
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/6269959

Exact Bayesian bin classification: A fast alternative to Bayesian classification

and its application to neural response analysis

Article in Journal of Computational Neuroscience · March 2008

DOI: 10.1007/s10827-007-0039-5 · Source: PubMed

CITATIONS

3
READS

45

2 authors:

Dominik Endres

Philipps University of Marburg

69 PUBLICATIONS 692 CITATIONS

SEE PROFILE

Peter Földiák

43 PUBLICATIONS 2,058 CITATIONS

SEE PROFILE

All content following this page was uploaded by Peter Földiák on 20 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/6269959_Exact_Bayesian_bin_classification_A_fast_alternative_to_Bayesian_classification_and_its_application_to_neural_response_analysis?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/6269959_Exact_Bayesian_bin_classification_A_fast_alternative_to_Bayesian_classification_and_its_application_to_neural_response_analysis?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik_Endres?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik_Endres?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Philipps_University_of_Marburg?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik_Endres?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Foeldiak?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Foeldiak?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Foeldiak?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Foeldiak?enrichId=rgreq-1aaa877a55707cef7b7222725545b284-XXX&enrichSource=Y292ZXJQYWdlOzYyNjk5NTk7QVM6OTkwMDM0NjczMDQ5NjZAMTQwMDYxNTY3NDc0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

J Comput Neurosci
DOI 10.1007/s10827-007-0039-5

Exact Bayesian bin classification: a fast alternative
to Bayesian classification and its application to neural
response analysis

D. Endres · P. Földiák

Received: 6 May 2005 / Revised: 6 November 2006 / Accepted: 16 April 2007
© Springer Science + Business Media, LLC 2007

Abstract We investigate the general problem of sig-
nal classification and, in particular, that of assign-
ing stimulus labels to neural spike trains recorded
from single cortical neurons. Finding efficient ways of
classifying neural responses is especially important in
experiments involving rapid presentation of stimuli. We
introduce a fast, exact alternative to Bayesian clas-
sification. Instead of estimating the class-conditional
densities p(x|y) (where x is a scalar function of the
feature[s], y the class label) and converting them to
P(y|x) via Bayes’ theorem, this probability is evaluated
directly and without the need for approximations. This
is achieved by integrating over all possible binnings of
x with an upper limit on the number of bins. Computa-
tional time is quadratic in both the number of observed
data points and the number of bins. The algorithm also
allows for the computation of feedback signals, which
can be used as input to subsequent stages of infer-
ence, e.g. neural network training. Responses of single
neurons from high-level visual cortex (area STSa) to
rapid sequences of complex visual stimuli are analysed.
Information latency and response duration increase
nonlinearly with presentation duration, suggesting that
neural processing speeds adapt to presentation speeds.

Action Editor: Alexander Borst

D. Endres (B) · P. Földiák
School of Psychology, University of St. Andrews,
St Andrews KY16 9JP, UK
e-mail: dme2@st-andrews.ac.uk

P. Földiák
e-mail: Peter.Foldiak@st-andrews.ac.uk

Keywords Classification · Exact Bayesian inference ·
Neural decoding

1 Introduction

Bayesian classification is a widely used method in many
fields of scientific inference and engineering. In this
paper we develop a new classification method and dem-
onstrate its usefulness for analysing signals recorded
from single cortical neurons. Classification in this con-
text involves selecting a time window. The neural signal
from this window is used for identifying the stimulus
that evoked the neural response. This identification is
necessary for the interpretation of the function of the
investigated neuron by the experimenters.

Traditionally, individual stimuli were presented well
isolated in time allowing easy separation of the
responses. The recently developed methods of applying
Rapid Serial Visual Presentation to single-cell neuro-
physiological experiments (Földiák et al. 2004; Keysers
et al. 2001) allow a more efficient use of the limited
experimental time, however, they made the task of
response separation significantly harder. The selection
of an optimal time window is more critical in these
experiments. This paper presents a method that is well
suited for selecting such optimal windows for stimulus
classification.

Suppose we wanted to determine whether an object
Ok belonged to any one of C classes. To do so, we
observe a vector of features �wk (which is in the fol-
lowing assumed to be a vector of real numbers), which
we hope to contain information necessary to assign a
class label yk to the object in question. Usually, due to
noise or incompleteness of the available information,

(2008) 24: 21 35–

/ Published online: 14 June 2007

this cannot be done with certainty. Hence, we try to
estimate the probability P(yk| �wk) that the object be-
longs to class yk ∈ {1, . . . , C}. A common method—
Bayesian classification—estimates the class-conditional
densities p(�w|y, �θy) (�θy are the parameters of the den-
sity model for class y) and then uses Bayes’ theorem to
predict

P(y| �w, �θ1, . . . , �θC) = p(�w|y, �θy)P(y)
∑

y′ p(�w|y′, �θy′)P(y′)
(1)

where P(y) is the probability of Ok belonging to class y
prior to observing �w.

The correct way—from a Bayesian perspective—to
do away with the dependency of the l.h.s. on the �θy, is
to integrate them out of the prediction:

P(y| �w, D) =
∫

�θ1

d�θ1 . . .

∫

�θC

d�θC P(y| �w, �θ1, . . . , �θC)p(�θ1, . . . , �θC|D)

(2)

p(�θ1, . . . , �θC|D) is probability density of the �θy given
previously observed data D [comprised of pairs
(�wk, yk)] and any other available prior information
regarding them (the implicit dependency on the model
class is omitted here and in the following).

Performing integrals of this type is generally very
difficult. Therefore, a variety of approximation meth-
ods for their evaluation have been derived in the past,
e.g. MAP (maximum a posteriori), ML (maximum like-
lihood, basically MAP with a uniform prior) , Laplace
approximation (where the posterior is approximated
by a Gaussian centred at its maximum; Gelman et al.
1995), Monte-Carlo simulations (i.e. inspired sampling;
Neal 1996) or variational techniques (Jordan et al.
1999). In the following, we will show how the problem
can be circumvented (at leat in part) by directly infer-
ring P(y| �w) from the data.

2 A simple model for P(y| �w)

Assume one had a multiset of K labelled feature vec-
tors D = {(�wk, yk)}. The classification task can then be
decomposed into two steps:

Step 1. Find a suitable mapping f (�w) �→ x, x ∈ [0, 1],
such that x contains all the information from
�w that pertains to the classification,

Step 2. Infer the probabilities P(y|x, D f), where
D f = {(xk, yk)} are the data after the �wk have
been mapped onto the xk through f (.).

While step 1 is by no means trivial, the following
arguments will focus mostly on step 2. It should be
noted, however, that step 1 is always possible (to any
given degree of accuracy): the most general information
which �w can contain about y is given by the probability
distribution P(y| �w). For C = 2, choose f (�w) �→ x such
that P(y = 1|x) = x. For C = 3, the possible probabil-
ity distributions can be represented by points inside a
2 dimensional simplex (i.e. a triangle). If the desired
accuracy is ε, then cover the triangle by smaller trian-
gles of width and height < ε, enumerate those small
triangles in some fashion (e.g. such that the proba-
bilities change as smoothly as possible between suc-
cessive triangles) and map this enumeration in an
order-preserving way onto x. Each possible value of x
then represents a probability distribution. The general-
isation of this procedure to any finite C is straightfor-
ward. While it may not be the best way of performing
f (�w) �→ x, it serves as an indication that this mapping
is always possible for a given ε. Ways of finding f (.) are
discussed in Section 10.1.

Since we will present an exact solution for step 2,
the BBCa (Bayesian bin classification algorithm), any
approximation error in the classification that might be
introduced through step 1 will be kept at a minimum.
Furthermore, in the decomposition suggested here, f (.)
can possibly be modelled in a simpler manner because
it no longer needs to deal with the mapping onto the
class labels.

2.1 A bin model for P(y|x)

To carry out step 2, the following model will be
employed:

Divide the interval [0, 1] by M points z j, so as to get
M + 1 bins (see Fig. 1). Within each bin, the probability
P(y|x) is assumed to be constant w.r.t. x. There are
C such probabilities per bin, denoted by c j

y = P(y|x ∈
(z j−1, z j]), where y is the class and j is the bin (bin j is
the interval between z j−1 and z j, bin 0 is the interval

x

z0 z10 1
Fig. 1 An example model. The interval between 0 and 1 is
divided into three bins at points z0 and z1. Within each bin
j ∈ {0, 1, 2}, x is mapped onto P(y|x) = c j

y, which are constant
within the bin. Two classes are possible, their probabilities are
indicated by the solid and dashed lines

22 J Comput Neurosci (2008) 24:21–35

between 0 and z0, hence bin M is the interval between
zM−1 and 1). This is not as restrictive as it may seem
at first, since it is possible to approximate any contin-
uous function with arbitrary accuracy by a piecewise
constant function, given that the number of bins is not
limited.1

The c j
y are normalised with respect to the classes

within their bin, i.e.

∀ j ∈ {0, . . . , M} :
∑

y

c j
y = 1

{c j
y} denotes the set of these x-conditional probabilities

in bin j.
For a given configuration of M,{z j} and {{c j

y}}, the
probability of the dataset then becomes (assuming that
the data points have been drawn independently of each
other):

P(D|{{c j
y}}, {z j}, M) =

∏

k

c jk
yk

(3)

where jk is the bin that contains xk = f (�wk). Once
observed, one can easily reorder the data points so that
xk < xk+1, i.e. the data is ordered according to xk, which
will be assumed from here on.

Classifying a new feature vector �w′ involves
evaluating

P(y′|x′, D f) = P(D′
f)

P(D f)
(4)

where D′
f is the data(multi)set with (x′ = f (�w′), y′)

added to it, i.e. D′
f = D f ∪ {(x′, y′)}. Assuming the

{{c j
y}} and the {z j} have already been marginalised, Eq.

(4) is equivalent to

P(y′|x′, D f) =
∑

M P(D′
f |M)P(M)

∑
M P(D f |M)P(M)

(5)

where P(M) is the prior probability for a model with
M bin boundaries in [0, 1]. The sums run over all
values of M which one chooses to include into the
calculation. This choice could be made (in the case of
uniform P(M)) by selecting those M that have a high
enough evidence P(D f |M) to contribute significantly
to Eq. (4). As y′ is the quantity to be determined, one
has to evaluate Eq. (4) for all possible values of y′
and then pick the one with the highest probability, to
minimise the chance of misclassification.

1Define fn(x) �→ f (ξ
n), where ξ is the greatest integer smaller

than x · n. Since f is continuous, limn→∞ fn(x) = f (x).

Thus, one needs to compute P(D f |M), i.e. the
evidence for a model with M bin boundaries:

P(D f |M)=
∫

d{z j}
∫

d{{c j
y}} p(D f , {{c j

y}}, {z j}|M)

=
∫

d{z j}
∫

d{{c j
y}} P(D f |{{c j

y}}, {z j}, M)

× p({{c j
y}}|{z j}, M)p({z j}|M) (6)

where
∫

d{z j} :=
∫ 1

0
dzM−1

∫ zM−1

0
dzM−2 . . .

∫ z1

0
dz0 (7)

∫

d{c j
y} :=

∫ 1

0
dc j

0

∫ 1

0
dc j

1 . . .

∫ 1

0
dc j

C−1δ(1−
C−1∑

y=0

c j
y) (8)

∫

d{{c j
y}} :=

∫

d{c0
y}

∫

d{c1
y} . . .

∫

d{cM
y } (9)

The way the integration boundaries are chosen in
Eq. (7) ensures that the ordering of the z j is maintained,
and the Dirac-delta function in Eq. (8) enforces nor-
malisation of the probabilities in bin j.

It is also possible, in a similar fashion, to determine
confidence intervals on the predicted probabilities, via

Var
[
P(y′|x′, D f , M)

]= P(D′′
f |M)

P(D f |M)
−

(
P(D′

f |M)

P(D f |M)

)2

(10)

where D′′
f is the data(multi)set with the point (x′, y′)

added twice.2

Since p({{c j
y}}|{z j}, M) and p({z j}|M) do not depend

on the data D f , they are prior densities which will be
assigned in the following way:

• p({z j}|M) depends on M only insofar as 0 ≤ j < M.
Furthermore, it will be assumed that z j ≤ z j+1, i.e.
the z j are ordered, but otherwise no preferences
for their locations in the interval [0, 1] will be
expressed in the prior. It will also be assumed that,
apart from the ordering, they are independent of
each other. The prior thus becomes p({z j}|M) =
∏

j p(z j), where p(z j) = pz = const > 0 if z j ≤ z j+1

and 0 otherwise.

2Var
[
(P(y′|x′, D f , M))

] = E
[
P(y′|x′)2

] − E
[
P(y′|x′)

]2, where
the expectations are w.r.t. the posterior of P(y′|x′). This posterior
is given by the integrand of Eq. (6) divided by Eq. (6). To
compute the expectation of P(y′|x′), multiply the posterior by
c

jx′
y′ , where jx′ is the bin containing x′ and integrate. By virtue of

Eq. (3), this is computationally equivalent to adding the point
(x′, y′) to the data(multi)set. Likewise, to compute the expecta-
tion of the square of P(y′|x′), add this point twice, thus yielding

the expectation of
(

c
jx′
y′

)2
.

23J Comput Neurosci (2008) 24:21–35

• p({{c j
y}}|{z j}, M) = ∏

j

∏
y p(c j

y), i.e. the prior
densities of the x-conditional probabilities in bin
j are independent of the locations of the bin
boundaries z j and independent of each other,
except for the constraint that the c j

y be normalised
w.r.t. the classes. Hence, it will be assumed that the
p(c j

y) = pc are constant and equal (subject to the
normalisation constraint).

3 The Bayesian bin classification algorithm

3.1 Computing p({{c j
y}}|{z j}, M)

The prior p({{c j
y}}|{z j}, M) has to be normalised w.r.t.

{{c j
y}}, i.e.

∫

d{{c j
y}}p({{c j

y}}|{z j}, M) = 1 (11)

Since the sets {c j
y} are assumed to be independent of

each other, the integration over each set can be per-
formed independently of the others. In the following,
the superscript j (which denotes the bin) will therefore
be dropped. As 0 ≤ cy ≤ 1, one needs to compute inte-
grals of the form

I(l0, . . . , lC−1) =
∫ 1

0
dc0(c0)

l0 . . .

∫ 1

0
dcC−1(cC−1)

lC−1×

× pC
c δ

⎛

⎝1 −
C∑

y=0

cy

⎞

⎠ (12)

where lc means the number of data points which belong
to class c, and the δ-function ensures that the set of
cy are always a probability distribution. This yields the
normalisation constant of a Dirichlet distribution (see
e.g. Hutter 2002)

I(l0, . . . , lC−1) = pC
c

∏
y ly!

(
∑

y ly + C − 1)! (13)

The integral over the prior then becomes:
∫

d{{c j
y}}p({{c j

y}}|{z j}, M) = (I(0, . . . , 0)pC
c)M+1 (14)

Hence, pc = (C − 1)! 1
C and the prior is

p({{c j
y}}|{z j}, M) = (C − 1)!M+1 (15)

4 Computing p({z j}|M)

This prior is subject to the normalisation constraint
∫

d{z j}p({z j}|M) = 1 (16)

Since p({z j}|M) is assumed to be constant,

p({z j}|M) = M! (17)

5 Computing the evidence

Now the evaluation of Eq. (6) can be continued.
Assume that one chose a particular binning of the in-
terval [0, 1], represented by the set {z j}. It then becomes
possible to carry out the integrations over the {{c j

y}}:

p(D f |{z j}, M) =
∫

d{{c j
y}}

× P(Df |{{c j
y}},{z j},M)

︸ ︷︷ ︸
Eq. (3)

p({{c j
y}}|{z j},M)

︸ ︷︷ ︸
Eq. (15)

(18)

Due to the assumed form of the prior and of the
model, this probability is a product, consisting of one
factor for each bin. Each factor is of the same form as
Eq. (13), the exponents of each cn being the number of
data points (in the following denoted by l j

n) belonging
to class n in the bin j, i.e. the posterior of the cn is a
Dirichlet distribution . Hence one finds

P(D f |{z j}, M) =
M∏

j=0

I(l j
0, . . . , l j

C−1)︸ ︷︷ ︸
Ik1,k2

(19)

where xk1, ..., xk2−1 are the data points in bin j.
What remains is the integration over all possible

configurations of bins:

P(D f |M) =
∫

d{z j}P(D f |{z j}, M) p
({z j}|M

)

︸ ︷︷ ︸
Eq. (17)

(20)

5.1 Integrating over {z j}

Note that the integrand of Eq. (20) is constant as long
as the z j move between data points. Only when a
bin boundary crosses over a data point does its value
change. Hence, this integral can be written as a sum.
Each summand is the product of the integrand and the
total volume occupied by the z j for that value of the
integrand. Let

x̂k,m := (xk − xk−1)
m

m! (21)

with x−1 = 0 and xK = 1. If the z j are distributed in
such a way that at most one z j lies between two adjacent
data points, then the total volume occupied by this
configuration is the product of the differences between
the two data points enclosing z j, i.e. the product of

24 J Comput Neurosci (2008) 24:21–35

the corresponding x̂k,1. In case there are several of
the z j between the same two adjacent data points, the
contribution to the volume will be x̂k,m, where m is the
number of z j found in this interval. This follows directly
from the ordering constraint imposed upon the z j.

Now assume M = 1. Equation (20) then becomes:

P(D f |M = 1) = M! ·
K∑

k=0

I0,k x̂k,1 Ik,K︸ ︷︷ ︸
Êk,1

(22)

For M = 2, it would be:

P(D f |M = 2) =M! ·
K∑

k=0

I0,k x̂k,2 Ik,K
︸ ︷︷ ︸

Êk,2

+ M! ·
K−1∑

k=0

I0,k x̂k,1

K∑

κ=k+1

Ik,κ Iκ,Kx̂κ,1
︸ ︷︷ ︸

Êκ,1
︸ ︷︷ ︸

Ênew
k,2 =αx̂k,1

.

(23)

Êk,m is the sub-evidence of a sub-model with m bin
boundaries (not counting those at 0 and 1) which
includes only the points xi ≥ xk−1, and α is the sum over
all sub-models from the previous M which include only
points to the right of xk. Therefore, when M = 2, the
evidence for M = 1 can be evaluated as well with lit-
tle extra computational overhead. Furthermore, while
computing P(D f |M = 1), one also evaluates the first
part of P(D f |M = 2), i.e. those configurations where
both z j lie between the same two data points. Then the
array Êk,2 can be reused for the computation of the
second part, where the z j are between different pairs
of data points. One can proceed in this fashion until
the desired M is reached (see Fig. 2). More generally:
when evaluating the contribution of a sub-model which
has m0 bin boundaries between xk and xk+1, and m bin

boundaries to the right of xk+1, then one can reuse α to
compute the contributions of all sub-models which have
m1 > m0 bin boundaries between xk and xk+1, because
they differ only by a factor x̂k,m0 (for m0 boundaries)
versus x̂k,m1 (for m1 boundaries).

Should M > K, then it is not possible to construct
submodels which have at least one data point between
adjacent z j. Thus, the iteration over M can be stopped
earlier. In pseudo-code:

1. For k :=0to K, m :=1to M: compute Êk,m:=Ik,Kx̂k,m

2. For m := 1 to M: initialise Em := ∑K
k=0 I0,k Êk,m

3. For m := 2 to min(M, K + 1), k := 0 to K + 1 − m:

a. For μ := m to M: reset Êk,μ := 0
b. For μ := m to M

i. Compute α := ∑K+2−m
κ=k+1 Êκ,μ−1 Ik,κ

ii. For ν := μ to M: add αx̂k,ν−μ+1 to Êk,ν

c. For μ := m to M: add I0,k Êk,μ to Eμ

4. return Em

This yields P(D f |m) = Em · m! for all 1 ≤ m ≤ M
(the factor m! is due to the prior over the {z j}, see
Eqs. (23) and (17). A close look at step 3(b)i reveals
that the computational complexity is O(K2 M2), be-
cause one expects M < K for real world applications,
or even M � K.

This way of organising the calculation is computa-
tionally similar to the sum-product algorithm for factor
graphs (Kschischang et al. 2001). The ‘messages’ passed
on from one m-level to the next are Êκ,μ−1, whereas
within one level, a sum over all the ‘messages’ from the
previous level is performed.

6 Comparison to other classification methods

The performances of three other classification meth-
ods, support vector machines (SVM), Gaussian process

Fig. 2 When evaluating the
evidence contribution of
sub-models with m + 1 bin
boundaries, one of which is
found between xk and xk+1,
then all contributions of
models with more than one
bin boundary between xk and
xk+1 can be evaluated reusing
α (see text). The arrows
indicate which sub-evidences
sum up to a sub-evidence for
more than m bin boundaries

25J Comput Neurosci (2008) 24:21–35

classification (GPC) and maximum-entropy binning
(MEB), were compared to that of the BBCa. SVMs
(Vapnik 1995, 1998) have enjoyed great popularity due
to their successes in many applications, e.g. handwrit-
ten digit recognition (Cortes and Vapnik 1995) or 3D
object recognition (Blanz et al. 1996). For the com-
parison presented here, libsvm 2.8 3 was used. This
package also includes a Python script which performs
data scaling and model selection for a C-SVM using a
radial basis function kernel (for details, see Hsu et al.
2005).

Gaussian processes were originally designed for
regression problems (MacKay 2003), for which analyt-
ical solutions exist. They can also be used for classi-
fication (Williams and Barber 1998), but in this case
the required integrations have to be carried out using
approximation techniques. We used the Monte-Carlo
approach implemented in the package fbm-2004-11-10 4

(Neal 1997).
Maximum-entropy binning (MEB) is a standard

neural decoding approach (Panzeri and Treves 1996;
Rolls et al. 1995). Here, the mapping f (�w) �→ x is
chosen such that x can take on only as many different
values as y. In sensory neurophysiological experiments,
it is common to discretise the respose of a cell (usually
the spike count in a given time window) into a number
of bins equal to the number of stimuli used. Further-
more, the entropy (Shannon 1948) of x must assume
its maximum possible value, i.e. all values of x have
to be equally likely. The rationale behind this second
requirement might be sought in the data processing
inequality (Cover and Joy 1991): if the entropy of x is
larger than or equal to the entropy of y, then perfect
decoding, i.e. finding a surjective function g(x) �→ y,
could be possible. In MEB, this function is determined
by estimating the class-conditional distributions P(x|y)

from the available samples, and, given that P(y) is
determined by the experimental setup, then converting
P(x|y) via Bayes’ rule into P(y|x). g(x) �→ y is then
chosen such that P(y|x) is maximised for all x.

Training and test data were generated by simulating
a neuron’s response to eight stimuli. The ‘strongest’
stimulus evoked 60 spikes/s, the ‘second strongest’ 40
spikes/s, the ‘weakest’ 15 spikes/s and the remaining
stimuli evoked 30 spikes/s. Responses were recorded
over a time window of 100 ms, during which the firing
rate did not change. The resulting average firing rate
was used as the input to the four algorithms. The classi-
fication target was the stimulus label. All stimuli were

3Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
4Available at http://www.gaussianprocess.org.

presented equally often. This rather simple scenario
was chosen so as to allow for an a-priori determination
of the expected classification performance limits.

Our algorithm was trained with a maximum number
of M=50 bin boundaries. Both a uniform prior over the
number of intersections M and a prior ∝ 1

M2 (i.e. the
prior probability for a model is inversely proportional
to the computational effort required to evaluate it)
were tried, they produced very similar results. For the
GPC, prior (hyper)parameters for the covariance func-
tion need to be chosen. Various settings were tried and
eventually a covariance function comprised of a linear
part and a squared-exponential part was chosen. The
linear part was given by a Gaussian prior with standard
deviation 10 and mean 0. The scale and relevance
parameters of the exponential part were Gaussian
with mean 0 and variances drawn from broad inverse-
gamma distributions with mean 20 and 5, respectively.5

Changing these prior parameters within two orders of
magnitude did not affect the classification performance
in any substantial way. As noted above, the SVM
package contained Python scripts to perform parameter
selection via cross-validation in an automated manner.

The average percentage of correctly classified stimuli
as a function of the trials per stimulus (i.e. the number
of times a response to a given stimulus appeared in the
training set) is shown in Fig. 3. For a given number of
trials per stimulus, each classifier was first trained on a
training data set, then its performance was evaluated on
a test data set containing 100 trials per stimulus. This
procedure was repeated on 100 different training/test
data sets to allow for an evaluation of means and
standard errors. Since all eight stimuli were equally
likely, one expects a performance of 12.5% based on
this information alone. If the response-generating dis-
tributions were known, the optimal performance as
predicted by Bayes’ rule would be ≈24.5%. All four
methods seem to converge towards this value, even
though GPC is doing notably worse than the other
three. For 1,000 trials per stimulus, BBCa and SVM
have virtually reached the theoretical optimum (not
shown). However, especially in the neurophysiologi-
cally relevant range of only a few available trials per
stimulus, the BBCa outperforms the three competitors.
This indicates that the BBCa is more suitable for neural
response classification than the other three. Moreover,
as detailed below, it allows for an exact evaluation
of the evidence Eq. (6), which is necessary if subse-
quent stages of Bayesian inference are to be conducted

5For details of the possible prior choices, the reader is referred to
the extensive documentation of the fbm-2004-11-10 package.

26 J Comput Neurosci (2008) 24:21–35

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.gaussianprocess.org

1 10 100
examples per class

12.5

15

17.5

20

22.5

24.5
%

 c
o

rr
ec

t
g

u
es

se
s

MEB
SVM
GPC
BBCa

Fig. 3 Comparison of the percentages of correctly classified stim-
uli as a function of the number of trials per stimulus. Stars: MEB,
circles: BBCa, squares: SVM, diamonds: GPC. Error bars are
standard errors computed from 100 repetitions. The theoretical
performance limits are 12.5% (uninformed guess based only
on prior knowledge of the stimulus distribution) and ≈24.5%
(best possible expected performance if the response generating
distributions were known). Especially in the neurophysiologically
relevant range of only a few available trials per stimulus, the
BBCa outperforms the other methods. For details, see text

without introducing approximation errors. This is an
additional advantage which SVM and MEB cannot
offer.

7 Application to neural spike data

One of the central questions in neuroscience is how
the activities of a large number of individual neurons
encode information. One of the best ways to study this
question is to measure the responses of single neurons
to a range of stimuli, and to determine their tuning
properties to certain aspects of these stimuli. Such
experimental tests are severely limited by the time
available for measuring signals from individual neu-
rons, so the available time needs to be used as effi-
ciently as possible. Recent results have shown that the
rapid, continuous presentation of stimuli is highly effi-
cient (Földiák et al. 2004; Keysers et al. 2001), even in
high-level visual cortical areas such as STSa. The rapid
serial visual presentation (RSVP) method, however,
introduces the problem of separating the responses due
to each of the rapidly presented stimuli. We need to
use response time windows that minimise the effect of
interference between subsequently presented stimuli
that are thus the most appropriate to linking or clas-
sifying the signal with the stimulus that caused this part
of the neural response. Using the Bayesian approach,
on the one hand, we characterise the temporal proper-

ties of the neural response by computing the posterior
distribution of the window parameters (i.e., latency and
response duration), as well as their expectations and
variances. On the other hand, by virtue of Eq. (4)
we can evaluate how well the stimulus labels can be
predicted from the responses by showing the relation-
ship between response magnitude and expected class
probabilities.

We used the BBCa to analyse RSVP spike train data
recorded from single cells of area STSa of the visual
cortex of monkeys (Keysers et al. 2001). The monkey
was presented with a continuous stream of complex
natural images which were drawn from a set of eight dif-
ferent images selected from a large image set for each
neuron and the resulting firing pattern was recorded.
This raw signal was turned into distinct samples, each
of which contained the spikes from −250 ms before to
500 ms after the stimulus onset. The temporal reso-
lution of the recording was 1 ms. Time indexes were
aligned to the stimulus onset. Here and in the following,
a ‘dataset’ denotes the collection of responses of a
cell to a given stimulus set. A ‘datapoint’ or ‘trial’ is
a stimulus-response tuple. The ‘target stimulus’ is the
stimulus identity to be determined from a given re-
sponse (i.e. the class label in the classification task). The
stimuli were presented multiple times in pseudorandom
order. Table 1 shows some of the characteristics of the
available data. Stimulus onset asynchrony (SOA) is the
time difference between the onsets of two consecutive
stimuli. In all datasets used here for analysis, the stimuli
were presented without gaps. Thus, SOA was equal to
the duration of the stimulus. There was one dataset
available for a given cell and SOA, but not all cells were
tested at all SOAs. The stimulus set for a given dataset
was chosen from 68 complex stimuli prior to recording.
For a more detailed description of the recording proce-
dure, see (Keysers 2000; Keysers et al. 2001).

Table 1 Number of cells and trials per stimulus for each of the
available stimulus onset asynchronies (SOA)

SOA (ms) No. of cells Avg. no. of trials per stimulus

222 40 24
112 42 48
56 40 92
42 28 136
28 40 190
14 28 353

SOA is the time difference between the onsets of two consecutive
stimuli. Average trials per stimulus are rounded to the next
nearest integer. There was one dataset available per cell and
SOA. Each dataset contained responses to a set of 8 stimuli.

27J Comput Neurosci (2008) 24:21–35

A conventional way of decoding such spike trains,
i.e. determine the stimuli from the neural resposes, is
to count spikes in a time window. Let this window be
denoted by f0(l, e), where l (latency) and e (end) are the
first and last time indexes included. The signal extracted
from a spike train s(ti), −250 ms ≤ ti ≤ 500 ms, s(ti) ∈
{0; 1} is then

x =
∑e

ti=l s(ti)

e − l + 1
(24)

i.e. the average firing rate. To find the expected window
by means of Bayesian analysis, it is necessary to evalu-
ate the posterior

P(f0(l, e)|D) = P(D| f0(l, e))P(f0(l, e))
∑

l

∑
e≥l P(D| f0(l, e))P(f0(l, e))

(25)

where D is the set of recorded spike trains. The sum-
mation in the denominator runs over all start/end times
which one chooses to include. All possible values of
l ≥ lmin and e ≤ emax were assumed to be equally likely
prior to observing data, with the restriction l ≤ e.

First, P(D| f0(l, e)) must be evaluated. To do so,
all spiketrains in the dataset were subjected to the
transformation [Eq. (24)], thus yielding D f . This trans-
formed dataset was then fed into the BBCa. Hence, the
evidences P(D|m, f0(l, e)) became available. Assuming
P(m, f0(l, e)) = P(m)P(f0(l, e)), i.e. the prior over the
number of bins is independent of the prior over the
window parameters, one can then write

P(D| f0(l, e)) =
M1∑

m=M0

P(D, m| f0(l, e))

=
M1∑

m=M0

P(D f |m)P(m) (26)

where M0 and M1 are the minimum and maximum
number of bin boundaries, respectively. In this appli-
cation, it was sufficient to choose M0 = 0 and M1 = 10,
because the maximum of P(D|m, f0(l, e)) was in most
cases between m = 1 and m = 7. The evidence P(D) is
obtained by summing the numerator over all l, e and m.

With this posterior, one can evaluate the
expectations

E
[
l
] =

∑

l

∑

e≥l

P(f0(l, e)|D)l (27)

Var
[
l
] =

∑

l

∑

e≥l

P(f0(l, e)|D)l2 − E
[
l
]2 (28)

and likewise for e and e − l + 1. This yields the expected
latency, window end and window width, along with
their variances.

7.1 Multiple datasets, joint and marginal expectations

In neurophysiological experiments, the number of stim-
ulus repetitions that can be achieved is often quite
limited. Thus, pooling data from different runs, possibly
recorded in response to different stimulus sets, and
perhaps even from different cells, is desirable. If the
parameters to be estimated can be expected to have
similar values across datasets, then Eq. (26) can be
replaced by

P({D j}| f0(l, e)) =
∏

j

M1∑

m j=M0

P(D f
j|m j)P(m j) (29)

where j runs over all datasets, assuming that the
datasets were drawn independently. This allows for the
computation of expectations of the joint distribution
which describes the population response.

When pooling data from the same cell recorded at
different presentation rates, it would seem sensible to
assume that the latencies should be more alike than the
response durations. Thus, one would compute a single
latency by marginalisation:

P({D j}, f0(l, .)) =
∏

j

∑

e j≥l

M1∑

m j=M0

P(D j|m j, f0(l, e j))

× P(m j)P(f0(l, e j)) (30)

P (f0(l, .)|{D j}) = P({D j}, f0(l, .))
∑

l P({D j}, f0(l, .))
(31)

where the denominator of the r.h.s. of Eq. (31) is the
evidence of this hypothesis (i.e. all datasets have the
same latency but different response durations). Thus

E
[
l
] =

∑

l

P(f0(l, .)|{D j})l (32)

Likewise, an evaluation of the overall response
duration can be performed by marginalising over the
latencies.

8 Results on artificial data

The BBCa was tested on artificial data first. Those were
generated by a simulated neuron having a response
latency of 100 ms and a response duration of 110 ms.
The firing probability, i.e. the probability of observ-
ing an event in a given time bin, was assumed to be
uniform, being 12 spikes/s for the ‘strongest’ stimulus,
10 spikes/s for the ‘second strongest’, 2 spikes/s for
the ‘weakest’ and 5 spikes/s for the rest. These values
resemble those found in the real data for a moderately

28 J Comput Neurosci (2008) 24:21–35

weakly responding cell. Therefore, the distribution of
the spike count during the response followed a binom-
inal (or approximately a Poisson) distribution. Firing
rates before the response latency and after the response
were 5 spikes/s. Fig. 4, top, shows the results.

Even for a dataset containing as little as ten trials
per stimulus (i.e. the number of times each stimulus
was presented), the expected window boundaries are
close to their real values. However, their standard
deviations are still high. As the number of trials per
stimulus grows, the standard deviations decrease and
the expected start/end positions move closer to their
real values. At 33 trials per stimulus, the standard
deviations are small enough to yield useful results in
neurophysiological experiments. From 100 trials per
stimulus onward, the correct window parameters are
determined by the BBCa almost with certainty.

10 100 1000
Trials per stimulus

0

50

100

150

200

250

300

W
in

do
w

 s
ta

rt
/e

nd
 p

os
iti

on
 [

m
s]

1 7 17 43
Number of data sets

0

50

100

150

200

250

300

W
in

do
w

 s
ta

rt
/e

nd
 p

os
iti

on
 [

m
s]

Fig. 4 Top: expected window start (circles) and end (squares) as
a function of the number of trials per stimulus. Bottom: expected
window start (circles) and end (squares) as a function of the num-
ber of datasets. Each dataset contained ten trials per stimulus.
Error bars are ±1 standard deviation. Averages computed over
100 runs

0 10 20 30
Firing rate [spikes/s]

0

0,05

0,1

0,15

0,2

0,25

P(
s

| x
)

strongest
second strongest
weakest
rest

0 10 20 30
Firing rate [spikes/s]

0

0,1

0,2

0,3

0,4

0,5

P(
s

| x
)

strongest
second strongest
weakest
rest

Fig. 5 Expected classification performances for two datasets
of different sizes. Top: 10 trials/stimulus. The only distinction
possible is that between ‘strongest’ and ‘weakest’. Bottom: 1,000
trials/stimulus. Here, 3 classes (‘strongest’, ‘second strongest’ and
‘weakest’) can be separated

The results for different numbers of datasets are
depicted in Fig. 4, bottom. Each dataset contained ten
trials per stimulus. The behaviour is similar to that
observed in Fig. 4, top. Performance at 7 datasets with
10 trials per stimulus each is comparable to 1 dataset
with 100 trial per stimulus. It appears that the total
number of available trials (i.e. number of trials per
stimulus in a dataset × number of datasets) is the
determining factor for the quality of the results.

Classification performance for two datasets of dif-
ferent sizes is plotted in Fig. 5. If a stimulus was to
be identified by the response it evoked, one would
pick the stimulus that maximises P(s|x), where s is the
stimulus and x is the response. At ten trials/stimulus,
the only distinction possible is that between ‘strongest’
(x > 10.8) and ‘weakest’. At 1,000 trials per stimulus, 3
classes can be separated: ‘weakest’ (x < 4.3), ‘second
strongest’ (6.0 ≤ x < 11.3) and ‘strongest’ (x ≥ 11.3).
The range 4.3 ≤ x < 6.0 would then be assigned to

29J Comput Neurosci (2008) 24:21–35

‘rest’. Note that those boundaries are in good agree-
ment with the firing rates that were used to generate
the responses.

9 RSVP results

9.1 How similar are cells?

The available data contained measurements for six dif-
ferent stimulus onset asynchronies (SOA): 14, 28, 42,
56, 112 and 222 ms. As explained above, here SOA
is the time interval between the onsets of two con-
secutive stimuli. In the following, the terms ‘informa-
tion latency’ (IL) and ‘information response duration’
(IRD) refer to the time indexes of the window start
and window length as determined by the BBCa. The
term ‘response latency’ (RL) denotes the time index at
which a response was detected by a method described
in hypothesis H2 (see below). Six hypotheses were
compared:

H1. Joint: for a given SOA, all cells have the same IL
and IRD. While previous results (see e.g. Keysers
et al. 2001) indicate that this assumption is
likely to be wrong, it served as a ‘null hypoth-
esis’ against which the other hypotheses were
compared.

H2. IL=RL: this is a popular hypothesis in neurophys-
iology. The response latency was determined on a
dataset by dataset basis by a method described in
Keysers et al. (2001): The spike train is smoothed
by a Gaussian of width 10 ms to yield a spike
density function. Its mean μ and standard devi-
ation σ are computed in a time window of 250 ms
directly prior to the stimulus onset. The RL is
defined as the first 1 ms time bin after which the
spike density function exceeds μ + 2.58σ for at

least 25 ms. Moreover, the response duration was
taken to be equal to the stimulus duration.

H3. Latency: for a given SOA, all cells have the same
IL, but possibly different IRDs. This assumption
allows for the computation of an overall IL as a
function of the presentation rate.

H4. Window length: for a given SOA, all cells have
the same IRD, but possibly different ILs. This
assumption allows for the computation of an
overall IRD as a function of the SOA.

H5. Single: for a given SOA, each cell has a different
IL and IRD.

H6. Latency per cell: each cell has an IL, which
does not change with the presentation rate. The
IRD may change with the presentation rate. This
hypothesis is similar to the one used in Keysers
et al. (2001) for the determination of the latency
of each cell.

For H2, only the datasets with SOAs 42–222 ms were
used, since the faster presentation rates do in most cases
not yield enough signal to allow for a determination of
the RL. Thus, two sets of comparisons were performed:
the first included H1, H2, H3, H4 and H5 (left half of
Table 2), the second H1, H3, H4, H5 and H6 (right half
of Table 2). H1 was used as the point of reference for
all others, i.e.

log10(evidence) gain of HX = log10(evidence of HX)

− log10(evidence of H1)

(33)

As expected, H1 is the most unlikely one. IL = RL
already results in a substantial evidence gain (being ≈
1047 times more probable). However, compared to the
remaining hypotheses, it can still safely be discarded,
indicating that this way of information extraction will
yield suboptimal results.

Table 2 Evidence comparisons for the different hypotheses described in the text. log10(evidence) gains are computed w.r.t. the
evidence of H1

42–222 ms 14–222 ms

Hypothesis log10(evidence) gain Hypothesis log10(evidence) gain

H1 0.00 H1 0.00
H2 47.5 H3 199.3
H3 167.6 H4 400.5
H4 301.9 H6 456.7
H5 367.1 H5 494.4

For the evidence comparisons in the left half of the table, only recordings with SOAs between 42–222 ms were used, because the shorter
presentation rates do in most cases not yield enough signal to allow for a determination of the RL. For the comparisons in the right
half, recordings at all available SOAs were included

30 J Comput Neurosci (2008) 24:21–35

0 50 100 150
firing rate [spikes/sec]

0

0.05

0.1

0.15

0.2

0.25

P(
 s

 |
 f

0(l
,e

)
)

best
2nd best
3rd best

Fig. 6 Expected classification performance for cell 144.4.
Three stimuli can be separated. Stimulus ranking was done by
P(s| f0(l, e)), i.e. the best stimulus is the one which can be identi-
fied with the greatest certainty given the response computed from
the spike train via f0(l, e). For details, see text

Comparing H3 and H4 shows that the IRDs seem to
be more alike than the ILs, indicating that the latency
depends more strongly on the cell than the response
duration does. This is consistent with H6 being more
probable than either of them. Nevertheless, as noted
above, they serve to compute the expected ILs and
IRDs across all cells.

H5, despite its additional degrees of freedom (one
IL and IRD per cell and SOA), appears to provide the
best explanation of the data. In other words, both IL
and IRD depend strongly on both the cell and the SOA.
This result should not be understood to mean that aver-
aging over cells will generally yield meaningless results,
but rather that when such averaging is performed (e.g.
to compute information flows), it is advisable to com-
pute the IL and IRD anew for each cell and SOA.

Figure 6 shows the expected classification perfor-
mance for a single cell at SOA 56 ms. Three stimuli
can be separated. Ranking was done by expected cer-
tainty of stimulus identification, i.e. by the probability
P(s| f0(l, e)) that stimulus s had been presented given
the response computed from the spike train via f0(l, e).
Thus, the ‘second best’ stimulus is not the one with the
second strongest response, but rather the one with the
weakest [this way of ranking stimuli is different from
(Keysers et al. 2001), where stimuli were ordered by
response strength]. This begets the question: is infor-
mation transmitted through not firing as well as through
firing, and if so, how much?

Moreover, note that even the ‘best’ stimulus can only
be classified correctly with a probability of at most
≈ 0.3. While this allows for a decision with greater cer-
tainty than a decision based solely on prior knowledge
(p = 0.125 for eight stimuli), it is still fairly low. In a

‘best’ vs ‘rest’ decision task, one would therefore always
choose ‘rest’. Thus, additional information is required
if the stimulus is to be identified. That that is possible
at SOA 56 ms has been shown in Keysers et al. (2001)
via human psychophysical experiments using the same
stimulus set as that employed for the single-cell record-
ings which yielded the data for the analysis presented
here.

9.2 Latencies and response durations

The overall ILs and IRDs computed via H3 and H4,
respectively, are shown in Fig. 7. In accordance with
previous results on the same data (Keysers et al. 2001),
the IRD increases with the SOA. For SOAs greater
than ≈50 ms, the IRD was found to be shorter than the

14 28 42 56 112 222
SOA [ms]

0

50

100

150

200
IR

D
 [

m
s]

14 28 42 56 112 222
SOA [ms]

50

100

150

la
te

nc
y

[m
s]

Fig. 7 Top: Expected IRDs ± one standard deviation, averaged
over all cells. The solid line marks the SOA. IRD is shorter
than the SOA when the latter is ≥56 ms, and longer for SOAs
≤46 ms. Bottom: Expected ILs ± one standard deviation (circles)
and average RLs (squares). Shorter stimuli appear to result in
a quicker information flow onset. For 42 and 14 ms SOA, data
were available only for a fraction of the cells that were tested at
the other SOAs

31J Comput Neurosci (2008) 24:21–35

SOA, this behaviour is reversed for shorter SOAs. This
appears at first contradictory to (Keysers et al. 2001),
where the response was reported to outlast the SOA by
≈60 ms. That might, however, be due to a difference in
method: in the aforementioned study, response offset
was defined as the start of the first 30 ms time window in
which all 1 ms bins failed a t-test (p > 0.05) performed
on the spike density functions of the best stimulus and
all other stimuli together. In contrast, the approach
presented here calculates the expected response length
by averaging over all possible windows weighted by
their classification performance. Therefore, it will tend
to exclude parts of the response which, while they may
still contain some information about the stimulus, will
decrease the signal-to-noise ratio compared to the ‘bet-
ter’ parts available. Thus, the windows can be expected
to be somewhat shorter.

The IL seems to increase with the SOA, too. For
SOA = 42 and 14 ms recordings were made only on a
subset of the available cells, this might offer an expla-
nation for the slight increase of the IL at 41 ms SOA
compared to 56 ms SOA. Nevertheless, the overall
trend of the IL is still clearly discernible. The large stan-
dard deviation of the IL at 14 ms SOA also indicates
that at this very high presentation rate, classification
information in the response becomes increasingly hard
to localise.

10 Conclusion

10.1 Algorithm

The BBCa exactly computes evidences and expected
classification probabilities with a computational effort
of O(K2 M2), where K is the number of data points and
M + 1 is the number of bins. This is significantly faster
than a naïve approach of simply trying all possible
permutations of the bin boundaries between the data
points, which would take O(KM). This acceleration is
accomplished by reusing intermediate results in a way
similar to dynamic programming (Bertsekas 2000) or
the sum-product algorithm (Kschischang et al. 2001).
Moreover, it yields the evidence of the data given the
considered model class, which is here quantified by M,
the number of bin boundaries. This evidence, which
is required if further stages of inference are to be
performed, is usually not available when using methods
that compute the class-conditional probabilities first
and convert them afterwards into the probabilities of
the class labels via Bayes’ theorem.

Note that the expected probabilities [Eq. (4)] are, by
virtue of Eqs. (6) and (21) polynomials of order M in

x: for example, Eq. (23) is quadratic. The coefficients
of these polynomials change whenever x passes over a
data point, in such a way that P(y|x) remains continu-
ous. Thus, one could also look at the BBCa as a form of
piecewise Bayesian polynomial interpolation.

As mentioned above, finding a suitable mapping
from the feature vector onto a scalar, f (�w) �→ x, is gen-
erally not trivial. Most likely, exact inference of f (�w)

will not be possible, and thus an approximation scheme
needs to be employed. No matter which technique one
decides to try, it will usually be necessary to evaluate a
quantity proportional to

p(f (�w)|D) (34)

i.e. Eq. (25) with f0(l, e) replaced by f (�w). The
denominator of Eq. (25) will probably be intractable,
but the numerator is readily accessible, once a prior
over the possible functions has been chosen. Then, a
Monte-Carlo technique can be applied to determine
e.g. the expected f (�w).

Another possibility, which might speed up the
inference process, is to find the maximum of Eq. (34)
w.r.t. f (�w) via a gradient-based technique. Lets assume
f (�w) = f (�w, �θ), where �θ is a vector of parameters that
governs the exact form of f (�w, �θ). Since Eq. (6) is a
polynomial in the xk, its gradient w.r.t. the xk can be
evaluated by an algorithm similar to the BBCa. Thus,
using the chain rule,

∇�θ log(p(f (�w, �θ)|D)) =
K−1∑

k=0

∂ log(P(D| f (�w, �θ)))

∂xk

× ∇�θ f (�wk, �θ) + ∇�θ log(p(�θ))

(35)

∂ log(P(D| f (�w,�θ)))

∂xk
can, by virtue of Eq. (26), be computed

via the derivative of Eq. (6) w.r.t. xk. p(�θ) is the prior
of �θ . ∇�θ f (�wk, �θ) depends on the exact functional form
of f (�w, �θ). Assuming, for instance, that it is a feed-
forward neural network with a single output, then �wk

would be the vector of inputs for the k-th example,
xk the resulting output and �θ stands for the weights.
∇�θ f (�wk, �θ) could then be computed by some variant of
the backpropagation algorithm (Rumelhart et al. 1986),
and thus gradient ascent on ∇�θ log(p(f (�w, �θ)|D))

becomes feasible. Once the weights maximising the
posterior have been determined, refinements are of
course possible, such as using a Laplace approximation
for the weight posterior, or Monte-Carlo techniques.
The important point is that, since a feedforward net-
work with sigmoid transfer functions can model any
continuous mapping onto a scalar to any desired degree
of accuracy given that the number of hidden units is

32 J Comput Neurosci (2008) 24:21–35

allowed to grow (Cybenko 1989), one might hope that
this approach could in principle solve any classification
task for which f (�w, �θ) can be reasonably well approxi-
mated by a continuous function.

The applicability of the BBCa for the analysis of
neural spike train data has been demonstrated. It yields
useful results even when only ≈10–100 trials per stim-
ulus are available, which can usually be accomplished
in recordings of single cells. Thus, analyses can be
conducted not only on a population level, but also on
a cell by cell basis.

10.2 STSa neuron populations adapt their processing
speed to the presentation rate

In Section 9.2, we described a quasi-monotonic increase
of IL and IRD with the SOA. This may suggest that
the visual system speeds up the processing of stimuli
in the fast presentation (low SOA) conditions, i.e. the
shorter the presentation time, the faster the informa-
tion flow onset. Alternatively, it might simply be due
to an increased overlap of the neural responses in
the fast conditions. A third possible explanation may
involve feedback. We will argue against these alter-
native explanation, which are not supported by our
analysis.

If response duration were longer than SOA then
responses to subsequent stimuli would overlap in time.
The overlapping response from the randomised previ-
ous stimulus would be noise for the task of determining
the identity of the current stimulus. For small over-
laps, this noise would most affect the early part of the
response. An optimal window could then be expected
to start after the end of such interference thus the IL
should increase as SOA decreases. This is not what we
observe in our results (see Section 9.2).

If response overlap explained the IL shift then one
would expect to find a gradual increase of stimulus
information before the IL. In contrast, we observe a
sudden onset. In Fig. 8 the logarithm of the evidence
[Eq. (26)] divided by the number of data points is
plotted as a function of e − IL, where e − l = 10 ms, i.e.
the log evidence for a 10 ms sliding window (thin dotted
lines) and also its running average over 11 ms (thick
lines). This quantity will be high if good classification
is possible, and low otherwise. Thus its value indicates
how much information the spike count carries about the
stimulus. The log evidence values have been aligned
so that their average in the interval −250 ms ≤ e −
IL ≤ −150 ms is 0. The responses in this time interval
should contain no information about the stimulus and
can thus provide baseline values for the curves. Note
that the rising slopes which indicate the onset of the

-200 -100 0 100 200 300
e-IL [ms]

0

0,005

0,01

0,015

lo
g(

ev
id

en
ce

)
pe

r
da

ta
 p

oi
nt 222 ms

112 ms
56 ms

-200 -100 0 100 200 300
e-IL [ms]

0

0,005

0,01

0,015

lo
g(

ev
id

en
ce

)
pe

r
da

ta
 p

oi
nt 42 ms

28 ms
14 ms

Fig. 8 log(P(D f | f0(e − 10 ms, e)) per data point, i.e. log
evidence per data point in a sliding time window of length 10
ms (thin dotted lines) and their running averages in an 11 ms
window (thick lines). Values are aligned so that the average for
e − IL < −150 ms are zero. There is no indication of stimulus-
related information when e < IL. The arrows indicate the end of
the optimal time window for stimulus discrimination. Some infor-
mation seems to be transmitted after that, but including this latter
part of the response would reduce classification performance

information flow are almost perfectly aligned with each
other for SOAs 222, 112 and 56 ms. Since the IL at
SOA 222 ms is ≈13 ms larger than those at SOA
112 and 56 ms, this indicates that the cell population
really begins transmitting later at the longest SOA.
The situation is similar for the three shorter SOAs.
Even though the rising slopes for 42 and 28 ms are
not perfectly aligned, their temporal offset (≈5.5 ms) is
smaller than ≈7 ms, which is the difference in their ILs.
This is true to an even stronger degree for the shortest
SOA: IL(SOA = 28 ms) − IL(SOA = 14 ms) ≈ 33 ms,
yet their rising slopes are within a few ms of each other.

33J Comput Neurosci (2008) 24:21–35

We will now examine the feedback hypothe-
sis. Feedback connections both within and between
areas is a prominent feature of cortical organisation.
Experiments with artificial neural networks (Endres
and Földiák 1999; Endres 2006; Földiák 1990; Harpur
and Prager 2000) show that lateral feedback connec-
tions can give rise to sparse, almost factorial neural
codes. Such codes facilitate pattern recognition and are
consistent with the observed properties of neurons in
primary visual cortex. Feedback processing must have
implications for the time course of neural response, as
synaptic delays limit the minimal time for convergence.
It is unlikely that the later processing stages would
wait until the earlier ones have converged, i.e. there
would be a signal arriving in higher areas even though
the lower areas are still busy making sense of their
input. This early signal could convey some informa-
tion about the stimulus but not as much as the later
part which would become available if the stimulus was
presented for long enough. There is no evidence for
this type of signal improvement in Fig. 8. This result
is consistent with Oram and Perrett (1992); Thorpe and
Imbert (1989), who argued that under these conditions
information flow from retinal output to STSa has to
be predominantly feedforward in order to achieve the
observed short latencies.

As noted above, IRD < SOA if SOA > ≈50 ms.
Thus, for longer stimuli, the visual system should be
able to separate the responses to successive stimuli,
because IRD is the duration of the response needed
for best stimulus discrimination. This is no longer the
case for the shorter SOAs: here responses to stimuli
will begin to overlap, and thus optimal classification
performance can no longer be attained.

One possible mechanism that might explain the
observed variations in IL and IRD is threshold adap-
tation or, to the same end, residual activation: sup-
pose the firing threshold of the cell increased with
SOA. Then it would begin to fire sooner as the SOA
decreases, and also longer w.r.t. SOA. It is currently
unclear what might bring about such an adaptation. But
if one assumes that the cell behaves to some degree like
a ‘leaky integrator’, then in the shorter SOA conditions,
when it is exposed to a ‘good’ stimulus, there might still
be some activation left from its last presentation. This
activation would have ‘leaked’ out of the cell had the
SOA been longer.

As shown in Fig. 6, the probability of correctly
identifying the stimulus given the response computed
from the spike train via f0(l, e) does not exceed 0.3
(this result is of course conditioned on the cell and
the stimulus set). The cell from whose responses this
classification graph was computed is a fairly average

specimen of the population that was sampled. It is thus
evident, that even for a stimulus set as limited as the one
used in this experiment, more information is required
to identify the stimulus with reasonable certainty (say,
99%). This information would become available if one
observed not the activity of a single cell, but that of a
population. As demonstrated in Földiák (1993); Oram
et al. (1998), combining the signals of a few cells via
Bayes’ theorem on the assumption that their responses
(given the stimulus) are conditionally independent can
yield the desired increase of certainty.

Acknowledgements We would like to thank Dengke Xiao and
David Perrett for making the data available to us. We would
also like to thank Mike Oram and Johannes Schindelin for useful
discussions and the anonymous reviewers for helpful criticisms of
this manuscript. D. Endres was supported for a part of this project
by the MRC Special Training Fellowship in Bioinformatics. P.
Földiák was supported for parts of this project by the BBSRC
and the Albert Szent-Györgyi Fellowship, Hungary.

References

Bertsekas, D. P. (2000). Dynamic programming and optimal
control. Athena Scientific.

Blanz, V., Schölkopf, B., Bülthoff, H. C. B. V. V., & Vetter, T.
(1996). Comparison of view-based object recognition algo-
rithms using realistic 3D models. In C. von der Malsburg,
W. von der Seelen, J. C. Vorbrüggen & B. Sendhoff (Eds.),
Artificial neural networks—ICANN96 (pp. 251–256). Berlin:
Springer.

Cortes, C., & Vapnik, V. (1995). Support vector networks.
Machine Learning, 20, 273–297.

Cover, T. M., & Joy, T. A. (1991). Elements of information theory.
New York: Wiley.

Cybenko, G. (1989). Approximations by superpositions of a
sigmoidal function. Mathematics of Control, Signals and
Systems, 2, 304–314.

Endres, D., & Földiák, P. (1999). Quadratic programming for
learning sparse codes. In Proceedings of the ninth interna-
tional conference on artificial neural networks (ICANN99),
IEE Conference Publication No. 470 (pp. 593–596). London.
Institution of Electrical Engineers.

Endres, D. M. (2006). Bayesian and information-theoretic tools
for neuroscience. Ph.D. diss., University of St. Andrews,
Scotland, UK.

Földiák, P. (1990). Forming sparse representations by local anti-
Hebbian learning. Biological Cybernetics, 64, 165–170.

Földiák, P. (1993). The ‘Ideal Homunculus’: Statistical infer-
ence from neural population responses. In F. Eeckman &
J. Bower (Eds.), Computation and neural systems (pp. 55–
60). Norwell, MA: Kluwer.

Földiák, P., Xiao, D., Keysers, C., Edwards, R., & Perrett, D. I.
(2004). Rapid serial visual presentation for the determina-
tion of neural selectivity in area STSa. Progress in Brain
Research, 144, 107–116.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data Analysis. Boca Raton: Chapman & Hall.

34 J Comput Neurosci (2008) 24:21–35

Harpur, G. F., & Prager, R. W. (2000). Experiments with
low-entropy neural networks. In R. Baddeley, P. Hancock &
P. Földiák (Eds.), Information theory and the brain,
Chap. 5 (pp. 84–100). New York: Cambridge University
Press.

Hsu, C., Chang, C., & Lin, C. (2005). A practical guide to
support vector classification. Retrieved at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm/.

Hutter, M. (2002). Distribution of mutual information. In
Advances in neural information processing systems 14
(pp. 339–406). Cambridge, MA: MIT Press.

Jordan, M., Ghahramani, Z., Jaakkola, T., & Saul, L. (1999). An
introduction to variational methods for graphical models.
Machine Learning, 37, 183–233

Keysers, C. (2000). The speed of sight. Ph.D. diss., School of
Psychology, University of St. Andrews, UK

Keysers, C., Xiao, D., Földiák, P., & Perrett, D. I. (2001).
The speed of sight. Journal of Cognitive Neuroscience, 13,
90–101.

Kschischang, F., Frey, B., & Loeliger, H. A. (2001). Factor graphs
and the sum-product algorithm. IEEE Transactions on
Information Theory, 47, 498–519.

MacKay, D. J. C. (2003). Information theory, inference and learn-
ing algorithms. New York: Cambridge University Press.

Neal, R. M. (1997). Monte Carlo implementation of Gaussian
process models for Bayesian regression and classification.
Technical report 9702, Dept. of Computer Science, Univer-
sity of Toronto.

Neal, R. (1996). Lecture notes in statistics: Bayesian learning for
neural networks, Vol. 118. New York: Springer.

Oram, M. W., Földiák, P., Perrett, D. I., & Sengpiel, F. (1998).
The ‘Ideal Homunculus’: Decoding neural population
signals. Trends in Neuroscience, 21, 259–265.

Oram, M. W., & Perrett, D. I. (1992). Time course of neural
responses discriminating different views of the face and
head. Journal of Neurophysiology, 68, 70–84.

Panzeri, S., & Treves, A. (1996). Analytical estimates of limited
sampling biases in different information measures. Network:
Computation in Neural Systems, 7, 87–107.

Rolls, E., Critchley, H., & Treves, A. (1995). The representation
of olfactory information in the primate orbitofrontal cortex.
Journal of Neurophysiology, 75, 1982–1996.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learn-
ing internal representations by error propagation. In D.
Rumelhart, J. McClelland & the PDP research group
(Eds.), Parallel distributed processing: explorations in the
microstructure of cognition (pp. 318–362). Cambridge, MA:
MIT Press.

Shannon, C. E. (1948). The mathematical theory of communica-
tion. Bell Systems Technical Journal, 27, 379–423, 623–656.

Thorpe, S., & Imbert, M. (1989). Biological constraints on
connectionist modelling. In R. Pfeifer, Z. Schreter &
F. Fogelman-Souli’e (Eds.) Connectionism in perspective
(pp. 63–93). Elsevier.

Vapnik, V. (1995). The nature of statistical learning theory. New
York: Springer.

Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
Williams, C. K. I., & Barber, D. (1998). Bayesian classifica-

tion with Gaussian processes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20, 1342–1351.

35J Comput Neurosci (2008) 24:21–35

View publication statsView publication stats

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.researchgate.net/publication/6269959

	Exact Bayesian bin classification: a fast alternative to Bayesian classification and its application to neural response analysis
	Abstract
	Introduction
	A simple model for P(y|)
	A bin model for P(y|x)

	The Bayesian bin classification algorithm
	Computing p({{cyj}}|{zj},M)

	Computing p({zj}|M)
	Computing the evidence
	Integrating over {zj}

	Comparison to other classification methods
	Application to neural spike data
	Multiple datasets, joint and marginal expectations

	Results on artificial data
	RSVP results
	How similar are cells?
	 Latencies and response durations

	Conclusion
	Algorithm
	STSa neuron populations adapt their processing speed to the presentation rate

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

