) are plotted as a

function of the number of data points. Error bars represent ±1 expected standard

deviation. Both expectations were computed individually for each data set and

then averaged over 100 runs. In every case, the true entropy is well within the

error bars. For N ≥ 100, the expected entropy is fairly close to its true value, thus

eliminating the need for finite-size corrections. Note that the standard deviation of

the entropy is plotted, not the empirical standard deviation of its expectation, i.e.

the error bars serve as an indication of the remaining uncertainty in the entropy,

which goes to 0 as N increases. This is due to the fact that entropy is treated here

127

as a deterministic quantity, not as a random variable (because samples are drawn

from some fixed, albeit possibly unknown, density). To illustrate this point further,

look at fig. 5.7: For small datasets, the standard deviation of the expectation of

the entropy is somewhat smaller than the standard deviation of the entropy. When

evaluating experimental results, using the former instead of the latter would thus

possibly mislead one to believe in a higher accuracy of the results than can be

justified by the data, a danger that is especially preeminent when using methods

such as cross-validation in place of exact calculations.

128

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

6

p(
x)

N=10

0 20 40 60 80 100
M

0

0,01

0,02

0,03

0,04

P(
M

|D
)

0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

6

p(
x)

N=100

0 5 10 15 20
M

0

0,05

0,1

0,15

0,2

P(
M

|D
)

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

6

p(
x)

N=1000

0 5 10 15 20
M

0

0.1

0.2

0.3

0.4

0.5

P(
M

|D
)

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

6

p(
x)

N=10000

0 5 10 15 20
M

0

0,1

0,2

0,3

0,4

0,5

0,6

P(
M

|D
)

Figure 5.3: From top to bottom: densities and posteriors for 10,100,1000
and 10000 data points. Left column: expected probability density (black)
plus/minus one standard deviation (red), compared to the true density (green).
Left column: posterior distribution of M , the number of intersections. The
arrows indicate the true value of M = 5. The X’s on the abscissa of the graph
for 10 data points mark the data points.

129

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

p(
x)

N=10

0 20 40 60 80 100
M

0

0,005

0,01

0,015

0,02

0,025

0,03

P(
M

|D
)

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

p(
x)

N=100

0 5 10 15 20 25
M

0

0,05

0,1

0,15

0,2

P(
M

|D
)

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

p(
x)

N=1000

5 10 15 20 25 30
M

0

0,05

0,1

0,15

0,2

P(
M

|D
)

0 0,2 0,4 0,6 0,8 1
x

0

1

2

3

4

5

p(
x)

N=10000

20 25 30 35 40 45
M

0

0,05

0,1

0,15

0,2

P(
M

|D
)

Figure 5.4: From top to bottom: densities and posteriors for 10,100,1000
and 10000 data points. Left column: expected probability density (black)
plus/minus one standard deviation (red), compared to the true density (green).
Left column: posterior distribution of M , the number of intersections. The
X’s on the abscissa of the graph for 10 data points mark the data points.

130

10 100 1000 10000 100000 1e+6
data points

1e-08

1e-06

0,0001

0,01

1

D
2 pq

 [b
it]

10 100 1000 10000 100000 1e+06
data points

1e-08

1e-06

0,0001

0,01

1

D
2 pq

 [
bi

t]

Figure 5.5: D2
pq between true and expected density as a function of the number

of data points. The error bars were obtained from averaging over 100 different

datasets drawn from the same density. Top: 5-bin density, bottom: mixture

of 2 Gaussians. Black diamonds: BBDI, red circles: mixture of (at most) 20

Gaussians, green squares: Dirichlet process mixture of Gaussians. For details,

see text.

131

1 100 10000 1e+06
data points

-1,3

-1,2

-1,1

-1

-0,9

-0,8

-0,7
h

[b
it]

1 100 10000 1e+06
data points

-1,1

-1

-0,9

-0,8

-0,7

-0,6

h
[b

it]

Figure 5.6: Expected differential entropy (diamonds) and expected standard

deviation (error bars) as a function of the number of data points. Both ex-

pectations were computed for one dataset at a time, then averaged over 100

datasets. The red line represents the true differential entropy. Top: 5-bin

density, bottom: mixture of 2 Gaussians.

132

1 100 10000 1e+06
data points

0,0001

0,001

0,01

0,1

1
σ H

 [b
it]

1 100 10000 1e+06
data points

0,0001

0,001

0,01

0,1

1

σ H
 [b

it]

Figure 5.7: Expected standard deviation (black diamonds) ±1 standard de-

viation and empirical standard deviation (red squares) of the expectation of

the differential entropy as functions of the number of data points. Error bars

and empirical standard deviations are averages over 100 datasets. Top: 5-bin

density, bottom: mixture of 2 Gaussians.

133

5.10.1 The limit K → ∞

Assume one tried to find the best discretization of the data via (5.24). If there

is no lower limit on ∆x (other than 0) given by the problem being studied (e.g.

accuracy limits of the equipment used to record the data), then we might wonder

how the discretization posterior behaves as ∆x → 0 or, conversely, as K → ∞.

In this case, given that N stays finite, the data’s probability density will diverge.

However, since the number of possible bin configurations also diverges, it is not

clear whether p(D|∆x) stays finite or not. I will not try to give an analytic answer

to this question here. Instead, look at fig. 5.8, top: the solid lines show the log

evidence log(p(D|∆x)) as a function of ∆x−1. To get an impression of the limit

K → ∞, N ≪ K, the datasets contained one (black), two (red) and three (green)

distinct datapoints, drawn from the interval [0, 1]. The datasets were constructed in

the following fashion: three distinct points x1, x2, x3 were drawn. Then D1 = {x1},
D2 = {x1; x2} and D3 = {x1; x2; x3}, i.e. the dataset with one point was a subset

of the datasets with two and three points, the two-point dataset was a subset of

the three-point dataset. It appears that the log evidence is converging to zero from

below as K → ∞. Most importantly, the maximum of the log evidence is in every

case located at a small value of K. One might wonder if and how the location of

this maximum depends on N . The answer depends of course on the structure of the

generating density. In fig. 5.8, bottom, the log evidence is plotted for N = 1000 and

a generating density which consisted of 5 bins, with the bin boundaries bi chosen

so that bi × 20 was an integer. Consequently, the best discretization is found to be

∆x = 1
20

. This value of ∆x is ≈ 90 times more probable than the second best value

∆x = 1
40

. Should the bi be irrational, or should the generating density not have

a bin structure, then we might expect the maximum of the log evidence to move

towards smaller ∆x (greater K) with increasing N , much like the M-posterior in

fig. 5.4.

Another quantity of interest is the predictive density p(x|D, ∆x). By virtue of

(5.22), this quantity can be computed via an evidence ratio. Thus, the log predictive

density at x3 is given by the differences between the log evidences of D3 and D2.

For large K, this difference seems to converge to 0 from below. The situation is

different at the location of the datapoints: the dashed line in fig. 5.8 shows the log

134

evidence for D4 = {x1; x1; x2}. It appears to diverge sub-logarithmically slowly as

K → ∞. Since p(x1|D2, ∆x) = p(D4|∆x)
p(D2|∆x)

, this means that the predictive density has a

singularity at the datapoints. However, divergence at these singularities seems slow

enough to allow for an integration of the predictive density across these points, i.e.

the probability contained within a non-infinitesimal interval can still be evaluated.

135

1 10 100 1000
∆x

-1

-0,5

0

0,5

1
lo

g(
p(

D
|∆

x)
)

1 10 100 1000
∆x

-1

0

200

400

600

800

lo
g(

p(
D

|∆
x)

)

Figure 5.8: Top: Log evidence log(p(D|∆x)) as a function of K = 1
∆x

. The
range of X was [0, 1]. Solid lines: datasets containing one (black), two (red)
and three (green) distinct datapoints. For large K, the log evidence appears
to converge towards 0 from below. Dashed line: dataset containing three data-
points. This dataset was created by using the two-point dataset and doubling
the first point. Here, the log evidence seems to diverge with K, although
sub-logarithmically slow. Bottom: Log evidence log(p(D|∆x)) as a function
of K = 1

∆x
, N = 1000. The range of X was [0, 1]. The generating density

consisted of 5 bins, with the bin boundaries bi chosen so that bi × 20 was an
integer. Consequently, the best discretization is found to be ∆x = 1

20
.

136

5.11 Extension to multiple classes

Assume each data point xi was labeled, the label being yi ∈ {1, . . . , C}. In other

words, each xi is drawn from one of C classes. The algorithm will now be ex-

tended so as to infer the joint distribution (or density) P ((x, y)|M, D), where D =

{(x1, y1), . . . , (xn, yn)}.
Instead of M + 1 probabilities, there are now (M + 1)C. P y

m is the probability

between km and km−1 in class y, i.e. it is assumed that the bins are located at the

same places across classes. This might seem like a rather arbitrary restriction. It

shall, however, be imposed for two reasons:

1 The algorithm for iterating over the bin configurations keeps a simple form,

similar to (5.16) and (5.17).

2 If different sets of km for the classes were allowed, computing marginal distribu-

tions and entropies became exceedingly difficult. While possible in principle, it

would involve confluent hypergeometric functions and a significantly increased

computational cost.

Let ny
m be the number of data points in class y and bin m, and ñm =

∑C

y=1 ny
m. The

likelihood (5.2) now becomes

P (D|M, {P y
m, km}) =

M∏

m=0

∏C

y=1 (P y
m)n

y
m

∆kñm
m

(5.63)

Thus, following the same reasoning as above, the iteration rules now are:

a(0, K̃) =

∏C
y=1 n

y
0!

(K̃ + 1)ñ0

(5.64)

where n
y
0 is the total number of data points in class y for which k ≤ K̃ and ñ0 =

∑C
y=1 n

y
0. Furthermore,

a(M̃ + 1, K̃) =

K̃−1∑

k̃=M̃

a(M̃, k̃)

∏C
y=1 n

y

M̃+1
!

(K̃ − k̃)ñ
M̃+1

(5.65)

where n
y

M̃+1
is the total number of data points in class y for which k̃ < k ≤ K̃, and

ñM̃+1 =
∑C

y=1 n
y

M̃+1
.

137

Now one can evaluate the expected joint distribution and its variance at any

(k, y), using (5.22) and (5.23) as before. To compute the marginal distribution, note

that

P (k|M, D) =

C∑

y=1

P ((k, y)|M, D) (5.66)

and likewise for its square.

5.12 Computing the mutual information and an

upper bound on its variance

The mutual information between class label y and x is given by

I(X; Y) = H(X, Y) − H(X) − H(Y) (5.67)

which has to be averaged over the posterior distribution of the model param-

eters, p({P y
m, km}|M, D). This can be accomplished term-by-term, as described

above, yielding the exact expectation of the mutual information under the poste-

rior. The evaluation of its variance is somewhat more difficult, due to the mixed

terms E [H(X)H(Y)] , E [H(X)H(X, Y)] and E [H(Y)H(X, Y)]. For the time be-

ing, an upper bound shall thus suffice. Using the identity (for a derivation, see

(D.42))

Var

[
N∑

i=1

Xi

]

≤ N

N∑

i=1

Var [Xi] (5.68)

yields

Var [I(X; Y)] ≤ 3(Var [H(X)] + Var [H(Y)] + Var [H(X, Y)]) (5.69)

All terms on the r.h.s can be computed as above.

Figure 5.9 shows the results of some test runs on artificial data. Points were

drawn from two classes with equal probability. Within each class, a three bin distri-

bution was used to generate the data. The probabilities in the bins were varied to

create four different values of the mutual information. Before inferring the mutual

information from the data, the best discretization stepsize (via (5.24)) was deter-

mined first. The depicted values are individual averages over 100 datasets. In all

cases, its true value lies well within the error bars. However, especially for small sam-

ple sizes the error bars seem rather too large – an indication that the upper bound

138

100 10000 1e+06
data points per class

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
1

I(
X

;Y
)

[b
it]

Figure 5.9: Expected mutual informations (symbols) and upper bounds on

the standard deviations (error bars, computed via (5.69)) for different data set

sizes. Solid line of the same color as the symbol: mutual information of the

generating density. Circles: I(X; Y) = 0.169 bit, squares: I(X; Y) = 0.357

bit, diamonds: I(X; Y) = 0.558 bit, stars: I(X; Y) = 0.724 bit. Dataset sizes

were 10,100,1000,10000,100000 and 1000000 datapoints, symbols are shifted to

disentangle the error bars.

139

given by (5.69) needs future refinement. Nevertheless, observe that the expectation

of I(X; Y) is close to its true value from 100 data points per class onwards. One

might argue that acquiring 100 data points per class would be difficult in most neu-

rophysiological experiments, and thus, reliable mutual information estimates could

not be obtained with the BBDIa. This problem can be remedied by changing the

prior, as will be demonstrated in section 5.13 for sparse distributions. Another way

towards faster convergence of the mutual information estimates is the incorporation

of a bias towards certain values of the Fano factor (i.e. the variance of X divided

by its mean), which has been shown to assume values between ≈ 1.1 and ≈ 1.8 for

neurons from many cortical areas [32]. While it would in principle be possible to

do that (through a properly chosen mixture of Dirichlet priors), it is rather difficult

and thus this option will not be explored here.

A closer upper bound on the variance of the mutual information seems to be

given by the variance of the joint entropy:

Var [I(X; Y)] ≤ Var [H(X, Y)] (5.70)

as can be seen in fig. 5.10.

Each type of symbol represents the values of the empirical standard deviation

(dashed connecting lines) and the expected standard deviation of the joint entropy

(solid connecting lines) for a given mutual information (see legend). The bound

held in all tried cases. Moreover, for large datasets, the connecting lines seem to be

parallel, which indicates that the two standard deviations may just differ by a factor.

Note also that this behavior differs from that of the empirical standard deviations of

the differential entropy (see fig. 5.7), which appear to approach the exact expected

standard deviations in the limit of large datasets. However, there is no strict proof

available for these observations at the moment.

140

1 100 10000 1e+06
data points per class

0,0001

0,001

0,01

0,1

1

σ I [
bi

t]

0.1173 bit
0.2472 bit
0.3870 bit
0.5020 bit

Figure 5.10: Expected standard deviations of the joint entropy (solid lines)

and empirical standard deviations of the mutual information (dashed lines),

computed by averaging over 100 datasets. The former seems to be an upper

bound on the latter. Each type of symbol represents the values for a given

mutual information (see legend). Note that the connecting lines for a given

mutual information appear to be parallel for large datasets, which indicates

that the empirical and expected standard deviation may just differ by a factor.

141

5.13 Sparse Priors

The uniform prior (5.8) is a reasonable choice in circumstances where no information

is available about the data a priori other than their range. Should more be known,

it is sensible to incorporate this knowledge into the algorithm so as to speed up

the inference process (i.e. allow for better predictions from small datasets). In the

following, symmetric Dirichlet priors of the form

p({Pm}|M) ∝
M∏

m=0

P θ−1
m (5.71)

will be examined, where θ > 0 to avoid divergence of the normalization constant.

Fig. 5.11 shows the resulting priors for M = 1 (two bins) and two different values

of θ. The symmetry arises from the condition P0 + P1 = 1. The solid curve for

θ = 0.5 exhibits the typical behavior expected for θ < 1: Extreme values are favored

because p(P0) → ∞ as P0 approaches 0 or 1. Thus, this range of θ will generally

favor distributions where few bins contain most of the probability mass, i.e. sparse

distributions. Conversely, the dashed curve for θ = 1.5 indicates the general behavior

expected for θ > 1: the prior now promotes moderate values of P . Therefore, the

probability mass will tend to be more evenly distributed (dense distributions). For

θ = 1, the uniform prior is recovered.

In typical single-cell neurophysiological experiments, sparse distributions are fre-

quently encountered. Consider the following setup: a mammal is presented with a

visual stimulus and the firing events produced by one of its visual cortex neurons are

recorded in some suitably chosen time window. Assume that the temporal resolution

of the recording equipment was 1ms and the window width 100ms. A simple model

for the firing behavior is the Poisson process, i.e. a constant probability Pfire of

observing an event at any given time within the window. The expected distribution

of the number of observed events is then governed by a binominal distribution. Fig.

5.12, top, depicts three such distributions for small to medium values of Pfire. While

up to 100 observed events in the window are possible in principle, those values are

extremely unlikely. Hence, a sparseness promoting prior can be expected to speed

up convergence when such (or similar) distributions are to be inferred from data.

The algorithm can be generalized to include θ 6= 1. Using (D.12) instead of

142

0 0,2 0,4 0,6 0,8 1
P

0

0

1

2

3

p(
P

0)

Figure 5.11: Prior for M = 1 and two choices of θ. Solid line: θ = 0.5.

The prior favors extreme values of P , i.e. sparse distributions. Dashed line:

θ = 1.5. Here, moderate values of P are promoted (dense distributions).

(D.8), (5.10) now becomes

p({Pm}|M) = Γ(θM) (5.72)

where

θM = (M + 1)θ (5.73)

Likewise, (5.15) is to be replaced by

P (D|{km}, M) =
Γ(θM)

Γ(N + θM)

M∏

m=0

Γ(nm + θ)

∆knm
m

(5.74)

This expression is again a product of the counts observed in different bins and the

bin width, times a factor which only depends on the total number of bins and data

points. Hence, the same sum-product decomposition scheme as before can be used,

with (5.16) and (5.17) now being

a(0, K̃) =
Γ(n0 + θ)

(K̃ + 1)n0

(5.75)

a(M̃ + 1, K̃) =

K̃−1∑

k=M̃

a(M̃, k̃)
Γ(nM̃+1 + θ)

(K̃ − k̃)n
M̃+1

(5.76)

143

0 5 10 15 20
firing events observed in 100ms window

0

0,1

0,2

0,3

0,4

P

0 0,25 0,5 0,75 1
 θ

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

I
[b

it]

8 stimulus repetitions
16 stimulus repetitions
32 stimulus repetitions

Figure 5.12: Top: Binominal distributions are simple models for the distri-
butions of spike counts observed in a fixed time window. The curves were
computed for Pfire = 0.01 (circles), Pfire = 0.05 (squares) and Pfire = 0.1
(triangles). Values are plotted only up to a spike count of 20, even though
a maximum of 100 would have been possible. However, the probabilities for
counts greater than 20 are virtually 0. Thus, most possible values are never as-
sumed, i.e. the distributions are sparse. Bottom: dependence of the expected
mutual information on the sparseness parameter θ, for 8, 16 and 32 stimulus
repetitions. Datasets contained simulated responses to the presentation of 8
different stimuli. Symbols of the same colour as the lines mark the location of
the posterior maximum of θ, error bars are empirical standard deviations of the
mutual information for those values of θ. The horizontal blue line represents
the true mutual information. For details, see text.

144

This allows for the computation of evidences and expected probabilities and their

variances. To compute entropies and mutual informations and their variances, the

relevant averages have to be adapted as well: after some tedious but straightforward

calculus, one finds that (5.40) (using (D.37) instead of (D.30)) has to be substituted

by

E [Pm′ log(Pm′)|{km}, M, D] =
nm′ + θ

N + θM

[
hN

0 (θM) − h
nm′

0 (θ) + Ψ (θM) − Ψ(θ)
]

(5.77)

where Ψ() is the digamma function (see appendix D) and

hb
a(θ) =

b∑

i=a

1

i + θ
(5.78)

2h
b
a(θ) =

b∑

i=a

1

(i + θ)2
(5.79)

While the term in the square brackets could be written as the difference between

two digamma functions, decomposing it into a part that depends both on the prior

and on the data and a part that depends only on the prior (i.e. M and θ) allows for

a precomputation of the latter. (5.42) becomes

E [Pm′ log(∆km′)|{km}, M, D] =
nm′ + θ

N + θM

log(∆km′) (5.80)

Likewise, substituting (D.38) for (D.31) in (5.49) yields

E
[
P 2

m′ log2(Pm′)|{km}, M, D
]

=
(nm′ + θ)(nm′ + 1 + θ)

(N + θM)(N + 1 + θM)

×
[(

hN+1
0 (θM) − h

nm′+1
0 (θ) + Ψ(θM) − Ψ(θ)

)2

+ 2h
N+1
0 (θM) − 2h

nm′+1
0 (θ) + Ψ′(θ) − Ψ′(θM)

]

(5.81)

and finally, employing (D.39) in place of (D.32) in the derivation of (5.54), one

obtains for (5.55)

E [f(Pm′)|{km}, M, D] = (nm′ + θ)
(
hN+1

0 (θM) − h
nm′

0 (θ) + Ψ(θM) − Ψ(θ)
)

(5.82)

E [f(Pm′′)|{km}, M, D] = (nm′′ + θ)
(
hN+1

0 (θM) − h
nm′′

0 (θ) + Ψ(θM) − Ψ(θ)
)

(5.83)

then divide the results of the averaging by (N + θM)(N + 1 + θM), and for (5.57)

E [f(Pm′)|{km}, M, D] = (nm′ + θ) (5.84)

E [f(Pm′′)|{km}, M, D] = (nm′′ + θ) (5.85)

145

and multiply the averages by 2hN+1
0 (θM)−Ψ′(θM)

(N+θM)(N+1+θM)
.

The question which remains is how to choose θ. Since the sparseness of a dis-

tribution will usually not be known a priori, a feasible way is to treat it as another

hyperparameter to be inferred from the data. However, integrating over θ is com-

putationally rather expensive. Instead, a maximum a posterior approach was tried

(the posterior density of θ was unimodal in all observed cases), which seems to work

quite well, as shown in fig. 5.12, bottom: for a set of 8 (purely abstract) ’stimuli’,

distributions of responses, i.e. ’mean firing rates’ (minimum 5 spikes/sec, maximum

380 spikes/sec, average 60 spikes/sec), were generated by drawing random variables

from binominal distributions with different values of Pfire. These firing probabilities

were functions of the stimulus label Y . The expected mutual informations between

Y and the responses X were subsequently computed for 8, 16 and 32 stimulus repe-

titions per dataset. Expectations were averaged over 100 datasets, and θ was varied

between 0 and 1. The symbols of the same color as the lines mark the values of the

expected mutual information at the locations of the posterior maxima of θ, which

are close to the true value of the mutual information (horizontal blue line) and well

within the error bars. Two other features of the graph are noteworthy: firstly, the

dependency of the expected mutual information becomes less pronounced with in-

creasing number of stimulus repetitions, i.e. the more data are available, the more

will the estimates be determined by the data, and not by the prior parameter θ.

Secondly, setting θ = 1 will tend to underestimate the mutual information, which

reflects the fact that a sparse prior (θ < 1) is beneficial if the generating distributions

are sparse.

Furthermore, the validity of the upper bound eqn. (5.70) was also tested under

sparse conditions, for mutual informations in the range [0.25, 1.93] bit. It was found

that the bound held in all cases, with a factor of at least ≈ 1.8 and at most ≈
4.0 between the empirical standard deviation of the mutual information and the

expected standard deviation of the joint entropy.

To examine the performance of the BBDIa with sparse priors on a range of sparse

distributions, datasets for several values of the mutual information were generated

in the same way as above (which is similar to that described in [74]).

For each dataset, the optimal θ was determined by the maximum of its poste-

146

4 8 16 32 64 128
stimulus repetitions

-0,5

0

0,5

1

1,5

2

2,5

I
[b

it]

Figure 5.13: Results of the BBDIa with sparse priors on artificially created

’neural responses’ to 8 ’stimuli’ (black squares), compared with the method

described in [74](red circles). and the NSB method [61](green diamonds). The

response distributions were binominals with different Pfires. Error bars are ±1

standard deviations, obtained from averaging over 100 datasets.

rior distribution in the interval [0.0001, 1]. Using this θ, the best M was searched

for in the same fashion. Given those two parameters, the mutual information was

computed. The results were averaged over 100 datasets (calculating θ and M anew

for each dataset), which also allowed for the estimation of error bars. Fig. 5.13,

shows the results. The error bars are the estimated standard deviations of the mu-

tual information, not the standard errors. The black squares are the expectations

computed by the BBDIa. The red circles depict the mutual information estimates

computed from the observed frequencies corrected by the first-order bias term re-

ported in [74]. Those frequencies, as described in [74], were obtained by a simple

discretization of the response space. The green diamonds represent the mutual infor-

mation estimates obtained with the NSB (Nemenman-Shafee-Bialek) method3 [61],

which is a Bayesian entropy estimation method using a multinomial noise model

and an (almost) uniform prior over the entropy.

3available at http://nsb-entropy.sourceforge.net

147

Even for a rather small number of stimulus repetitions, the BBDIa performs

quite well, getting better as the size of the dataset increases. In the great majority

of cases it appears to be more accurate than the finite-size corrected estimates and

the NSB estimates, even though the latter two yield reasonable results as well if

the number of stimulus repetitions is greater than the number of stimuli. Moreover,

the small error bars indicate that reliable results can be expected with the method

proposed here even if only a single dataset is available. Note that the NSB method,

at least in its current implementation, can produce inconsistent estimates of the mu-

tual information: for very small datasets (8 and 16 stimulus repetitions), it yields

negative results, even though the mutual information is a strictly positive quantity.

I would attribute this behavior to a separate estimation of marginal H(X) and con-

ditional H(X|Y) entropy (which are then used to compute the mutual information

via I(X; Y) = H(X)−H(X|Y)) in the current implementation of the NSB method.

If instead a joint prior over X and Y was used, this problem might be overcome.

5.13.1 Can (or should) finite-size effects be avoided?

In the field of non-Bayesian statistics, a great deal of effort has been expended on the

search for so-called ’unbiased estimators’. An estimator of a function of a random

variable is said to be unbiased, if its expectation is equal to its ’true’ value, i.e. the

value that could be computed if the generating density of the random variable was

known [9]. From a sampling theoretic perspective, this property is usually considered

desirable, because it is hoped that one might get a better estimate of the quantity of

interest with shorter samples than with a biased estimator. If the bias disappears as

the sample size grows to ∞, then the estimator is said to be asymptotically unbiased.

The existence of a bias for a sample of limited size is then referred to as a ’finite-size

effect’, which is also taken to be an unwanted property of the estimation procedure.

When trying to estimate the mutual information from a sample, many estima-

tors are found to have a heavy bias. This is mostly due to the fact that entropy is

a concave function of the distribution [13] and will therefore (by virtue of Jensen’s

inequality) tend to be underestimated when the distribution is computed from the

observed frequencies. This leads in turn to an overestimation of the mutual informa-

tion, loosely speaking because due to fluctuations, one is likely to see more structure

148

in the data than there really is.

From a Bayesian perspective, this view is not unconditionally shared. The source

of bias is the prior. Thus, when the sample size is limited, the results of an infer-

ence process should be biased, because they still depend on information that was

available a priori. What is important is that this bias is sensible, i.e. that the prior

assumptions are justified. Once those assumptions have been made, they can be

translated into a probability distribution (or density), see section 2.5.2.

When the sample size grows to ∞, the bias should disappear, because in this

limit, inference results should be completely determined by the data. More formally,

the data-dependent term in eqn. (2.60) can be expected to grow larger with the

sample, thus the Kullback divergence between posterior and prior will contribute

less to the inference process. In other words, asymptotic unbiasedness is a sensible

requirement in the Bayesian view as well. Note, however, that it arises automatically

as a consequence of how inference is conducted, and needs not be introduced as an

added desideratum.

For example, consider fig. 5.13. The inferred values of I(X; Y) (red squares)

move towards the true values (lines) as the number of trial per stimulus ny grow,

i.e. the bias disappears asymptotically. For very small ny, a bias is clearly visible:

an expression of the fact that not enough information had been gathered to discard

all prior beliefs. I would tend to argue that this bias is sensible – all that is known

about the mutual information a priori is that it is positive and ≤ some upper bound.

Thus, if I(X; Y) of the generating distribution is very small, an upward bias can

be expected for very small ny. Conversely, large mutual informations will receive a

downward bias for small ny. Both features can be observed in fig. 5.13.

In summary, a bias should not be avoided, but rather, it should be properly inter-

preted. Procedures like stimulus shuffling (i.e. randomizing the stimulus/response

relationship in the data, which should lead to zero mutual information) to determine

the bias (see e.g. [67]), and then subtracting this bias to get a more ’correct’ esti-

mate of the mutual information are questionable at best. In [47] it was found, after

applying this procedure, that the shuffled mutual information was actually higher

than the unshuffled one in the SOA 14 ms condition – an indication that the mutual

information values are no more correct after the bias subtraction than they were

149

before.

5.14 RSVP results

The BBDIa with sparse priors will now be applied to the same single cell recordings

that were analyzed in the last chapter.

5.14.1 Mutual information and information transmission rate

Fig. 5.14, top, shows the population averages of the mutual information between

stimulus label and response. In accordance with the results presented in the previous

chapter, the response was computed from the spiketrain via f0(l, e), with l and e

determined anew for each cell and SOA by the BBCa. Error bars were computed

via eqn. (5.70) (i.e. remaining uncertainty due to limited dataset size for a given

cell) and the between-cells variation of the expectation of I(X; Y), treating them as

independent sources of variance.

As one would expect, the mutual information increases with SOA. At SOA 56

ms, the mutual information is ≈ 0.11 bit. Assuming that the brain implements

a factorial code, it would thus be necessary to observe the responses of at least

1
0.11

≈ 9 cells until 1 bit of information is gained. Given a noninformative prior,

this bit could then be used to make a binary decision, e.g. ’best stimulus’ versus

’rest’. This bound is consistent with that computed previously (at least 6 cells,

eqn. (4.38)), which was derived based on an optimality assumption (see appendix

C). In contrast, the mutual information measures the average information gain in a

classification task, and can thus be expected to yield a lower bound on the number

of cells which is somewhat higher.

Especially in the faster conditions, the mutual information turns out to be rather

small. It is therefore natural to wonder whether the small deviations from zero are

not some residual finite size effect. This question will be addressed in section 5.14.3.

The increase of I(X; Y) with SOA is not quite linear, as can be seen in fig.

5.14, bottom. Here, the information transmission rates, i.e. mutual information per

stimulus time, are plotted as a function of SOA. If the increase was linear, then the

information transmission rate would have to be constant. It does, however, appear

150

14 28 42 56 112 222
SOA [ms]

0

0,05

0,1

0,15

0,2

0,25

0,3

I
[b

it]

14 28 42 56 112 222
SOA [ms]

0,8

1

1,2

1,4

1,6

1,8

2

2,2

I R
 [

bi
t/s

]

Figure 5.14: Top: population average of the mutual information between stim-

ulus label y and response x. Responses were computed from the spiketrain via

x = f0(l, e), with l and e computed anew for each cell and SOA by the BBCa

described in the previous chapter. Bottom: Information transmission rate, i.e.

mutual information per unit of stimulus time.

151

0 100 200 300
e-IL [ms]

0

0,1

0,2

0,3

I [
bi

t]

222 ms
112 ms
56 ms
42 ms
28 ms
14 ms

X

X

Figure 5.15: Mutual information between stimulus label and response (solid

lines) ± one standard error (dotted lines) in a window of varying length, start-

ing at the IL. Standard errors were computed from the population variance

alone. The arrows indicate the end of the expected window e-IL=IRD (see

also fig. 4.8). The ’X’ on the curves for SOA 222 ms and 112 ms marks the

time of the first steep downward slope in the log evidence per datapoint graphs

(fig. 4.9), i.e. the times when most of the classification information has been

transmitted. For details, see text.

to be maximal at SOA ≈ 56 ms (strictly speaking, a maximum is bracketed in the

SOA interval [42 ms,112 ms]). This indicates that both the very early as well as the

later parts of the response contain less information than those around 50 ms after

the IL (the IRD for SOA 56 ms was 47.2 ms, see fig. 4.8).

5.14.2 Temporal structure of the mutual information

Figure 5.15 shows the population averages of the cumulative I(X; Y) (solid lines)

± one standard error (dotted lines) in a window of variable length. Responses were

individually IL aligned. Due to computational time constraints, standard errors

reflect only the variability between cells. The arrows indicate the end of the expected

window e-IL=IRD as computed in the previous chapter (see also fig. 4.8). Within

152

standard error, I(X; Y) does not increase significantly after the arrows. This shows

that the part of the response which is found to be best suited for classification is

also the part which contains (almost) all of I(X; Y). The ’X’ on the curves for

SOA 222 ms and 112 ms marks the time of the first steep downward slope in the log

evidence per datapoint graphs (fig. 4.9), i.e. the times when most of the classification

information has been transmitted. At those time indexes, the cumulative I(X; Y)

for SOA 222 ms also notably changes slope (to a lesser degree, this can be observed

in the curve for SOA 112 ms, too).

Note that the curve for SOA 14 ms is almost flat, and close to zero. With

a sufficiently strong prior, one might be able to perceive a maximum somewhere

between the arrow and ≈ 50 ms, but it is hardly discernible. It is thus natural to

wonder:

5.14.3 Is the mutual information zero?

Given the fact that the above presented mutual informations – especially in the

faster presentation conditions – are rather small, one might wonder if they are not

really zero altogether. The expectation of the mutual information is ill suited to

answer this question, because I(X; Y) is a continuous variable in a bounded interval

(here: [0, 3] bits). Therefore, unless its posterior density diverges at I(X; Y) = 0,

its expectation will always be greater than 0. Conversely, if the density is finite

at that point, then the probability of I(X; Y) = 0 is zero. If, on the other hand,

this posterior was known, then questions of the form ’what is the probability that

I(X; Y) < 0.01 bits?’ could be addressed. Unfortunately, computing this posterior

is very difficult, if not infeasible.

There is, however, another way to circumvent this problem. As stated in section

2.4.2, the mutual information is zero if and only if the joint density is equal to the

product of the marginals. This observation allows for the construction of a Bayesian

hypothesis test:

H0 The joint density is the product of the marginal densities, i.e. I(X; Y) = 0.

H1 The joint density is not the product of the marginal densities, i.e. I(X; Y) > 0.

153

To compute the posterior probabilities of these hypotheses, one must first as-

sign a prior to both of them. In the following, the maximum entropy choice

P (H0) = P (H1) = 0.5 will be used. This is sensible from the perspective of the

hypotheses, because there are only two alternatives. However, when the possible

densities included in each hypothesis are considered, then one might argue that this

choice is heavily biased towards H0: as noted above, there are many more densities

for which I(X; Y) > 0, i.e. a prior P (H0) ≪ P (H1) could also be motivated. Thus,

if the posterior probabilities favor H1 given the uniform prior, it might be taken as

strong evidence that the mutual information is not zero.

Next, given a dataset, the probabilities (or densities) P (D|H0) and P (D|H1)

need to be evaluated. For H1, this is given by

P (D|H1) =
∑

m

P (D|m)P (m) (5.86)

where P (D|m) is eqn. (5.3) (extended to multiple classes, as explained in section

5.11), P (m) is the (uniform) prior over the number of bin boundaries, and the sum

over m was chosen to run from 0 to K − 1, i.e. all possible density models are

considered.

P (H0) can be calculated by treating the stimulus label independent of the re-

sponse, i.e.

P (D|H0) = Ps

∑

m

P (D̃|m)P (m) (5.87)

where D̃ is the dataset which contains only the responses, thus P (D̃|m) is eqn. (5.3)

in its original form, and

Ps =

∏C
y=1 ny!

(N + C − 1)!
(C − 1)! (5.88)

is the evidence of the distribution of the stimulus labels (for a derivation, see section

4.6). ny is the number of times stimulus y was presented, C is the size of the stimulus

set (here: 8) and N =
∑C

y=1 ny. Now the posterior

P (H0|D) =
P (D|H0)P (H0)

P (D|H0)P (H0) + P (D|H1)P (H1)
(5.89)

P (H1|D) =
P (D|H1)P (H1)

P (D|H0)P (H0) + P (D|H1)P (H1)
(5.90)

can be computed.

154

If L datasets are available, the probability that all of them contain no mutual

information between stimulus and response is

P (H0|D1, . . . , DL) =

L∏

l=1

P (H0|Dl) (5.91)

given that P (D1, . . . , DL|H0) =
∏L

l=1 P (Dl|H0) (and likewise for P (D1, . . . , DL|H1)),

i.e. the probability of a particular dataset given one of the hypotheses does not de-

pend on any of the other datasets. This is a justifiable assumption if the datasets

contain recordings from different cells.

SOA [ms] P (H0|D)

222 ≈ 0

110 ≈ 0

56 ≈ 0

42 ≈ 0

28 4.0904 × 10−37

14 0.99997

Table 5.1: Probabilities that the mutual information between stimulus label

and neural response are zero in all available cell recordings. ≈ 0 means that

the probability was close to the smallest number representable by a variable

of type ’double’ (ca. 10−300).

Table 5.1 shows the results for all available cell recordings. For SOAs 42 ms

- 222 ms, the probabilities of H0 were found to be close to the smallest number

representable by a variable of type ’double’ (ca. 10−300), i.e. one can be very certain

that there is nonzero mutual information in (at least one of) the datasets. This is

true as well to a slightly lesser degree for SOA 28 ms, but the probability is still

close enough to 0 to justify the statement that the responses contain stimulus-related

information at this SOA.

The situation is somewhat different at SOA 14 ms. Here, the posterior proba-

bility is strongly in favor of H0, which indicates that stimulus-related information is

hard to detect in the responses. As noted above, this does not necessarily mean that

the mutual information is really zero (due to the bias towards H0), but it certainly

155

has to be very small. This is supported by the findings in [48], where a small signal

was found at this SOA. Furthermore, the log evidence graph (fig. 4.9) also suggests

that a very small amount of classification information is transmitted at SOA 14 ms.

5.15 Conclusion

5.15.1 Algorithm

The presented algorithm computes exact evidences and relevant expectations of

probability distributions/densities with polynomial computational effort. This is

a significant improvement over the näıve approach, which requires an exponential

growth of the number of operations with the degrees of freedom. It is also able

to find the optimal number of degrees of freedom necessary to explain the data,

without the danger of overfitting. Furthermore, the expectations of entropies and

mutual information have been shown to be close to their true values for relatively

small sample sizes. In the past, a variety of methods for dealing with systematic

errors due to small sample sizes have been proposed, such as stimulus shuffling in

[67] or regularization of neural responses by convolving them with Gaussian kernels.

What most of these approaches have in common is that the marginal P (X) and

the conditional P (X|Y) distributions of the responses are estimated first, and the

mutual information is then computed from these estimates via

I(X; Y) = H(X) − H(X|Y) (5.92)

where H(X)(H(X|Y)) is computed from P (X)(P (X|Y) and P (Y), which is usually

set by the experimenter) via eqn. (2.20)(eqn. (2.27)). The problem with such a

procedure is that the entropy is a nonlinear function of the probabilities, hence the

expectation of the entropy is not equal to the entropy of the expected probabilities.

More precisely, from a Bayesian perspective, this exchange of the order of computing

the expectations would only be justified if the posterior density of the distributions

was concentrated at a single point. This, however, is not likely to happen with the

small datasets usually available from neurophysiological experiments. Thus, while

these approaches work to some degree, they lack the sound theoretical foundation

of exact Bayesian treatments.

156

In [74], finite size corrections are given based on the number of effective bins, i.e.

the number of bins necessary to explain the data. Therein, it is also demonstrated

that this leads to information estimates which converge much more rapidly to the

true value than the other techniques mentioned (shuffling and convolving). However,

[74] as themselves admit, their method of choosing the number of effective bins is

only ’Bayesian-like’. Furthermore, the initial regularization applied to the data –

choosing a number of bins that is equal to the number of stimuli and then setting

the bin boundaries so that all bins contain the same number of data points, a

procedure also used by [79] – is debatable (it should, however, be pointed out that

this equi-probable binning procedure is not an essential ingredient for the successful

application of the finite-size corrections of [74]. It has recently been demonstrated

[2] that, given a decent amount of data is available, the methods of [74] can be used

to yield reasonably unbiased estimates for M = K − 1.). On the one hand, one

might argue that the posterior of M is still broad when the data set is small (see fig.

5.3, top row), so choosing the wrong number of bins will do little damage. On the

other hand, the bin boundaries must certainly not be chosen in such a way that all

bins contain the same number of points. Doing so will destroy the structure present

in the data. Consider e.g. fig. 5.3, third row: there are many more data points in

the interval [0.58, 0.68] than there are between [0.15, 0.58], which reflects a feature

of the distribution from which the data were drawn and should thus be modeled

by any good density estimation technique. This will, however, not be the case if

the boundaries are chosen as proposed: there would be a boundary somewhere at

≈ 0.63 instead of 0.58, and the step at this point would be replaced by a considerably

smaller one at ≈ 0.63, thus misrepresenting the underlying distribution. In other

words, this procedure would not even converge to the correct distribution as the

data set size grows larger. Consequently, mutual information estimates calculated

from those estimated distributions must be interpreted with great care.

The author believes to have shown that those drawbacks can be overcome by a

Bayesian treatment, which also shows improved performance over finite-size correc-

tions. Thus, the algorithm should be useful in several areas of research where large

datasets are hard to come by, such as neuroscience.

Another interesting Bayesian approach to removing finite size effects in entropy

157

estimation is the Nemenman-Shafee-Bialek (NSB) method [61]. It exploits the fact

that the typical distributions under the symmetric Dirichlet prior (5.71) have very

similar entropies, with a variance that vanishes as K grows large. This observation

is then employed to construct a prior which is (almost) uniform in the entropy. The

resulting entropy estimator is demonstrated to work very well even for relatively

small datasets. However, as demonstrated above, it yields (at least in the current

implementation) inconsistent estimates for the mutual information.

In contrast to the NSB method, my approach deals with finite size effects by

determining the model complexity (i.e. the posterior of M). It might be interesting

to combine the two: since the NSB prior depends only on θ and K, the required

numerical integration (eqn. (9) in [61]) could be carried out, with eqn. (10) in [61]

replaced by P (D|θ) (i.e the denominator of (5.20) for a given θ).

It was proven in [73] that uniformly (over all possible distributions) consistent

entropy estimators can be constructed for distributions comprised of any number of

bins M , even if M ≫ N . The above presented results (fig. 5.6) suggest that the

expected entropies computed with our algorithm are asymptotically unbiased and

consistent. Furthermore, the true entropy was usually found within the expected

standard deviation. It remains to be determined how the algorithm performs if

M ≫ N .

Since the upper bound (5.69) on the variance of the mutual information is rather

large for small sample sizes, it might be interesting to invest some more work into

computing the exact variance of the mutual information. This, however, turns out

to be difficult.

5.15.2 The information throughput of STSa neurons is max-

imized at SOA ≈ 60 ms

The examined neuron population transmits the most information per stimulus time

for SOA in the interval [42 ms,112 ms] in RSVP experiments. Furthermore, the pre-

sented results suggest that most of I(X; Y) has been transmitted at a presentation

time of ≈ 60 ms: the cumulative I(X; Y) curves for SOA 222 ms and 112 ms show a

change in slope around that time. More quantitatively, the amounts of transmitted

information up to the ’X’ in fig. 5.15 are 77% for SOA 222 ms, and 84% for SOA

158

112 ms. This observation is confirmed by the log evidence graphs (fig. 4.9), which

also show a sharp drop about 50 ms - 60 ms after the IL. Therefore, the maximum

information transmission rate can be expected to reach its peak at ≈ IL+60 ms.

These results are consistent with those found by other researchers: in [32], it was

determined that IT neurons transmit most stimulus-related information within 50

ms of the response onset. According to [47], 60% of the information are contained

within the first 50 ms.

In section 4.10.2, it was demonstrated that IRD ≥ SOA if SOA ≤ 42 ms, and

IRD ≤ SOA otherwise. This is another indication that information throughput

can be maximized for SOA ≈ 60 ms: if the IRD is longer than SOA, responses to

consecutive stimuli will overlap, and information is likely to be lost. Conversely,

if IRD is shorter than SOA, then time is wasted ’waiting’ for new input, thus the

neurons are not used to maximum capacity. Nevertheless, longer SOAs will still

reduce the interference between responses to subsequent stimuli, as demonstrated in

fig 5.14: within the studied SOA range, the transmitted information increases with

SOA.

Given the evidence, it is questionable whether I(X; Y) > 0 at SOA 14 ms.

However, for the above mentioned reasons (strong bias of the test in favor of

I(X; Y) = 0), it should not be ruled out completely. Moreover, the log evidence

graphs (fig. 4.9) suggest a small signal. This is consistent with the findings pre-

sented in [48], where human psychophysical experiments showed an above chance

performance at this SOA.

159

Chapter 6

Overall conclusion

The main objective of this thesis has been to demonstrate the utility of Bayesian

and information theoretic methods for neuroscience. Two approaches were taken:

firstly, starting from first principles, a coding scheme was constructed that exhib-

ited qualitative similarities to neural codes found in the mammalian visual cortex.

Furthermore, it was shown that the omnipresent noise in real biological neurons can

be used to motivate sparse codes. While this argument is so far purely theoretic, it

is conceivable to develop an artificial neural network that could explicitly use this

assumption for learning sparse codes from natural images, possibly in concert with

the already established sparseness promotion through redundancy reduction.

Secondly, two Bayesian methods were proposed for analyzing a real neural code. I

hope to have demonstated that the results which can be obtained via exact Bayesian

methods justify the considerable effort necessary for their development. Needless to

say, this work is far from finished. One possible interesting generalization of the

BBCa (chapter 4) is that towards multi-feature classification. Assuming that real

brains do approximate factorial codes, one could use a generalized BBCa for näıve

Bayesian classification (i.e. assuming that the code features are independent given

the stimulus). This might offer new and exciting insights into the coding strategies

employed by the brain.

Moreover, combining the theoretical considerations of chapter 3 and the results

from chapters 4 and 5, it might also become possible to have a suitably designed

artificial neural network (motivated by information theoretic principles, similar to

the one studied in this thesis) learn the code implemented by the mammalian visual

cortex. Since there are several processing stages between retinal input and STSa,

160

this network would have to be fairly complex. However, due to the recent advances

in computer technology, this undertaking is now much more feasible that it had

been a few years ago, especially when fast coding schemes, such as the quadratic

programming algorithm from chapter 3, are used.

161

Appendix A

Proof of minimum property

As mentioned in section 3.2, the activation dynamics of the extended REC model

are governed by the error function

E =
1

2

(

~X −
M∑

j=1

~WjOj

)2

+

M∑

j=1

λj|Oj| (A.1)

where M is the number of units, ~Wj is the weight vector which connects the j-th

unit to the input terminals, λj are the activation thresholds and Oj are the outputs.

~X is the current input vector.

The outputs were given by

Oi = O(Ai) (A.2)

Ai = ~X ~Wi +

M∑

j=1,j 6=i

LijOj (A.3)

Ai are the unit’s activations, the activation function O(A) is

−λi < Ai < λi : Oi = 0

|Ai| ≥ λi : Oi = Ai − λisign (Ai) (A.4)

Note that Lij = − ~Wi
~Wj and ~W 2

i = 1, as defined in section 3.2.

Theorem: For a given input vector ~X, the error function E defined by eqn. A.1

assumes a minimum, if the outputs Oi are given by eqns. A.2 and A.3.

Proof: E is an almost everywhere twice continuously differentiable function with

respect to the Oi, all higher derivatives are zero. At Oi = 0, E is not differentiable.

162

Thus, for the purpose of this proof, the unit indices will be divided in two disjoint

sets:

I0 = {i ∈ {1, . . . , M}|Oi = 0} (A.5)

I1 = {i ∈ {1, . . . , M}|Oi 6= 0} (A.6)

• i ∈ I1

Here, the output value lies in the differentiable region of E. A necessary

condition for a minimum of a differentiable function is the vanishing of the

first derivative, which is given by

∂E

∂Oi

= − ~X ~Wi +
M∑

j=1

~Wi
~WjOj + λisign (Oi) (A.7)

Only the units with nonzero output contribute to the sum in this term, hence

it is sufficient to run the sum over j ∈ I1:

∂E

∂Oi

= − ~X ~Wi +
∑

j∈I1

~Wi
~WjOj + λisign (Oi) (A.8)

By splitting the sum into the parts where j = i and j 6= i, one obtains:

∂E

∂Oi

= − ~X ~Wi + ~W 2
i

︸︷︷︸

=1

Oi + λisign (Oi) +
∑

j∈I1,j 6=i

~Wi
~WjOj (A.9)

With the eqns. A.2,A.3 and A.4, the output Oi can be written in the following

form (noting that sign (Ai) = sign (Oi) because Oi 6= 0):

Oi = ~X ~Wi −
∑

j∈I1,j 6=i

~Wi
~WjOj − λisign (Oi) (A.10)

Again, the sum over all possible i was replaced with the sum over i ∈ I1, since

the other units give no contribution.

Finally, substituting A.10 into A.9, one obtains

∂E

∂Oi

= − ~X ~Wi +

(

~X ~Wi −
∑

j∈I1,j 6=i

~Wi
~WjOj − λisign (Oi)

)

+ λisign (Oi)

+
∑

j∈I1,j 6=i

~Wi
~WjOj

= 0 (A.11)

Hence, if the output of a unit is nonzero and given by the eqns. A.2,A.3 and

A.4 , it will assume a value such that the derivative of E with respect to this

163

output vanishes. In this case, it is also a sufficient condition for a minimum,

as E is a quadratic form which is > 0 for a sufficiently large |Oi|.

• i ∈ I0

Here, the output is zero and E is not differentiable at that point. Hence, there

is no derivative that could possibly vanish. But instead of requiring this, it is

sufficient that the derivative be negative in an infinitesimal vicinity to the left

of the point, and positive to the right. If Oi = 0 then eqn. A.4 requires that

|Ai| = | ~X ~Wi −
∑

j∈I1

~Wi
~WjOj | < λi (A.12)

The condition j 6= i could be dropped from the sum, because i ∈ I0. Hence,

lim
Oi→0−

∂E

∂Oi

= − ~X ~Wi +
∑

j∈I1

~Wi
~WjOj + λisign (Oi) (A.13)

= −Ai − λi

< 0

And, for the right side limit

lim
Oi→0+

∂E

∂Oi

= − ~X ~Wi +
∑

j∈I1

~Wi
~WjOj + λisign (Oi) (A.14)

= −Ai + λi

> 0

Thus, E assumes a minimum in the direction of this Oi at Oi = 0.

Since every Oi belongs to either I0 or I1, a minimum of E is located at the Oi’s

given by eqns. A.2, A.3 and A.4.

2

164

Appendix B

Convergence of sequential

updating

In section 3.2.1, a sequential updating algorithm for activating the network discussed

in this chapter is introduced. It remains to show that this algorithm is indeed

converging towards the minimum of the network’s error function:

E =
1

2

(

~X −
M∑

j=1

~WjOj

)2

+
M∑

j=1

λj|Oj| (B.1)

The update rules are:

Anew
i = ~X ~Wi −

m∑

j=1,j 6=i

~Wi
~WjO

old
j (B.2)

Onew
i = O

(
Anew

i

)
(B.3)

Oold
i = Onew

i (B.4)

where O(A) is defined as

−λi < Ai < λi : Oi = 0

|Ai| ≥ λi : Oi = Ai − λisign (Ai) (B.5)

(All λi > 0, all | ~Wi| = 1).

Starting from an arbitrary configuration of outputs, one unit is updated at a time. In

the following, it will be demonstrated that application of these rules either decreases

E or keeps it constant.

A unit’s output Oi can be positive, negative or zero before the update. After-

wards, it will either have retained or reversed its sign, or gone to zero. Each of these

cases will be considered separately.

165

1. Oi positive before the update, positive afterwards.

Firstly, E is rewritten as a sum of the parts that contain Oi, which will be

called Ei and the rest, Er:

E =
1

2



 ~X2 − 2 ~X

M∑

j=1

~WjOj +

(
M∑

j=1

~WjOj

)2


+

M∑

j=1

λj |Oj|

=
1

2

(

−2 ~X ~WiOi + ~W 2
i O2

i + 2
M∑

j 6=i

~Wi
~WjOiOj

)

+ λi|Oi|
︸ ︷︷ ︸

Ei

+
1

2

(

~X2 − 2 ~X

M∑

j 6=i

~WjOj +

M∑

j 6=i

M∑

k 6=i

~Wj
~WkOjOk

)

+
∑

j 6=i

λj|Oj|
︸ ︷︷ ︸

Er

Upon updating Oi, only Ei will change, since Er does not depend on Oi. Let

Eold
i and Enew

i be Ei’s values before and after the update, respectively. Then

∆E, the change of E brought about by the update, is:

∆E = Enew
i − Eold

i

=
1

2
(Onew2

i − Oold2

i) + (− ~X ~Wi +

M∑

j 6=i

~Wi
~WjOj)

︸ ︷︷ ︸

−Anew
i

(Onew
i − Oold

i)

+λi(|Onew
i | − |Oold

i |) (B.6)

All Oj where j 6= i do not change with the update, hence Onew
j = Oold

j . Thus,

using eqn. B.2 and noting that both Onew
i and Oold

j are positive, ∆E can be

written as:

∆E =
1

2
(Onew2

i − Oold2

i) − (Anew
i − λi)(O

new
i − Oold

i) (B.7)

Now Anew
i − λi = Onew

i (see eqn. B.5), and hence

∆E =
1

2
(Onew2

i − Oold2

i) − Onew
i (Onew

i − Oold
i)

= −1

2
(Oold2

i − 2Oold
i Onew

i + Onew2

i)

= −1

2
(Oold

i − Onew
i)2 (B.8)

≤ 0

Therefore, E either decreases or remains constant.

166

2. Oi positive before the update, zero afterwards.

In this case, ∆E (eqn. B.6) becomes

∆E = −1

2
Oold2

i + Anew
i Oold

i − λiO
old
i (B.9)

Since Onew
i = 0, Ai − λi ≤ 0 (eqn. B.5). Thus

∆E = −1

2
Oold2

i

︸ ︷︷ ︸

<0

+ (Anew
i − λi)

︸ ︷︷ ︸

≤0

Oold
i
︸ ︷︷ ︸

>0

< 0

Therefore, E decreases.

3. Oi positive before the update, negative afterwards.

Here, ∆E (eqn. B.6) is

∆E =
1

2
(Onew2

i − Oold2

i) − Anew
i (Onew

i − Oold
i) + λi(−Onew

i − Oold
i)

=
1

2
(Onew2

i − Oold2

i) − (Anew
i + λi)O

new
i + Oold

i (Anew
i − λi)

Since Onew
i < 0, Onew

i = Anew
i + λi (eqn. B.5). Furthermore, 0 > Onew

i =

Anew
i + λi > Anew

i − λi. Thus

∆E = −1

2
(Onew2

i + Oold2

i)
︸ ︷︷ ︸

<0

+ Oold
i
︸ ︷︷ ︸

>0

(Anew
i − λi)

︸ ︷︷ ︸

<0

< 0 (B.10)

Therefore, E decreases.

4. Oi negative before the update, negative afterwards

This case is similar to (1). ∆E is (noting that Onew
i = Anew

i + λi)

∆E =
1

2
(Onew2

i − Oold2

i) − Anew
i (Onew

i − Oold
i) − λi(O

new
i − Oold

i)

=
1

2
(Onew2

i − Oold2

i) − Onew
i (Onew

i − Oold
i)

= −1

2
(Onew2

i − 2Onew
i Oold

i + Oold2

i)

= −1

2
(Onew

i − Oold
i)2

≤ 0

Therefore, E either decreases or remains constant.

167

5. Oi negative before the update, zero afterwards

This case is similar to (2). ∆E becomes

∆E = −1

2
Oold2

i + Anew
i Oold

i + λiO
old
i (B.11)

Since Onew
i = 0, Ai + λi ≥ 0 (eqn. B.5). Thus

∆E = −1

2
Oold2

i

︸ ︷︷ ︸

<0

+ (Anew
i + λi)

︸ ︷︷ ︸

≥0

Oold
i
︸ ︷︷ ︸

<0

< 0

Therefore, E decreases.

6. Oi negative before the update, positive afterwards

This case is similar to (3). ∆E becomes

∆E =
1

2
(Onew2

i − Oold2

i) − Anew
i (Onew

i − Oold
i) + λi(O

new
i + Oold

i)

=
1

2
(Onew2

i − Oold2

i) − (Anew
i − λi)O

new
i + Oold

i (Anew
i + λi)

Since Onew
i > 0, Onew

i = Anew
i − λi (eqn. B.5). Furthermore, 0 < Onew

i =

Anew
i − λi < Anew

i + λi. Thus

∆E = −1

2
(Onew2

i + Oold2

i)
︸ ︷︷ ︸

<0

+ Oold
i
︸ ︷︷ ︸

<0

(Anew
i + λi)

︸ ︷︷ ︸

>0

< 0 (B.12)

Therefore, E decreases.

7. Oi zero before the update, zero afterwards.

∆E = 0 in this case. Hence, E remains constant.

8. Oi zero before the update, positive afterwards.

Here, ∆E becomes

∆E =
1

2
Onew2

i − Anew
i Onew

i + λiO
new
i

=
1

2
Onew2

i − (Anew
i − λi)O

new
i

168

Since Onew
i > 0, Onew

i = Anew
i − λi, and hence

∆E =
1

2
Onew2

i − Onew2

i

= −1

2
Onew2

i

< 0

Therefore, E decreases.

9. Oi zero before the update, negative afterwards.

This case is similar to (8). ∆E is

∆E =
1

2
Onew2

i − Anew
i Onew

i − λiO
new
i

=
1

2
Onew2

i − (Anew
i + λi)O

new
i

Since Onew
i < 0, Onew

i = Anew
i + λi, and hence

∆E =
1

2
Onew2

i − Onew2

i

= −1

2
Onew2

i

< 0

Therefore, E decreases.

Hence an update step according to eqns. B.2 will either decrease E or leave it

constant.

2

169

Appendix C

Population decoding

Suppose we had a population of N cells, each of which was able to identify the

’best’ stimulus sb, member of a stimulus set S of size C, with probability Pb, and

that the remaining probability was evenly shared between the other stimuli, which

is the maximum entropy assumption in the absence of further information:

P (s = sb|xi) = Pb (C.1)

P (s 6= sb|xi) =
1 − Pb

C − 1
(C.2)

where xi is the response of the i-th cell to the presentation of sb. Assuming with

[27] that the responses are independent given the stimulus

P (x1, . . . , xN |s) =
N∏

i=1

P (xi|s) (C.3)

we then find

P (sb|x1, . . . , xN) =

∏N
i=1 P (xi|sb)P (sb)

∑

s∈S

∏N
i=1 P (xi|s)P (s)

(C.4)

Since

P (xi|s) =
P (s|xi)P (xi)

P (s)
(C.5)

and, assuming an uniform prior over the stimuli in S, P (s) = 1
C

, eqn. (C.4) can be

rewritten as

P (s|x1, . . . , xN) =

∏N

i=1
P (sb|xi)P (xi)

P (sb)
P (sb)

∑

s∈S

∏N

i=1
P (s|xi)P (xi)

P (s)
P (s)

=
P N

b CN−1
∏N

i=1 P (xi)

P N
b CN−1

∏N

i=1 P (xi) +
∑

s∈S,s 6=sb

(
1−Pb

C−1

)N
CN−1

∏N

i=1 P (xi)

=
pN

b

pN
b + (1−Pb)N

(C−1)N−1

(C.6)

170

If the maximum entropy assumption (C.2) had not been made, then (C.6) would be

P (s|x1, . . . , xN) =
P N

b

P N
b +

∑

s∈S,s 6=sb
P N

s

(C.7)

where Ps = P (s|xi), i.e. it is still assumed that all cells behave alike. Let

Z =
∑

s∈S,s 6=sb

P N
s =

∑

s∈S,s 6=sb,s 6=r

P N
s + (1 − Pb −

∑

s∈S,s 6=sb,s 6=r

Ps)
N (C.8)

where the last equality is due to the normalization constraint Pb +
∑

s∈S,s 6=sb
Ps = 1

and r is the stimulus whose probability is therefore given by all the others. The

extremum of Z is found by setting its derivatives w.r.t. the Ps to 0:

∂Z

∂Ps

= NP N−1
s − N(1 − Pb −

∑

s∈S,s 6=sb,s 6=r

Ps)
N−1 !

= 0 (C.9)

which is fulfilled for Ps = 1−Pb

C−1
, i.e. (C.2). Moreover, the second derivatives at this

point are

∂2Z

∂Ps∂Ps′
= δss′N(N − 1)

(
1 − Pb

C − 1

)(N−2)

+ N(N − 1)

(
1 − Pb

C − 1

)(N−2)

= (1 + δss′)N(N − 1)

(
1 − Pb

C − 1

)(N−2)

(C.10)

where δss′ is the Kronecker delta. Therefore, the Hessian is positive definite, and

(C.2) is the location of the minimum of Z. Hence, (C.6) is an upper bound on

P (s|x1, . . . , xN).

171

Appendix D

Dirichlet densities

D.1 Normalization Integral of a Dirichlet density

Priors, evidences, entropies and expected values of Dirichlet-distributed probability

distributions can be expressed by Beta and Gamma functions and their derivatives

(see e.g. [17] for a comprehensive collection of their properties). Let

p({Pm}) =
1

N({nm})

M∏

m=0

P nm

m δ(1 −
M∑

m=0

Pm) (D.1)

where nm ∈ IN0 and N({nm}) is a normalization constant. Thus

N({nm}) =

∫ 1

0

dP0 . . .

∫ 1

0

dPMp({Pm}) (D.2)

Due to the δ(), the rightmost integral can be carried out immediately if 0 ≤ 1 −
∑M−1

m=0 Pm = PM ≤ 1. Otherwise, the integral is zero. Therefore, by rewriting the

integration boundaries to include only possible nonzero contributions, one obtains:

N({nm}) =

∫ 1

0

dP0 . . .

∫ 1−P0

0

dP1 . . .

∫ 1−
PM−2

m=0 Pm

0

dPM−1 ×

×
M−1∏

m=0

P nm

m (1 −
M−1∑

m=0

Pm)nM

=

∫ 1

0

dP0P
n0

0 . . .

∫ 1−
PM−3

m=0 Pm

0

dPM−2P
nM−2

M−2 ×

×
∫ 1−

PM−2
m=0 Pm

0

dPM−1P
nM−1

M−1 (1 −
M−2∑

m=0

Pm − PM−1)
nM

(D.3)

By substituting z = 1 −∑M−2
m=0 Pm, the rightmost integral now becomes
∫ z

0

P
nM−1

M−1 (z − PM−1)
nM dPM−1 (D.4)

172

which can be rewritten as (setting P̃ = PM−1

z
)

znM−1+nM+1

∫ 1

0

P̃ nM−1(1 − P̃)nM dP̃ = znM−1+nM+1B(nM−1 + 1, nM + 1) (D.5)

where B(a, b) is the Beta function. It is connected to the Gamma function via

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
(D.6)

If the arguments are ∈ IN0, the value of the Gamma function is given by a factorial:

Γ(n + 1) = n! (D.7)

Therefore, by successively integrating over all the Pm, eqn. (D.3) becomes

N({nm}) =
nM−1!nM !

(nM−1 + nM + 1)!

∫ 1

0

dP1P
n1

1 . . .

∫ 1−
PM−3

m=1 Pm

0

dPM−2P
nM−2

M−2 ×

×(1 −
M−3∑

m=1

Pm − PM−2)
(nM−1+nM +1)

N({nm}) =

∏M
m=0 nm!

(
∑M

m=0 nm + M)!
=

∏M
m=0 Γ(nm + 1)

Γ(
∑M

m=0 nm + M + 1)
(D.8)

In (D.1), a uniform prior over the Pm was assumed. The generalization to priors

of the form

p({Pm}) ∝
M∏

m=0

P θ−1
m (D.9)

where θ ∈ IR+ is straightforward: (D.1) now becomes

p({Pm}) =
1

N({nm}, θ)

M∏

m=0

P nm+θ−1
m δ(1 −

M∑

m=0

Pm) (D.10)

and thus (D.5) is

znM−1+nM+1+2θ−2

∫ 1

0

P̃ nM−1+θ−1(1 − P̃)nM+θ−1dP̃

= znM−1+nM+1+2θ−2B(nM−1 + θ, nM + θ) (D.11)

Since the Beta function diverges if one of its arguments is ≤ 0, θ has to be greater

than zero. Continuing the calculation in the same way as above yields

N({nm}, θ) =

∏M

m=0 Γ(nm + θ)

Γ(
∑M

m=0 nm + (M + 1)θ)
(D.12)

(D.8) is recovered for θ = 1.

173

D.2 Marginal densities

The marginal densities of (D.1) are themselves Dirichlet densities. Assume we

wanted to compute the marginal density of a sum over a subset of the Pm, called

P̃ , and the rest . First, permute the indices such that P̃ =
∑M

m=k Pm. Due to the

normalization constraint, P̃ = 1 −∑k−1
m=0 Pm, and therefore

p({P0, . . . , Pk−1, P̃}) = p({P0, . . . , Pk−1, 1 −
k−1∑

m=0

Pm})

=

∫ 1−
Pk

m=0 Pm

0

dPk . . .

∫ 1−
PM−2

m=0 Pm

0

dPM−1p({Pm})

(D.13)

Carrying out the integrations in the same fashion as above and setting ñ =
∑M

m=k nm,

this yields

p({P0, . . . , Pk−1, P̃}) =
1

N({nm})

∏M
m=k nm

(ñ + M − k)
P n0

0 . . . P
nk−1

k−1 P̃ ñ

=
(
∑M

m=0 nm + M)!
∏k−1

m=0 nm!(ñ + M − k)!
P n0

0 . . . P
nk−1

k−1 P̃ ñ

=
1

N({n0, . . . , nk−1, ñ})
P n0

0 . . . P
nk−1

k−1 P̃ ñ (D.14)

The generalization for θ 6= 1 is thus:

p({P0, . . . , Pk−1, P̃}) =
P n0+θ−1

0 . . . P
nk−1+θ−1
k−1 P̃ ñ+(M−k+1)(θ−1)

N({n0, . . . , nk−1, ñ}, θ)
(D.15)

where

N({nm}, θ) =

∏k−1
m=0 Γ(nm + θ)Γ(ñ + (M − k + 1)θ)

Γ(
∑M

m=0 nm + (M + 1)θ)
(D.16)

D.3 Derivatives of Gamma and Beta functions

The Gamma function can be defined via the recurrence relation (see e.g. [9])

Γ(0) = 1

Γ(x + 1) = xΓ(x) (D.17)

174

which – for x ∈ IN0 – evaluates to Γ(x + 1) = x!. Thus, its derivative w.r.t. x is

given by

Γ′(x + 1) =
dΓ(x + 1)

dx
= Γ(x) + xΓ′(x) (D.18)

This equation is fulfilled by

∀x ∈ IN0 : Γ′(x + 1) = x!(

x∑

i=1

1

i
+ Γ′(1)) (D.19)

which can be verified easily by substituting (D.19) into (D.18):

Γ′(x + 1) = (x − 1)! + x(x − 1)!(

x−1∑

i=1

1

i
+ Γ′(1))

= x!(
1

x
+

x−1∑

i=1

1

i
+ Γ′(1))

= x!(

x∑

i=1

1

i
+ Γ′(1)) (D.20)

To compute Γ′(1), one can employ an identity due to Weierstraß:

Γ′(x)

Γ(x)
= −γ − 1

x
+

∞∑

i=1

x

i(i + x)
(D.21)

Since Γ(1) = 1 and
∑∞

i=1
1

i(i+1)
= 1,

Γ′(1) = −γ (D.22)

where γ = 0.57721566 . . . is the Euler-Mascheroni constant. Differentiating (D.18)

again yields

Γ′′(x + 1) = 2Γ′(x) + xΓ′′(x) (D.23)

which is fulfilled by

∀x ∈ IN0 : Γ′′(x + 1) = 2x!
x∑

i=1

1

i
(

i−1∑

j=1

1

j
− γ) + x!Γ′′(1) (D.24)

This can be seen by substituting (D.24) and (D.19) into (D.23):

Γ′′(x + 1) = 2(x − 1)!(
x−1∑

i=1

1

i
− γ) + x2(x − 1)!

x−1∑

i=1

1

i
(

i−1∑

j=1

1

j
− γ)

+x(x − 1)!Γ′′(1)

= 2
x!

x
(

x−1∑

i=1

1

i
− γ) + 2x!

x−1∑

i=1

1

i
(

i−1∑

j=1

1

j
− γ) + x!Γ′′(1)

= 2x!

x∑

i=1

1

i
(

i−1∑

j=1

1

j
− γ) + x!Γ′′(1) (D.25)

175

To obtain Γ′′(1), multiply (D.21) with Γ(x) and differentiate on both sides:

Γ′′(x) = −γΓ′(x) − Γ′(x)

x
+

Γ(x)

x2
+ Γ(x)

∞∑

i=1

(
1

i(x + i)
− x

i(x + i)2

)

+Γ′(x)

∞∑

i=1

x

i(x + i)
(D.26)

Thus, using (D.22) and noting that
∑∞

i=1
1
i2

= π2

6
(see e.g. [9])

Γ′′(1) = γ2 + γ + 1 +
∞∑

i=1

1

(i + 1)2
− γ

= γ2 + 1 +

∞∑

i=1

1

i2
− 1

= γ2 +
π2

6
(D.27)

Equipped with these results, it is now possible to compute the derivatives of B(a +

1, b + 1) for a, b ∈ IN0: let c = a!b!
(a+b+1)!

= B(a + 1, b + 1) and define

hb
a =

b∑

i=a

1

i
(D.28)

2h
b
a =

b∑

i=a

1

i2
(D.29)

Then

∂B(a + 1, b + 1)

∂a
= Γ(b + 1)

(
Γ′(a + 1)

Γ(a + b + 2)
− Γ(a + 1)Γ′(a + b + 2)

Γ2(a + b + 2)

)

= c
(
ha

1 − γ − ha+b+1
1 + γ

)

= −c ha+b+1
a+1 (D.30)

∂2B(a + 1, b + 1)

∂a2
= Γ(b + 1)

(
Γ′′(a + 1)

Γ(a + b + 2)
− 2

Γ′(a + 1)Γ′(a + b + 2)

Γ2(a + b + 2)

−Γ(a + 1)Γ′′(a + b + 2)

Γ(a + b + 2)
+ 2

Γ(a + 1)Γ′2(a + b + 2)

Γ3(a + b + 2)

)

= c

[

2

a∑

i=1

1

i

(
hi−1

1 − γ
)

+ γ2 +
π2

6

−2 (ha
1 − γ)

(
ha+b+1

1 − γ
)

−2
a+b+1∑

i=1

1

i

(
hi−1

1 − γ
)
−
(

γ2 +
π2

6

)

176

+2
(
ha+b+1

1 − γ
)2
]

= 2c

a+b+1∑

i=a+1

1

i
ha+b+1

i

= c
(
ha+b+1

a+1

)2
+ c 2h

a+b+1
a+1 (D.31)

(D.45) was used for the last step.

∂2B(a + 1, b + 1)

∂a∂b
=

Γ′(b + 1)Γ′(a + 1)

Γ(a + b + 2)
− Γ(b + 1)Γ′(a + 1)Γ′(a + b + 2)

Γ2(a + b + 2)

−Γ′(b + 1)Γ(a + 1)Γ′(a + b + 2)

Γ2(a + b + 2)

−Γ(b + 1)Γ(a + 1)Γ′′(a + b + 2)

Γ2(a + b + 2)

+2
Γ(b + 1)Γ(a + 1)Γ′2(a + b + 1)

Γ3(a + b + 2)

= c
[
(ha

1 − γ)
(
hb

1 − γ
)
− (ha

1 − γ)
(
ha+b+1

1 − γ
)

−
(
hb

1 − γ
) (

ha+b+1
1 − γ

)

−2
a+b+1∑

i=1

1

i

(
hi−1

1 − γ
)
−
(

γ2 +
π2

6

)

+2
(
ha+b+1

1 − γ
)2
]

= c

[

ha
1h

b
1 − ha+b+1

1

(
ha

1 + hb
1

)
− π2

6

−2
a+b+1∑

i=1

1

i

(
hi−1

1

)
+ 2

(
ha+b+1

1

)2

]

= c
[(

ha+b+1
1

)2
+
(
ha+b+1

b+1

) (
ha+b+1

a+1

)

−2

a+b+1∑

i=1

1

i
hi−1

1 − π2

6

]

= c

[
(
ha+b+1

b+1

) (
ha+b+1

a+1

)
+ 2h

a+b+1
1 − π2

6

]

(D.32)

Generalizing these results to allow for non-uniform priors of type (D.9) is feasible.

Define

hb
a(θ) =

b∑

i=a

1

i + θ
(D.33)

2h
b
a(θ) =

b∑

i=a

1

(i + θ)2
(D.34)

177

After some lenghty but straightforward algebra – along the same lines as the calcu-

lation for θ = 1 – one obtains (x ∈ IN0):

Γ′(x + θ)

Γ(x + θ)
= hx−1

0 (θ) + Ψ(θ) (D.35)

Γ′′(x + θ)

Γ(x + θ)
=
(
hx−1

0 (θ)
)2 − 2h

x−1
0 (θ) + 2hx−1

0 (θ)Ψ(θ) +
Γ′′(θ)

Γ(θ)
(D.36)

where Ψ(θ) = d
dx

log(Γ(θ)) = Γ′(θ)
Γ(θ)

is the digamma function. Hence, (D.30),

(D.31) and (D.32) become (now setting c = B(a + θ, b + θ) and noting that Ψ′(θ) =

Γ′′(θ)
Γ(θ)

− Ψ2(θ))

∂B(a + θ, b + θ)

∂a

= −c
(
ha+b−1

0 (2θ) − ha−1
0 (θ) + Ψ(2θ) − Ψ(θ)

)
(D.37)

∂2B(a + θ, b + θ)

∂a2

= c
[(

ha+b−1
0 (2θ) − ha−1

0 (θ) + Ψ(2θ) − Ψ(θ)
)2

+2h
a+b−1
0 (2θ) − 2h

a−1
0 (θ) + Ψ′(θ) − Ψ′(2θ)

]
(D.38)

∂2B(a + θ, b + θ)

∂a∂b

= c
[(

ha+b−1
0 (2θ) − ha−1

0 (θ) + Ψ(2θ) − Ψ(θ)
)

×
(
ha+b−1

0 (2θ) − hb−1
0 (θ) + Ψ(2θ) − Ψ(θ)

)

+2h
a+b−1
0 (2θ) − Ψ′(2θ)

]
(D.39)

D.4 An upper bound on the variance of a sum of

random variables

Since

Var [x − y] = E
[
x2
]
− 2E [xy] + E [y]2 − E [x]2 + 2E [x] E [y] − E [y]2 ≥ 0

→ Var [x] + Var [y] ≥ 2(E [xy] − E [x] E [y])

(D.40)

178

we have

Var [x + y] = E
[
x2
]
+ 2E [xy] + E [y]2 − E [x]2 − 2E [x] E [y] − E [y]2

≤ 2(Var [x] + Var [y]) (D.41)

This can be generalized to

Var

[
N∑

i=1

xi

]

=

N∑

i=1

(E [xi]
2 − E [xi]

2) + 2

N∑

i=1

N∑

j=i+1

(E [xixj] − E [xi]E [xj])

≤
N∑

i=1

Var [xi] +

N∑

i=1

N∑

j=i+1

(Var [xi] + Var [xj])

=

N∑

i=1

Var [xi] +

N∑

i=1

Var [xi] (N − i) +

N∑

j=2

j−1
∑

i=1

Var [xj]

=
N∑

i=1

Var [xi] (1 + N − i) +
N∑

j=2

(j − 1)Var [xj]

=
N∑

i=2

Var [xi] (1 + N − i + i − 1) + NVar [x1]

→ Var

[
N∑

i=1

xi

]

≤ N

N∑

j=1

Var [xi] (D.42)

D.5 Some identities for squares of sums

Since

(
hb

a

)2
=

b∑

i=a

b∑

j=a

1

ij

=

b∑

i=a

1

i2
+ 2

b∑

i=a

i−1∑

j=a

1

ij

=

b∑

i=a

1

i2
+ 2

b∑

i=a

i∑

j=a

(
1

ij
− 1

i2
)

= 2

b∑

i=a

i∑

j=a

1

ij
−

b∑

i=a

1

i2
(D.43)

we have
b∑

i=a

i∑

j=a

1

ij
=

1

2

((
hb

a

)2
+ 2h

b
a

)

(D.44)

Likewise, exploiting
∑b

i=a

∑i

j=a
1
ij

=
∑b

j=a

∑b

i=j
1
ij

, we can also write

b∑

i=a

b∑

j=i

1

ij
=

1

2

((
hb

a

)2
+ 2h

b
a

)

(D.45)

179

Appendix E

Proof of the metric properties of

Dpq

This appendix contains the proof that Dpq is a metric, its coding-theoretic motiva-

tion and some of its limiting properties, e.g. its boundedness. Metrics are the pre-

requisites for several important convergence theorems for iterative algorithms, e.g.

Banach’s fixed point theorem [10], which is the basis of various pattern-matching

algorithms. Boundedness is a valuable property, too, when numerical applications

are considered. The presentation of this material closely resembles the published

form [22].

E.1 Motivation

The motivation presented in this section is aimed at providing the reader with an

idea of the meaning of the metric in coding-theoretic terms. As such it is not to be

understood as a derivation in a strict mathematical sense. However, mathematical

rigor will be observed in the following section, which contains the actual proof of

the metric properties.

Let X be a discrete random variable which can take on N different values ∈
ΩN = {ω1, . . . , ωN}. Now, draw an i.i.d. sample X̃, where each observation is drawn

from one of two known distributions, P and Q. Each of those is used with equal

probability. However, it is unknown which one is used when. Now one wishes to find

the coding strategy that gives the shortest average codelength for the representation

of the data. In other words, what is the most efficient distribution R?

180

Let this code be called κ. The codelengths are κi = − log ri, where i ∈ {1, . . . , N}
and ri is the probability of X = ωi under R. Denoting the expectation of κ w.r.t. P

by E(κ, P), the average codelength <κ> is then 1
2
E(κ, P) + 1

2
E(κ, Q). By the very

definition of the entropy, the minimum <κ> is obtained by setting R = 1
2
(P + Q),

i.e. <κ>= H(R).

An ideal observer, i.e. one who knows which distribution is used to generate the

individual data, could reach an even shorter average codelength 1
2
H(P) + 1

2
H(Q).

Hence the redundancy of κ is H(R)− 1
2
H(P)− 1

2
H(Q). The distance which will be

studied is that redundancy

D2
PQ = H(R) − 1

2
H(P) − 1

2
H(Q)

=
1

2
(D (P‖R) + D (Q‖R))

=
1

2

N∑

i=1

(

pi log
2pi

pi + qi

+ qi log
2qi

pi + qi

)

(E.1)

Since the Kullback divergence D (P‖R) can be interpreted as the inefficiency of

assuming that the true distribution is R when it really is P , D2
PQ could be seen as

a minimum inefficiency distance.

This distance measure has been introduced before. Topsøe, in [86], called 2D2
PQ

capacitory discrimination and introduced it from an information transmission point

of view. In that paper, its properties are studied in depth. His results will be

related to those presented here in the discussion. Now D2
PQ is obviously symmetric

and vanishes for P = Q, but it does not fulfill the triangle inequality. However, its

square root, DPQ, does. The proof of the metric properties of DPQ is the subject of

the next section.

E.2 Proof of metric properties of DPQ

In the following, IR+ includes 0.

Definition 1 Let the function L(p, q) : IR+ × IR+ → IR+ be defined by

L(p, q) := p log
2p

p + q
+ q log

2q

p + q
. (E.2)

181

This function can be taken to be any one of the summands of D2
PQ (see eqn.

(E.1)). By virtue of the standard inequality log(x) ≥ 1− 1
x

one realizes that L(p, q) ≥
0 with equality only for p = q.

Theorem 1 uses some properties of the partial derivative of L(p, q) and to show

these let the function g : IR+\{1} → IR be defined by

g(x) :=
log 2

x+1
√

L(x, 1)
.

Lemma 1 Let g be defined as above. Then

1. limx→1∓ g(x) = ±1, i.e. g jumps from +1 to −1 at x = 1.

2. The derivative d
dx

g is positive for x ∈ IR+\{1}.

A consequence of this lemma is that |g(x)| ≤ 1 with equality only at x = 1.

Also, it is easy to see that |g| is continuous, but not g.

Proof: First note that g changes sign at x = 1.

A straightforward application of l’Hôspital’s rule (differentiate twice) yields limx→1 g2(x) =

1.

By differentiation one finds that d
dx

g is positive if and only if f < 0 where f is

given by

f(x) = 2

(

x log
2x

1 + x
+ log

2

1 + x

)

+ (1 + x) log
2

1 + x
log

2x

1 + x
(E.3)

Thus,

d

dx
f(x) = log

2

1 + x
log

2x

1 + x
+ log

2x

1 + x
+

1

x
log

2

1 + x
(E.4)

and

d2

dx2
f(x) =

−1

x2(1 + x)

(

log
2

1 + x
+ x2 log

2x

1 + x

)

(E.5)

Hence, f(1) = f ′(1) = 0. Using the standard inequality log a ≥ 1 − 1
a
, one finds

that f ′′ < 0, hence f is concave. Combined with the first found facts, f < 0 for

x 6= 1⋄.

It will now be proven that

182

Theorem 1 Let FN be the set of all discrete probability distributions over ΩN ,

N ∈ IN . The function DPQ : FN × FN → IR+ is a metric.

Proof: To show this, recall that D (P‖Q) is 0 for P = Q and strictly positive

otherwise (see e.g. [13]). In addition, D2
PQ is symmetric in P, Q and so is DPQ.

Therefore, it only remains to be shown that the triangle inequality holds.

Lemma 2 Let p, q, r ∈ IR+. Then

√

L(p, q) ≤
√

L(p, r) +
√

L(r, q).

Proof: It is easy to see that this holds if p = q or r = 0. Now, assume p ≤ q and

denote by rhs the right hand side as a function of r. It will be shown that

1. rhs has 2 minima, namely one at r = p and one at r = q, and

2. only 1 maximum somewhere between p and q.

This can be accomplished by way of the derivative

∂rhs

∂r
=

log 2r
p+r

2 ·
√

L(p, r)
+

log 2r
q+r

2 ·
√

L(q, r)
. (E.6)

With g as in Lemma 1 and x := p

r
and β · x := q

r
(β > 1), one finds that

2 ·
√

r · ∂rhs

∂r
= g(x) + g(βx).

With |g(x)| ≤ 1 with equality only at x = 1, and the fact that g jumps from

+1 to −1 at x = 1 (see lemma 1), the derivative ∂rhs
∂r

indeed changes sign at r = p,

because then x = 1 and |g(x)| > |g(βx)|, and likewise at r = q. Those extrema are

minima because r is reciprocal to x.

Also, d
dx

g(x) ≥ 0, therefore between x = 1
β

and x = 1, g(x)+ g(βx) is monotonic

increasing and as a consequence has at most one sign change. This reasoning also

holds if p = 0 or q = 0, because g(0) =
√

log(2) < 1. ⋄
Applying Minkowski’s inequality to the square root of the sum which defines

DPQ, one sees that the triangle inequality is fulfilled.

Whence DPQ is a metric.⋄
The generalization of this result to continuous random variables is straightfor-

ward. Let P and Q be probability measures defined on a measurable space (Ω, A)

183

and let p = dP
dµ

, q = dQ

dµ
be their Radon-Nikodym derivatives w.r.t. a dominating

σ-finite measure µ. Then

DPQ =

√

1

2

∫

Ω

(

p log
2p

p + q
+ q log

2q

p + q

)

dµ (E.7)

is a metric, too.

An alternative proof could be constructed using results presented in [46]. Since

D2
PQ is an instance of a class of distances known as f -divergences (cf. [1]) (let

f(t) = t log 2t
1+t

+ log 2
1+t

, then D2
PQ = 1

2

∑N

i=1 qif(pi

qi
)), the theorems proven in [46]

apply.

Now the maxima and minima of DPQ will be studied. Its minimum is, of course,

located at P = Q, where DPQ = 0. To find its maximum, rewrite (E.2) in the form

L(p, q) = (p + q) log 2
︸ ︷︷ ︸

≥0

+ p log

(
p

p + q

)

︸ ︷︷ ︸

≤0

+ q log

(
q

p + q

)

︸ ︷︷ ︸

≤0

(E.8)

It follows that when P and Q are two distinct deterministic distributions, DPQ

assumes its maximum value
√

log 2. If the logarithm to base 2 is used, then the

maximum value of D2
PQ is 1 bit.

E.3 Asymptotic approximation

Next, the limit

lim
P→Q

D2
PQ (E.9)

shall be investigated. A term-by-term expansion of DPQ to second order in pj yields:

D2
PQ ≈

N∑

j=1

1

8qj

(pj − qj)
2 =

1

8
χ2(P, Q) (E.10)

where χ2(P, Q) is the well-known χ2-distance (see e.g [51]).

E.4 Discussion

The DPQ metric can also be interpreted as the square root of an entropy approxima-

tion to the logarithm of an evidence ratio when testing if two (equally long) samples

have been drawn from the same underlying distribution [56]. In that paper, it is also

184

argued that D2
PQ should be named Jensen-Shannon divergence, or rather, a special

instance of that divergence, which is defined as

Dλ(P, Q) = λD (P‖R) + (1 − λ)D (Q‖R)

R = λP + (1 − λ)Q

and therefore D2
PQ = D 1

2
(P, Q).

Topsøe [86] has interpreted capacitory discrimination as twice an information

transmission rate and related it to a variety of other distance measures, such as the

Kullback divergence, triangular discrimination, variational distance and Hellinger

distance. Many of the inequalities found by him can now be rewritten to become

relationships between metrics.

Österreicher, in [71], proved the triangle inequality for square roots of fβ diver-

gences defined by the functions

fβ(t) =
(1 + tβ)

1
β − 2

1−β

β (1 + t)

1 − 1
β

(E.11)

for β > 1. Since the fβ divergence one obtains by taking the limit β → 1 is 2D2
PQ,

the results presented here extend the theorem proven in [71] to include the case

β = 1.

Another way of looking at D2
PQ is from the viewpoint of Bayesian inference.

Consider the following scenario: Draw a sample X̃1 = {x1} of length 1 from an

unknown distribution R. What is assumed to be known about the distribution is

that it is either P or Q, hence assigning each distribution the prior probability

1
2
. Using Bayesian inference, the posterior probabilities P (P |X̃1),P (Q|X̃1) of each

distribution given the observation X̃1 can then be calculated:

P (P |X̃1) =
1
2
P (x1)

1
2
P (x1) + 1

2
Q(x1)

P (Q|X̃1) =
1
2
Q(x1)

1
2
P (x1) + 1

2
Q(x1)

(E.12)

The information gain ∆I(X̃1) resulting from the observation of X̃1 is given by the

Kullback divergence between the posterior and the prior

∆I(X̃1) =
P (x1) log 2P (x1)

P (x1)+Q(x1)
+ Q(x1) log 2Q(x1)

P (x1)+Q(x1)

P (x1) + Q(x1)
(E.13)

185

To find the expected value of this gain, average ∆I(x1) over the prior distribution

of x1, which is given by 1
2
P + 1

2
Q. This yields, noting that P (x1 = ωi) = pi and

likewise for Q:

E(∆I(X̃1)) =
1

2

N∑

i=1

pi log
2pi

pi + qi

+
1

2

N∑

i=1

qi log
2qi

pi + qi

= D2
PQ (E.14)

Therefore, another interpretation of D2
PQ is that it is the expected information gain

when deciding (by means of a sample of length 1) between two distributions given a

uniform prior over the distributions. Consider now the case that P and Q are such

that DPQ is maximized. Then, as stated above, D2
PQ = 1 (when using log 2), i.e.

the information gain is one bit. Thus, a sample of length 1 is sufficient to make the

(binary) decision as to which distribution is the correct one. More general formulas

than (E.14) can be found in [72], where relations between arbitrary f-divergences

and information gains in decision problems are studied.

One interesting generalization of E.14 is that to more than 1 datapoint. Let X̃K

be an i.i.d. sample of N points. Then

P (X̃K|P) =
K∏

j=1

P (xj) (E.15)

P (X̃K|Q) =
K∏

j=1

Q(xj) (E.16)

P (X̃K) =
1

2

K∏

i=1

P (xi) +
1

2

K∏

i=1

Q(xi) (E.17)

P (P |X̃K) =

∏K
j=1 P (xj)

∏N

i=1 P (xj)) +
∏K

j=1 Q(xj)
(E.18)

P (Q|X̃K) =

∏K

j=1 Q(xj)
∏N

i=1 P (xj)) +
∏K

i=1 Q(xj)
(E.19)

P (P) = P (Q) =
1

2
(E.20)

As before, all those probabilities are conditioned on the prior knowledge. Denoting

186

the K-fold sum over all xjs by

∑

K

=

N∑

i=1

. . .

N∑

i=1
︸ ︷︷ ︸

K sums

(E.21)

the difference DPQ(K) between the expected information gains from samples of

length K + 1 and K is

D2
PQ(K) := E(∆I(X̃K+1)) − E(∆I(X̃K))

=
1

2

∑

K+1

P (X̃K+1|P) log(2P (P |X̃K+1)) +
1

2

∑

K+1

P (X̃K+1|Q) log(2P (Q|X̃K+1))

− 1

2

∑

K

P (X̃K |P) log(2P (P |X̃K)) − 1

2

∑

K

P (X̃K|Q) log(2P (Q|X̃K))

=
1

2

∑

K+1

P (X̃K+1|P) log

(

P (P |X̃K+1)

P (P |X̃K)

)

+
1

2

∑

K+1

P (X̃K+1|Q) log

(

P (Q|X̃K+1)

P (Q|X̃K)

)

(E.22)

In deriving the last line, the equality

∑

K

P (X̃K|P) log(P (P |X̃K)) =
∑

K

K∏

i=1

P (xi) log(P (P |X̃K))

=
∑

K+1

K+1∏

i=1

P (xi) log(P (P |X̃K))

=
∑

K+1

P (X̃K+1|P) log(P (P |X̃K)) (E.23)

was used, which holds because P (xi) is normalized and the argument of the logarithm

does not depend on xK+1. It will now be shown that this difference is monotonically

decreasing with K:

D2
PQ(K + 1) − D2

PQ(K) =
1

2

∑

K+2

P (X̃K+2|P) log

(

P (P |X̃K+2)P (P |X̃K)

P (P |X̃K+1)2

)

+
1

2

∑

K+2

P (X̃K+2|Q) log

(

P (Q|X̃K+2)P (Q|X̃K)

P (Q|X̃K+1)2

)

(E.24)

where E.23 was employed again to simplify the expression. Noting (E.15)-(E.20),

one finds
P (P |X̃K+2)P (P |X̃K)

P (P |X̃K+1)2
=

P (xK+2)

P (xK+1)

P (X̃K+1)
2

P (X̃K+2)P (X̃K)
(E.25)

187

and likewise for the second term of (E.24). Since

∑

K+2

P (X̃K+2|P) log(P (xK+2)) −
∑

K+2

P (X̃K+2|P) log(P (xK+1)) = 0 (E.26)

(E.24) becomes, using (E.17)

D2
PQ(K + 1) − D2

PQ(K) =
∑

K+2

P (X̃K+2) log

(

P (X̃K+1)
2

P (X̃K+2)P (X̃K)

)

(E.27)

For the final step, the equality

∑

K+2

P (X̃K+2) log

(

P (X̃K+1)

P (X̃K)

)

=
∑

K+2

P (X̃K+2) log
(

P (xK+1|X̃K)
)

=
∑

K+2

P (X̃K+2) log
(

P (xK+2|X̃2,K+1)
)

(E.28)

will be used, where X̃2,K+1 is the sample comprised of the datapoints 2, . . . , K + 2.

This equality holds basically due to the interchangeability of the datapoints in the

sample. Note that

P̃ (X̃K+2) = P (xK+2|X̃2,K+1)P (X̃K+1) (E.29)

is a probability distribution over X̃K+2: it is ≥ 0 everywhere and normalized. Thus

D2
PQ(K + 1) − D2

PQ(K) =
∑

K+2

P (X̃K+2) log

(

P̃ (X̃K+2)

P (X̃K+2)

)

= −D
(

P (X̃K+2)|P̃ (X̃K+2)
)

≤ 0 (E.30)

Thus, the expected increase of the information gain decreases as the sample grows.

In other words, each newly observed point is expected to add less to the already

gained knowledge than the point before it. Thus D2
PQ(0) = D2

PQ is an upper bound

on the expected information gain per sample point. Due to the uniform prior over

P and Q, exactly 1 bit of information has to be extracted from the sample before

it is known which distribution is the one that generated the data. When D2
PQ is

measured in bit as well, then

Nmin =
1

D2
PQ

(E.31)

is a lower bound on the sample size that is required, before the decision between P

and Q can be made with certainty. Strictly speaking, the bound can only be reached

when D2
PQ = 1 bit, i.e. the distributions are distinct. Otherwise, a sample of inifinite

size is necessary before certainty is attained. It could, however, be expected, that a

sample size of O(Nmin) should be enough to reach a reasonable degree of certainty.

188

Bibliography

[1] S.M. Ali and S.D. Silvey. A general class of coefficients of divergence of one

distribution from another. Journal of the Royal Statistical Society, Series B,

28:131–142, 1966.

[2] E. Arabzadeh, S. Panzeri, and M.E. Diamond. Whisker vibration information

carried by rat barrel cortex neurons. Journal of Neuroscience, 24(26):6011–

6020, 2004.

[3] R. Baddeley, L.F. Abbott, M.C.A. Booth, F. Sengpiel, T. Freeman, E.A. Wake-

man, and E.T. Rolls. Responses of neurons in primary and inferior temporal

visual cortices to natural scenes. Proceedings of the Royal Society of London,

series B - biological sciences, 264(1389):1775–1783, 1997.

[4] H. D. Barlow. Single units and perception. Perception, 1:371–394, 1972.

[5] T. Bayes. Essay towards solving a problem in the doctrine of chances. Philo-

sophical Transactions of the Royal Society of London, 1763.

[6] J.O. Berger. Statistical Descision theory and Bayesian analysis. Springer, New

York, 1985.

[7] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

New York, 1995.

[8] V. Blanz, B. Schölkopf, H. Bülthoff, Burges C., Vapnik V., and T. Vetter. Com-

parison of view-based object recognition algorithms using realistic 3d models.

In C. von der Malsburg, W. von der Seelen, J. C. Vorbrüggen, and B. Sendhoff,

editors, Artificial neural networks – ICANN96, pages 251–256. Springer-Verlag,

Berlin, 1996.

189

[9] I. N. Bronstein and K. A. Semendyayev. Handbook of mathematics. Harri

Deutsch, Frankfurt/Main, 24th edition, 1989.

[10] R.F. Brown. A topological introduction to nonlinear analysis. Birkhäuser, Kas-

sel, 1993.

[11] B. G. Burton. Problems and solutions in early visual processing. In R. Bad-

deley, P. Hancock, and P. Földiák, editors, Information theory and the brain,

chapter 2. Cambridge University Press, New York, 2000.

[12] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–

297, 1995.

[13] T. M. Cover and T. A. Joy. Elements of Information Theory. John Wiley &

Sons, New York, 1991.

[14] R.T. Cox. Probability, frequency and reasonable expectation. American Journal

of Physics, 14(1):1–13, 1946.

[15] G. Cybenko. Approximations by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2:304–314, 1989.

[16] J. G. Daugmann. Complete discrete 2-d gabor transforms by neural networks

for image analysis and compression. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 36(7):1169–1179, 1988.

[17] P.J. Davis. Gamma function and related functions. In M. Abramowitz and I.A.

Stegun, editors, Handbook of mathematical functions. Dover, New York, 1972.

[18] P. Dayan, Hinton G., Neal R., and Zemel R. The helmholtz machine. Neural

Computation, 7:889–904, 1995.

[19] A.P. Dempster, N.M. Laird, and D.B Rubin. Maximum likelihood for incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society, Series

B, 39(1):1–38, 1977.

[20] D. Endres and P. Földiák. Quadratic programming for learning sparse codes.

In Proceedings of the ninth international conference on artificial neural net-

190

works (ICANN99), IEE Conference Publication No. 470, pages 593–596, Lon-

don, 1999. Institution of Electrical Engineers.

[21] D. Endres and P. Földiák. Baysian bin distribution inference and mutual in-

formation. IEEE Transactions on Information Theory, 51(11), 2005.

[22] D. Endres and J.E. Schindelin. A new metric for probability distributions.

IEEE Transactions on Information Theory, 49(7):1858–1860, 2002.

[23] T. S. Ferguson. Prior distributions on spaces of probability measures. Annals

of Statistics, 2(4):615–629, 1974.

[24] B. L. Finlay and S. L. Pallas. Control of cell number in the developing mam-

malian visual system. Progress in Neurobiology, 32:207–234, 1989.

[25] R. Fletcher. Practical methods of optimization. John Wiley & Sons, New York,

2nd edition, 1987.

[26] P. Földiák. Forming sparse representations by local anti-hebbian learning. Bi-

ological Cybernetics, 64:165–170, 1990.

[27] P. Földiák. The ’ideal homunculus’: statistical inference from neural population

responses. In F. Eeckman and J. Bower, editors, Computation and Neural

Systems, pages 55–60. Kluwer Academic Publishers, Norwell, MA, 1993.

[28] P. Földiák. Representation in neurons. In L. Nadel, editor, Encyclopedia of

Cognitive Science. Macmillan, Nature Publishing Group, London, 2002.

[29] P. Földiák. Sparse coding in the primate cortex. In M. A. Arbib, editor, The

Handbook of brain theory and neural networks. MIT Press, Cambridge, MA,

2nd edition, 2002.

[30] P. Földiák and M. Young. Sparse coding in the primate cortex. In M. A.

Arbib, editor, The Handbook of brain theory and neural networks. MIT Press,

Cambridge, MA, 1995.

[31] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.

Chapman & Hall/CRC, Boca Raton, 1995.

191

[32] E.D. Gershon, M.C. Wiener, P.E. Latham, and Richmond B.J. Coding strate-

gies in monkey v1 and inferior temporal cortices. Journal of Neurophysiology,

79:1135–1144, 1998.

[33] G. F. Harpur and R. W. Prager. Techniques in low entropy coding with neural

networks. Technical Report CUED/F-INFENG/TR 197, Cambridge University

Engineering Department, 1995.

[34] G. F. Harpur and R. W. Prager. Development of low entropy coding in a

recurrent network. Network: Computation in Neural Systems, 7(2):277–284,

1996.

[35] G. F. Harpur and R. W. Prager. Experiments with low-entropy neural networks.

In R. Baddeley, P. Hancock, and P. Földiák, editors, Information theory and the

brain, chapter 5, pages 84–100. Cambridge University Press, New York, 2000.

[36] J.J. Hopfield. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings of the National Academy of Sciences,

79:2554–2558, 1982.

[37] J.J. Hopfield. Neurons with graded response have collective computational

properties like those of two-state neurons. Proceedings of the National Academy

of Sciences, 81:3088–3092, 1984.

[38] C. Hsu, C. Chang, and C. Lin. A practical guide to support vector classification.

http://www.csie.ntu.edu.tw/˜cjlin/libsvm/, 2005.

[39] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. Journal of Physiology, 73:218–226, 1962.

[40] M. Hutter. Distribution of mutual information. In Advances in Neural In-

formation Processing Systems 14, pages 339–406, Cambridge, MA, 2002. MIT

Press.

[41] A. Hyvarinen and P. O. Hoyer. Emergence of phase and shift invariant features

by decomposition of natural images into independent feature subspaces. Neural

Computation, 12(7):1705–1720, 2000.

192

[42] T.S. Jaakkola and M.I. Jordan. Computing upper and lower bounds on likeli-

hoods in intractable networks. Technical Report AIM-1571, 1996.

[43] E. T. Jaynes. Probability theory: the logic of science. Cambridge University

Press, New York, 2003.

[44] J.P. Jones and Palmer L. A. An evaluation of the two-dimensional gabor filter

model of simple receptive fields in cat striate cortex. Journal of Neurophysiology,

58(6):1233–1258, 1987.

[45] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction

to variational methods for graphical models. Machine Learning, 37(2):183–233,

1999.

[46] P. Kafka, F. Österreicher, and I. Vince. On powers of f -divergences defining a

distance. Studia Scientia Mathematica Hungariae, 26:415–422, 1991.

[47] C. Keysers. The Speed of Sight. PhD thesis, School of Psychology, University

of St. Andrews, U.K., 2000.

[48] C. Keysers, D. Xiao, P. Földiák, and D. I. Perrett. The speed of sight. Journal

of Cognitive Neuroscience, 13(1):90–101, 2001.

[49] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2):498–519,

2001.

[50] M. S. Lewicki and B. A. Olshausen. Probabilistic framework for the adaptation

and comparison of image codes. Journal of the Optical Society of America,

16(7):1587–1601, 1999.

[51] F. Liese and I. Vajda. Convex Statistical Distances. B.G. Teubner Verlagsge-

sellschaft, Leipzig, 1987.

[52] T. J. Loredo. From laplace to supernova sn1987a: Bayesian inference in astro-

physics. In P. F. Fougére, editor, Maximum Entropy and Bayesian Methods,

pages 81–142. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

193

[53] D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California

Institute of Technology, Pasadena, CA, 1992.

[54] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms.

Cambridge University Press, New York, 2003.

[55] M. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21:1087–1092, 1953.

[56] T. P. Minka. Bayesian inference, entropy, and the multinomial distribution.

http:// www.stat.cmu.edu/̃ minka/papers/multinomial.html, 2001.

[57] R. M. Neal. Probabilistic inference using markov chain monte carlo meth-

ods. Technical Report CRG-TR-93-1, Dept. of Computer Science, University

of Toronto, 1993.

[58] R. M. Neal. Monte carlo implementation of gaussian process models for bayesian

regression and classification. Technical Report 9702, Dept. of Computer Science,

University of Toronto, 1997.

[59] R. M. Neal. Slice sampling. Technical Report 2005, Dept. of Computer Science,

University of Toronto, 2000.

[60] R.M. Neal. Markov chain sampling methods for dirichlet process mixture mod-

els. Technical Report 9815, Dept. of Statistics, University of Toronto, 1998.

[61] I. Nemenman, W. Bialek, and R.R. van Steveninck. Entropy and information

in neural spike trains: Progress on the sampling problem. Physical Review E,

69(5), 2004.

[62] B. A. Olshausen. Principles of image representation in visual cortex. In L. M.

Chalupa and J. S. Werner, editors, The Visual Neurosciences, pages 1603–1615.

MIT Press, Boston MA, 2003.

[63] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field prop-

erties by learning a sparse code for natural images. Nature, 381(6583):607–609,

1996.

194

[64] B. A. Olshausen and D. J. Field. Natural image statistics and efficient coding.

Network: Computation in Neural Systems, 7(2):333–339, 1996.

[65] B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs. Current

Opinion in Neurobiology, 7(2):333–339, 1996.

[66] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set:

A strategy employed by v1? Vision Research, 37(23):3311–3325, 1997.

[67] L.M. Optican, T.J. Gawne, B.J. Richmond, and P.J. Joseph. Unbiased measures

of transmitted information and channel capacity from multivariate neuronal

data. Biological Cybernetics, 65:305–310, 1991.

[68] M. W. Oram, P. Földiák, D. I. Perrett, and F. Sengpiel. The ’ideal homunculus’:

Decoding neural population signals. Trends in Neuroscience, 21:259–265, 1998.

[69] M. W. Oram and D. I. Perrett. Time course of neural responses discriminating

different views of the face and head. Journal of Neurophysiology, 68(1):70–84,

1992.

[70] M. W. Oram, D. Xiao, B. Dritschel, and K.R. Payne. The temporal resolu-

tion of neural codes: does response latency have a unique role? Philosophical

Transactions of the Royal Society, Series B, 357:987–1001, 2002.

[71] F. Österreicher. On a class of perimeter-type distances of probability distribu-

tions. Kybernetika, 32:389–393, 1996.

[72] F. Österreicher and I. Vajda. On a class of perimeter-type distances of proba-

bility distributions. IEEE Transactions on Information Theory, 36:1036–1039,

1993.

[73] L. Paninski. Estimating entropy on m bins given fewer than m samples. IEEE

Transactions on Information Theory, 50(9):2200–2203, 2004.

[74] S. Panzeri and A. Treves. Analytical estimates of limited sampling biases in dif-

ferent information measures. Network: Computation in Neural Systems, 7:87–

107, 1996.

195

[75] A. E. C. Pece. Redundancy reduction of a gabor representation: A possible

computational role for feedback from primary visual cortex to lateral geniculate

nucleus. In I. Aleksander and J. Taylor, editors, Artificial Neural Networks 2,

pages 865–868. Elsevier, Amsterdam, 1992.

[76] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press,

New York, 1986.

[77] D. L. Ringach. Spatial structure and symmetry of simple-cell receptive fields in

macaque primary visual cortex. Journal of Neurophysiology, 88:455–463, 2002.

[78] J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471,

1978.

[79] E.T. Rolls, H.D. Critchley, and A. Treves. The representation of olfactory

information in the primate orbitofrontal cortex. Journal of Neurophysiology,

75:1982–1996, 1995.

[80] M. Rosenblatt. Remarks on some nonparametric estimates of a density function.

Annals of Mathematical Statistics, 27:832–837, 1956.

[81] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal represen-

tations by error propagation. In D.E. Rumelhart, J.L. McClelland, and the

PDP research group, editors, Parallel distributed processing: explorations in

the microstructure of cognition, pages 318–362. MIT Press, Cambridge, MA,

1986.

[82] C. E. Shannon. The mathematical theory of communication. The Bell Systems

Technical Journal, 27:379–423, 623–656, 1948.

[83] C.E Shannon and W. Weaver. The Mathematical Theory of Communication.

University Press, Urbana, IL, 1949.

[84] J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle of maxi-

mum entropy and the principle of minimum cross-entropy. IEEE Transactions

on Information Theory, 26(1):26–37, 1980.

196

[85] M. Stone. Cross-validatory choice and assessment of statistical predictions.

Journal of the Royal Statistical Society, Series B, 36(1):111–147, 1974.

[86] F. Topsøe. Some inequalities for information divergence and related measures

of discrimination. IEEE Transactions on Information Theory, 46:1602–1609,

2000.

[87] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. SMEM algorithm for

mixture models. Neural Computation, 12(9):2109–2128, 2000.

[88] V. Vapnik. The nature of statistical learning theory. Springer-Verlag, New York,

1995.

[89] V. Vapnik. Statistical learning theory. John Wiley and Sons, New York, 1998.

[90] B.T. Vincent, R.J. Baddeley, T. Troscianko, and I.D. Gilchrist. Is the early

visual system optimised to be energy efficient? Network: Computation in

Neural Systems, 16(2/3):175–190, 2005.

[91] C.S. Wallace and D.M. Boulton. An information measure for classification.

Computer Journal, 11:185–194, 1968.

[92] C. K. I. Williams and D. Barber. Bayesian classification with gaussian processes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–

1351, 1998.

197

