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Emulating human observers with Bayesian binning:
segmentation of action streams

DOMINIK ENDRES, ANDREA CHRISTENSEN, LARS OMLOR, MARTIN A. GIESE, Section for
Theoretical Sensomotorics, Department of Cognitive Neurology, University Clinic Tübingen, University of
Tübingen and Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience

Natural body movements arise in the form of temporal sequences of individual actions. During visual action analysis, the human
visual system must accomplish a temporal segmentation of the action stream into individual actions. Such temporal segmentation

is also essential to build hierarchical models for action synthesis in computer animation. Ideally, such segmentations should

be computed automatically in an unsupervised manner. We present an unsupervised segmentation algorithm that is based
on Bayesian binning (BB) and compare it to human segmentations derived from psychophysical data. BB has the advantage

that the observation model can be easily exchanged. Moreover, being an exact Bayesian method, BB allows for the automatic

determination of the number and positions of segmentation points. We applied this method to motion capture sequences from
martial arts and compared the results to segmentations provided by humans from movies that showed characters that were

animated with the motion capture data. Human segmentation was then assessed by an interactive adjustment paradigm, where

participants had to indicate segmentation points by selection of the relevant frames. Results show a good agreement between
automatically generated segmentations and human performance when the trajectory segments between the transition points

were modelled by polynomials of at least third order. This result is consistent with theories about differential invariants of

human movements.

Categories and Subject Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Motion
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1. INTRODUCTION

The temporal segmentation of human action streams is interesting for several reasons: firstly, good models of
human segmentation performance might reveal important insights into the structure of action representations
in the brain. With this goal, previous work has studied in detail the segmentation of sequences of piecewise
linear movements in the two-dimensional plane [Shipley et al. 2004; Agam and Sekuler 2008]. Secondly,
the automatic determination of good segmentation points is essential for many learning-based methods for
movement synthesis, which approximate individual movements by parametric models for individual segments
that are obtained by interpolation from example trajectories. Examples are models based on PCA [Safonova
et al. 2004; Ilg et al. 2004] or the classical verb-adverbs approach [Rose et al. 1998] that rely on accurately pre-
segmented data. Likewise, motion graphs or approaches that synthesise novel sequences by pasting together
fragments from a motion capture data base that fulfil additional constraints [Arikan and Forsyth 2002; Kovar
et al. 2002] ideally require segment boundaries that are consistent with the parsing in human perception.
While classically such segmentations have been generated by hand, this approach becomes infeasible for
larger sets of motion capture data. This makes automatic segmentation an essential problem for learning-
based computer animation.

We therefore address the problem of the temporal segmentation of action streams represented by motion
capture data. We compare Bayesian binning (BB)[Endres and Földiák 2005] for segmentation of human full-
body movement with human responses, which were assessed in an interactive video segmentation paradigm.
BB is an approach to model data with a totally ordered structure, such as time series, by functions which are
defined piecewise. The method can determine automatically the appropriate number and length of temporal
segments via Bayesian model selection. BB was originally developed for density estimation of neural data
[Endres and Földiák 2005]. It was later generalised for regression of piecewise constant functions [Hutter
2007] and further applications in computational neuroscience [Endres and Oram 2010]. Concurrently, a
closely related formalism for dealing with multiple change point problems was developed in [Fearnhead
2006].

This paper is structured as follows: We first describe the data recordings in section 2. The psychophysical
experiments and their results are presented in section 3. We then describe the application of BB for the
segmentation of joint angle data in section 4 and extend BB for non-constant observation models in the bins.
In section 5 we demonstrate the results achieved by BB and compare them with the segmentations from the
psychophysical experiments. Finally, advantages and limitations of our approach are discussed in section 6.

2. MOVEMENT RECORDINGS

This study is based on motion capture data recorded from ten internationally successful martial artists
performing the same solo taekwondo pattern (hyeong). Each hyeong consists of a series of 27 kicks and
punches linked together in a fixed sequence of approximately 40 seconds length. Motion capture data was
recorded using a VICON 612 motion capture system with 11 cameras, obtaining the 3D positions of 41
passively reflecting markers attached to the combatants’ joints and limbs. The algorithmic segmentation is
based on joint angle trajectories which were computed from an hierarchical kinematic body model (skeleton)
fitted to the original 3D marker positions. The rotations between adjacent segments of this skeleton were
first described by Euler angles, defining flexion, abduction and rotations about the connecting joint and were
transformed to an axis angle representation (e.g. [Roether et al. 2009]).

3. PSYCHOPHYSICAL EXPERIMENT

As reference for the segmentation performance of our algorithmic approach we conducted a psychophysical
study. In this experiment human observers segmented video clips showing the same taekwondo movements
animated as volumetric puppets.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: July 2011.
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3.1 Stimuli

The recorded motion capture data of each hyeong was split manually into five sub-sequences of compa-
rable length each containing between three and eight separable taekwondo moves. Animations of those
sub-sequences of movements using a custom-built volumetric puppet served as stimuli in our experiments.
An illustration of the stimulus material can be found in the supplementary information, snapshots of the
animated movements are shown in fig. (1)A. Five of the overall 50 animated videos, corresponding to the
complete hyeong of one combatant, served as training stimuli to familiarise the participants with the videos
as well as with the experimental procedure. In order to limit the duration of the experiment and to prevent
fatigue of the participants, only 25 animated sub-sequences from the hyeongs of five representative combat-
ants were used in the final experiment. Each animation was repeated three times resulting in 75 segmentation
trials per subject. Stimuli subtended approximately 4 x 8.6 degrees of visual angle and were presented on a
computer screen viewed from a distance of 50 cm.

3.2 Participants

Thirteen participants (mean age 26 years 6 month, ranging from 21 years 11 month to 38 years 11 month,
10 female) segmented the animated movies in our experiment. All had normal or corrected-to-normal vision,
gave informed written consent and were paid for their participation.

3.3 Segmentation task

The segmentation task was identical during the training and the test phase: In every trial the movie to
segment was first presented twice to enable the subjects to familiarise themselves with the stimulus. While
showing the animation for the third time the participants segmented the movements by pressing a key at
any point which they judged as the endpoint of one single, separable movement. Afterwards, participants
had the opportunity to watch their own segmentation of the current movie and to correct themselves up to
two times if they were not satisfied with the result. However, what exactly defines one single movement and
the corresponding endpoint was left to the own judgement of the participants, and no feedback was given at
any time during the training or the testing.

3.4 Segmentation results of human observers

The motion segmentations for the complete hyeong of one representative taekwondo combatant as indicated
by the human observers are shown in fig. (1)B. The 39 rows of black dots correspond to the three segmen-
tations of each of the thirteen participants. Each single black dot represents the perception of one endpoint
of a movement within the sequence of movements. The red lines indicate video boundaries between the 5
sub-sequences the complete hyeong was split into. Since neither a definition of an endpoint of one movement
nor any feedback was given the interpretation of one separable movement differed somehow between subjects.
While most subjects tended to segment the videos on a very fine-grained level with many endpoints, two
subjects concentrated on the coarse separation of the hyeong by setting only 5 respectively 7 segmentation
points. Nevertheless the defined endpoints are still very consistent across subjects and the overall mean num-
ber of perceived movement endings (22.08 (standard error 3.01)) is close to the actual number of endings of
individual taekwondo techniques (27). Comparing the position of perceived and expected endpoints, subjects
had a mean hit rate of 0.69 (standard error 0.05) within an accuracy window of less than ±250 ms. These
results are in accordance with previous findings about the agreement of human raters on boundary placing
in movement sequences [Dickman 1963; Newtson and Engquist 1976; Zacks et al. 2009].

4. BAYESIAN BINNING FOR ACTION SEGMENTATION

We now give a brief specification of the BB model which we will use to segment joint angle data and to
model human key press data.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: July 2011.
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Fig. 1. Human Motion Segmentation. A) Illustration of Stimuli. Snapshots taken from the stimuli videos showing the custom-

built volumetric grey puppet performing different taekwondo kicks and punches. B) Segmentation points over time as marked
by 13 participants. Each black dot corresponds to one approved key press, indicating the perception of a transition between

two taekwondo movements. Red lines show video boundaries between the 5 sub-sequences. C) Predictive segmentation density

estimated from key presses. Estimation was carried out by Bayesian binning with a Bernoulli-Beta observation model (see section
4). Blue line represents the predictive segmentation using Bayesian binning, the shaded grey area indicates the probability ±
one std.dev. Red lines as in B.

4.1 Objective

Our objective is to model a time series D in the time interval [tmin, tmax]. We would like to be able to handle
D corrupted by (large amounts of) noise, let the model complexity be driven by D, and draw conclusions
(e.g. change point estimates) from small amounts of data. Thus we choose a Bayesian approach. We discretise
[tmin, tmax] into T contiguous intervals of duration ∆t = (tmax−tmin)/T . Choose ∆t small enough to capture
all relevant features of the data. We model the generative process of D by M+1 contiguous, non-overlapping
bins, indexed by m and having upper boundaries km ∈ {km}. The bin m therefore contains the time interval
Tm = (∆t km−1,∆t km]. Let Dm be that part of the data which falls into bin m. We assume that the
probability of D given {km} can be factorised as

P (D|{km},M) =

M∏
m=0

P (Dm|km−1, km,M) (1)

4.2 Prior on {km}
Assuming we have no preferences for any bin boundary configuration (other than m′ < m ⇒ km′ < km),
the prior is just the reciprocal of the number of possibilities in which M ordered bin boundaries can be
distributed across T − 1 places, i.e.

P ({km}|M) =

(
T − 1
M

)−1
. (2)

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: July 2011.



Emulating human observers with Bayesian binning: segmentation of action streams • 0:5

km−1 km km+1P (Dm|km−1, km) P (Dm+1|km, km+1)

Dm Dm+1

. . . . . .

Fig. 2. Fragment of a factor graph for Bayesian binning. Each round node represents a random variable, here: bin boundaries
{km} and observable joint angle data Dm. A rectangular node depicts a factor in the likelihood eqn.(1), connected to those

variables which appear in it. The constant prior factor (eqn.(2)) has been omitted since it has no influence on the connectivity

structure of the graph. Note that each data node Dm is connected to one factor node P (Dm|km−1, km) only (for each possible
configuration of the {km}). Thus, the graph is singly connected and exact marginals can be computed with the sum-product

algorithm efficiently. For details, see text.

4.3 Prior on M

Assuming we have no preference for any model complexity (i.e. number of bin boundaries), let P (M) = 1
T

since the number of bin boundaries M must be 0 ≤M ≤ T − 1.

4.4 Evaluating the posterior of {km}
In the context of temporal segmentation, the most relevant posterior is that of the {km} for a given M :

P ({km}|D,M) =
P (D|{km},M)P ({km}|M)

P (D|M)
. (3)

The evaluation of the denominator, P (D|M), näıvely requires a computational effort of O(TM ), because
each of the M bin boundaries can be in ≈ T many places. However, it is possible to reduce this effort to
O(MT 2), as described in [Endres and Földiák 2005]: P (D|M) can be evaluated exactly with an instance of
the sum-product algorithm [Kschischang et al. 2001], because the factor graph corresponding to BB is singly
connected (see fig. (2)). The reason for this single-connectedness can be understood by inspection of eqn.(1):
the factors P (Dm|km−1, km,M) depend on non-overlapping parts of the data (for a given configuration of
the {km}). Hence, every data node Dm in fig. (2) is only connected to one data node.

4.5 Observation model P (D|{km}) for human segmentation events

Human segmentations (i.e. key presses by observers) are binary events. We therefore use a Bernoulli process
with a conjugate Beta prior (one per bin) for these data. A conjugate prior allows for the evaluation of
expectations and marginal probabilities in closed form. This is analogous to modelling neural spike trains
with BB [Endres and Oram 2010]. Thus, for a segmentation event e(t) ∈ D at time t in bin m, i.e. t ∈ Tm
we have

P (e(t)|t ∈ Tm) = Pm (4)

p(Pm) = B(Pm; γm, δm) (5)

where B(Pm; γm, δm) is the Beta density with parameters γm, δm (see e.g. [Bishop 2007]).
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4.6 Observation model P (D|{km}) for joint angles

To construct an observation model for joint angles, we will assume independence across bins. We do not claim
that this assumption is strictly fulfilled, but it yields good results on our data (see section 5). Hence, we only
need to derive an observation model for one bin, and we drop the bin index m in the following. Moreover,
assume that all time indexes t are relative to the lower boundary of the bin currently under consideration.
Since joint angles are real numbers in [−π, π), we could therefore use a multivariate von-Mises density or
generalisations thereof [Marida and Jupp 2000]. However, for analytical convenience, particularly because
the conjugate priors are tractable, we shall instead model joint angles with a multivariate Gaussian whose
mean µ has a polynomial time dependence. An conjugate prior on the mean µ and the precision matrix P
(inverse covariance) can then be derived via the exponential family construction (see e.g. [Bishop 2007]) and
has an extended Gauss-Wishart density. We outline the derivation in some detail here, since it has not been
published before.

Let ~xt ∈ D be a L-dimensional column vector of joint angles at time t, and S−1 be the chosen polynomial
order. Then

p(~xt|~µ,P) = N ( ~X(t); ~µ,P−1) (6)

p(P|ν,V) = W(P; ν,V) (7)

~µ = a ~t (8)

~t = (t0, t1, . . . , tS−1)T (9)

Row l of the L× S matrix a contains the polynomial coefficients for joint angle l. Thus, the data likelihood
(eqn.(6)) becomes

p(~xt|a,P) =

√
|P |

√
2π

L
exp

(
−0.5(~xt − a~t)TP(~xt − a~t)

)
(10)

=

√
|P |

√
2π

L
exp

(
−0.5 tr

[
(~xt − a~t)(~xt − a~t)TP

])
(11)

Now suppose we observe a data set D of N joint angle vectors, D = (~xt0 , . . . , ~xtN−1
). We assume that

there is no dependency between the ~xtibeyond the polynomial time dependence of the mean. Thus, setting

Zd(P) =
√
2π
LN

√
|P |

N , the likelihood of D is

p(D|a,P) = Zd(P)−1 exp

(
−0.5

N∑
i=0

tr
[
(~xti − a ~ti)(~xti − a ~ti)

TP
])

(12)

= Zd(P) exp

(
−0.5 tr

[(
N∑
i=0

~xti~x
T
ti −

N∑
i=0

(
~xti~t

T
i aT + a ~ti~x

T
ti

)
+

N∑
i=0

a ~ti~t
T
i aT

)
P

])
(13)

A prior on a which is conjugate1 to this likelihood and in the exponential family can be constructed by
choosing a L × S matrix A (the prior means of a) and a S × S, symmetric and positive definite matrix B
(the concentration parameters of a), such that

p(a|A,B,P) = Zg(B,P)−1 exp
(
−0.5 tr

[
(a−A) B (a−A)T P

])
(14)

1a prior is said to be conjugate to a likelihood, if the resulting posterior has the same functional form as the prior, see e.g.

[Bishop 2007] for an introduction. This reference also contains an overview of exponential family distributions.
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Zg(B,P) =

∫
da exp

(
−0.5 tr

[
(a−A) B (a−A)T P

])
(15)

where Zg(B,P) is a normalisation constant. We will demonstrate below (eqn.(25)) that Zg(B,P) does not
depend on A. To show that this prior is indeed conjugate to eqn.(12), we need to show that the posterior of
a given D

p(a|A,B,P, D) =
p(D|a,P)p(a|A,B,P)

p(D|A,B,P)
. (16)

has the same functional form as the prior. Using eqn.(12) and eqn.(14), the numerator of the r.h.s can be
written as

p(D|a,P)p(a|A,B,P) = Zd(P)−1Zg(B,P)−1 ×

× exp

(
−0.5 tr

[(
N∑
i=0

~xti~x
T
ti −

N∑
i=0

(
~xti~t

T
i aT + a ~ti~x

T
ti

)
+

N∑
i=0

a ~ti~t
T
i aT

)
P

])
× exp

(
−0.5 tr

[(
aBaT − (ABaT + aBAT ) + ABAT

)
P
])

(17)

We now rewrite this expression by collecting terms and introducing the posterior parameters

B̂ := B +

N∑
i=0

~ti~t
T
i (18)

ÂT := B̂−1

(
BAT +

N∑
i=0

~ti~x
T
ti

)
. (19)

(20)

Note that eqn.(19) implies B̂ÂT = BAT +
∑N
i=0

~ti~x
T
ti , and eqn.(18) ensures that B̂ is positive definite, if B

is. Additionally, let

U :=

N∑
i=0

~xti~x
T
ti + ABAT − ÂB̂ÂT (21)

Then

p(D|a,P)p(a|A,B,P) = Zd(P)−1Zg(B,P)−1 exp (−0.5 tr [UP])

× exp
(
−0.5 tr

[(
(a− Â)B̂(a− Â)T

)
P
])

(22)

The denominator of eqn.(14) can be obtained from this numerator by integrating out a. Since the first three
factors on the r.h.s. of eqn.(22) do not depend on a, we finally obtain

p(a|A,B,P, D) =
exp

(
−0.5 tr

[(
(a− Â)B̂(a− Â)T

)
P
])

∫
da exp

(
−0.5 tr

[(
(a− Â)B̂(a− Â)T

)
P
]) . (23)

Identifying Zg(B̂,P) =

∫
da exp

(
−0.5 tr

[(
(a− Â)B̂(a− Â)T

)
P
])

in eqn.(14), we see that the prior

is conjugate.
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For Bayesian binning, we need the marginal likelihood of the data in each bin (see eqn.(1)), which can be
calculated by integrating eqn.(22) over da:

p(D|A,B,P) =

∫
da p(D|a,P)p(a|A,B,P)

= Zd(P)−1Zg(B,P)−1Zg(B̂, P̂) exp (−0.5 tr [UP]) .

To evaluate this expression, we now compute the normalisation constant Zg(B,P). Let ~u be the L · S-
dimensional column vector obtained by stacking all columns of a−A. Denoting the Kronecker product with
⊗, it is straightforward to show that

tr
[(

(a−A)B(a−A)T
)
P
]

= ~uTB⊗P~u (24)

by applying the identities 497 and 496 from the matrix cookbook [Petersen and Pedersen 2008]. Hence, the
integral in Zg(B,P) is Gaussian with precision matrix B⊗P:

Zg(B,P) =

∫
da exp

(
−0.5 ~uT (B⊗P)~u

)
=

√
2π

LS√
|B|

L√
|P|

S
(25)

where we have used identity 491 from [Petersen and Pedersen 2008] for the determinant of a Kronecker
product. Therefore, the marginal likelihood (for fixed precision matrix P) is

p(D|A,B,P) =

√
|P|

N

√
2π

LN

√
|B|

L√
|B̂|

L
exp (−0.5 tr [UP]) (26)

Since we would also like to learn the precision matrix P, we equip it with a Wishart prior, as stated above
(eqn.(7)). The density of this prior is given by [Bishop 2007]:

p(P|ν,V) = Zw(ν,V)−1|P|
ν−L−1

2 exp
(
−0.5 tr

[
V−1P

])
(27)

Zw(ν,V) = 2
νL
2 |V| ν2 ΓL

(ν
2

)
(28)

ΓL

(ν
2

)
= π

L(L−1)
4

L∏
j=1

Γ

(
ν + 1− j

2

)
(29)

where Γ(·) is the gamma function.
We now show that this prior is conjugate to the marginal likelihood eqn.(26) by computing the posterior

density of P given D:

p(P|ν,V, D) =
p(D|A,B,P)p(P|ν,V)

p(D|A,B, ν,V)
(30)

After rearranging terms, the numerator of this posterior is

p(D|A,B,P)p(P|ν,V) =

√
|B|

L√
|B̂|

L

√
2π
−LN

Zw(ν,V)−1|P|
N+ν−L−1

2 exp
(
−0.5 tr

[
(V−1 + U)P

])
(31)

We introduce the posterior parameters

ν̂ := ν +N (32)

V̂−1 := V−1 + U (33)
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Fig. 3. Left: A: fitting a part of a joint angle trajectory with Bayesian binning. Joint angles have not been wrapped around

at −π to avoid creation of artificial segmentation points. Shown are predictive joint angles with a 0th order (i.e. bin-wise

constant) and a 4th order observation model (see section 4). B,C: predictive segmentation densities for these two observation
models. The 0th order model needs more segmentation points to fit the data, and the fit is less faithful than the 4th order

model. Right: comparison of human segmentation densities with Bayesian binning. Shown is an interval with a few, relatively

clear segmentation points and good agreement between human subjects. Note that the human segmentation density (panel A)
peaks usually closely to a peak in the density obtained by Bayesian binning. The 0th order model (panel B) predicts more

segmentation points than the higher-order models (panels C,D), and the higher-order models are in better agreement to the

human segmentation, both in number and location of the segmentation points.

and compute the marginal likelihood of the data, i.e. the denominator of eqn.(30), noting that the last two
factors of the numerator (eqn.(31)) have the same functional form (with respect to P) as the Wishart prior,

but with the prior parameters replaced by the posterior parameters ν̂ and V̂:

p(D|A,B, ν,V) =

√
|B|

L√
|B̂|

L

√
2π
−L
Zw(ν,V)−1Zw(ν̂, V̂). (34)

Thus, the posterior of P given D is:

p(P|ν,V, D) = Zw(ν̂, V̂)−1|P|
ν−L−1

2 exp
(
−0.5 tr

[
V̂−1P

])
(35)

which is a Wishart density, whence conjugacy is established. Furthermore, eqn.(34) is the marginal likelihood
required by BB for each bin.

5. RESULTS

To determine the segmentation densities, we applied BB to joint angle trajectories of combinations of shoul-
der, elbow and knee angles, since these joints might be expected to be particularly expressive in taekwondo
motions. Fig. (3), left, panel A shows the predictive trajectories computed with a 0th order and a 4th order
observation model. Both models fit the data well, but the 4th order model yields a better fit with fewer bin
boundaries. Panels B and C in fig. (3), left, depict the predicted segmentation densities. The 4th order model
not only uses less bin boundaries, it also results in a more clear-cut segmentation.
Fig. (3), right, shows comparisons between human segmentation densities and those obtained by BB. Note
that the human segmentation density (panel A, in fig. (3), right) peaks usually close to a peak in the density
obtained by Bayesian binning. The 0th order model (panel B) over-segments, this over-segmentation is much
reduced for the higher-order models (panels C and D). On closer inspection, one can see that the BB density
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0:10 • D. Endres, A. Christensen, L. Omlor and M.A. Giese

Fig. 4. Hit rate analysis. Joint angle (combinations) are indicated by colour (’el.+sh’: elbow and shoulder angles segmented
simultaneously). The polynomial order of the observation model (eqn.(9)) corresponds to the marker shape. Black solid lines

are ’lines of no discrimination’ generated by sampling (machine) segmentation points from a homogeneous Poisson process. Left :

jointly segmenting elbow and shoulder angles with a 3rd or 4th order observation model yields the best compromise between
a high hit rate and a low number of false positives per second. While the hit rate of a 0th order model segmenting elbows is

slightly higher, it produces ≈ twice the number of false positives per second. Right : increasing the polynomial order beyond 4

leads to a significant decrease of the hit rate. For details, see text.

sometimes peaks at the beginning of a (broader) peak of the human density, and sometimes more towards
the end. This can be attributed to the periods of stillness between some of the individual taekwondo action
’atoms’: humans tend to place a segmentation boundary somewhere in that still period, whereas BB will tend
to segment either at the beginning or the end of it. This ambiguity could be resolved by biasing the prior on
the polynomial coefficients (eqn.(14)) towards zero velocity at the corresponding lower bin boundary.

For a more quantitative performance evaluation, we conducted a hit rate analysis, see fig. (4). We computed
the data in these graphs as follows: assume that both the BB segmentation points (BBSP) and the average
human segmentation points (HSP) were known with certainty. Then, a BBSP counts as a hit if it is within
a ±250ms accuracy window2 of a HSP, and if no other BBSP has been assigned to that HSP already. All
remaining BBSPs comprise the false positives. HSPs without a matching BBSP count as misses. The hit
rate is then computed in the usual way:

hit rate =
hits

hits + misses

Computing a false positive rate for a standard ROC analysis

false positive rate =
false positives

false positives + true negatives

is somewhat problematic, since it requires the evaluation of the ”true negatives”, i.e. the number of instances
where there is neither a BBSP nor an HSP. This number depends on the chosen discretisation: the false
positive rate can be reduced almost arbitrarily by increasing the temporal resolution, since both BBSPs and
HSPs are (almost) point events. We sidestep this issue by evaluating the false positives per second instead,
which is largely independent of the temporal resolution. Since we do not know the HSPs and BBSPs with
certainty, but only their densities, we compute expected values for the hit rate and the false positives per
second by sampling segmentation points from both densities until the standard error of the expectation
estimates is ≤ 10−3. Also, we thresholded the human segmentation density at 2 events/second to remove

2The time window was defined as ±250ms because healthy humans between 20 and 30 years show mean reaction times of about

200 ms to visual stimulation
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unclear segmentation points (i.e. where the human segmenters were mostly in disagreement). As a reference
for the expected hit rates and false positives per second when guessing randomly, we computed a ”line of no
discrimination” (solid lines in fig. (4)). This line is computed by drawing uninformative segmentation events
from a homogeneous Poisson process with rate parameter λ. Each setting of λ corresponds to one point on
the line of no discrimination.

In fig. (4), left, we segmented joint angle trajectories from shoulders, elbows, knees and elbows+shoulders
(el.+sh.) with observation models having polynomial orders between 0 and 4. In this figure, marker shape
indicates polynomial order, while col or denotes joint angle. The priors on the parameters were initialised to
mean 0 and a diagonal covariance matrix with variance 160. The segmentation obtained from the knees is
largely uninformative, whereas most polynomial orders provide an informative signal about when segmenting
arm joints. The best compromise between high hit rate and low number of false positives per second is
achieved with orders 3 or 4, segmenting elbows and shoulders together. Increasing the polynomial order
beyond 4 does not seem to improve the results, as can be seen in fig. (4), right: while the number of false
positives per second keeps decreasing with increasing order > 4, the hit rate drops off as well.

The fact that models with order 3 or 4 provide a better match than the lower orders indicates that humans
employ (the visual equivalent of) angular acceleration discontinuities, rather than discontinuities in angular
velocities when segmenting action streams. This agrees with the ’minimum jerk’ hypothesis [Flash and Hogan
1985].

6. CONCLUSION

We presented two novel contributions in this paper: firstly, we have extended Bayesian binning by employing
piecewise polynomial observation models and demonstrated its usefulness for action stream segmentation.
Secondly, we have created a benchmark data set for the evaluation of machine segmentation methods com-
pared to human observers.

One limitation of our model is the independence assumption between different bins (see eqn.(1)), implying
that human actions can be viewed as a sequence of clearly separable atoms. Our results indicate that this
assumption is at least approximately fulfilled for a taekwondo hyeong. However, in other type of human action,
it might become necessary to model dependencies between data in different bins explicitly. Consider e.g. pair
dancing, where the transition from one figure to the next is typically more continuous than in taekwondo.
Another example is sign language production, where co-articulation [Segouat and Braffort 2009] induces
dependencies between neighbouring signs. BB could be extended to include such dependencies between
segments. As long as the factor graph (see fig. (2)) remains singly connected, exact inference will still be
possible, albeit with a higher computational effort.

[Polyakov et al. 2009] successfully fitted trajectories with parabolic pieces, we showed that higher orders
yield a yet better agreement with human psychophysical data. One could go even further and use a hidden
Markov model (HMM) in each bin.u Switching HMMs were used before for action segmentation [Green
2003], a BB prior on top of HMMs might be a feasible way of switching between them.

In [Barbič et al. 2004], three methods for motion capture data segmentation are compared. The methods are
based on segment-wise PCA, probabilistic PCA (pPCA) and finite Gaussian mixtures. The approach based
on pPCA yielded the best results. Since our observation model (eqn.(6)) learns a full covariance matrix from
the data for each segment, a pPCA decomposition of the data in each segment could be extracted from the
posterior parameters of the observation model. Conversely, our 0th order observation model could be viewed
as a marginalised pPCA model with constant mean per segment, which is the pPCA observation model
of [Barbič et al. 2004]. As illustrated in fig. (4), our higher-order models offer a significant performance
advantage over a pPCA model with constant means on our data.

Another way of extending our approach would be to include context information into the segmentation
process, in addition to the purely kinematic information currently used. [Zacks et al. 2009] reports that
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humans use context information for segmentation tasks when such is available, and rely increasingly on
kinematics when context is reduced.
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