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Abstract

Human full-body activities, such as choreographed dances, are comprised of se-
quences of individual actions. Research in motor control shows that such individual ac-
tions can be approximated by superpositions of simplified elements, called movement
primitives. Such primitives can be employed to model complex coordinated movements,
as occurring in martial arts or dance. In this chapter, we will briefly outline several
biologically-inspired definitions of movement primitives and will discuss a new algo-
rithm that unifies many existing models and which identifies such primitives with higher
accuracy than alternative unsupervised learning techniques. We combine this algorithm
with methods from Bayesian inference to optimize the complexity of the learned mod-
els and to identify automatically the best generative model underlying the identifica-
tion of such primitives. We also discuss efficient probabilistic methods for the automatic
segmentation of action sequences. The developed unsupervised segmentation method is
based on Bayesian binning, an algorithm that models a longer data stream by the con-
catenation of an optimal number of segments, at the same time estimating the optimal
temporal boundaries between those segments. Applying this algorithm to motion capture
data from a TaeKwonDo form, and comparing the automatically generated segmentation
results with human psychophysical data, we found a good agreement between automati-
cally generated segmentations and human performance. Furthermore, the segments agree
with the minimum jerk hypothesis about human movement.32 These results suggest that
a similar approach might be useful for the decomposition of dances into primitive-like
movement components, providing a new approach for the derivation of compressed de-
scriptions of dances that is based on principles from biological motor control.

1 Introduction

Like choreographed dances, complex human full-body activities are comprised of
sequences of individual actions. For purposes of teaching and memorization, differ-
ent often heuristically motivated methods for the abstract notation of such movement
sequences have been proposed, e.g. in terms of dance step diagrams or schemes for
the execution of forms in martial arts, e.g. katas in Karate, or Hyeongs and Taegueks
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in TaeKwonDo. Viewed from a computational perspective, these diagrams are com-
pressed versions of the movements, which have to be decompressed by the actors or
dancers during execution. This decompression is possible because the dancers are
able to ’fill in the blanks’ between subsequent foot positions in a dance step diagram
using their own motor repertoire.

A variety of techniques for the modeling of complex human behavior sequences
has been proposed in computer science, and a review would exceed the scope of this
chapter. Instead we present here several examples from our work where we try to
exploit biological concepts to derive mathematical models for such complex human
behaviors.

According to a prevalent hypothesis in human motor control, complex coordi-
nation patterns within individual movements are organized in terms of movement
primitives, i.e. simplified control elements, which can be combined in space and
time to whole classes of complex movements. In the biological literature a variety
of algorithms have been proposed to estimate such primitives from kinematic or
EMG data.8, 31

In section 2.1, we will review several popular definitions of movement primitives
(MP). As an example of a state-of-the art algorithm for the unsupervised extraction
of MPs from motion capture data, we describe the Fourier-based anechoic demixing
(FADA) algorithm16 in section 2.2 and show that this algorithm outperforms other
learning techniques. In addition, we present in section 2.3 a Bayesian approach for
the estimation of the model type and optimal number of primitives.24 This number
is also called the model order. We demonstrate that our Bayesian approach results
in better model type and order estimates than previously applied schemes.

Most MP extraction methods require a previous segmentation of action streams in
individual movements that can be characterized by individually controlled actions
(periodic or non-periodic). Therefore, an important question is how to determine
such segments from longer action sequences. In section 3, we discuss an efficient
probabilistic methods for automatic segmentation. The developed unsupervised seg-
mentation method is based on Bayesian binning (BB), an algorithm that models a
longer data stream by the concatenation of an optimal number of segments, at the
same time estimating the optimal temporal boundaries between those segments. Ap-
plying this algorithm to motion capture data from a TaeKwonDo Taeguek, and com-
paring the automatically generated segmentation results with human psychophysical
data, we found a good agreement between automatically generated segmentations
and human performance.25, 26 This was in particular the case when the joint angle
trajectories within the segments were modeled by polynomials of order four. This
order is consistent with optimal control-based theories of human movements32 that
have been validated in many previous experiments. In particular, these polynomials
minimize integrated jerk for given endpoint constraints. Intuitively, this results in
movements being as smooth as possible within each segment.

To illustrate that our segmentation approach might be useful for the compressed
representation of movements, we create a movement diagram for the Taeguek Pal-
Chang and compare it to a traditional diagram used in TaeKwonDo teaching (see
fig. (4)). Our results suggest that a similar approach could also be useful for the de-
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composition of dances into primitive-like movement components, serving as a new
form of data-driven method for the derivation of compressed dance descriptions.

2 Kinematic movement primitives: an overview

2.1 Definitions of movement primitives

A long-standing hypothesis in the neuroscience community is that the central ner-
vous system (CNS) generates complex motor behaviors by combining a small num-
ber of stereotyped components, also referred to as muscle synergies or movement
primitives.8, 31 Such components consist of movement variables, such as joint tra-
jectories44, 67 or muscle activations14, 18, 19, 42 that are activated synergistically over
time.

Different conceptual definitions of movement primitives have been given in the
literature, depending on the mathematical models used to factorize kinematic or
electromyographic (EMG) data into different types of temporal, spatial, or spatio-
temporal components. One classical definition of movement primitive is based on
the idea that groups of degrees of freedom (dofs) might show instantaneous co-
variations, reflecting a coordinated recruitment of multiple muscles or joints. This
implies the assumption that the ratios of the signals characterizing the different dofs
remain constant over time. This type of movement primitive has been applied in
particular in muscle space, where muscle synergies have been defined as weighted
groups of muscle activations.12, 72, 73 Such synergies have also been referred to as
”synchronous” synergies, since the different muscles are assumed to be activated
synchronously without time delays between different muscles. An alternative way
to characterize movement primitives is based on the idea that they express invari-
ance across time, so that they can be expressed as basic temporal patterns, defined
by functions of time that are combined or superposed in order to reconstruct the
movement signals (EMG signals or joint angles). Temporal components based on
this definition have been identified in kinematic,6, 17, 44 dynamic71 and EMG signal
space.13, 42, 43 ”Time-varying synergies”18–20 have been described instead as spa-
tiotemporal patterns of muscle activation, with the EMG output specified by the
amplitude and time lag of the recruitment of each synergy. More recently, also mod-
els based on the combinations of other definitions have been proposed. For example,
Delis and colleagues21 defined space-by-time EMG organization patterns, where
EMG activation patterns are obtained by mixtures of both temporal and synchronous
synergies.
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2.2 Unsupervised learning techniques for the identification of
movement primitives

In the literature, a variety of unsupervised learning methods have been used for the
identification of movement primitives from experimental data sets. This includes
well-known classical unsupervised learning techniques based on instantaneous mix-
ture models, such as principal component analysis (PCA) and independent com-
ponent analysis (ICA),14, 22 and also more advanced techniques that include, for
instance, the estimation of temporal delays of the relevant mixture components.
An example is the work by D’Avella and colleagues,18, 19 who extended the classic
non-negative matrix factorization (NMF) algorithm introduced by Lee and Seug50

to identify spatiotemporal EMG synergies. Omlor and Giese58–60 developed a new
algorithm based on the Wigner-Ville Transform for the extraction of time-shifted
temporal components that is based on an anechoic mixture model (1), as used in
acoustics for the modeling of acoustic mixtures in reverberation-free rooms.9, 23, 79

This model assumes that a set of Ns recorded acoustic signals xi, i = 1,2, ...Ns, is
caused by the superposition of N acoustic source functions (signals) s j(t), where
time-shifted versions of these source functions are linearly superposed with the mix-
ing weights ai j. The time shifts are given by the time delays τi j, and in the acoustical
model are determined by the traveling times of the signals. The model has the fol-
lowing mathematical form:

xi(t) =
N

∑
j=1

ai js j(t− τi j) (1)

For the special case that τi j = 0 for all pairs (i, j), this model (1) coincides with
the classical linear combination models underlying PCA and ICA. To analyze kine-
matic data associated with a pointing task accomplished during locomotion, and
inspired by the previous work by Omlor and Giese,58, 59 we16 developed recently a
new algorithm (Fourier-based Anechoic Demixing Algorithm, FADA), that is based
on the same generative model (1), but includes additional smoothness priors for
the identified functions. The introduction of such priors is justified because EMG
or kinematic data from motor tasks usually have limited band-width, and it sub-
stantially improves the robustness of the estimation method. Band limited source
functions in (1) can be approximated by a truncated Fourier series of the form:

xi(t)∼=
M

∑
k=−M

cikeıkt (2)

and

s j(t− τi j)∼=
M

∑
k=−M

ν jke−ıkτi j eıkt (3)
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M being a positive integer which is determined by Shannon’s theorem according
to the limit frequency of the signals. The symbol ı signifies the imaginary unit and
cik and ν jk complex numbers (cik = |cik|eıφcik and ν jk =

∣∣ν jk
∣∣eıφν jk ) . Substituting

(2) and (3) in (1), and assuming uncorrelatedness of the sources s j(t) as it was in
other previous works,58, 59 the following iterative algorithm can be derived for the
identification of the unknown parameters in model (1):

After a random initialization of the estimated parameters, the following steps are
carried out until convergence:

1. Compute the absolute values of the coefficients cik and solve the following posi-
tive demixing problem using positive ICA or non-negative matrix factorization:

|cik|2 =
N

∑
j=1

∣∣ai j
∣∣2 ∣∣ν jk

∣∣2 (4)

with i = 0,1, . . .Ns and k = 0,1, . . .M. N is the number of sources. Since the
signals are real the Fourier coefficients equations (2) and (3) for positive and
negative indices k are complex conjugates of each other. For this reason it is
sufficient to solve the demixing problem by considering only the coefficients with
indices k ≥ 0. For the shown implementation we used non-negative independent
component analysis40 for solving the underlying demixing problem with non-
negative components.

2. Initialize φν jk = 0 for all pairs ( j,k) and iterate the following steps:

a. Update the phases of the Fourier coefficients of the sources, which are defined
by the identity φν jk = angle(ν jk) = arctan(Im(ν jk)/(Re(ν jk)) by solving the
following non-linear least square problem

min
Φ
‖C−V‖2

F (5)

where (C)ik = cik, (V)ik = ∑
N
j=1 ai je−ıkτi j

∣∣ν jk
∣∣eıφν jk and Φ jk = φν jk . ‖.‖F in-

dicates the Frobenius norm.
b. Assuming that the source functions s j(t), defined by the parameters ν jk are

known, the mixing weights ai j and the delays τi j can be optimized for each
signal xi by minimization of the following cost function:[

â, t̂
]
= argmin

a,t

∥∥xi(t)− s(t, t)′a
∥∥2

F (6)

Optimization with respect to a and t is feasible, assuming uncorrelatedness
of the sources and independence of the time delays.70 The column vector a
concatenates all weights associated with dof i, i.e. a= [ai1, ...,aiN ]

′. The vector
function s(t, t) = [s1(t − τi1), ...,sN(t − τiN)]

′ concatenates source functions
associated with dof i, shifted by the associated time delays.

By the approximation of the signals by a truncated Fourier series, compared to
more general algorithms, the FADA algorithm has a substantially smaller number of
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free parameters that have to be estimated. This makes the algorithm for cases where
the underlying assumption about the frequency spectrum of the relevant signals are
fulfilled more efficient and robust than more general algorithms (such as general
anechoic demixing algorithms58, 59 or classic PCA and ICA applied to temporal
data22, 42). Since the underlying optimization problems have fewer local minima,
convergence of the algorithm is faster and it is less prone to be trapped in irrelevant
local minima. We have confirmed these properties in extensive simulations15 using
synthetic ground-truth data that was derived from known generative models.

For example, the FADA algorithm performed better than other methods when
identifying anechoic primitives (fig. 1). In order to evaluate the performance of dif-
ferent algorithms, artificial kinematic data sets were simulated, using the generative
model defined by equation (1). The source functions were generated by filtering
white noise with a Butterworth filter with a cut off frequency that mimicked the
spectrum of real kinematic data. The values of the mixing weights and the time
delays were also drawn from uniform distributions over fixed intervals. For the sim-
ulations the number of sources was set to four, and the number of simulated signals
was 250 for each data set. The data sets were also corrupted with signal-dependent
noise drawn from a Gaussian distribution of variance σ = |αxi(t)|.37 The scaling pa-
rameter α was adjusted on order to adjust the correlation between the unperturbed
data and the perturbed data, realizing the values 1−R2 equal to 0.05, 0.15, 0.25 and
0.35. The similarity (S) between original and identified primitives (source functions)
was quantified by computing the maximum of the scalar products between original
and recovered primitive (over all possible time delays).

2.3 Model selection criteria

Different established approaches for the extraction of movement primitives from
trajectory and EMG data differ, on the one hand, by the type of generative model
that is used (e.g. instantaneous mixtures vs. models containing time delays). On the
other hand they also can differ in terms of the number of model parameters, e.g. the
number of primitives or source functions in the mixture model. The number of prim-
itives is also called the model order. To our knowledge only very few motor control
studies have so far addressed the problem of model selection in a principled way, see
e.g. Delis and colleagues21 and Hart and Giszter38 for notable exceptions. The exist-
ing generative models for the extraction of movement primitives have indeed been
demonstrated to provide a low-dimensional decomposition of the experimental data,
but no clear criterion has been developed to objectively determine which model is
best suited for describing the statistical properties of the data under investigation.

In the field of machine learning various methods for the optimization of model
complexity have been developed, either using heuristic approaches or methods de-
rived from Bayesian inference. The well-known Akaike Information criterion (AIC)
and Bayesian Information Criterion (BIC) have the advantage of being easy to use
when a likelihood function for a given model is available. Hence, they are often the
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Fig. 1 The figure shows the average level of the similarity between actual and identified ane-
choic primitives for different levels of signal dependent noise. The primitives were estimated from
artificial ground-truth data sets with the anechoic demixing algorithm by Omlor and Giese58, 59

and the new algorithm FADA.16 The similarity values are normalized according to the formula
Snorm = (S−Sb)/(1−Sb)), were Sb indicates the baseline value that was obtained by assessing the
average similarity between the randomly generated source functions. The value Snorm = 0 corre-
sponds to chance level similarity, and the maximum value of the normalized similarity is one.

first choice for model order estimation, but not necessarily the best one. In the work
by Tu and Xu74 several criteria for probabilistic PCA (or factor analysis) models
were evaluated, including AIC, BIC, MIBS54 (Minka’s Bayesian model selection)
and Bayesian Ying-Yang.78 The authors found that MIBS and Bayesian Ying-Yang
work best. AIC and BIC criterion have also been used to estimate the number of
independent components in fMRI data. This was done for instance by Li and col-
leagues52 that, however, found AIC and BIC estimation performance to be adversely
dependent on temporal correlations between signals. Other heuristic methods have
been used on the literature for model order selection. Such approaches typically
utilize some features of the reconstruction error (or conversely, of the variance-
accounted-for (VAF)) as a function of the model order. For instance, the usual pro-
cedure is to search for a ”knee”’ in that function, a procedure which is inspired by
the scree test for factor analysis.11 For example, multiple authors12, 18, 42 used them
to determine the number of EMG synergies underlying different human behaviors.

To improve the accuracy provided by standard Bayesian estimator, we devel-
oped a new objective criterion (which we called LAP) in the framework of Bayesian
generative model comparison7 for model-order selection that extends the other clas-
sical ones based on information-theoretic and statistical approaches. The criterion is
based on a Laplace approximation of the posterior distribution of the parameters of
a given blind source separation method, re-formulated in the framework of Bayesian
generative model comparison.7 Exploiting the Laplace approximation allowed us to
approximate some intractable integrals appearing in the computation of the marginal



8 D. Endres, E. Chiovetto & M.A. Giese

likelihood of the models that, after the approximation, assumed the following form:

p(D|Φ ,M) ≈ log(p(D|Θ ?,Φ ,M))︸ ︷︷ ︸
log-likelihood

+ log(p(Θ ?|Φ ,M))︸ ︷︷ ︸
log-prior

+
dim(Θ)

2
log(2π)− 1

2
log(|H|)︸ ︷︷ ︸

log-posterior-volume

(7)

where D indicates the observable data, ΘM is a tuple of model parameters for a
model indexed by M (the ’model index’) and Φ indicates a tuple of hyperparame-
ters. In addition, Θ ? is a tuple of model parameters that maximize the log-likelihood
subject to the regularization provided by the parameter prior and H is the Hessian
matrix (second derivatives of the log-posterior=log-likelihood + log-prior at Θ ?)24 .
Equation (7) comprises three parts, which can be interpreted. The first term the the
log-likelihood measures the goodness of fit, similar to explained variance or VAF.
The second term is the logarithm of the prior, which corresponds to a regularization
term for dealing with under-constrained solutions for Θ when the data set is small.
Finally, the third part measures the volume of the parameter posterior, since H is
the posterior precision matrix (inverse covariance) of the parameters in the vicinity
of Θ ?, i.e. it indicates how well the data constrain the parameters. Given different
models, to discriminate the most suitable one to describe the available data the crite-
rion requires to compute the values of the model evidence (7) associated with each
model and to choose the one which maximizes this evidence as the most appropri-
ate model. With a similar procedure, it is also possible to identify, given a specific
model, the right model order. This can be done by computing the model evidences
associated with different model orders and by taking the order associated with the
highest value as the best one to represent the data.

We showed in our previous work24 how the LAP is more reliable than other al-
ready existing classical criteria in selecting the generative model underlying a given
data set, as well as in determining the best model order. The criterion performance
was evaluated on synthesized data and compared to the performance provided by
AIC and BIC. Some results adapted from the work of Endres and colleagues24 are
reported in fig. (2). Panel A shows that the generating model, here an anechoic
mixture, is correctly identified by LAP with near certainty for all three testes noise
levels. In panel B, we plotted the difference ∆ I between estimated and true model
order. LAP provides the best estimates across noise levels, if the correct model type
(AMM) is used for the estimation procedure.
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Fig. 2 Panel A shows the model classification performance provided by different model selection
criteria (AIC, BIC and LAP) when applied to artificial data sets (based on model (1) and generated
as explained in the previous subsection). The data is corrupted by three different levels of noise.
Four different models were tested for each data set, with PCA indicating the probabilistic Principal
Component Analysis linear model, Smooth Instantaneous Model (SIM), Independent Component
Analysis (ICA) model and Anechoic Mixture Model (AMM). The model selection criteria BIC and
LAP both performed well. The AIC criterion frequently confuses PCA and AMM. In panel B the
estimated number of sources provided by the criteria are displayed. ∆ I indicates the difference be-
tween the estimated and actual number of primitives. Symbol shapes stand for analysis algorithm,
colors indicate the selection criteria. If AMM was used for analysis, BIC and LAP provided similar
estimations for the number of primitives. AIC tended to overestimate the number of primitives. For
incorrect analysis model, all criteria provided a higher number of sources.
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3 Generating compressed movement descriptions with Bayesian
binning

3.1 Objective and related approaches

We now turn to the problem of extracting individual actions from longer streams of
activities. This problem is particularly important in dance, where a dance is typi-
cally choreographed by concatenating a sequence of individual dance movements.
In addition, the approaches described in the last section typically assume previous
segmentation into elementary actions, which then can be modeled by superposition
of a set of control primitives. This raises the problem of an automatic segmentation
of natural action streams, which has been a central problem in movement analysis
and modeling for several decades.

One of the earliest approaches achieved automatic segmentation into piecewise
linear functions,5 employing dynamic programming for the solution of the resulting
least-squares trajectory fitting problem. There, it is also mentioned that the approach
might be extended to arbitrary polynomial orders, but exactly how is not shown.
An online version of this algorithm for the piecewise linear model was later devel-
oped,45 it was subsequently extended to work with polynomials of higher order.51

The intended application domain is data mining, where online-capable algorithms
are required, since the databases are typically too large to fit into working memory.
Recently, real-time versions of these algorithms were derived which achieve the
necessary speed-up by using orthogonal polynomials as basis functions for segment
contents.33, 34

Most of these approaches use heuristics for the determination of the polynomial
order (or leave it up to the user to choose one). We developed an exact Bayesian ap-
proach addressing the model complexity issue.25 One might wonder why polynomi-
als are popular segment models, as opposed to the other movement primitive models
described above. The reason for this is twofold: first, polynomials are mathemati-
cally convenient and well understood. Second, trajectories that minimize integrated
jerk are polynomials of (at most) order five,32 and human movement production
seems to implement this optimality principle in many instances. Thus, B-splines
have found applications in humanoid robotics, for example for human-robot trans-
fer75 and goal-directed movement synthesis.76

Important non-polynomial action segmentation methods are based on hidden
Markov models (HMM)36, 48 (see also Liu et al.’s contribution53 in this book),
change-of-contact events,77 Gaussian mixtures,3 and probabilistic principal compo-
nent analysis (pPCA) approaches.3 Because pPCA encodes a full covariance model,
it has the potential advantage of handling correlated sensor noise better than models
with a polynomial time dependence of the mean and an isotropic noise assumption.
We showed25 how these two approaches can be combined.

However, movement primitive extraction is only one application where action
segmentation is interesting: many methods for movement synthesis in computer
graphics generate individual segments by (parametric) interpolation between exam-
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ple trajectories, e.g. by PCA41, 66 or the classical verb-adverbs approach,64 which
uses B-splines. For these methods to work, accurately pre-segmented data are re-
quired. Similarly, motion graphs46, 65 or motion database sequencing methods2 give
most convincing results when segment boundaries are consistent with human per-
ception.

Finally, in Psychology and Neuroscience, models for human segmentation per-
formance are expected to provide information about the structure of action represen-
tation in the brain, since human brain activity appears to be time-locked to perceived
event boundaries.80 Thus, the segmentation of sequences of piecewise linear move-
ments in the two-dimensional plane was studied.1, 69 Polyakov et. al61 fitted monkey
scribbling trajectories with parabolic segments, which minimize jerk32 and comply
with the two-thirds power law.49 They determined that neural signal changes corre-
late with the segment boundaries thus computed. We compared 3D action segmenta-
tion by human observers to polynomial segments computed with Bayesian Binning
(BB),25 finding a good correspondence between 4th-order polynomials (which min-
imize jerk) and human observers.

In the next section, we describe the basic idea behind BB and apply it to the
segmentation of a TaeKwonDo Taeguek. A Taeguek is a stylized martial arts action
sequence, in which the performer fights against a number of imaginary opponents.
For teaching and memorization purposes, these Taeguek can be described by dia-
grams of key posesi similar to the dance steps diagrams used e.g. in ballroom danc-
ing10 . This kind of description can be ’decompressed’ by a martial artist if he has
learned the individual techniques that correspond to the key poses. Our goal is to
automatically extract a set of key poses that succinctly describe the Taeguek with
BB.

3.2 Bayesian binning

Bayesian Binning (BB) is a method for modeling data by piecewise defined func-
tions. It can be applied if the data have a totally ordered structure, such as a time
series. Since it is an (exact) Bayesian approach, it allows for an automatic control of
model complexity. In this context, this means that the number of segments (bins),
their length and the model for segment contents (the movement primitives) are deter-
mined with minimal user intervention. Originally, BB was developed for probability
density estimation of neural recordings and their information theoretic evaluation.27

Later, it was extended for regression of piecewise constant functions39 and further
applications in neuroscience.28, 29 A similar Bayesian formalism for dealing with
multiple change point problems was concurrently developed.30

In the following subsection, we describe BB in terms of a probabilistic graphical
model. For a mathematical treatment of the polynomial movement primitive model,
we refer the reader to a previous publication25 . We also forgo developing the algo-

i The diagrams for all Taegueks can e.g. be viewed on www.taekwodo.de
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rithm in detail, since we did that elsewhere.27 BB operates in discrete time, hence
the time axis (see fig. (3), B) is discretized into intervals of duration ∆ . ∆ has to be
small enough so that all relevant features of the data do not change noticeably within
such an interval. A natural lower bound on ∆ is given by the time resolution of the
data recording equipment. The VICON motion capture system which was used for
the TaeKwonDo recordings had a frame-rate of 120 Hz, hence ∆ ≥ 1

120Hz ≈ 8.3ms.
The intervals are labeled by a discrete time index t, which runs from 0 to T . BB
concatenates these intervals into contiguous, non-overlapping segments. In the ex-
ample shown in Fig. 3, C, there are two segments: the first one extends from t = 0 to
t = i (inclusive), the second one comprises time steps t = i+1 to t = T −1. In Fig.
3, B, the segment boundaries are indicated by the orange lines (there is an implicit
boundary at the end, t = T ).

Suppose we measured a time series of data points Dt consisting of three-
dimensional joint angles for Q joints, i.e. Dt = (x0

t , . . . ,x
3Q
t ). BB makes two cen-

tral modeling assumptions about such data: (1) within a segment, the parame-
ters Θi of the data generating model do not change, and (2) these models are
independent across segments. Hence, the joint probability (density) of the data
(Di, . . . ,D j) = Di: j, that is P(D0:T−1|Θ0:T−1) factorizes across segments, in our ex-
ample:

P(D0:T−1|Θ0:T−1) = P(D0:i|Θ0)P(Di+1:T−1|Θi+1). (8)

This factorization property, combined with the total order of time points, facilitates
efficient evaluation of expectations of segmentation point locations and segment pa-
rameters. To understand why, consider the graphical model of BB in Fig. 3, A, where
we use standard graphical modeling notation:7 circles are random variables, lines
with arrows denote conditional dependencies, and dashed rectangles are gates,55

each of which being controlled by a binary gating variable bt with a Bernoulli priorii

. Depending on the value of this variable, either one or the other alternative part of
the model is instantiated. Here, if bt = 0, then the parameters Θt for time step t are
simply copied from the previous time-step. In our example, this is the case for all
t = 1, . . . , i. On the other hand, if bt = 1, the the corresponding Θt is drawn from a
suitably chosen prior distribution (e.g. at t = i+1). This algorithm for determining
the parameters effectively concatenates time steps into contiguous, non-overlapping
segments. Note that the graphical model is singly connected: there is at most one
path between any two circles, if one travels along the lines. Hence, the sum-product
algorithm47 can be applied for the efficient and exact evaluation of expectations of
interest, if conjugate priors are chosen for the (continuous) parametersiii . Readers
with a machine learning background may observe the similarity of Fig. 3, A to a
HMM,4, 62 which is probably the most well-known example of a singly-connected

ii The a-priori independent gating variables and their Bernoulli priors induce a Binomial prior
on the number of segments, which is a special case of the general priors on segment number
boundaries which we developed previously.27 The latter need a dependency model between the
gating variables, which we do not consider here for the sake of simplicity.
iii Strictly speaking, any priors that allow for an evaluation of posterior expectations in closed form
are suitable, but conjugate priors are particularly convenient
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graphical model and allows for efficient computation of marginal expectations for
the same reason.

The observation model for each time step, given by eqns. (9)-(11), is a Q-
dimensional multivariate Gaussian. It is defined by the parameters Θi =

(
zi,θ

0,0
i . . . ,θ 3Q,S

)
,

that encode a S-th order polynomial time dependence of the mean and a (3Q×3Q)
covariance matrix Σi. The variable zi specifies the initial time step of the current
segment:

µ
q
i =

S

∑
s=0

θ
q,s
i (i− zi)

s (9)

µi = (µ0
i , . . . ,µ

3Q
i ) (10)

P(Di|Θi) = N (µi,Σi) (11)

We showed25 how to construct a conjugate Gauss-Wishart prior to this observation
model (eqns. 9-11), enabling sum-product message passing.

3.3 TaeKwonDo Taeguek segmentation

3.3.1 Data recording

The action streams we studied are TaeKwonDo Taegueks carried out by internation-
ally successful martial artists. Each artist performed the same fixed sequence of 27
kicks and punches of the Taeguek Pal-Chang. The complete form has a full length
of about 40 seconds. We obtained kinematic data by motion capture using a VICON
612 system with 11 cameras. This setup yields 3D positions of 41 passively reflect-
ing markers attached to the performers’ joints and limbs with a 3D reconstruction
error below 1 mm and at a sampling frequency of 120 Hz.

We used the kinematic data for two purposes. First, we computed joint angles tra-
jectories from a hierarchical kinematic body model (skeleton) which we fitted to the
original 3D marker positions. This yielded Euler angles describing the rotations be-
tween adjacent skeleton segments in terms of flexion, abduction and rotations about
the connecting joint (e.g.57, 63). Second, from the derived joint angle trajectories we
created movie clips showing computer animations of the TaeKwonDo movements.
Those videos served as stimuli in a psychophysical experiment to obtain segmen-
tation boundaries according to human perception. For this experiment, we split the
motion capture data of each Taeguek manually into sub-sequences of comparable
length each containing between three and eight separable TaeKwonDo moves. We
presented the videos of these sub-sequences to naı̈ve human observers and asked
them to segment the videos by pressing a key. We computed a segmentation den-
sity from the key-press timings pooled across all observers, and identified peaks in
this density. We refer to the peak locations as ’population-averaged human segment
boundaries’. For details of the experiment and evaluation procedures, see.25, 26
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Fig. 3 A: the graphical model of Bayesian Binning. We follow standard graphical modeling termi-
nology7 : circles represent random variables, arrows denote conditional dependencies, and dashed
boxes are gates55 . The observable joint angle data Di are modeled by a (latent) movement prim-
itive model with parameters Θi. Subscripts denote discrete time steps. Presence or absence of a
segment boundary at a time step i is indicated by a binary gating variable bi: if bi = 1, then the
corresponding gate below it is active, which means that a new set of parameters Θi is instanti-
ated at this time step. Otherwise, if bi = 0, Θi is a copy of the parameters of the previous time
step. The graph is singly connected, hence marginal expectations can be computed efficiently with
sum-product message passing47 . For details, see text. B: the time axis is discretized into non-
overlapping, contiguous intervals of duration ∆ small enough so that all relevant features of the
data are preserved. These intervals are labeled with an integer time index t. There are T such inter-
vals, hence t ∈{0, . . . ,T−1}. Segment boundaries are effectively controlled by the gating variables
bt : in this example, the interval from 0 to T ∆ is subdivided into two segments, as indicated by the
orange segment boundaries at t = and t = i+ 1. C: BB models the time series by contiguous,
non-overlapping segments, which are assumed to be independent. With the gating variable setting
shown in panel A (i.e. only bi+1 = 1, all others are 0), the joint probability of the data given the
parameters P(D0:T−1|Θ0:T−1) factorizes into two contributions: P(D0:i|Θ0) for time steps 0, . . . , i
and P(Di+1:T−1|Θi+1) for time steps i+ t, . . . ,T −1.

3.3.2 Segmentation analysis

We analyzed the joint angle trajectories with BB, as described above. To determine
the polynomial order which best matches human perception, we conducted a hit rate
analysis:25 to determine ’hits’, we counted how often a BB segment boundary was
placed in close temporal proximity (±250ms) to a population-averaged human seg-
ment boundary. All BB segment boundaries that could not be matched to a human
one were counted as ’false positives’. The best compromise between hits and false
positives is reached at order 4, which agrees with the minimum jerk hypothesis for
human movement generation32 . Put differently, our results indicate that minimum
jerk is not only a movement production principle, but also perceptually relevant.
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Furthermore, the hit rate analysis also revealed that naı̈ve observers’ behavior is
best explained by the segment boundaries computed from shoulder and elbow joints
taken together. If we were to repeat this analysis with skilled TaeKwonDo martial
artists as observers, we would expect to find that the leg joints need to be included
in the analysis as well, since kicks are techniques of significant importance in this
martial art. This fact, however, was not picked up by the naı̈ve observers in our
experiment.

To generate a compressed representation of the Taeguek, we compute the per-
former’s pose at each segment boundary. The results, for the first part of the Taeguek,
are shown in fig. (4). For visual comparison with TaeKwonDo teaching diagram (fig.
(4), left), we arranged the poses in the same fashion on the right of this figure. Poses
match, except for the kicks (pose 2 on the left), pose 2,3 on the left and the transition
(pose 3,1) on the right. This indicates that the compressed description generated by
BB may be useful for semi-automatic movement description. We attribute the miss-
ing kicks to the fact that we segmented using only arm joints. The naı̈ve observers
we tested did not segment at the kicks, too.

4 Discussion

In this chapter we have summarized some of our recent work that applies biologically-
inspired learning-based models for the modeling of complex human activities. At
the level of individual actions, we proposed a new efficient algorithm for anechoic
demixing that outperforms other approaches for the learning of movement primi-
tives from trajectory and EMG data. In addition we presented how Bayesian infer-
ence can be exploited for the selection of the correct generative model and specif-
ically the order of the model. We have shown elsewhere that movement primitives
based on anechoic demixing are also suitable for the online synthesis of movements
and the embedding in control architectures. For this purpose the learned source
function are mapped onto dynamic primitives that are formulated as dynamical
systems.35, 56 At the level of sequences of actions within complex activities, we
proposed a new probabilistic method for segmentation that is based on Bayesian
Binning, and which applied exact Bayesian inference for determining an optimal
segmentation of the action stream into subsequent component actions.

We described an anechoic demixing algorithm in section 2.1. It subsumes as spe-
cial cases multiple other existing methods for the estimation of movement primitives
and can be combined with further constraints on weights and sources, e.g. positiv-
ity. In this way, the new model provides a unifying framework for the study of
the relationship between different mathematical models for the extraction of move-
ment primitives from data.15 The investigation of movement primitives, extracted
as components of kinematic (joint angle) data seems interesting for dance, on the
one hand to characterize the full-body coordination patterns, e.g. between locomo-
tion and upper body movements in dance. On the other hand, such primitives might
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Fig. 4 Left: stylized representation of the first part of the movements that comprise the Taeguek
Pal-Chang, a solo TaeKwonDo form. Only key poses are shown, a trained martial artist can fill
in the movements in between these poses using their own motor repertoire. The bounding box
represents the space within which the martial artist is supposed to move during the Taeguek. Pose
numbering corresponds to the numbering found in the diagrams on www.taekwondo.de. Right:
key poses determined with Bayesian binning employing a 4th order polynomial observation model.
This observation model minimizes jerk, and provides the best match to segmentation points de-
termined by naı̈ve human observers, if elbow and shoulder joints are used for the segmentation.
Numbering of poses is the same as in the left panel. Pose 2,3 is missing here, as are the kicks
(number 2 on the left) , which could not be decoded from arm movements. Pose 3,1, which is a
transition between poses 3 and 4, does not appear in the Taeguek image. All other poses match.

also be helpful to understand ’co-articulations’, that is overlaps between subsequent
coordination patterns that are important form the smooth flow of motion in dance.

With respect to the method for the segmentation of action streams exploiting
Bayesian binning in section 3, our work shows that the obtained segmentation is
close to the one provided by humans. However, for other types of movements likely
additional features beyond the ones characterizing the arm movements would have
to be included. Determining optimal sets of such features from data could also be
realized by Bayesian model comparison.

It would also be interesting to investigate if the actor’s poses at the segmenta-
tion boundaries are a sufficiently rich description of the movement so that human
observers can ’fill in blanks’ between two subsequent boundaries using their own
motor repertoire. In that case, Bayesian binning could be used to derive compressed
movement representations similar to dance step diagrams.
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As a next step, it would be interesting to investigate in how far the obtained com-
pressed representation is suitable for movement production with modular movement
primitives. For this purpose, the general polynomial models within the individual
segments would have to be replaced by models that are based on primitives of the
type discussed in the first part of this chapter.

The modeling assumptions made by BB presuppose that human actions can be
viewed as a sequence of clearly separable primitives in time, see eqn.(8) . While the
match between 4th order polynomial BB and naı̈ve human perception indicate that
this presupposition is at least approximately fulfilled for a TaeKwonDo Taeguek, it
seems likely that this assumption is violated for other types of human action, such
as dancing. There, the transitions from one movement to the next are typically more
continuous than in TaeKwonDo. Between-segment dependencies would also be rel-
evant in sign language production, where co-articulation between neighboring signs
has been observed.68 The BB approach can be extended to include dependencies
between segments, as long as the graphical model (see fig. 3, A) remains singly
connected. Exact inference will then still be possible, albeit with a higher compu-
tational effort. Another way of extending our approach would be to include task or
context information into the segmentation process,77 to supplement the purely kine-
matic information which we currently use. Humans use such context information
for segmentation when available,81 and rely increasingly on kinematics when con-
text is reduced. Here, again the advantage of the proposed probabilistic approach is
that it can be connected easily to probabilistic representations of context and even
to semantic representations, as long as they can be expressed in the language of
graphical models.

Interesting for online synthesis is also the question in how far individual move-
ments within individual segments can be derived from optimal control problems
with boundary conditions derived from the task, refining the rather unspecific poly-
nomial model used for the signal time-courses in the presented model. Ongoing
work focuses on this question, aiming at finding optimized segmentations for spe-
cific pre-defined control architectures.
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3. J. Barbič, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S. Pollard. Segmenting
motion capture data into distinct behaviors. In Proceedings of Graphics Interface 2004, GI
’04, pages 185–194, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communications Society.

4. L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occuring in the
statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical
Statistics, 41(1):164–171.

5. R. Bellman. On the approximation of curves by line segments using dynamic programming.
Communications of the ACM, 4(6):284–, 1961.

6. B. Berret, F. Bonnetblanc, C. Papaxanthis, and T. Pozzo. Modular control of pointing beyond
arm’s length. J Neurosci, 29(1):191–205, Jan 2009.

7. C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.
8. E. Bizzi, V. C. K. Cheung, A. d’Avella, P. Saltiel, and M. Tresch. Combining modules for

movement. Brain Research Reviews, 57(1):125–133, 2008.
9. P. Bofill. Underdetermined blind separation of delayed sound sources in the frequency domain.

Neurocomputing, 55(34):627 – 641, 2003. Evolving Solution with Neural Networks.
10. P. Bottomer. Anness Publishing, London, UK, 2012.
11. R. B. Cattell. The scree test for the number of factors. Multivariate Behavioral Research,

1(2):245–276, 1966.
12. V. C. K. Cheung, A. d’Avella, M. C. Tresch, and E. Bizzi. Central and sensory contributions to

the activation and organization of muscle synergies during natural motor behaviors. Journal
of Neuroscience, 25(27):6419–6434, 2005.

13. E. Chiovetto, B. Berret, I. Delis, S. Panzeri, and T. Pozzo. Investigating reduction of dimen-
sionality during single-joint elbow movements: a case study on muscle synergies. Frontiers in
Computational Neuroscience, 7:11, 2013.

14. E. Chiovetto, B. Berret, and T. Pozzo. Tri-dimensional and triphasic muscle organization of
whole-body pointing movements. Neuroscience, 170(4):1223–1238, 2010.

15. E. Chiovetto, A. d’ Avella, and M. A. Giese. A unifying algorithm for the identification of
kinematic and electromyographic motor primitives. April 2013. not reviewed.

16. E. Chiovetto and M. A. Giese. Kinematics of the coordination of pointing during locomotion.
PLoS One, 8(11):e79555, 2013.

17. E. Chiovetto, L. Patan, and T. Pozzo. Variant and invariant features characterizing natural
and reverse whole-body pointing movements. Experimetal Brain Research, 218(3):419–431,
2012.

18. A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti. Control of fast-reaching movements
by muscle synergy combinations. Journal of Neuroscience, 26(30):7791–7810, 2006.

19. A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of muscle synergies in the construction of
a natural motor behavior. Nature Neuroscience, 6(3):300–308, 2003.

20. A. d’Avella and M. C. Tresch. Modularity in the motor system: decomposition of muscle
patterns as combinations of time-varying synergies. In S. A. S. Michael I. Jordan, Michael
J. Kearns, editor, Advances in Neural Information Processing Systems 14, pages 141–148.
MIT Press, Cambridge, MA, 2002.

21. I. Delis, S. Panzeri, T. Pozzo, and B. Berret. A unifying model of concurrent spatial and
temporal modularity in muscle activity. J Neurophysiol, 111(3):675–693, Feb 2014.

22. N. Dominici, Y. P. Ivanenko, G. Cappellini, A. d’Avella, V. Mond, M. Cicchese, A. Fabiano,
T. Silei, A. Di Paolo, C. Giannini, R. E. Poppele, and F. Lacquaniti. Locomotor primitives in
newborn babies and their development. Science, 334(6058):997–999, 2011.

23. B. Emile and P. Common. Estimation of time delays between unknown colored signals. SIG-
NAL PROCESSING, 68(1):93–100, 1998.

24. D. Endres, E. Chiovetto, and M. Giese. Model selection for the extraction of movement
primitives. Frontiers in Computational Neuroscience, 7:185, 2013.

25. D. Endres, A. Christensen, L. Omlor, and M. A. Giese. Emulating human observers with
Bayesian binning: segmentation of action streams. ACM Transactions on Applied Perception
(TAP), 8(3):16:1–12, 2011.



Compact human movement representation 19

26. D. Endres, A. Christensen, L. Omlor, and M. A. Giese. Segmentation of action streams: human
observers vs. Bayesian binning. In S. Edelkamp and J. Bach, editors, KI 2011, LNAI 7006,
pages 75–86. Springer, 2011.
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