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Abstract. We investigate whether semantic information related to ob-
ject categories can be obtained from human fMRI BOLD responses with
Formal Concept Analysis (FCA). While the BOLD response provides
only an indirect measure of neural activity on a relatively coarse spatio-
temporal scale, it has the advantage that it can be recorded from humans,
who can be questioned about their perceptions during the experiment,
thereby obviating the need of interpreting animal behavioral responses.
Furthermore, the BOLD signal can be recorded from the whole brain
simultaneously. In our experiment, a single human subject was scanned
while viewing 72 gray-scale pictures of animate and inanimate objects in
a target detection task. These pictures comprise the formal objects for
FCA. We computed formal attributes by learning a hierarchical Bayesian
classifier, which maps BOLD responses onto binary features, and these
features onto object labels. The connectivity matrix between the binary
features and the object labels can then serve as the formal context. In
line with previous reports, FCA revealed a clear dissociation between an-
imate and inanimate objects with the inanimate category also including
plants. Furthermore, we found that the inanimate category was subdi-
vided between plants and non-plants when we increased the number of
attributes extracted from the BOLD response. FCA also allows for the
display of organizational differences between high-level and low-level vi-
sual processing areas. We show that subjective familiarity and similarity
ratings are strongly correlated with the attribute structure computed
from the BOLD signal.
Keywords: fMRI, inferior temporal cortex, semantic neural decoding

? equal contribution



Cite as:
Endres D., Adam, R., Giese M.A., Noppeney U. (2012). Understanding the
Semantic Structure of Human fMRI Brain Recordings With Formal Concept
Analysis. To appear in ICFCA 2012, 10th International Conference on Formal
Concept Analysis, LNAI, Springer, 1-16.
The original publication will be available at www.springerlink.com

1 Introduction

Understanding how semantic information is represented in the brain has been an
important research focus of neuroscience in the past few years. A large part of
this research studies object representation in the visual cortex, which we will also
concentrate on in this paper. Experimentally, this question has been addressed
using physiological and brain imaging techniques, specifically electrophysiologi-
cal single/multi-cell recordings [16] and fMRI BOLD (functional magnetic res-
onance imaging, blood-oxygenation-level-dependent) responses [2]. The former
have the advantage of providing a direct measure of neural electrical activity.
However, one can usually record only from a relatively small population of neu-
rons. Furthermore, the experimental animals cannot easily be questioned about
their semantic perceptions. Nevertheless, it was previously shown [6] that formal
concept analysis (FCA, [11]) can reveal interpretable semantic information (e.g.
specialization hierarchies, or indications of a feature-based representation) from
electrophysiological data. Here, we investigate whether similar findings can be
obtained from BOLD responses recorded from human subjects. fMRI measures
BOLD changes which are indirectly related to neuronal activity. Increased neu-
ronal activity (e.g. due to visual input) in a specific brain area increases blood
flow to this area which changes the local ratio between oxygenated (containing
oxygen) blood which is diamagnetic and deoxygenated (without oxygen) blood
which is paramagnetic. This change in the local magnetic properties of the blood
is the BOLD signal detected by fMRI [27]). While the BOLD response provides
only an indirect measure of neural activity on a much coarser spatio-temporal
scale than electrophysiological recordings, it has the advantage that it can be
recorded from humans, which can be questioned about their perceptions during
the experiment, thereby obviating the need of interpreting animal behavioral
responses. Furthermore, the BOLD signal can be recorded from the whole brain
simultaneously.

Our paper is structured as follows: in section 2 we give a brief overview of the
organization of the visual system and previous research on the representation of
semantic information in the brain. Section 3 introduces the basic ideas of FCA.
We describe the experiment in section 4, and the Bayesian feature extractor for
computing the formal context from BOLD signals in section 5. Our results are
detailed in section 6, and section 7 offers some concluding remarks and avenues
of further investigation.

http://www.springerlink.com


2 Organization of Visual Processing in Humans and
Previous Research

This section contains a very brief and incomplete overview of the visual process-
ing pathways in humans and monkeys, for details the reader is referred to [15].
Visual processing begins in the eye. Patterns of light falling onto the retina are
converted into electrical signals, which are relayed to the primary visual cortex
(V1) by the lateral geniculate nuclei. From the primary visual cortex the infor-
mation is channeled to visual association cortices and thereafter distributed into
two paralleled processing streams: the ventral stream and the dorsal stream [21].
The dorsal (”where”) occipitoparietal stream analyzes object location, guides
object-related action and sends information to the parietal cortex. In the ven-
tral (”what”) occipitotemporal stream, which is involved in object identifica-
tion, information is directed to the inferior temporal (IT) cortex. The human
IT contains sub-regions which selectively respond to specific object categories.
For example, faces selectively activate the fusiform gyri, whereas landmarks and
scenes activate the parahippocampal gyri [23].

However, it is unlikely that there is a specific area in the brain dedicated
to every category we encounter in our daily life. Haxby and colleagues could
show that activaiton patterns elicited by various object categories such as faces,
cats and shoes were distinct and at the same time overlapping in the IT [13].
Multivoxel pattern analysis decoding techniques applied to the relevant sub-
regions could discriminate between ordinate (basic) levels of a certain category
(e.g. beach vs. highway scenes, [28]) as well as between object exemplars (e.g.
two different chairs, [5]), showing that those areas also contain information up
to the exact object identity. Standard encoding and decoding analyses often
compare brain activations evoked by pre-specified object categories (e.g. face vs.
house), and are therefore frequently driven as much by result expectations as by
the data. Hypothesis-free analyses are especially important for complex stimuli,
such as object categories, which cannot be easily grouped a priori to account
for the entire conceivable feature-space.

One clear advantage of FCA is thus, that it does not require a priori group-
ing of the stimuli. In line with previous findings [13], FCA also allows for the
comparison of activation patterns and thus takes into account the distributed
and overlapping representation of objects in the brain. Another data-driven ap-
proach was applied recently to fMRI data, by computing dissimilarity matrices
from fMRI activation patterns. This analysis applied to the IT has revealed
hierarchically-organized animate and inanimate clusters [18]. However, we be-
lieve that comparing dissimilarity matrices is not sufficient to understand the
structure of the representation of visual stimuli in the brain. First, stimulus ar-
rangement is based on pairwise distances and as such does not directly regard
the relations between multiple stimuli. Also, pairwise distances are often being
further analyzed via hierarchical, tree-structured clustering, while a lattice-based
structure may be more appropriate for the study of the cortical representation
of complex objects composed of many overlapping features. Second, dissimilar-
ity coefficients are often derived with linear methods, while the brain is known



to be a highly non-linear system. Third, dissimilarity analysis does not allow
incremental analysis since adding more stimuli or running the analysis with
more BOLD data might change the observed dissimilarity pattern. Finally, and
most importantly, the connection between stimuli and brain activation pattern
observed is not explicitly represented in the dissimilarity matrices. Since FCA
provides this connection via concepts and their ordering relation, we therefore
decided to investigate if FCA was a suitable tool for elucidating the structure of
the representation of (visual) stimuli in the brain.

3 Formal Concept Analysis

We now provide basic definitions and notation used in the following, for a full
introduction to Formal Concept Analysis (FCA) see [11]. The formal context
K := (G,M, I) is comprised of a set of formal objects G, a set of formal at-
tributes M and a binary relation I ⊆ G ×M between members of G and M .
The adjective ”formal” indicates that these objects and attributes represent ab-
stract entities, although it can be helpful to think of them as actual physical
objects and their properties. We will drop ”formal” for brevity, except in def-
initions. In our application, the members of G are visual stimuli, whereas the
members of M correspond to binary features computed from a generative model
representation of BOLD signals recorded in response to these stimuli (see section
5). If attribute m ∈ M is used in the representation of the BOLD response to
stimulus g ∈ G, then we write (g,m) ∈ I or gIm. It is customary to represent
the context as a cross table (incidence table), where the row(column) headings
are the object(attribute) names. For each pair (g,m) ∈ I, the corresponding cell
in the cross table has an ”x”. The table in fig. 1, left, shows a simple example
context.

The derivation operator for subsets X ⊆ G is defined as X ′ = {m ∈M |∀g ∈
X : gIm} i.e. X ′ is the set of all attributes shared by the objects in X. Likewise,
for Y ⊆ M define Y ′ = {g ∈ G|∀m ∈ Y : gIm} i.e. Y ′ is the set of all objects
having all attributes in Y .

Definition 1. [11] A formal concept of the context K is a pair (X,Y ) with
X ⊆ G, Y ⊆ M such that X ′ = Y and Y ′ = X. X is called the extent and Y
is the intent of the concept (X,Y ). IB(K) denotes the set of all concepts of the
context K.

Thus, given the relation I, (X,Y ) is a concept if X determines Y and vice
versa. X and Y are also called closed subsets of G and M with respect to I. For
a representation of the relationships between concepts, one defines an order on
IB(K):

Definition 2. [11] If (X1, Y1) and (X2, Y2) are concepts of a context, (X1, Y1)
is a subconcept of (X2, Y2) if X1 ⊆ X2 (which is equivalent to Y1 ⊇ Y2). In this
case, (X2, Y2) is a superconcept of (X1, Y1) and we write (X1, Y1) ≤ (X2, Y2).
The relation ≤ is called the order of the concepts.



It can be shown [29,11] that IB(K) and the concept order form a complete
lattice. The middle and right panels of fig. 1 depict lattice diagrams correspond-
ing to the context in the left panel. In the diagrams, each node is a concept, the
arrows indicate the concept ordering. Full labeling (fig. 1, middle) means that a
concept node is drawn with its full extent and intent. A reduced labeled concept
lattice (fig. 1, right) shows an object only in the smallest (w.r.t. the concept or-
der of definition 2) concept of whose extent the object is a member. This concept
is called the object concept, or the concept that introduces the object. Likewise,
an attribute is shown only in the largest concept of whose intent the attribute
is a member, the attribute concept, which introduces the attribute.

Formal Context Full Labeling Reduced Labeling

m0 m1 m2

bear ×
dog ×

cabbage ×
drum ×

pumpkin × ×

Fig. 1. A simple example context and corresponding lattice diagrams. Left : the formal
context, represented as a cross-table. The objects (rows) are 5 visual stimuli, each of
which can have a subset of 3 attributes (columns) m0,m1,m2, that are computed from
(hypothetical) BOLD responses. Middle: fully labeled concept lattice. Each rectangle
is a concept. The extents are represented by stimulus images, the top of each concept
shows concept number and intent, e.g. ’C4 : {m1,m2}’ means: concept 4 has intent
{m1,m2}. Concept numbers are computed from the lectic order on the attributes [11].
Arrows indicate concept ordering. Concept 1 comprises the animals, concept 2 contains
only vegetables and concept 3 all objects with prominent round parts. Consequently,
concept 4 can be thought of as the ’round vegetable’ concept. Right : concept lattice
with reduced labeling. Here, objects are only depicted in the most specific (smallest)
concept which contains them, whereas an attribute is only shown in the most general
(greatest) concept of whose intent it is a member.

The lattice diagrams is a graphically explicit representation of the ordering
relationships between the concepts: concept 2 contains all vegetables, concept 3
comprises the objects with prominent round parts. They have a common child,
concept 4, which is the ’round vegetable’ (pumpkin) concept. The ’animals’
concept (concept 1) is incomparable to any other concept except the top and
the bottom of the lattice. Note that these relationships arise as a consequence
of the (here hypothetical) BOLD responses. We will show (section 6) that real
BOLD responses lead to similarly interpretable structures when one computes
attributes from suitable brain regions.



To reiterate, in the following we will denote the set of visual stimuli by G, and
the set of attributes computed from BOLD responses by M , and their incidence
relation by I ⊆ G×M .

4 fMRI Experiment

4.1 Experimental Methods and Data Preprocessing

Fig. 2. Experimental setup. Bottom: A subject lying in an fMRI scanner. In order
to perform the scan, the subject will be moved into the scanner tube. Stimuli are
visible via the mirror positioned on the head coil. Top: Example run and timing of one
experimental block.

Subject A single right handed, German native speaker, male subject partici-
pated in this fMRI study. The subject gave informed written consent prior to
the study which was approved by the joint human research review committee of
the Max Planck Society and the University of Tübingen.
Stimuli Stimuli G were |G| = 72 gray-scale photographs of real objects taken
from Hemera photo objects vol. 1-3. Half of the stimuli were animate objects
from the four super-ordinate categories: mammals, birds, vegetables, and flowers.
The non-animate objects were taken from the categories: furniture, vehicles,
tools, and music instruments. Three ordinate (i.e. at the basic level of taxonomic
abstraction) categories were chosen from each super-ordinate category (e.g. bear,
dog, and monkey from the mammal category; brush, hammer, scissors from
the tools category), and each ordinate category contained three exemplars (e.g.
panda bear, brown bear, polar bear from the bear category).

To control for low level visual cues, the luminance of the photographs was
equalized according to Knebel et al., 2008 [17]. Second, stimuli were adjusted



in size to the same main diagonal length. In addition, 72 silhouettes (filled with
the mean luminance value) were created for every object.

Behavioral Ranking of the Stimuli Outside the Scanner The subject
ranked the stimuli in terms of their familiarity, using a 7 point Likert scale (1-
not familiar, 7- very familiar). In addition, he judged the similarity between each
pair of objects (1-very dissimilar, 7- very similar).

Experimental Procedure in the Scanner The subject was first familiarized
with the photographs in the scanner environment through presentation of all
stimuli in random order with each intact photograph followed by its matching
silhouette. Stimuli (on a black background with white fixation cross in the center,
main diagonal: 3.1 visual angle) were each presented for 1.3s, followed by a white
fixation cross for1.5s (see fig. 2, top).

After the familiarization stage, the subject performed the experimental ses-
sions. The experimental paradigm was a target detection task in which the sub-
ject had to press one key for a silhouette and another key for an intact image.
Each session contained the 72 object stimuli repeated twice (displayed for 1.3s,
followed by a 1.5s fixation) and 12 silhouette images, appearing on average every
12 trials. To increase design efficiency, the 6 stimuli from each ordinate category
(3 exemplars x 2 repetitions) were presented in a pseudo-randomized order. The
subject could respond from the onset of the stimulus until the end of the fixa-
tion period, resulting in a response time interval of 2.8s. Instructions emphasized
both speed and accuracy of the response, using the index and middle fingers for
silhouettes and intact photos respectively.

Blocks of six stimuli (block duration ≈17s) were interleaved with 7s fixation
periods. The subject performed 48 sessions (≈10min each) over seven days (max.
scanning time: 2h per day). Hence, each object stimulus was presented 96 times
and every silhouette image eight times.

Experimental Setup Stimuli were presented using the Cogent 2000 v1.25 (de-
veloped by the Cogent 2000 team at the FIL and the ICN and Cogent Graphics
developed by John Romaya at the LON at the Wellcome Department of Imag-
ing Neuroscience, UCL, London, UK) running under MATLAB (Mathworks Inc.,
Natick, MA, USA) on a Windows PC. The visual stimuli were back-projected
onto a Plexiglas screen using a LCD projector (JVC Ltd., Yokohama, Japan)
visible to the subject through a mirror mounted on the MR head coil. The sub-
ject performed the behavioral task using a MR-compatible custom-built button
device connected to the stimulus computer.

fMRI Data Acquisition A 3 T Siemens Magnetom Trio Tim System (Siemens,
Erlangen, Germany) was used to acquire both three-dimensional high-resolution
T1-weighted anatomical images (TR=2300ms, TE=2.98ms, TI=1100ms, flip
angle=9◦, FOV=256mm×240mm×176mm, isotropic spatial resolution 1mm)
and T2*-weighted axial echoplanar functional images with BOLD contrast (gra-
dient echo, TR=3080ms, TE=40ms, flip angle=90◦, FOV=192mm×192 mm,
image matrix 64×64mm, 38 transversal slices acquired sequentially in ascending
direction, voxel size=3.0mm×3.0mm ×2.5mm + 0.5mm interslice gap) using a
12-channel head coil (Siemens, Erlangen, Germany). The subject participated in



48 experimental sessions with 212 volume images (whole-brain images) per ses-
sion, amounting to 10,176 volume images. The first three volumes were discarded
to allow for T1 equilibration effects.
Data Preprocessing and GLM Analysis The functional MRI data was an-
alyzed with statistical parametric mapping (SPM8 software, Wellcome Depart-
ment of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) [10].
According to the common practice we first preprocessed the data to reduce
noise such as head motion artifacts. Scans were realigned using the first as a
reference, unwarped, slice-time corrected using the middle image as a reference,
and spatially normalized into Montreal Neurological Institute (MNI) standard
space [7].

To determine the magnitude of the BOLD response in each voxel to a given
stimulus, we used a well established mass-univariate approach based on general
linear models (GLM). This method defines the explanatory variables/regressors
(the stimuli in our case) using a design matrix, and estimates their relative
contribution to the observed BOLD activation. The timeseries in each voxel were
high-pass filtered to 1/128 Hz. The experiment was modeled in an event related
fashion with regressors entered into the design matrix after convolving each
event-related unit impulse function (logged to the onset of the visual stimulus)
with the canonical hemodynamic response function (see [14] for details about
modeling even-related designs). The statistical model included 72 regressors each
modeling a particular stimulus and one additional regressor modeling all target
stimuli, separately for each session. Nuisance covariates included the realignment
parameters (to account for residual motion artifacts). Stimulus-specific effects
for each session were estimated from the GLM. The GLM estimate of every
explanatory variable (i.e. the parameter weight of this variable) for every voxel
was saved in a beta image. All beta images were passed to a second-level analysis
as contrasts, in order to allow for random effects analysis and inferences at the
population level [9]. This involved creating 73 contrast images for each session
and entering them into a second level analysis which evaluated the voxels which
are more responsive for visual stimulation compared to fixation.

Fig. 3. The brain areas evaluated in this study. Location of the two regions of interests,
V1 and IT, displayed on three planes overlaid on a standard brain, numbers are MNI
coordinates [7].



4.2 Search Volumes and Voxel Selection

The activation data was extracted from two a priori defined anatomical search
volumes (region of interests, ROIs, see fig. 3): the inferior temporal cortex (IT
mask), and the calcarine sulcus (V1 mask). The IT mask included the bilateral
inferior temporal gyri, fusiform gyri and parahippocampal gyri. The V1 mask
contained the bilateral calcarine fissure and surrounding cortex which encom-
passes the primary visual cortex. Those areas were anatomically defined by the
AAL library [26] using theMarsBaRtoolbox (http://marsbar.sourceforge.net/)
[4]. Within each ROI, the 300 most active voxels (the voxels showing the highest
absolute activations for the second-level comparison all stimuli > fixation) were
selected. From those we selected the 100 voxels that provided the most informa-
tive signals (measured by mutual information) about the stimulus identity.

5 Learning the Formal Context with a Hierarchical
Bayesian Classifier

S

A0 A1 AK−1

V0 VD−1Vd. . . . . .

Fig. 4. Left: the feature extractor for learning the formal context, represented as a
Bayesian network. Nodes represent random variables, arrows indicate conditional de-
pendencies. A stimulus, represented by a multinomial variable S has K = |M | binary
attributes A = (A0, . . . , AK−1), Ak ∈ {0; 1} which encode the observed BOLD voxel
activation pattern V = (V0, . . . , VD−1). The (binarized) distribution p(A|S) repre-
sents the formal context. Voxel activation patterns are described by a distribution
p(V |A) =

∏
d p(Vd|A) with each voxel computed as a linear combination of non-

negative feature vectors fk, i.e. Vd =
∑

k(fk)d · Ak + ηd, where ηd is voxel-specific
Gaussian noise. Right: comparison of cross-validation scores for models with different
K, computed from the D = 100 most informative voxels in area IT (see fig. 3). Error
bars are SEM, 12-fold cross-validation. The model with K = 8 offers (approximately)
the best trade-off between good data description and low model complexity. For details,
see text.

To apply FCA, we need to compute attributes from the BOLD signals in the
selected voxels (see section 4.2). We have so far experimented with binary at-
tributes only, but note that attribute scaling [11] is possible. However, the results



in [6] indicate that binarized responses can summarize most of the conceptually
relevant information in neural data. We first experimented with maximally in-
formative thresholding [6] per voxel. In this approach, a threshold is determined
for each voxel such that the (binarized) voxel signal allows for the best possi-
ble prediction of the stimulus identity. Due to the low signal-to-noise ratios in
BOLD signals, this yielded very large and uninterpretable lattices. Therefore,
we tried multi-voxel pattern analysis to ’average out’ the noise across voxels. We
extracted multi-voxel features and associated factors with two standard unsuper-
vised feature extraction techniques, principal component analysis (PCA) [3], and
non-negative matrix factorization (NFM) [20]. Both of these methods assume a
linear additive generative model of the data, and both try to minimize the error
between predicted and actual BOLD pattern. Let V i = (V0,i, . . . , VD−1,i) be a
vector representation of the BOLD activation pattern (D voxels). i = 0, . . . , N−1
is the presentation (or session) index. The vector V i is decomposed into K = |M |
features fk and associated real-valued factors Ak,i, such that K ≤ D and

min
Ak,i,fk

∑
i

(
V i −

∑
k

fkAk,i)

)2

(1)

under additional constraints. For NMF, the constraints are positivity of both
the fk and the Ak,i, whereas PCA requires the fk to be orthonormal. We then
applied maximally informative thresholding on the Ak,i averaged over all pre-
sentations of a given stimulus to obtain a formal context. While certain basic
features were now discernible in the lattices (e.g. a distinction between animate
and inanimate objects), there still remained a lot of ’noisy’ concepts. To improve
the result further, we regularized the feature extraction by stipulating that there
be only one configuration of the Ak per stimulus (rather than per stimulus pre-
sentation). Moreover, we constrained Ak ∈ {0; 1}. The resulting generative model
is therefore given by (Si ∈ {0, . . . , |G|−1} is a multinomial representation of the
stimulus label):

V i =
∑
k

fkAk,i + ηi with ηi ∼ N (0, Σ) (2)

p(Ak,i|Si) = A
Ik,Si

k,i (1−Ak,i)1−Ik,Si (3)

p(Si) ∼ uniform (4)

where η is voxel-dependent noise having a Gaussian distribution N (0, Σ) with
zero mean and diagonal covariance matrixΣ. I is a matrix with Ik,s = 1 ifAk = 1
for Si = s and 0 otherwise. In other words, I is a binary matrix representation of
the context I. To formalize the connection between I and I, choose one-to-one
functions V : G→ {0; . . . ; |G| − 1} and W : M → {0; . . . ; |M | − 1}, then:

Si = s ⇔ V (gi) = s (5)

Ak,i = 1⇔W−1(k) ∈ g′i and Ak,i = 0⇔W−1(k) /∈ g′i (6)

The model is depicted as a Bayesian network in fig. 4. To learn the parameters,
i.e. I, Σ and the fk, we employ variational Bayesian expectation maximization



(VBEM) [3], with Gamma p(oste)riors on the fk and the diagonal entries of Σ,
and independent Bernoulli p(oste)riors on the entries of I. In VBEM, learning
is expressed as an maximization problem of a lower bound on the marginal log-
likelihood of the (V i, Si) data. Let the model parameters be collectively denoted
by Θ = (f0, . . . ,fK−1, Σ, I), then this bound is given by

L =

〈∑
i

log (p(V i, Si|Θ)) + log

(
p(Θ)

q(Θ)

)〉
q(Θ)

(7)

where p(V i, Si|Θ) is computed from eqns. 2-4 and p(Θ) is the parameter prior.
q(Θ) is the variational posterior, which we chose to have the same functional form
as the prior, as noted above. The expectation 〈. . .〉q(Θ) can then be evaluated
in closed form. To avoid getting stuck at local maxima in the early phases of
the optimization, we precede the VBEM iterations with simulated annealing
[24]. One advantage of taking a Bayesian approach to learning is that we can
evaluate (at least approximately) which number of attributes/features K offers
the best compromise between a good explanation of the data and a low model
complexity.

The Gamma priors on fk enforce NMF-like positivity constraints, which we
found to contribute to the interpretability of the results. A possible reason for
this is that Ak = 1 implies a positive contribution to the BOLD signal under
these constraints. In other words, there is an order-preserving mapping from the
attribute sets ordered under subset inclusion to brain activity.

6 Results

Model Selection We learned feature extractors with K ∈ {2; . . . ; 10} features
as described in section 5. The VBEM iteration usually began to converge after ≈
50 VBEM steps, preceded by simulated annealing at 10 exponentially decreasing
temperatures (1000 samples each) between Tmax and 1. Tmax was chosen so that
the variational posterior of the entries of I did not differ by more than 0.1 from
its prior value 0.5, indicating a high enough temperature to ’smooth out’ local
maxima. To determine the best K, we performed 12-fold cross validation, the
held-out data were always complete sessions (see section 4). The cross-validation
score plotted in fig. 4, right, is the variational bound L (eqn. 7) computed on the
held-out data after 100 VBEM steps. To model the most informative 100 voxels
in area IT, 8 features/attributes appear to be sufficient. Note that this result is
conditional on K ≤ 10.

Lattices The concept lattices for both ROIs (IT and V1, after 100 VBEM steps)
are displayed in fig. 5 and fig. 6 for K = 2 and K = 5 attributes, respectively.
These lattices are drawn with reduced labeling. We did not plot the lattice com-
puted from K = 8 attributes, because it would not have fit onto a page (> 200
concepts). However, its main interpretable features are similar to the K = 5



Familiarity Similarity

K µ µ0 ± σ0 z p

2 0.672 0.573 ± 0.023 4.409 0.000

3 0.682 0.572 ± 0.027 4.062 0.000

4 0.630 0.572 ± 0.028 2.077 0.019

5 0.611 0.572 ± 0.034 1.143 0.127

6 0.653 0.572 ± 0.042 1.919 0.027

7 0.685 0.572 ± 0.060 1.901 0.029

8 0.631 0.572 ± 0.051 1.155 0.124

9 0.657 0.572 ± 0.061 1.379 0.084

10 0.635 0.572 ± 0.077 0.816 0.207

K µ µ0 ± σ0 z p

2 0.680 0.614 ± 0.006 11.907 0.000

3 0.711 0.614 ± 0.007 13.860 0.000

4 0.713 0.615 ± 0.008 11.749 0.000

5 0.755 0.617 ± 0.011 12.085 0.000

6 0.737 0.618 ± 0.013 9.254 0.000

7 0.735 0.619 ± 0.014 8.022 0.000

8 0.812 0.623 ± 0.017 11.007 0.000

9 0.815 0.624 ± 0.016 11.725 0.000

10 0.821 0.631 ± 0.019 10.132 0.000

Table 1. Left: Testing whether the subset ordering of the attributes is correlated
with subjective familiarity. K = |M |: number of attributes. µ: frequency with which
the conditional in eqn. 8 holds across all pairs of stimuli, µ0, σ0 are baseline values
obtained by randomization. Not all values are significantly above chance (p < 0.05),
but there is a clear trend towards z > 0.0. Right: Testing whether attribute set
similarity is correlated with subjective similarity. Here, µ is the frequency with which
the conditional in eqn. 10 holds, µ0, σ0 are corresponding baseline values. All K yield
significant results. ’0.000’ means p < 0.0005. For details, see section 6.

Fig. 5. Left: lattice computed from brain area IT (see fig. 3) with a feature extractor
having K = 2 features/attributes. Reduced labeling. Concepts are numbered according
to the lectic ordering of the intents [11]. E.g. ’C1:{m1}’ means: concept number 1,
introducing the attribute m1. ’{}’ denotes the empty set. Images are the introduced
objects of each concept.Right: lattice computed from brain area V1, also K = 2.



Fig. 6. Left: lattice computed from brain area IT (see fig. 3) with a feature extractor
having K = 5 features/attributes. Labeling as in fig. 5. Right: lattice computed from
brain area V1 with K = 5.

lattice, which we describe in the following. The IT lattice with two attributes
already shows one of the most prominent semantic features: the distinction be-
tween animals and other objects (including plants). Concept C1 introduces 22
stimuli, 18 of which are animals, encompassing all animals in the stimulus set.
C0 introduces 50 stimuli, none of which are animals. Indeed, the IT region is
known to be specialized in object recognition. Previous studies suggested that
categorical representation in the IT are organized in hierarchical fashion that
distinguishes animate (including faces and body parts) and inanimate stimuli
[18,1]. In contrast, three of the V1 lattice’s concepts introduce animals along
with other objects. However, the within-concept organization seems to be partly
shape-based: C1 introduces mainly thin and elongated stimuli, while the stim-
uli introduced in C3 are mainly rotund. These observations could be further
tested by comparison to lattices computed with low-level shape descriptors as
attributes. Similar observations, with somewhat higher ’conceptual resolution’,
hold for the lattices with K = 5. Here, the IT lattice shows concepts which
introduce exclusively animals (C23, 14 animals), mostly plants (C29, 9 plants
of 13 stimuli), and non-animates (C11: 7 of 7, C15: 7 of 8). As for K = 2, the
V1 lattice does not show this sort of semantic organization, but might contain
shape-specific concepts (e.g. horizontally elongated objects in C20 and C22).
Another noteworthy difference between the V1 and IT lattices is the number of
concepts which introduce stimuli: 12 in IT versus 21 in V1. Thus, if one wanted
to use the corresponding feature extractor as a simple classifier, one should use
signals from V1, since they would yield a higher classification rate.

The most specific concept (C31) in the IT lattice introduces a single stimulus,
a recumbent bicycle. This stimulus was ranked by the subject as very unfamiliar



and this might explain the high brain activation resulting in this stimulus having
all attributes.

Familiarity Ranking Comparison To substantiate the last observation in a
more quantitative fashion, we compared the ordering of the stimuli induced by
the attribute sets with the ordering given by the subject’s familiarity ranking
(7 point likert scale, 1-low, 7-high). Let g1, g2 ∈ G be two stimuli, and fam(g)
the subject’s familiarity ranking. If the attribute set inclusion order reflects the
familiarity ranking, then the conditional

fam(g1) ≥ fam(g2) given g′1 ⊆ g′2 (8)

should be true in (above chance) many instances. The reason for choosing the di-
rection of the inequality signs is the sparse and efficient coding hypothesis, which
is popular in computational neuroscience [22,12,8]: frequently encountered, and
thus familiar stimuli should be represented in the brain with less metabolic effort
than unusual ones. Thus, due to the positivity constraint on the feature vectors
in our model (see section 5), more familiar stimuli should have less attributes.
We therefore computed the frequency µ with which the conditional 8 holds, av-
eraged across all stimulus pairs g1, g2 and excluding the trivial cases g1 = g2.
To obtain a ’baseline’ frequency µ0 for a given lattice structure, we randomly
shuffled the stimuli against the attribute sets. This procedure leaves the lattice
structure intact, but randomizes the extents. We repeated the randomization
≈ 103 times for all K to compute a baseline standard deviation σ0. The results
are shown in table 1, left. While not all µ are significantly (p < 0.05, one-tailed z-
test) above baseline, the trend is clearly towards a higher-than-chance frequency
for conditional 8 to hold.

Similarity Comparison We also evaluated if the subject’s pairwise similarity
ratings correspond to the (partial) similarity ordering of stimuli induced by the
computed attributes. To this end, we used the contrast model by A.Tversky [25]
which was formalized and extended in [19]. Let g1, g2, f1, f2 ∈ G be stimuli, then

(g1, g2) ≥ (f1, f2)⇔ g′1 ∩ g′2 ⊇ f ′1 ∩ f ′2, g′1 ∩ g′2 ⊆ f ′1 ∩ f ′2
g′1 ∩ g′2 ⊆ f ′1 ∩ f ′2, g′1 ∩ g′2 ⊇ f ′1 ∩ f ′2 (9)

I.e. g1 is at least as similar to g2 as f1 is to f2 if g1 and g2 have more common
attributes (g′1 ∩ g′2), less separating attributes (g′1 ∩ g′2 and g′1 ∩ g′2) and more
attributes not shared by either of them (g′1 ∩ g′2). For an in-depth discussion
of this definition, see [19]. Let sim(g1, g2) be the subject’s similarity rating for
stimuli g1, g2. We computed the frequency µ with which the following conditional
holds:

sim(g1, g2) ≥ sim(f1, f2) given (g1, g2) ≥ (f1, f2) (10)

and also evaluated a baseline µ0, σ0 by randomization, as described above for
the familiarity ranking comparison. The results are shown in table 1, right. All
comparisons are highly significant above chance, indicating that the attribute
similarity structure is strongly correlated with the subject’s similarity ratings.



7 Conclusion

We presented the first (to our knowledge) application of FCA to fMRI data for
the elucidation of semantic relationships between visual stimuli. FCA revealed
different organization within the two ROIs. While BOLD signals from the pri-
mary visual cortical area V1 allow for the construction of a better classifier,
the objects in area IT are organized in a high-level semantic fashion. In addi-
tion to previous studies, the IT categorical organization separated plants from
non-animates. Our current study shows the potential strength of FCA for fMRI
data analysis, especially when dealing with a larger stimulus set. Furthermore,
subjective familiarity and similarity correlate strongly with attribute-induced
orderings of stimuli. In the future, we will investigate what information can be
decoded by FCA from other areas of the cortex. For example, we will apply FCA
on intermediate brain regions of the ventral stream to investigate how categorical
representations are formed in the human brain. We are also planning to check
the reproducibility of the lattices by testing additional subjects.
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