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Motivation: neural (de)coding

Neural code, P(r |s):

Activation pattern of a population of neurons (codewords).

Represents sensory information items, e.g. presence/absence of stimuli.

Neural decoding, P(s|r):

Reconstruct information item from activation pattern.

Often classification semantics: stimuli either same or different

Quality measures: classification rates, mutual information etc.

Well explored approach, e.g. [Barlow 1972, Qurioga et al. 2007].
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Beyond classification: relational representations

Stimuli s1, s2

W (s1, s2): perceived relationship btw. s1,s2, e.g. similarity

V (r1, r2): measured relationship btw. r1,r2, e.g. distance,
overlap

Question 1: How are perceived relationships between represented
information items reflected in the neural code?
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Explicit relationships: taxonomies, partial orders

Conceptual/hierarchical organization:

Related items are ’close’, relationship explicit

Evidence for neural representation
[Kiani et al. 2007, Kriegeskorte et al. 2008, Naselaris et al. 2012, Endres et al. 2010]

Often tree-structured
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Explicit relationships: more general partial orders

Tree General PO

Trees may be too restrictive:

Stimuli are also related by shape properties

Trees cannot represent this (either ’round’ or ’plant’?)

More general partial orders could be appropriate.

⇒ analysis should be data-driven !
Question 2: Is the neural code ’explicit’ ?
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Example: structure of a binary neural code

Assume a binary (or binarized) neural code. Neurons either fire or
they do not fire.

activity neuron
pattern n1 n2 n3

p1

p2 ×
p3 ×
p4 ×
p5 × ×
p6 × × ×

Ordering example: p5 ≤ p2 ⇔ {n1, n2} ⊇ {n1} [Földiák 2003]
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Formal concept analysis

Prerequisites for the application of FCA:
A (binary) relationship between

formal objects, here: stimulus images

formal attributes, here: BOLD responses from IT or V1
neurons

This relationship is called the formal context.

A formal context
represented as an incidence
table:

Stimulus n1 n2 n3

× ×
×

×
×

Note: binary attributes for simplicity but conceptual scaling is
possible.
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Formal concepts

A formal concept is a maximal filled rectangle in the formal
context, comprised of an extent (stimuli) and and intent
(neurons/voxels).

Stimulus n1 n2 n3

× ×
×

×
×

Stimulus n1 n2 n3

× ×
×

×
×

Definition (Formal concept)

A formal concept C = (A,B) is a subset of formal objects A, the extent, and a
subset of formal attributes B, the intent, such that

all objects in the extent A have all attributes in the intent B, and

all attributes in the intent B share all objects in the extent A.
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Concept order and lattice diagram

Definition (Concept order)

Let C1 = (A1,B1) and C2 = (A2,B2) be concepts of a context. Then

C1 ≤ C2 ↔ A1 ⊆ A2 ↔ B1 ⊇ B2

This is a partial order ⇒ DAG, Hasse diagram.

Full labeling Reduced labeling
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Experimental design

c©R. Adam and T. Rohe

Target detection task:

silhouette or intact
image

indicated by keypress

48 sessions

72 grayscale photographs as stimuli, animate and inanimate.

Animate: mammals, birds, vegetables, flowers.

Inanimate: furniture, vehicles, tools, musical instruments.

Luminance equalized, size along main diagonal equalized.

D. Endres, R. Adam, M.A. Giese, U. Noppeney, Understanding the Semantic Structure
of Human fMRI Brain Recordings With Formal Concept Analysis., In ICFCA 2012,
10th International Conference on Formal Concept Analysis, LNAI 7278, Springer, pages
96-111, 2012.
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Regions of interest: IT vs. V1

c©R. Adam
Dissimilarity measure: 1− ρ, ρ: Pearson corr. coeff.

Blue: similar, red: dissimilar.
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Feature extraction with hierarchical Bayesian classifier

S

A0 A1 AK−1

V0 VD−1Vd. . . . . .

S : stimulus label

Ak : binary attributes

Vd : voxel activations

p(Ak |S) ∼ Ber(ps,k )

Vd =
∑

k
~fk Ak

~fk > 0, gamma priors.

Learning with simulated
annealing and VBEM.

Positivity of ~fk : more attributes ⇒ more brain activity.

Thresholded p(Ak |S) ⇒ formal context.

Pre-selection of 100 most informative voxels from each ROI.
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Model selection

12-fold cross-validation.

Held-out data always 4 complete sessions.

Cross-validation score: joint log-density of voxels and stimulus
labels.

⇒≈ 8 attributes are sufficient.
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Concept lattices, IT vs. V1

Region IT

C1: animals (18/20)

C0: non-animals (52/52)

Region V1

no clear separation
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Concept lattice IT

5 attributes

animals (m4): C13
(7/7), C15, C17
(7/7), C19 (3/3)

plants (m0): C1
(5/5), C4 (6/6), C10
(3/4)

tools, furniture,
vehicles: C2 (12/12),
C5 (13/13), C5
(7/7), C11 (2/2)

C20 recumbent
bicycle. Why?
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Concept lattice V1

Region V1
5 attributes

no clear high-level
concepts

but: 21 concepts
introduce objects

only 12 do in IT

⇒ V1 is better
classifier.

Some concept seem
to show low-level
feature tuning.
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Similarity ranking comparison

Subjects rated pairwise similarity btw. stimuli on a 7-point Likert scale:

Compared subject’s pairwise similarity ratings to the (partial)
similarity ordering of stimuli induced by attribute sets.

Contrast model by [Tversky 1977], formalized and extended in [Lengnink 1996]

Shared attributes: sim. ↑ Separating attributes: sim. ↓
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Some important properties of similarity

Similarity is not transitive / not metrical:

Similarities are not always comparable:

Comparable:

Incomparable:
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Similarity ranking comparison

For stimuli g1, g2, f1, f2 ∈ G , let

sim(g1, g2) be the subject’s similarity rating, and

(g1, g2) ≥ (f1, f2) ⇔ ’g1 is at least as similar to g2 as f1 is to f2’

We computed the frequency µ with which the following
conditional holds:

sim(g1, g2) ≥ sim(f1, f2) given (g1, g2) ≥ (f1, f2)

Definition (Similarity (partial) ordering)

Let g1, g2, f1, f2 ∈ G be stimuli, and denote by
(g1, g2) ≥ (f1, f2) ⇔ ’g1 is at least as similar to g2 as f1 is to f2’,
then

(g1, g2) ≥ (f1, f2) ⇔ g ′1 ∩ g ′2 ⊇ f ′1 ∩ f ′2 , g ′1 ∩ g ′2 ⊆ f ′1 ∩ f ′2

g ′1 ∩ g ′2 ⊆ f ′1 ∩ f ′2 , g ′1 ∩ g ′2 ⊇ f ′1 ∩ f ′2
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Similarity ranking comparison

Validation: with stimulus shuffling, i.e. randomizing the stimulus/attribute set
assignments.

K: number of attributes

µ: frequency of: sim(g1, g2) ≥ sim(f1, f2) given (g1, g2) ≥ (f1, f2)

µ0 ± σ0: mean and std.dev. of frequency after randomization.

z, p: normalized z-score and associated p-value.

K µ µ0 ± σ0 z p

2 0.680 0.614 ± 0.006 11.907 0.000
3 0.711 0.614 ± 0.007 13.860 0.000
4 0.713 0.615 ± 0.008 11.749 0.000
5 0.755 0.617 ± 0.011 12.085 0.000
6 0.737 0.618 ± 0.013 9.254 0.000
7 0.735 0.619 ± 0.014 8.022 0.000
8 0.812 0.623 ± 0.017 11.007 0.000
9 0.815 0.624 ± 0.016 11.725 0.000

10 0.821 0.631 ± 0.019 10.132 0.000

⇒ for all K , µ is significantly above chance.
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Conclusion

Question 1: How are relationships between represented
information items reflected?
Answer: semantic relationships are represented by set overlaps of
active voxels.

Question 2: Is the neural code ’explicit’ ?
Answer: to some degree, because

positive voxel activations correspond to presence of
meaningful binary features,

sub/superordination relationships can be read off directly from
the lattice diagrams,

and similarity is preserved in the attribute structure.

TODOs:

Adaptation analysis

Study individual differences vs. commonalities
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Product-of-experts code

Each expert represents a constraint [Hinton 1999].

A stimulus is encoded by stating which constraints it fulfills.

In FCA, an concept can be specified by stating which other
concepts it is subordinate to.

⇒ flower is both in the ’plant’ concept and in the ’round’ concept.
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Familiarity ranking comparison

Compared stimulus ordering by attribute sets with subject’s
familiarity ranking

Ranking on 7-point Likert scale (1-low, 7-high)

Let g1, g2 ∈ G be two stimuli, and

fam(g) the subject’s familiarity ranking.

If the attribute set inclusion order reflects the familiarity ranking,
then the conditional

fam(g1) ≥ fam(g2) given g ′1 ⊆ g ′2

should be true in (above chance) many instances.
The reason for choosing the direction of the inequality signs is the
sparse and efficient coding hypothesis: less familiar stimuli are
encoded with more neural effort [Olshausen & Field 1996, Földiák 2002].
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The reason for choosing the direction of the inequality signs is the
sparse and efficient coding hypothesis: less familiar stimuli are
encoded with more neural effort [Olshausen & Field 1996, Földiák 2002].
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Familiarity ranking comparison

Validation: with stimulus shuffling, i.e. randomizing the stimulus/attribute set
assignments.

K: number of attributes

µ: frequency with which conditional holds across all pairs of stimuli.

mu0 ± σ0: mean and std.dev. of frequency after randomization.

z, p: normalized z-score and associated p-value.

K µ µ0 ± σ0 z p

2 0.672 0.573 ± 0.023 4.409 0.000
3 0.682 0.572 ± 0.027 4.062 0.000
4 0.630 0.572 ± 0.028 2.077 0.019
5 0.611 0.572 ± 0.034 1.143 0.127
6 0.653 0.572 ± 0.042 1.919 0.027
7 0.685 0.572 ± 0.060 1.901 0.029
8 0.631 0.572 ± 0.051 1.155 0.124
9 0.657 0.572 ± 0.061 1.379 0.084

10 0.635 0.572 ± 0.077 0.816 0.207

⇒ for most K , µ is significantly above chance.View publication statsView publication stats
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