
Interpreting the Neural Code with
Formal Concept Analysis

Dominik Endres, Peter Földiák
School of Psychology,University of St. Andrews

KY16 9JP, UK
{dme2,pf2}@st-andrews.ac.uk

Abstract

We propose a novel application of Formal Concept Analysis (FCA) to neural de-
coding: instead of just trying to figure out which stimulus was presented, we
demonstrate how to explore the semantic relationships in the neural representation
of large sets of stimuli. FCA provides a way of displaying and interpreting such
relationships via concept lattices. We explore the effects of neural code sparsity on
the lattice. We then analyze neurophysiological data from high-level visual corti-
cal area STSa, using an exact Bayesian approach to construct the formal context
needed by FCA. Prominent features of the resulting concept lattices are discussed,
including hierarchical face representation and indications for a product-of-experts
code in real neurons.

1 Introduction

Mammalian brains consist of billions of neurons, each capable of independent electrical activity.
From an information-theoretic perspective, the patterns of activation of these neurons can be un-
derstood as the codewords comprising the neural code. The neural code describes which pattern of
activity corresponds to what information item. We are interested in the (high-level) visual system,
where such items may indicate the presence of a stimulus object or the value of some stimulus at-
tribute, assuming that each time this item is represented the neural activity pattern will be the same
or at least similar. Neural decoding is the attempt to reconstruct the stimulus from the observed pat-
tern of activation in a given population of neurons [1, 2, 3, 4]. Popular decoding quality measures,
such as Fisher’s linear discriminant [5] or mutual information [6] capture how accurately a stimu-
lus can be determined from a neural activity pattern (e.g., [4]). While these measures are certainly
useful, they tell us little about the structure of the neural code, which is what we are concerned
with here. Furthermore, we would also like to elucidate how this structure relates to the represented
information items, i.e. we are interested in the semantic aspects of the neural code.

To explore the relationship between the representations of related items, Földiák [7] demonstrated
that a sparse neural code can be interpreted as a graph (a kind of ”semantic net”). In this inter-
pretation, the neural responses are assumed to be binary (active/inactive). Each codeword can then
be represented as a set of active units (a subset of all units). The codewords can now be partially
ordered under set inclusion: codeword A ≤ codeword B iff the set of active neurons of A is a sub-
set of the active neurons of B. This ordering relation is capable of capturing semantic relationships
between the represented information items. There is a duality between the information items and
the sets representing them: a more general class corresponds to a smaller subset of active neurons,
and more specific items are represented by larger sets [7]. Additionally, storing codewords as sets is
especially efficient for sparse codes. The resulting graphs (lattices) are an interesting representation
of the relationships implicit in the code.



We would also like to be able to represent how the relationship between sets of active neurons trans-
lates into the corresponding relationship between the encoded stimuli. These observations can be
formalized by the well developed branch of mathematical order theory called Formal Concept Anal-
ysis (FCA) [8, 9]. In FCA, data from a binary relation (or formal context) is represented as a concept
lattice. Each concept has a set of formal objects as an extent and a set of formal attributes as an in-
tent. In our application, the stimuli are the formal objects, and the neurons are the formal attributes.
The FCA approach exploits the duality of extensional and intensional descriptions and allows to
visually explore the data in lattice diagrams. FCA has shown to be useful for data exploration and
knowledge discovery in numerous applications in a variety of fields [10, 11].

We give a short introduction to FCA in section 2 and demonstrate how the sparseness (or denseness)
of the neural code affects the structure of the concept lattice in section 3. Section 4 describes the
generative classifier model which we use to build the formal context from the responses of neurons
in the high-level visual cortex of monkeys. Finally, we discuss the concept lattices so obtained in
section 5.

2 Formal Concept Analysis

Central to FCA[9] is the notion of the formal context K := (G, M, I), which is comprised of a set
of formal objects G, a set of formal attributes M and a binary relation I ⊆ G×M between members
of G and M . In our application, the members of G are visual stimuli, whereas the members of M
are the neurons. If neuron m ∈ M responds when stimulus g ∈ G is presented, then we write
(g, m) ∈ I or gIm. It is customary to represent the context as a cross table, where the row(column)
headings are the object(attribute) names. For each pair (g,m) ∈ I , the corresponding cell in the
cross table has an ”x”. Table 1, left, shows a simple example context.

n1 n2 n3
monkeyFace × ×
monkeyHand ×
humanFace ×

spider ×

concept extent (stimuli) intent (neurons)
0 ALL NONE
1 spider n3
2 humanFace monkeyFace n1
3 monkeyFace monkeyHand n2
4 monkeyFace n1 n2
5 NONE ALL

Table 1: Left: a simple example context, represented as a cross-table. The objects (rows) are 4 visual
stimuli, the attributes (columns) are 3 (hypothetical) neurons n1,n2,n3. An ”x” in a cell indicates that
a stimulus elicited a response from the corresponding neuron. Right: the concepts of this context.
Concepts are lectically ordered [9]. Colors correspond to fig.1.

Define the prime operator for subsets A ⊆ G as A′ = {m ∈M |∀g ∈ A : gIm} i.e. A′ is the set of
all attributes shared by the objects in A. Likewise, for B ⊆M define B′ = {g ∈ G|∀m ∈ B : gIm}
i.e. B′ is the set of all objects having all attributes in B.

Definition 2.1 [9] A formal concept of the context K is a pair (A, B) with A ⊆ G, B ⊆ M such
that A′ = B and B′ = A. A is called the extent and B is the intent of the concept (A, B). IB(K)
denotes the set of all concepts of the context K.

In other words, given the relation I , (A, B) is a concept if A determines B and vice versa. A and B
are sometimes called closed subsets of G and M with respect to I . Table 1, right, lists all concepts
of the context in table 1, left. One can visualize the defining property of a concept as follows: if
(A, B) is a concept, reorder the rows and columns of the cross table such that all objects in A are in
adjacent rows, and all attributes in B are in adjacent columns. The cells corresponding to all g ∈ A
and m ∈ B then form a rectangular block of ”x”s with no empty spaces in between. In the example
above, this can be seen (without reordering rows and columns) for concepts 1,3,4. For a graphical
representation of the relationships between concepts, one defines an order IB(K):

Definition 2.2 [9] If (A1, B1) and (A2, B2) are concepts of a context, (A1, B1) is a subconcept of
(A2, B2) if A1 ⊆ A2 (which is equivalent to B1 ⊇ B2). In this case, (A2, B2) is a superconcept of
(A1, B1) and we write (A1, B1) ≤ (A2, B2). The relation ≤ is called the order of the concepts.



It can be shown [8, 9] that IB(K) and the concept order form a complete lattice. The concept lattice
of the context in table 1, with full and reduced labeling, is shown in fig.1. Full labeling means that
a concept node is depicted with its full extent and intent. A reduced labeled concept lattice shows
an object only in the smallest (w.r.t. the concept order of definition 2.2) concept of whose extent
the object is a member. This concept is called the object concept, or the concept that introduces
the object. Likewise, an attribute is shown only in the largest concept of whose intent the attribute
is a member, the attribute concept, which introduces the attribute. The closedness of extents and
intents has an important consequence for neuroscientific applications. Adding attributes to M (e.g.
responses of additional neurons) will very probably grow IB(K). However, the original concepts
will be embedded as a substructure in the larger lattice, with their ordering relationships preserved.

Figure 1: Concept lattice computed from the context in table 1. Each node is a concept, arrows
represent superconcept relation, i.e. an arrow from X to Y reads: X is a superconcept of Y . Colors
correspond to table 1, right. The number in the leftmost compartment is the concept number. Middle
compartment contains the extent, rightmost compartment the intent. Left: fully labeled concepts,
i.e. all members of extents and intents are listed in each concept node. Right: reduced labeling.
An object/attribute is only listed in the extent/intent of the smallest/largest concept that contains it.
Reduced labeling is very useful for drawing large concept lattices.

The lattice diagrams make the ordering relationship between the concepts graphically explicit: con-
cept 3 contains all ”monkey-related” stimuli, concept 2 encompasses all ”faces”. They have a com-
mon child, concept 4, which is the ”monkeyFace” concept. The ”spider” concept (concept 1) is
incomparable to any other concept except the top and the bottom of the lattice. Note that these re-
lationships arise as a consequence of the (here hypothetical) response behavior of the neurons. We
will show (section 5) that the response patterns of real neurons can lead to similarly interpretable
structures.

From a decoding perspective, a fully labeled concept shows those stimuli that have activated at least
the set of neurons in the intent. In contrast, the stimuli associated with a concept in reduced labeling
will activate the set of neurons in the intent, but no others. The fully labeled concepts show stimuli
encoded by activity of the active neurons of the concept without knowledge of the firing state of the
other neurons. Reduced labels, on the other hand show those stimuli that elicited a response only
from the neurons in the intent.

3 Concept lattices of local, sparse and dense codes

One feature of neural codes which has attracted a considerable amount of interest is its sparseness.
In the case of a binary neural code, the sparseness of a codeword is inversely related to the fraction of
active neurons. The average sparseness across all codewords is the sparseness of the code [12, 13].
Sparse codes, i.e. codes where this fraction is low, are found interesting for a variety of reasons:
they offer a good compromise between encoding capacity, ease of decoding and robustness [14],
they seem to be employed in the mammalian visual processing system [15] and they are well suited
to representing the visual environment we live in [15, 16]. It is also possible to define sparseness
for graded or even continuous-valued responses (see e.g. [17, 4, 13]). To study what structural



effects different levels of sparseness would have on a neural code, we generated random codes, i.e.
each of 10 stimuli was associated with randomly drawn responses of 10 neurons, subject to the
constraints that the code be perfectly decodable and that the sparseness of each codeword was equal
to the sparseness of the code. Fig.2 shows the contexts (represented as cross-tables) and the concept
lattices of a local code (activity ratio 0.1), a sparse code (activity ratio 0.2) and a dense code (activity
ratio 0.5).
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Figure 2: Contexts (represented as cross-tables) and concept lattices for a local, sparse and dense
random neural code. Each context was built out of the responses of 10 (hypothetical) neurons
to 10 stimuli. Each node represents a concept, the left(right) compartment contains the number
of introduced stimuli(neurons). In a local code, the response patters to different stimuli have no
overlapping activations, hence the lattice representing this code is an antichain with top and bottom
element added. Each concept in the antichain introduces (at least) one stimulus and (at least) one
neuron. In contrast, a dense code results in a lot of concepts which introduce neither a stimulus nor
a neuron. The lattice of the dense code is also substantially longer than that of the sparse and local
codes.

The most obvious differences between the lattices is the total number of concepts. A dense code,
even for a small number of stimuli, will give rise to a lot of concepts, because the neuron sets repre-
senting the stimuli are very probably going to have non-empty intersections. These intersections are
potentially the intents of concepts which are larger than those concepts that introduce the stimuli.
Hence, the latter are found towards the bottom of the lattice. This implies that they have large intents,
which is of course a consequence of the density of the code. Determining these intents thus requires
the observation of a large number of neurons, which is unappealing from a decoding perspective.
The local code does not have this drawback, but is hampered by a small encoding capacity (maximal
number of concepts with non-empty extents): the concept lattice in fig.2 is the largest one which can
be constructed for a local code comprised of 10 binary neurons. Which of the above structures is
most appropriate depends on the conceptual structure of environment to be encoded.

4 Building a formal context from responses of high-level visual neurons

To explore whether FCA is a suitable tool for interpreting real neural codes, we constructed formal
contexts from the responses of high-level visual cortical cells in area STSa (part of the temporal lobe)
of monkeys. Characterizing the responses of these cells is a difficult task. They exhibit complex



nonlinearities and invariances which make it impossible to apply linear techniques, such as reverse
correlation [18, 19, 20]. The concept lattice obtained by FCA might enable us to display and browse
these invariances: if the response of a subset of cells indicates the presence of an invariant feature
in a stimulus, then all stimuli having this feature should form the extent of a concept whose intent
is given by the responding cells, much like the ”monkey” and ”face” concepts in the example in
section 2.

4.1 Physiological data

The data were obtained through [21], where the experimental details can be found. Briefly, spike
trains were obtained from neurons within the upper and lower banks of the superior temporal sulcus
(STSa) via standard extracellular recording techniques [22] from an awake and behaving monkey
(Macaca mulatta) performing a fixation task. This area contains cells which are responsive to faces.
The recorded firing patters were turned into distinct samples, each of which contained the spikes
from −300 ms before to 600 ms after the stimulus onset with a temporal resolution of 1 ms. The
stimulus set consisted of 1704 images, containing color and black and white views of human and
monkey head and body, animals, fruits, natural outdoor scenes, abstract drawings and cartoons.
Stimuli were presented for 55ms each without inter-stimulus gaps in random sequences. While this
rapid serial visual presentation (RSVP) paradigm complicates the task of extracting stimulus-related
information from the spiketrains, it has the advantage of allowing for the testing of a large number
of stimuli. A given cell was tested on a subset of 600 or 1200 of these stimuli, each stimulus was
presented between 1-15 times.

4.2 Bayesian thresholding

Before we can apply FCA, we need to extract a binary attribute from the raw spiketrains. While
FCA can also deal with many-valued attributes, see [23, 9], we will employ binary thresholding as a
starting point. Moreover, when time windows are limited (e.g. in the RSVP condition) it is usually
impossible to extract more than 1 bit of stimulus identity-related information from a spiketrain per
stimulus [24]. We do not suggest that real neurons have a binary activation function. We are merely
concerned with finding a maximally informative response binarization, to allow for the construction
of meaningful concepts. We do this by Bayesian thresholding, as detailed in appendix A. This
procedure also avails us of a null hypothesis H0 =”the responses contain no information about the
stimuli”.

4.3 Cell selection

The experimental data consisted of recordings from 26 cells. To minimize the risk that the com-
puted neural responses were a result of random fluctuations, we excluded a cell if 1.) H0 was more
probable than 10−6 or 2.) the posterior standard deviations of the counting window parameters
were larger than 20ms, indicating large uncertainties about the response timing. Cells which did
not respond above the threshold included all cells excluded by the above criteria (except one). Fur-
thermore, since not all cells were tested on all stimuli, we also had to select pairs of subsets of cells
and stimuli such that all cells in a pair were tested on all stimuli. Incidentally, this selection can also
be accomplished with FCA, by determining the concepts of a context with gJm =”stimulus g was
tested on cell m” and selecting those with a large number of stimuli× number of cells. Two of these
cell and stimulus subset pairs (”A”, containing 364 stimuli and 13 cells, and ”B”, containing 600
stimuli, 12 cells) were selected for further analysis.

5 Results

To analyze the neural code, the thresholded neural resposes were used to build stimulus-by-cell-
response contexts. We performed FCA on these with COLIBRICONCEPTS1, created stimulus image
montages and plotted the lattices2. The complete concept lattices were too large to display on a page.
Graphs of lattices A and B with reduced labeling on the stimuli are included in the supplementary

1see http://code.google.com/p/colibri-concepts/
2with IMAGEMAGICK, http://www.imagemagick.org and GRAPHVIZ, http://www.graphviz.org



A B

Figure 3: A: a subgraph of lattice A with reduced labeling on the stimuli, i.e. stimuli are only shown
in their object concepts. The ∅ indicates that an extent is the intersection of its superconcepts’
extents, i.e. no new stimuli were introduced by this concept. All cells forming this part of the
concept lattice were responsive to faces. B: a subgraph of lattice B, fully labeled. The concepts on
the right side are not exclusively ”face” concepts, but most members of their extents have something
”roundish” about them.

material (files latticeA neuroFCA.pdf and latticeB neuroFCA.pdf). In these graphs,
the top of the frame around each concept image contains the concept number and the list of cells in
the intent.

Fig.3, A shows a subgraph from lattice A, which exclusively contained ”face” concepts.
This subgraph, with full labeling, is also a part of the supplementary material (file
faceSubgraphLatticeA neuroFCA.pdf). The top concepts introduce human and cartoon
faces, i.e. their extents are consist of general ”face” images, while their intents are small (3 cells).
In contrast, the lower concepts introduce mostly single monkey faces, with the bottom concepts
having an intent of 7 cells. We may interpret this as an indication that the neural code has a higher
”resolution” for faces of conspecifics than for faces in general, i.e. other monkeys are represented
in greater detail in a monkey’s brain than humans or cartoons. This feature can be observed in most
lattices we generated.

Fig.3, B shows a subgraph from lattice B with full labeling. The concepts in the left half of the
graph are face concepts, whereas the extents of the concepts in the right half also contain a number
of non-face stimuli. Most of the latter have something ”roundish” about them. The bottom concept,
being subordinate to both the ”round” and the ”face” concepts, encompasses stimuli with both char-
acteristics, which points towards a product-of-experts encoding [25]. This example also highlights
another advantage of FCA over standard hierarchical analysis techniques, e.g. hierarchical cluster-
ing: it does not impose a tree structure when the data do not support it (a shortcoming of the analysis
in [26]).

For preliminary validation, we experimented with stimulus shuffling (i.e. randomly assigning stimuli
to the recorded responses) to determine whether the found concepts are indeed meaningful. This
procedure leaves the lattice structure intact, but mixes up the extents. A ’naive’ observer was then
no longer able to label the concepts (as in fig.3, ’round’, ’face’ or ’conspecifics’). Evidence of
concept stability was obtained by trying different binarization thresholds: as stated in appendix A,
we used a threshold probability of 0.5. This threshold can be raised up to 0.7 without losing any
of the conceptual structures described in fig.3, although some of the stimuli migrate upwards in the
lattice.



6 Conclusion

We demonstrated the potential usefulness of FCA for the exploration and interpretation of neural
codes. This technique is feasible even for high-level visual codes, where linear decoding methods
[19, 20] fail, and it provides qualitative information about the structure of the code which goes
beyond stimulus label decoding [4]. Clearly, this application of FCA is still in its infancy. It would
be very interesting to repeat the analysis presented here on data obtained from simultaneous multi-
cell recordings, to elucidate whether the conceptual structures derived by FCA are used for decoding
by real brains. On a larger scale than single neurons, FCA could also be employed to study the
relationships in fMRI data [27].
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A Method of Bayesian thresholding

A standard way of obtaining binary responses from neurons is thresholding the spike count within
a certain time window. This is a relatively straightforward task, if the stimuli are presented well
separated in time and a lot of trials per stimulus are available. Then latencies and response offsets
are often clearly discernible and thus choosing the time window is not too difficult. However, under
RSVP conditions with few trials per stimulus, response separation becomes more tricky, as the
responses to subsequent stimuli will tend to follow each other without an intermediate return to
baseline activity. Moreover, neural resposes tend to be rather noisy. We will therefore employ a
simplified version of the generative Bayesian Bin classification algorithm (BBCa) [28], which was
shown to perform well on RSVP data [24].

BBCa was designed for the purpose of inferring stimulus labels g from a continuous-valued, scalar
measure z of a neural response. The range of z is divided into a number of contiguous bins. Within
each bin, the observation model for the g is a Bernoulli scheme with a Dirichlet prior over its param-
eters. It is shown in [28] that one can iterate/integrate over all possible bin boundary configurations
efficiently, thus making exact Bayesian inference feasible. We make two simplifications to BBCa:
1) z is discrete, because we are counting spikes and 2) we use models with only 1 bin boundary in
the range of z. The bin membership of a given neural response can then serve as the binary attribute
required for FCA, since BBCa weighs bin configurations by their classification (i.e. stimulus label
decoding) performance. We proceed in a straight Bayesian fashion: since the bin membership is the
only variable we are interested in, all other parameters (counting window size and position, class
membership probabilities, bin boundaries) are marginalized. This minimizes the risk of spurious re-
sults due to ”contrived” information (i.e. choices of parameters) made at some stage of the inference
process. Afterwards, the probability that the response belongs to the upper bin is thresholded at a
probability of 0.5. BBCa can also be used for model comparison. Running the algorithm with no bin
boundaries in the range of z effectively yields the probability of the data given the ”null hypothesis”
H0: z does not contain any information about g. We can then compare it against the alternative
hypothesis described above (i.e. the information which bin z is in tells us something about g) to
determine whether the cell has responded at all.


