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ABSTRACT

1. Method

The peristimulus time histogram (PSTH) and its more continuous cousin, the spike density function (SDF)
are staples in the analytic tool kit of neurophysiologists. The former is usually obtained by binning spike
trains, whereas the standard method for the latter is smoothing with a Gaussian kernel. Selection of a bin
width or a kernel size is often done in an relatively arbitrary fashion, even though there have been recent
attempts to remedy this situation [4,5].

We develop an exact Bayesian, generative model approach to estimating PSTHs. Our model encodes a spike
generator described by an inhomogeneous Bernoulli process with piecewise constant (in time) probabilities,
i.e. it is comprised of a finite number of time bins. Within each time bin, the distribution of the number of
spikes is binomial.

We show that relevant marginal distributions, e.g. the posterior distribution of the number of time bins, can
be evaluated in polynomial time from the full joint posterior distribution over the model parameters. This
marginal distribution encodes the model complexity, whence we can perform Bayesian model selection or
averaging. Extending earlier dynamic programming schemes [2], we show that expected values, such as the
predictive firing rate and its standard error, or the expected bin boundary positions, are also computable with
polynomial effort.

We demonstrate the superiority of our approach to two competing methods, Gaussian smoothing and the
binning method described in [4] by comparing cross-validation errors on real neural spike trains. We
obtained data through [3]. Briefly, extra-cellular single-unit recordings were made using standard techniques
from the upper and lower banks of the anterior part of the superior temporal sulcus (STSa) and the inferior
temporal cortex (IT) of two monkeys (Macaca mulatta) performing a visual fixation task. Neuronal responses
to a variety of visual images (faces, everyday objects and abstract images) presented a varying contrasts were
collected.

2. Information-theoretic analysis of contrast encoding by STSa cells

Previous studies [1,3] indicate that much of the stimulus-related information carried by neurons in IT and
STSa is contained in relatively coarse measures of the neural response, such as response latency and firing
rate. We investigate the encoding of stimulus contrast and stimulus identity by these measures.

We define latency as the point in time before which the firing probability was below a given noise level, and
above that noise level for at least one time bin afterwards. This condition can be fulfilled for at most one
point in time, if it is fulfilled nowhere, then a latency does not exist. Because our model is comprised of a
discrete number of bins, this latency definition is easily evaluated if the model parameters are known. Thus,
we obtain the latency posterior by marginalising the model parameters. The noise level is selected to
maximise the probability of a signal, i.e. the probability that a latency exists. We then compute the mutual
information between latency L and stimulus contrast C, I(L;C), for each cell.



Next, we evaluate the mutual information I(F;C) between stimulus contrast and the firing rate F in the time
bin which begins at the latency. This time bin often contains the strong transient part of the cell's response to
the stimulus and previous studies have shown that this period of the response contains the majority of the
total information available [Roll paper, your paper].

We find that latency contains roughly twice as much information about contrast as firing rate, with the
relationship between I(L;C) and I(F;C) being approximately linear. Moreover, an examination of the joint
code formed by latency and firing rate shows that ~40% of the firing rate information is contained in the
latency, whereas only ~15% of the latency information can be extracted from the firing rate. Therefore, most
of the information about contrast is conveyed by the latency, and a large part of I(F;C) is redundant with L.

Next, we look at the stimulus identity S. We find I(L;S) > I(F;S) in most cases, but a simple linear
relationship between the two information measures could not be established. Also, only ~3% of I(F;S) is
conveyed by L and vice versa. We would therefore conclude that firing rate and latency convey information
about different aspects of the stimulus identity. One possibility is that the variation in response latency with
stimulus occurs because the stimuli have different effective contrasts. Thus, while we controlled for the
Michelson contrast across the entire image, the contrast “from the neurones perspective” could have differed.
Evaluation of alternative contrast measures, such as the root-mean-square measure, gave even more
discrepant results.
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