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1 Introduction

Building on a framework by Daugmann [2]
and Pece [9], Harpur and Prager [4, 5, 6]
constructed a neural network, which they
termed the REC model, capable of discov-
ering sparsely distributed representations by
using the principle of redundancy reduction.
Olshausen and Field [7, 8] employed a sim-
ilar technique for efficient coding of natu-
ral images and showed how the resulting re-
sponse functions of the units relate to the
properties of simple cells in the mammalian
primary visual cortex.

In order to model the function of later
stages of visual processing in mammals, the
activation patterns of this network could be
used as an input to another one of simi-
lar architecture. It would therefore be ad-
vantageous if these patterns could be cal-
culated fast. Moreover, not only speed but
also accuracy would be an important issue
if the network was to be used in practi-
cal applications, such as image compression.
We have derived an algorithm that achieves
both goals with far less computational effort
than gradient descent based minimizers.

2 The model

The theoretical justification for the REC
model is given in [6]. Here we focus on the
dynamics of the learning process. The aim
is to minimise the function

Eµ =
1

2

(

~Xµ −
m
∑

i=1

a
µ
i ~wi

)2

+ λ

m
∑

i=1

S(aµ
i )

+γ

m
∑

i=1

(

~w2
i − 1

)2
(1)

where a
µ
i , i = 1, . . . , m are the activa-

tions of the network’s units upon presenta-
tion with the µ-th example ~Xµ, ~wi are the
basis vectors of dimension n and the value of
λ > 0 controls the importance of representa-
tional sparseness versus good reconstruction
of the example. This function is similar to
the one used in [6], but the hard constraint
on the length of the weight vectors is re-
placed by the additional term on the right
hand side which ensures that the ~wi do not
grow unboundedly. This is important if the
sparsifier S(a) is to have the desired effect,
as described in [6].

The training process, which is based on [6]
and [8], is carried out in two nested loops:

• Inner loop: For the current example
~Xµ, Eµ the activations which minimise
Eµ are being calcuated. Using these
activations the gradient of Eµ with re-
spect to the basis vectors, ∇~wj

Eµ, is
being computed.

• Outer loop: The basis vectors are up-
dated by gradient descent on E, the
gradient is obtained by averaging over
many iterations (e.g. O(n)) of the inner
loop:

~wj → ~wj − η〈∇~wj
Eµ〉µ (2)

where η is a learning rate.

The basis vectors can be expected to con-
verge to a stable configuration after O(n)
repetitions of the outer loop, which is typ-
ical for gradient descent algorithms [1]. In
the following discussion we assume m = n.
This is not too severe a restriction, as Ol-
shausen and Field showed in [8] that set-
ting the number of units equal to the in-
put dimesion means an effectively 1.5 times
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overcomplete representation for natural im-
ages. However, a generalization to the case
m > n is possible.

3 Optimizing the inner

loop

The time-critical step is the minimization
in the inner loop which has to be repeated
O(n2) times in the course of training. We
have therefore derived an algorithm that
achieves this goal fast and accurately.

In the past, gradient descent and conju-
gate gradient methods were used to carry
out this minimization. As we consider only
a linear sparsifier S(a) = |a|, that was found
to work well in image coding, the function
Eµ is quadratic in a

µ
i . Hence, quadratic pro-

gramming techniques [3] can be employed
for the minimisation. These algorithms re-
quire a continuous first derivative of the
function under consideration and converge
to a point where the gradient vanishes. As
S(a) = |a| is not differentiable at a = 0, the
minimum will not be found if it is located
at a point where some of the a

µ
i = 0. This

is quite likely to happen, as the error (eqn.
1) promotes sparse representations. Indeed,
numerical simulations indicate that this is
the case for about 90 percent of the acti-
vations. A gradient descent algorithm will
oscillate around the minimum with an am-
plitude that depends on the chosen stepsize.

However, to identify a minimum, the gra-
dient does not need to vanish, it is sufficient
to require that it is negative in the limit
a

µ
i → 0− and positive in the limit a

µ
i → 0+:

lim
a

µ

i
→0+

∂

∂a
µ
i

Eµ > 0 and

lim
a

µ

i
→0−

∂

∂a
µ
i

Eµ < 0 (3)

Lets assume it was already known that
∀i ∈ I0 = {i1, . . . , iK} : ai = 0 and
∀i ∈ I1 = {iK + 1, . . . , in} : ai 6= 0,
I0 ∩ I1 = ∅, I0 ∪ I1 = {1, . . . , n}. The sets
I0 and I1 contain the indices of all inactive
and all active units, respectively. (Here and
in the following the example index µ will
be omitted for clarity). The minimum with
respect to the n − K non-zero activations

~̂a =
(

aiK+1
, . . . , ain

)T
would then be deter-

mined by setting the gradient of E with re-

spect to these activations to zero, yielding

A~̂a = ~b − λ ~s (4)

where A =
(

~wiK+1
, . . . , ~win

)T
·

(

~wiK+1
, . . . , ~win

)

, ~b =
(

~wiK+1
, . . . , ~win

)T
· ~I

and ~s = (siK+1
= sign

(

aiK+1

)

, . . . , sin
=

sign (ain
))T . The sign (x) function is here

defined as

sign (x) =

{

1 : x ≥ 0
−1 : x < 0

Of course, it is not a priori clear, which
ai will be zero and which will not. Thus,
an iterative procedure has to be employed
that produces configurations of I0 and I1

and terminates, when a configuration is con-
sistent with conditions 3 and 4. A good ini-
tal guess is I1 = ∅, because, as mentioned
above, quite a large fraction of the ai will
be zero at the minimum. Putting all these
considerations together leads to the follow-
ing algorithm:

1. Set K = n, I0 = {1, . . . , n}, I1 = ∅

2. Determine the minimum ~̂a =
(

aiK+1
, . . . , ain

)T
of E (eqn. 1) subject

to the constraints ∀i ∈ I0 : ai = 0 and
∀i ∈ I1 : (sign (ai) = si ∨ ai = 0) using
a simplified version of the active set

quadratic programming technique [3].

3. Update I0 → I0∪{i|ai = 0∧i ∈ I1} and

I1 → I1 \ {i|ai = 0 ∧ i ∈ I1}. Update ~̂a

and ~s by removing all the components
that have become 0.

4. Calculate

σ = max
i∈I0

(

sign
(

z+

i

)

· sign
(

z−i
)

·min(|z+

i |, |z−i |)
)

(5)

where z+

i = limai→0+
∂E
∂ai

and z−i =

limai→0−

∂E
∂ai

. If σ > 0, then condition
(3) is violated and the corresponding
ai 6= 0 at the minimum. Thus, update
I0 → I0 \ {ai}, I1 → I1 ∪ {ai}, decre-

ment K by one, add a component to ~̂a

and ~s → (~s| − sign
(

z+

i

)

) and goto step
2.

5. Return ~̂a, I0, and I1.

6. End.

In step 2, a simplification to the general
quadratic programming algorithm was used
as the ai are decoupled with respect to the
constraints.
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Figure 1: The basis vectors after 300 up-
dates. The vectors are ordered from top left
(greatest 〈|aµ

i |〉µ) to bottom right (smallest
〈|aµ

i |〉µ ) and the grayscales are individually
normalized.

4 Results

Training was performed on 48 natural im-
ages (people, animals, landscapes etc.).
Each unit had a receptive field of 13 × 13
pixels, the fields were fully overlapping. The
learning rate η for the basis update was ini-
tially 0.2 and decreased exponentially to 0.1
within 300 iterations of the outer loop. The
inner loop was repeated 100 times between
successive basis updates. λ was set to 0.5.

The resulting receptive fields (fig. 1) look
qualitatively similar to those obtained pre-
viously [6, 7, 8].

The proposed inner loop algorithm finds
the minimum of Eµ with a computational
effort that is equivalent to roughly 20 gradi-
ent descent steps once the basis vectors have
converged (it is a bit slower initially, which
is due to the fact that the randomly drawn
basis vectors at the beginning of the train-
ing do not constitute a sparse code). This
is not only beneficial to potential practical
applications such as image compression, but
it also substantially accelerates the learning
process, as can be seen in fig. 2. The ob-
served difference in Eµ is largely due to a
difference in sparseness: the proposed algo-
rithm produces a code with the same aver-
age reconstruction error as gradient descent.
However,for a given patch about 88 % of the

0 100 200 300 400
basis updates

20

40

60

80

E

Figure 2: Evolution of the mean error 〈Eµ〉µ
(averaged over 100 examples) in the course
of training. Dashed curve: the proposed
algorithm for the inner loop minimization.
Solid curve: gradient descent minimization
with the same amount of computational ef-
fort.

units are inactive, compared to the gradient
descent algorithm where that is the case for
only 6 % of the units. Moreover, fig. 2 in-
dicates that to reach the average value of
Eµ after 300 basis updates with the gradi-
ent descent minimiser takes approximately
20 iterations of the quadratic programming
algorithm.
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