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Abstract The peristimulus time histogram (PSTH) and
its more continuous cousin, the spike density function
(SDF) are staples in the analytic toolkit of neurophys-
iologists. The former is usually obtained by binning
spike trains, whereas the standard method for the latter
is smoothing with a Gaussian kernel. Selection of a bin
width or a kernel size is often done in an relatively
arbitrary fashion, even though there have been recent
attempts to remedy this situation (DiMatteo et al.,
Biometrika 88(4):1055–1071, 2001; Shimazaki and
Shinomoto 2007a, Neural Comput 19(6):1503–1527,
2007b, c; Cunningham et al. 2008). We develop an ex-
act Bayesian, generative model approach to estimating
PSTHs. Advantages of our scheme include automatic
complexity control and error bars on its predictions.
We show how to perform feature extraction on spike
trains in a principled way, exemplified through latency
and firing rate posterior distribution evaluations on
repeated and single trial data. We also demonstrate
using both simulated and real neuronal data that our
approach provides a more accurate estimates of the
PSTH and the latency than current competing methods.
We employ the posterior distributions for an informa-
tion theoretic analysis of the neural code comprised of
latency and firing rate of neurons in high-level visual
area STSa. A software implementation of our method is
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available at the machine learning open source software
repository (www.mloss.org, project ‘binsdfc’).
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1 Introduction

Plotting a peristimulus time histogram (PSTH), or a
spike density function (SDF), from spiketrains evoked
by and aligned to the onset of a stimulus is often one of
the first steps in the analysis of neurophysiological data.
It is an easy way of visualising certain characteristics of
the neural response, such as instantaneous firing rates
(or firing probabilities), latencies and response offsets.
These measures also implicitly represent a model of
the neuron’s response as a function of time and are
important parts of their functional description. Yet
PSTHs are frequently constructed in an unsystematic
manner, e.g. the choice of time bin size is driven by
result expectations as much as by the data. Recently,
there have been more principled approaches to the
problem of determining the appropriate temporal reso-
lution (Shimazaki and Shinomoto 2007a, b, c).

We recently developed an exact Bayesian, genera-
tive model approach to estimating PSTH/SDFs (Endres
et al. 2008). Our model encodes a spike generator
described by an inhomogeneous Bernoulli process with
piecewise constant (in time) firing probabilities. We
demonstrated that relevant marginal distributions, e.g.
the posterior distribution of the number of bins, can
be evaluated from the full posterior distribution over
the model parameters efficiently, i.e. in polynomial
time. Extending earlier dynamic programming schemes
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(Endres and Földiák 2005), we also showed that ex-
pected values, such as the predictive firing rate and
its standard error, are computable with at most cubic
effort.

Here we extend the performance comparisons in
(Endres et al. 2008) and illustrate the usefulness of
our method. We also demonstrate how to use our
Bayesian approach for principled feature extraction
from spike trains. Specifically we examine latencies
and firing rates, since previous studies (Richmond and
Optican 1987b; Tovee et al. 1993) indicate that much
of the stimulus-related information carried by neurons
is contained in these measures (see Oram et al. 2002
for a review). We give a ‘minimal’ definition of latency
and show how the latency posterior distribution and
the firing rate posterior density can be evaluated. These
posteriors are then employed for an information theo-
retic analysis of the neural code comprised of latency
and firing rate. Note that we do in no way claim that
a PSTH is a complete generative description of spiking
neurons. We are merely concerned with inferring that
part of the generative process which can be described
by a PSTH in a Bayes-optimal way. This paper tries
to appeal to computational neuroscientists and neu-
rophysiologists alike. While the former require sound
derivations to accept a method’s validity, the latter
need to be convinced of a method’s superiority through
demonstrations if they are to adopt it. We attempt to
present a balanced mix of both.

2 The model

2.1 Traditional approaches

The traditional approaches to estimating firing prob-
abilities or firing rates from neurophysiological data
can roughly be divided into two classes: binning and
smoothing. The former yields PSTHs, whereas the lat-
ter produces SDFs (Richmond and Optican 1987a).
Both are instances of regularisation procedures, which
try to deal with the ubiquitous noise and data scarcity
by making various implicit assumptions. From a gener-
ative model perspective, binning basically presupposes
that the firing probabilities are constant within each
bin, whereas smoothing imposes the prior belief that
high-frequency fluctuations are mostly noise. Whether
these assumptions are correct can not be decided a
priori, but must be evaluated by comparing the pre-
dictive performances of all models in question on real
neurophysiological data (see Section 3.4).

An intuitive understanding of the relative merits
and drawbacks of these two approaches can be ob-

tained from Fig. 1: panel (a) shows a rastergram of 32
spiketrains recorded from an STSa neuron in response
to a stimulus. Each tick represents a spike, with the
spiketrains (rows) aligned to stimulus onset. Panel (b)
shows a PSTH with a fixed bin duration, optimised
for the data by the method described in Shimazaki
and Shinomoto (2007b, c). While a bin PSTH could in
principle model sharp transients, the location of the bin
boundaries are determined by the constant binwidth.
Therefore, the precise onset of the transient is often
not captured well. In addition, the constant bin duration
also forces this method to put many bins into time inter-
vals where the spiketrains appears relatively constant,
e.g. in [200 ms, 400 ms]. Panel (c) depicts the SDF ob-
tained by smoothing these spiketrains with a Gaussian
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Fig. 1 Predicting a PSTH/SDF with 3 different methods. (a)
the dataset used in this comparison consisted of 32 spiketrains
recorded from a STSa neuron. This neuron was chosen for its
clear response profile. Each tick mark represents a spike. (b)
bar PSTH (solid line), optimal binsize ≈26 ms, and line PSTH
(dashed line), optimal binsize ≈78 ms, computed by the methods
described in Shimazaki and Shinomoto (2007b, c). (c) SDF
obtained by smoothing the spike trains with a 10 ms Gaussian
kernel. (d): PSTH inferred with our Bayesian binning method.
The thick line represents the predictive firing rate, the thin lines
show the predictive firing rate ±1 standard deviation. Models
with 4 ≤ M ≤ 13 were included on a risk level of α = 0.1 (see
Eq. (17)).The vertical dashed line indicates the mode of the
latency posterior (see Section 4.1 and Fig. 5)
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kernel of 10 ms width. Compared to the rastergram,
high frequency fluctuation in the spiketrains is reduced
to some degree, as can be seen e.g. in the interval
[200 ms, 400 ms]. However, the sharp transient at
≈100 ms (indicated by the dashed vertical line across
panels (b–d)), becomes blurred. Thus, relevant timing
information might be lost.

Finally, both binning and smoothing are often em-
ployed to compute point estimates of the instanta-
neous firing rate. Given the typically small sample sizes
in neurophysiological experiments, reliable point esti-
mates are hard to obtain, and measures of posterior
uncertainty and variability, both between and within
trials, should be a part of the estimation procedure. Our
Bayesian binning method (Fig. 1(d)) achieves this goal.

2.2 Bayesian binning

We propose a compromise between binning and
smoothing to deal with the problems described in the
previous section: keep the bins to allow for rapid
changes in the instantaneous firing rate, but allow for
varying bin durations. This enables us to put the bin
boundaries at only those time points where the changes
in firing rate happen. As a consequence, time intervals
in which the firing rate does not change can now be
modelled by one (or a few) bins, which reduces the
risk of overfitting noise. Uncertainties and variabilities
will be computed in an exact Bayesian fashion. The
resultant expected firing rates (complete with their un-
certainties) will therefore have a more continuous ap-
pearance, similar to the results yielded by a smoothing
technique.

Details of the formal model have been described
in Endres et al. (2008). Briefly, we model a PSTH
on [tmin, tmax] discretised into T contiguous intervals
of duration �t = (tmax − tmin)/T (see Fig. 2(a and b)).
We select a discretisation fine enough (here 1 ms) so
that we will not observe more than one spike in a
�t interval for any given spike train. Spike train i
can then be represented by a binary vector �zi of di-
mensionality T. We model the PSTH by M + 1 con-
tiguous, non-overlapping bins having inclusive upper
boundaries km, within which the firing probability fm =
P(spike|t ∈ (tmin + �t(km−1 + 1), tmin + �t(km + 1)]) is
constant. Importantly, the bin size (distance between
bin boundaries) is not fixed a priori but can vary de-
pending on the observed data. The relationship be-
tween the firing probabilities fm and the instantaneous
firing rates is given by

firing rate = fm

�t
. (1)
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Fig. 2 (a) A spike train, recorded between times tmin and tmax
is represented by a binary vector �zi. (b) The time span between
tmin and tmax is discretised into T intervals of duration �t =
(tmax − tmin)/T, such that interval k lasts from k × �t + tmin to
(k + 1) × �t + tmin. �t is chosen such that at most one spike is ob-
served per �t interval for any given spike train. Then, we model
the firing probabilities P(spike|t) by M + 1 = 4 contiguous, non-
overlapping bins (M is the number of bin boundaries inside
the time span [tmin, tmax]), having inclusive upper boundaries km
and P(spike|t ∈ (tmin + �t(km−1 + 1), tmin + �t(km + 1)]) = fm.
(c) model posterior P(M|{�zi}) (see Eq. (16)) computed from
the data shown in Fig. 1. The shape is fairly typical for model
posteriors computed from the neural data used in this paper: a
sharp rise at a moderately low M followed by a maximum (here at
M = 6) and an approximately exponential decay. Even though a
maximum M of 699 would have been possible, P(M > 23|{�zi}) <

0.001. Thus, we can accelerate the averaging process for quan-
tities of interest (e.g. the predictive firing rate) by choosing a
moderately small maximum M. For details, see text

M is the number of bin boundaries inside [tmin, tmax].
The probability of a spike train �zi of independent
spikes/gaps is then

P(�zi|{ fm}, {km}, M) =
M∏

m=0

f s(�zi,m)
m (1 − fm)g(�zi,m) (2)

where s(�zi, m) is the number of spikes and g(�zi, m) is
the number of non-spikes, or gaps in spiketrain �zi in
bin m, i.e. between intervals km−1 + 1 and km (both in-
clusive). In other words, we model the spiketrains by an
inhomogeneous Bernoulli process with piecewise con-
stant probabilities. We also define k−1 = −1 and kM =
T − 1. Note that there is no binomial factor associated
with the contribution of each bin, because we do not
want to ignore the spike timing information within the
bins, but rather, we try to build a simplified generative
model of the spike train. Therefore, the probability of a
(multi) set of spiketrains {�zi} = {z1, . . . , zN}, assuming
independent generation, is

P({�zi}|{ fm}, {km}, M) =
N∏

i=1

M∏

m=0

f s(�zi,m)
m (1 − fm)g(�zi,m)

=
M∏

m=0

f s({�zi},m)
m (1 − fm)g({�zi},m) (3)
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where s({�zi}, m) = ∑N
i=1 s(�zi, m) and g({�zi}, m) =∑N

i=1 g(�zi, m).

2.3 The priors

We make a non-informative prior assumption for the
joint prior of the firing probabilities { fm} and the bin
boundaries {km} given the total number of bin bound-
aries M, namely

p({ fm}, {km}|M) = p({ fm}|M)P({km}|M). (4)

i.e. we have no a priori preferences for the firing rates
based on the bin boundary positions. Note that the
prior of the fm, being continuous model parameters, is
a density. Given the form of Eq. (2) and the constraint
fm ∈ [0, 1], it is natural to choose a conjugate prior

p({ fm}|M) =
M∏

m=0

B( fm; σm, γm). (5)

The Beta density is defined in the usual way (see e.g.
Berger 1985):

B(p; σ, γ ) = �(σ + γ )

�(σ)�(γ )
pσ−1(1 − p)γ−1. (6)

There are only finitely many configurations of the km.
Assuming we have no preferences for any of them, the
prior for the bin boundaries becomes

P({km}|M) = 1
(

T − 1
M

) . (7)

where the denominator is just the number of possi-
bilities in which M ordered bin boundaries can be
distributed across T − 1 places (bin boundary M always
occupies position T − 1, see Fig. 2(b), hence there are
only T − 1 positions left).

2.4 Computing the evidence and other posterior
expectations

To calculate quantities of interest for a given number
of bin boundaries M and a set of spiketrains {�zi}, e.g.
predicted firing probabilities, their variances and ex-
pected bin boundary positions, we need to average the
quantity of interest over the posterior of the firing rates
in the bins { fm} and the bin boundaries {km}:

p({ fm}, {km}|M, {�zi}) = p({�zi}, { fm}, {km}|M)

P({�zi}|M)
(8)

which requires the evaluation of the evidence, or mar-
ginal likelihood of a model with M bins:

P({�zi}|M) =
T−2∑

kM−1=M−1

kM−1−1∑

kM−2=M−2

. . .

k1−1∑

k0=0

P({�zi}|{km}, M)P({km}|M) (9)

where the summation boundaries are chosen such that
the bins are non-overlapping and contiguous and

P({�zi}|{km}, M)

=
∫ 1

0
d{ fm}P({�zi}|{ fm}, {km}, M)p({ fm}|M). (10)

with
∫ 1

0
d{ fm} =

∫ 1

0
df0

∫ 1

0
df1 . . .

∫ 1

0
dfM. (11)

Computing the sums in Eq. (9) might seem difficult.
M sums over O(T) summands suggest a computational
complexity of O(T M), which is impractical. To ap-
preciate why, let’s consider an example: In a typical
neurophysiological scenario, we might want to estimate
the PSTH in a T = 700 ms time window with �t = 1 ms.
If we tried to model this distribution by M + 1 = 11
bins, we would have to check

(
699
10

)
configurations, i.e.

the number of possibilities to distribute 10 ordered bin
boundaries across 699 places. This is > 1021. Even if we
checked 10 configurations per microsecond, we would
take more than 20 million years to finish.

However, we can expedite this process. As previ-
ously demonstrated (Endres et al. 2008), using dynamic
programming the computational complexity can be re-
duced to O(MT2). In the above example, the time
to compute the evidence reduces to ≈0.5 s, which is
fast enough to be useful. We give a description of the
algorithm in Appendix A. This algorithm is also the
basis for the latency calculations in Section 4.1.

Posterior expectations can be evaluated in a simi-
lar fashion. For example, given the model parameters
{km},{ fm} and M, the predictive firing probability at
time index t can formally be written as

P(spike|t, { fm}, {km}, M)=
M∑

m=0

fmT (t ∈ {km−1 + 1, km})

(12)

where the indicator function T (x) = 1 iff x is true
and 0 otherwise. Thus, the sum will have exactly one
nonzero contribution from that bin which contains t.
Multiplying the r.h.s. of Eq. (12) with the r.h.s. Eq. (8)
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and marginalising { fm} and {km} yields the predictive
firing probability at t given M and the data {�zi}:
〈
P(spike|t)〉 (13)

where 〈. . .〉 denotes a posterior expectation. The neces-
sary summations/integrations can be done by a modi-
fied version of the algorithm described in Appendix A:
since Eq. (12) puts a factor fm into the bin which
contains t, we only need to add an ‘extra’ spike in
this bin in Eq. (35), run the algorithm and divide the
result by the evidence to obtain the predictive firing
probability.

To compute the standard deviation of the firing
probability, we need the posterior expectation of

P2(spike|t, { fm}, {km}, M)=
M∑

m=0

f 2
mT (t∈{km−1+1, km})

(14)

The factor f 2
m amounts to putting two spikes in the bin

which contains t. Then,

Var
(
P(spike|t)) = 〈

P2(spike|t, {�zi}, M)
〉

− 〈
P(spike|t, {�zi}, M)2

〉
(15)

2.5 Model selection vs. model averaging: how many
bins do we need?

To choose the best M given {�zi}, or better, a probable
range of Ms, we need to determine the model posterior

P(M|{�zi}) = P({�zi}|M)P(M)∑
m P({�zi}|m)P(m)

(16)

where P(M) is the prior over M, which we assume to
be uniform. The motivation for this choice is simply
that we have no a priori preferences for any model
complexity, but we would rather drive the choice of M
as completely as possible by the data. The sum in the
denominator runs over all values of m which we choose
to include, at most m ≤ T − 1.

Once P(M|{�zi}) is evaluated, we could use it to
select the most probable M′. However, making this
decision means ‘contriving’ information, namely that
all of the posterior probability is concentrated at M′.
Thus we should rather average any predictions over all
possible M, even if evaluating such an average has a
computational cost of O(T3), since M ≤ T − 1. If the
structure of the data allow, it is possible, and useful
given a large enough T, to reduce this cost by finding
a range of M, such that the risk of excluding a model
even though it provides a good description of the data
is low. In analogy to the significance levels of orthodox

statistics, we shall call this risk α. If the posterior of
M is unimodal (which it has been in most observed
cases, see Fig. 2(c), for an example), we can then choose
the smallest interval of Ms around the maximum of
P(M|{�zi}) such that

P(Mmin ≤ M ≤ Mmax|{�zi}) ≤ 1 − α (17)

and carry out the averages over this range of M after
renormalising the model posterior. We use α = 0.1 un-
less stated otherwise.

3 Simulations and comparison to other methods

3.1 Predicted PSTH convergence to simulated
generator

We first tested our method by inferring PSTH/SDFs
from artificial data. We generated spiketrains from in-
homogeneous Bernoulli processes with the rate pro-
files shown in the top panels of Fig. 3. To quantify
the difference between the generator and an inferred
PSTH/SDF, we employed a time-averaged version of
the Kullback-Leibler divergence (KLd) (Cover and
Thomas 1991). Let P(t) and Q(t) be the spiking prob-
ability of the generator and the inferred PSTH/SDF at
time t, respectively. The KLd between them at t is

KLd(t)= P(t) log

(
P(t)
Q(t)

)
+ (1 − P(t)) log

(
1 − P(t)
1 − Q(t)

)
.

(18)

KLd has several interpretations, the one most relevant
for our purposes is the following: if we had observed a
spike at time t, log

( P(t)
Q(t)

) = log (P(t)) − log (Q(t)) would
measure how much more (log-) probable that spike
would have been given the generator versus the in-
ferred PSTH/SDF. Likewise, if we had observed no
spike, log

( 1−P(t)
1−Q(t)

)
tells us how much more (log-) prob-

able this event would have been. To get the expected
gain in (log-)probability, we need to average these
terms over the spike/no spike generating distribution at
t, which is given by P(t) and 1 − P(t), respectively. This
averaging yields Eq. (18). It can be shown (Cover and
Thomas 1991) that KLd≥ 0 with equality only if P(t) =
Q(t), i.e. the expected log probability of spike/no
spike is maximised by the generating distribution. We
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Fig. 3 Performance comparsion on artificially generated spike-
trains. The generators (thick, square-wave (left) and smoothed
square-wave (right) lines in top panels) are the rate profiles
from which the spike trains were drawn. Top panels show typ-
ical PSTH/SDFs obtained from datasets containing 1 and 30
trials. ‘Typical’ means that the time-averaged Kullback-Leibler
divergence (tKLd) between the generator and the estimated
PSTH/SDFs is close to the average tKLd for a given number of
trials. Dashed: smoothing with a Gaussian kernel of 10 ms width,
Solid: Bayesian binning. Bottom panels: average tKLd between
generator and estimated PSTH/SDFs across 100 simulations as a
function of trials per dataset. The generator on the left is com-
prised of bins, which Bayesian binning should be able to model
perfectly given a large enough dataset size. Thus, the tKLd at 100
trials is much smaller for Bayesian binning. More importantly,
Bayesian binning is consistently better than Gaussian smoothing
even for very small numbers of trials. The generator on the right
is smoothed with a 10 ms wide Gaussian kernel. While Bayesian
binning can no longer model it perfectly with a finite number of
bins, it is still a better estimator than kernel smoothing up to at
least 100 trials

average KLd(t) across all time indexes of interest to
yield the time-averaged KLd (tKld):

tKLd = 1

T

T−1∑

t=0

tKLd(t) (19)

The top panels in Fig. 3 show typical PSTH/SDFs in-
ferred from 1 and 30 trials. ‘Typical’ means that the
tKLd is close to the average tKLd for a given num-
ber of trials. The Bayesian binning PSTH is computed
from the predictive firing probability

〈
P(spike|t)〉, the

dashed lines represent ±1 posterior standard deviation
(from Eq. (15)), the prior parameters σm and γm were
equal for all bins and set to their maximum a-posteriori
value. The generating rate profile in the left half of
Fig. 3 is comprised of bins. Hence, Bayesian binning
should model it with increasing accuracy and reduced
uncertainty as the dataset grows. An indication for
that can be seen by comparing the PSTH/SDFs from

1 and 30 trials: the generating rate profile is followed
much more closely for 30 trials than for 1 and the
posterior standard deviations also decrease noticeably
as the number of trials increases. Furthermore, the
Bayesian binning PSTH is closer to the generator than
the SDF computed by smoothing the spiketrains with
a 10 ms wide Gaussian kernel, which is displayed for
comparison.

Importantly, Bayesian binning is doing well even if
the generator cannot be modelled by a small number
of bins: the right half of Fig. 3 shows simulation results
for a generator that was smoothed with a 10 ms wide
Gaussian kernel. Here, the Gaussian kernel smoothing
gives expectably good results (at least for 30 trials), but
note that Bayesian binning is doing apparently equally
as well. More quantitative performance comparison
results are shown in the bottom panels of Fig. 3. We
repeated the simulation 100 times for a given number of
trials per dataset, thus obtaining the average tKLd and
its standard deviation. For the bin generator, Bayesian
binning outperforms Gaussian kernel smoothing for all
dataset sizes. For the smoothed generator, Bayesian
binning still outperforms Gaussian kernel smoothing,
while the difference between the two methods shrinks
as the number of trials per dataset increases. But even
for 100 trials, Bayesian binning is as good as Gaussian
kernel smoothing. We have thus reason to hope that
Bayesian binning might outperform other PSTH/SDF
estimation methods on real neural data. This will be
shown in the next subsections.

3.2 Data acquisition

The experimental protocols have been described be-
fore (Oram et al. 2002; van Rossum et al. 2008). Briefly,
extra-cellular single-unit recordings were made using
standard techniques from the upper and lower banks
of the anterior part of the superior temporal sulcus
(STSa) of two monkeys (Macaca mulatta) performing a
visual fixation task. The subject received a drop of fruit
juice reward every 500 ms of fixation while static stim-
uli (10◦ by 12.5◦) were displayed. Static images were
presented centrally on the monitor. Stimuli consisted
of 256 gray scale pictures of familiar and unfamiliar
objects, heads, body parts and whole bodies. Visual
stimuli were presented in a random sequence for 333 ms
with a 333 ms inter-stimulus interval centrally on a
black monitor screen (Sony GDM-20D11, resolution
25.7 pixels/degree, refresh rate 72 Hz), 57 cm from
the subject. Stimulus contrast was determined using
foreground regions of the image. The 100% Michelson
contrast = Lmax−Lmin

Lmax+Lmin
, where L is the luminance, was

formed by normalising the foreground pixel values such
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that they occupied the monitor full luminance range
after adjusting the initial greyscale image to have mid
(50%) luminance. Other contrast versions (75%, 50%,
25%, 12.5%) were achieved by systematically varying
the width of the distribution of the foreground pixel val-
ues of the 100% contrast version while maintaining the
average foreground luminance. All manipulations were
performed after correcting for the measured gamma
function of the display monitor.

Stimulus presentation began after 500 ms of fixa-
tion centrally on the screen (fixation deviations outside
the fixation window lasting ≤100 ms were ignored to
allow for blinking). Fixation was rewarded with the
delivery of fruit juice. Spikes were recorded during the
period of fixation. If the subject looked away for longer
than 100 ms, both spike recording and presentation of
stimuli stopped until the subject resumed fixation for
500 ms. The results from initial screening (Edwards
et al. 2003) were used to select stimuli that elicited
large responses from the neuron (effective stimuli) and
to select stimuli that elicited small or no response (in-
effective stimuli). For different neurons effective and
ineffective stimuli included different views of the head
(Perrett et al. 1991), abstract patterns and familiar
objects (Földiák et al. 2004). Details of the stimulus
selectivity of these neurons has been reported else-
where (Oram et al. 2002; Földiák et al. 2004; Edwards
et al. 2003; Barraclough et al. 2005). The anterior–
posterior extent of the recorded cells was from 7 mm
to 10 mm anterior of the interaural plane, in the upper
bank (TAa, TPO), lower bank (TEa, TEm) and fundus
(PGa, IPa) of the superior temporal sulcus (STS) and in
the anterior areas of TE (AIT of [Tanaka1991]), areas
which we collectively call the anterior STS (STSa, see
Barraclough et al. (2005) for further discussion). The
recorded firing patterns were turned into distinct sam-
ples, each of which contained the spikes from −300 ms
to 600 ms after the stimulus onset with a temporal
resolution of 1 ms.

3.3 Inferring PSTHs

To see the method in action on real neural data, we
inferred a PSTH from 32 spiketrains recorded from
one of the available STSa neurons (see Fig. 1(a)). We
discretised the interval from −100 ms pre-stimulus to
600 ms post-stimulus into �t = 1 ms time intervals and
computed the posterior (16) for models with varying
number of bins M (see Fig. 2(c)). The prior parameters
were equal for all bins and set to σm = 1 and γm = 32.
This choice corresponds to a firing probability of ≈0.03
in each 1 ms time interval (30 spikes/s), which is typical

for the neurons in this study.1 Models with 4 ≤ M ≤
13 (expected bin sizes between ≈23 ms–148 ms) were
included on an α = 0.1 risk level (Eq. (17)) in the sub-
sequent calculation of the predictive firing rate (i.e. the
expected firing rate, hence the continuous appearance)
and standard deviation (Fig. 1(d)). For comparison,
Fig. 1(b), shows a bar PSTH and a line PSTH computed
with the recently developed methods described in Shi-
mazaki and Shinomoto (2007b, c). Roughly speaking,
these methods try to optimise a compromise between
minimal within-bin variance and maximal between-bin
variance. In this example, the bar PSTH consists of
26 bins. Panel (c) in Fig. 1 depicts a SDF obtained by
smoothing the spiketrains with a 10 ms wide Gaussian
kernel, a standard way of calculating SDFs in the neu-
rophysiological literature.

All tested methods produce results which are, upon
cursory visual inspection, largely consistent with the
spiketrains. However, Bayesian binning is better suited
than Gaussian smoothing to model steep changes, such
as the transient response starting at ≈100 ms. While
the methods from Shimazaki and Shinomoto (2007b, c)
share this advantage, they suffer from two drawbacks:
firstly, the bin boundaries are evenly spaced, hence the
peak of the transient is later than visual examination
of the rastergrams would suggest. Secondly, because
the bin duration is the only parameter of the model,
these methods are forced to put many bins even in
intervals that are relatively constant, such as the base-
lines before and after the stimulus-driven response. In
contrast, Bayesian binning is able to put bin boundaries
anywhere in the time span of interest and can model
the data with less bins—the model posterior has its
maximum at M = 6 (7 bins), whereas the bar PSTH
consists of 26 bins.

3.4 Performance comparison by cross-validation

For a more rigorous method comparison, we split
the data into distinct sets, each of which contained
the responses of a cell to a different stimulus. This
procedure yielded 336 sets from 20 cells with at
least 20 spiketrains per set. We then performed 5-
fold crossvalidation. The crossvalidation error is given
by the negative logarithm of the predicted proba-
bility (Eq. (13)) of the data (spike or no spike) in
the test sets. Let sn(t) = 1 if trial n of N in the

1Alternatively, one could search for the σm, γm which max-
imise of P({�zi}|σm, γm) = ∑

M P({�zi}|M)P(M|σm, γm), where
P({�zi}|M) is given by Eq. (9). Using a uniform P(M|σm, γm), we
found σm ≈ 2.3 and γm ≈ 37 for the data in Fig. 1(a).
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test set contains a spike at time index t ∈ {0, . . . , T − 1}
and sn(t) = 0 otherwise. Then

CV error = − 1

N

N−1∑

n=0

1

T

T−1∑

t=0

log 〈(P(sn(t)|t))〉 . (20)

Thus, we measure how well the PSTHs/SDFs predict
the test data on average across time and across all test
trials. Note that this CV error is similar to the tKLd
(Eq. (19)): the constant terms referring to the generator
have been dropped, because the generator is not known
here and the averaging is done across the data rather
than the generating distribution for the same reason.
We average the CV error over the 5 estimates to obtain
a single estimate for each of the 336 neuron/stimulus
combinations. The prior parameters σm, γm were equal
for all bins and MAP optimised for each individual
training dataset. In Endres et al. (2008) we already
demonstrated that Bayesian binning outperforms SDFs
obtained by Gaussian smoothing, and the bin and line
histogram methods from Shimazaki and Shinomoto
(2007b, c).

We also tested Bayesian binning against the ker-
nel smoothing method described in (Shimazaki and
Shinomoto 2007a), a local likelihood adaptive fit
(Loader 1999) and Bayesian Adaptive Regression
Splines (BARS) (DiMatteo et al. 2001). To compare
the performances between the different methods di-
rectly, we calculated the difference in CV error for each
neuron/stimulus configuration. Here a positive value
indicates that Bayesian binning predicts the test data
more accurately than the alternative method. Figure 4,
shows the relative frequencies of CV error differences
between the other methods and our approach. In the
large majority of cases we are at least as good, but
frequently better than the competitors, indicating the
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Fig. 4 Comparison of Bayesian Binning with competing methods
by 5-fold crossvalidation. The CV error is the negative expected
log-probability of the test data. The histograms show relative
frequencies of CV error differences to our Bayesian binning ap-
proach. Left: Shimazaki’s and Shinomoto’s methods (Shimazaki
and Shinomoto 2007a, b). Right, top Bayesian Adaptive Re-
gression Splines (BARS) (DiMatteo et al. 2001). Right, middle:
smoothing with a Gaussian kernel of 10 ms width. Right, bottom:
local likelihood adaptive fitting (Loader 1997, 1999)

Table 1 Average log prediction error differences to Bayesian
binning from 5 fold crossvalidation on 336 datasets

Method CV error diff.

Shimazaki and Shinomoto (2007b) bar (2.35 ± 0.23) × 10−3

Shimazaki and Shinomoto (2007b) line (1.22 ± 0.10) × 10−3

Gauss 10 ms (1.29 ± 0.11) × 10−3

Local likelihood fit (Loader 1997) (7.34 ± 0.48) × 10−4

Shimazaki and Shinomoto (2007a) kernel (3.14 ± 0.39) × 10−4

BARS (DiMatteo et al. 2001) (0.8 ± 1.6) × 10−5

Bayesian binning 0

A positive value means that our method predicts the data better
than the competitor

general utility of our approach. Amongst the competi-
tors, BARS is the only method with a comparable pre-
dictive performance on these STSa data. The average
CV error differences, summarised in Table 1, support
this claim: they are all significantly > 0, except for the
BARS value.

4 Response latency

Besides the instantaneous firing rate, another fre-
quently used feature for the description of a neuron’s
response is response latency. But unlike the former, a
definition of latency seems much less agreed. A wide
range of methods to estimate response latency exist.
Changes in phase between neuronal activity and si-
nusoidal drifting gratings with changing stimulus pa-
rameters can provide an indirect measure of response
latency (Gawne et al. 1996b; Alitto and Usrey 2004).
Direct measures of response latency of neurons with
low background or spontaneous activity can be ob-
tained from the time of the first spike after stimulus
onset (Heil and Irvine 1997; Richmond et al. 1999; Syka
et al. 2000; Stecker and Middlebrooks 2003; Hurley and
Pollak 2005).

Statistical approaches compare activity levels at two
time points. While the baseline level is usually taken
from a “pre-stimulus” period the window containing
the greatest activity can be used as the reference point
(Berenyi et al. 2007). Comparison of the baseline or
reference activity with the activity in a sliding window
using t-tests (Sugase-Miyamoto and Richmond 2005;
Berenyi et al. 2007) can be used to determine the time
point at which neuronal activity changes and hence
provide an estimate of response latency.

Several approaches use either the PSTH or the SDF
to determine neuronal response latency. Latency es-
timates can be based on peak activity, typically the
time at which the mean activity reaches half the am-
plitude of the peak (baseline + 0.5 × (peak − baseline),
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e.g. (Gawne et al. 1996a; Lee et al. 2007)). A statis-
tical method based on a Poisson model compares the
mean activity in successive bins during stimulation with
a Poisson process estimated from the “pre-stimulus”
period (Maunsell and Gibson 1992; Nowak et al. 1995;
Hanes et al. 1995; Thompson et al. 1996; Schmolesky
et al. 2006; Gabel et al. 2002; Sary et al. 2006). However,
Friedman and Priebe (1998) concluded that a maxi-
mum likelihood estimation of parameters for a step
change in Poissonian generator (rate 1 pre-latency, rate
2 post-latency) was a better methodology in terms of
mean square error than using half-height (Gawne et al.
1996a) and the Poisson assumption approach (Maunsell
and Gibson 1992).

Some statistical approaches to estimating response
latency use measures of the variability obtained from
the data rather than assume Poisson statistics. Simple
methods estimate response latency as the time point at
which activity exceeds baseline plus some error margin
(e.g. 1.96 or 2.58 standard error of mean (SEM) of
baseline, (Oram and Perrett 1992; Oram and Perret
1996; Tamura and Tanaka 2001; Edwards et al. 2003;
Eifuku et al. 2004; Kiani et al. 2005; van Rossum et al.
2008). Such thresholding can also determine if a vi-
sually induced response is present (e.g. baseline+3.72
SEM, (Lee et al. 2007)). Of course, estimates of la-
tency derived from the SDF will vary with the width
of the smoothing kernel. Ingenious methods involving
estimates from multiple kernels of different widths
have been developed to minimise this effect (Liu and
Richmond 2000).

Other methods developed to estimate response la-
tency include using ROC analysis of single cell record-
ings (Tanaka and Lisberger 2002). Estimating response
latency as the time of the peak in the derivative of the
SDF from multi-unit and local field potential recordings
(Fries et al. 2001) relies on rapid change in firing rate at
response onset. Taking the first time bin of the longest
monotonic rise in activity (Liu and Richmond 2000)
relies on a large, but not necessarily fast, change in
activity. Finally, Luczak and colleagues (Luczak et al.
2007) use the mean spike time after stimulus onset as a
latency measure.

Methods have also been developed that allow for
estimation of the response latency of a single trial.
Some calculate the trial-by-trial variability of response
latency but do not give the absolute latency (Nawrot
et al. 2003). Other statistical approaches, including the
Poisson based methods (Maunsell and Gibson 1992;
Hanes et al. 1995; Thompson et al. 1996; Sary et al.
2006) and the “baseline+error margin” methods, can
provide latency estimates for single trials although
they may not return a latency estimate for every trial

(Friedman and Priebe 1998). The trial alignment ap-
proach from Ventura (2004) builds on the observation
that a PSTH, when normalised across time, can be
interpreted as a probability distribution for generating
spike times. Assuming that the shape of the PSTH
does not change across trials, but may be shifted in
time relative to other trials, the difference between trial
latencies must then be equal to the difference of mean
spike times. To compute an absolute latency, Ventura
(2004) recommends to align all trials to the minimal
trial mean and use a point estimation method on the
aligned trials, since the alignment should facilitate the
detection of a sharp onset. Confidence intervals on
the latency estimates can be obtained via bootstrap.

We note that most of the methods listed above share
the notion of determining latency by estimating a point
value. However, with finite data there is always un-
certainty in the estimate. For example, when latency
is estimated as 100 ms it could be 99 ms or 101 ms
with almost as much certainty but is relatively unlikely
to be 90 or 110 ms. If we want to search for patterns
or changes in response latency more exacting analysis
techniques should thus incorporate the uncertainty in a
principled fashion. We also want a single method that,
without any change to parameters or code, works with
individual trials, with a set of trials to a single stimulus
and with all trials from a neuron. We now develop and
evaluate latency estimation using our Bayesian binning
technique and show it meets these two criteria.

4.1 A minimal definition of response latency

Most people interested in latency would probably agree
with the notion that ‘latency is where the signal starts’.
Signal vs. no signal can usually be translated into firing
rate above or below a threshold, which we will call the
signal level (see Fig. 5, left). In other words, latency is
that point in time prior to which there was no signal, and
after which there is a signal for at least some duration.
This is the ‘minimal’ latency definition which we will
employ in the following.

For given bin boundaries {km} and firing probabili-
ties { fm}, latency must be at a bin boundary, because
firing probabilities are constant within each bin. Note
that our latency definition implies that there can be at
most one latency. If the firing probabilities are below
the signal level in every bin, or if f0, the firing rate in
the first bin is already above the signal level, then there
will be no latency.

To obtain a latency posterior distribution, we for-
mally define the probability that the latency L is at time
index t given {km},{ fm},M and the signal level S ∈ [0, 1]
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Fig. 5 Left: our minimal latency definition. Latency L (vertical
dashed line) is that point in time before which the firing proba-
bility was consistently below the signal level (dotted horizontal
line), and after which the firing probability is above the signal
level for at least one bin. This definition has two important
implications: the latency is at a bin boundary, and there can
be at most one latency (possibly none). Right: (a) each tick
mark represents a spike, recorded from the same STSa neuron
as in Fig. 1 under high-contrast viewing conditions. (b) latency
posterior. The two modes of P(L = t) are at 83 ms and 104 ms
after stimulus onset, indicated by the dashed vertical lines. (c):
expected instantaneous firing rates (thick solid line) plus/minus
one standard deviation (thin dashed lines). This signal level S is
indicated by the horizontal line. For details, see text

(S is a firing probability. Division by the discretisation
stepsize �t yields firing rate) as

P(L = t|{km}, { fm}, M, S) =

=
⎧
⎨

⎩

1 if ∃k j−1 ∈ {km} : k j−1 + 1 = t
and f j ≥ S and ∀m < j : fm < S

0 otherwise
(21)

which can be exactly averaged over the posterior
Eq. (8) by a dynamic programming algorithm similar
to that used for the evidence evaluation, as detailed in
Appendix B. We thus obtain P(L = t, {�zi}|M, S) and
hence, noting that P({�zi}|M) = P({�zi}|M, S):

P(L = t|{�zi}, M, S) = P(L = t, {�zi}|M, S)

P({�zi}|M)
. (22)

What remains to be determined is the signal level S.
Assuming that the data span the response range of
the neuron (i.e. the data contain responses to at least
one effective stimulus), one can proceed as follows:
for a given S, marginalise the latency posterior across
the time interval of interest, thereby obtaining the
probability P(L exists) that a latency exists at that S.
Repeat this procedure for different S until the max-
imal P(L exists) is found. We use 10 golden section
refinement steps (Press et al. 1986) for the maximum
search with an initial interval of [0 Hz, 100 Hz], thereby
achieving an accuracy of ≤1 Hz.

4.2 Properties of latency posterior distributions

Figure 6 illustrates the consequences of our latency de-
finition on simulated data. We generated 10 spiketrains
from inhomogeneous Bernoulli processes with a step in
firing rate 10 Hz→80 Hz or 10 Hz→30 Hz at 80 ms after
stimulus onset. The firing rate stayed at this value for
50 ms, then dropped to 45 Hz or 20 Hz for 200 ms be-
fore returning to the 10 Hz baseline. In both conditions,
most of the probability mass of the latency posterior
(Fig. 6, left bottom) is concentrated in the vicinity of the
generator’s latency. The best signal separation level S
(Fig. 6, right) for each condition reflects the difference
in peak firing rates: for 30 Hz, S ≈17 Hz, where as for
80 Hz, S ≈39 Hz. In both cases, S is roughly in the
middle between baseline and peak firing rate. Latency
was searched in the interval [0, 200] ms after stimulus
onset.

In addition to the location of the latency, the latency
posterior distributions (Fig. 6, left bottom) also con-
tain information about uncertainty. It is evident that
a smaller step in firing rate leads to a wider latency
posterior, which can also be captured by computing the
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For details, see text



J Comput Neurosci

standard deviation from that posterior. This observa-
tion is not particularly surprising, but nevertheless im-
portant: virtually all other latency estimation methods
ignore uncertainty due to their point estimation nature.
As a consequence, the latency posterior contains infor-
mation about the change in firing rate, which is a point
that we will return to later (Section 5) when we analyse
latency and firing rate with information-theoretic meth-
ods. Note also that the latency posteriors are far from
Gaussian: a description in terms of mean and standard
deviation is therefore inadequate for an information-
theoretic analysis and might distort conclusions drawn
from it.

Non-Gaussian latency posteriors are also observed
in the real data. Figure 5, right, has two distinct peaks,
the lower one at ≈83 ms, the higher one being at
≈104 ms after stimulus onset. The location of these
peaks can be understood from the height of the PSTH
(Fig. 5, right, (c)) relative to the signal level: at 83 ms,
one can be fairly certain that the PSTH was below
the signal level prior to this time index, and there is
a nonzero probability (albeit not nearly certainty) that
the PSTH is above the signal level directly afterwards.
At 104 ms, the PSTH is above the signal level with near
certainty directly after the peak in the latency posterior,
whereas one can not be quite sure that the PSTH was
below the signal level the interval immediately before
this point in time. The expected latency ± SEM is
(94 ± 10) ms. A conventional interpretation of these
values would suggest that the bulk of the probability
mass can be found close to the mean, which is not true.

4.3 Simulation results

For a quantitative evaluation of the accuracy of our
latency detection method, we generated spiketrains
from inhomogeneous Bernoulli processes with the rate
profiles shown in the insets of Fig. 7. Root-mean-
square (RMS) errors were computed from 100 repe-
titions of the simulation for a given number of trials
per dataset, see Fig. 7. We used the expected latency
as the prediction of Bayesian binning for each dataset
(similar results were found using a MAP estimate). To
further illustrate the performance of out approach, we
compared it to three other ways of latency detection:
the half-height method (Gawne et al. 1996a) (‘HH’ in
Fig. 7), latency = the first time where activity exceeds
baseline rate plus 2 SEM of baseline rate (Oram and
Perrett 1992) (‘2SD’ in Fig. 7) and the trial alignment
approach from Ventura (2004). This approach yields a
relative latency for each trial, absolute latency can be
determined by a suitable change-point method applied
to the aligned trials. We used the half-height method
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Fig. 7 Comparison of latency estimates. RMS errors were com-
puted from 100 repetitions of the simulation for a given number
of trials per dataset. ‘HH’ are the results from the half-height
method (Gawne et al. 1996a), ‘2SD’ determines latency to be
the first time where activity exceeds baseline rate plus 2 SEM
of baseline rate (Oram and Perrett 1992), ‘Ventura’ is the trial
alignment method from Ventura (2004) and ‘Bay.Bin’ shows
the RMS errors using the expected latency from our method.
Insets show generating rate profiles. Left: generators comprised
of bins with latency at 80 ms. Bayesian binning latency detection
outperforms the other methods for all dataset sizes. The high,
flat error curve of the 2SD method in the 80 Hz peak firing
rate condition is due to a consistent underestimation of latency,
which is an artifact of Gaussian kernel smoothing combined with
a baseline SEM that is small in comparison with the firing rate
step at the latency. Right: generator with sloping response onsets.
We measured the RMS against an assumed latency of 80 ms,
even though latency is no longer well defined in these conditions.
Our Bayesian binning method is still better than the competitors,
despite the fact that a slope is hard to model with bins. Its increase
in RMS between 10 trials and 30 trials in the high peak firing
condition is due to a flat signal separation maximum (see also
Fig. 6, right)

here, since it gives good estimates of the latency without
alignment.

Our method is more accurate than the others in all
tested conditions. This is true even if the generator
has a sloping response onset (Fig. 7, right) and can no
longer be easily modelled by bins. In this case, latency
is not as clearly defined as for a step response onset.
We took the point of the first rate inflection at 80 ms
to be the ‘true’ latency. Note that this is an additional
condition which is not a part of our latency definition.
If we had certain knowledge of the generating firing
rates, any S ∈ (10Hz, 80Hz) would be suitable as a
separation level. A consequence of choosing the first
point of inflection as ‘true’ latency is an increase in
RMS of Bayesian binning between 10 and 30 trials for
the 80 Hz peak, sloping onset condition. This is due to
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a very flat signal separation maximum (see also Fig. 6,
right), i.e. there are many values of S which allow for an
almost equally certain separation between ‘firing rate
above S’ and ‘firing rate below S’. Since we search for
a single maximum, this maximum’s location will then
mostly be determined by noise, and not by differences
in signal quality. If we wanted to bring the L closer to
the first rate inflection point, we would have to optimise
a compromise between large P(L exists) and small S.
This could be accomplished by adding a weak prior
over S which prefers small S. However, this is no longer
a ‘minimal’ definition of latency, so we will continue to
use our original definition.

4.4 Trial-by-trial latency and firing rate estimation

So far, we computed the model posteriors and all quan-
tities derived thereof on the assumption that there is a
single ‘correct’ PSTH from which the data were gener-
ated. In other words, we presupposed that the exper-
imentally controlled parameters (e.g. stimulus identity
and presentation time) were enough to specify the spike
train generating process up to a random element, which
is fully modelled by the firing probability. One might
object to this model. It is certainly conceivable that
for instance latencies and firing rates of the generator
vary between trials. Therefore, it would be desirable
to be able to compute the posterior distributions of
these parameters on a trial-by-trial basis. It is possible
to do that with our method, as indicated by the single
trials performances in simulations (see Figs. 3 and 7).
Figure 8, left, shows a trial-by-trial latency posterior
distribution marginalised across all trials to stimuli of
high (100%), medium (50%) and low (12.5%) contrast.
The high contrast latency posterior was calculated on
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Fig. 8 Trial-by-trial latency and firing rate posteriors for three
stimulus contrasts. Left: a latency posterior was computed for
each trial and then marginalised across all trials for a given
contrast. The high contrast posterior was calculated on the same
data as the latency posterior in Fig. 5, right. While the posterior
uncertainty is increased due to the trial-by-trial evaluation, the
bulk of the probability is in the same post-stimulus time range
(≈75 ms–110 ms) as before. Reducing stimulus contrast clearly
increases latencies. Right: firing rate posterior densities in the first
bin after the latency

the same data as those used in Fig. 5, right. While
the posterior uncertainty is increased due to the trial-
by-trial evaluation, the bulk of the probability is in
the same post-stimulus time range (≈75 ms–110 ms,
with S ≈ 47 Hz) as before. Moreover, it is apparent
that latency increases with decreasing stimulus contrast,
which was also observed in Oram et al. (2002) using a
statistical approach (Oram and Perrett 1992; Oram and
Perret 1996).

To calculate the posterior distribution of firing rates
across trials, one can proceed in a fashion similar to that
used for latency: define the probability density that the
firing rate at t, f (t), is f̃ given the model parameters as

p( f (t) = f̃ |{km}, { fm}, M)

=
{

δ( f j − f̃ ) if t ∈ {k j−1 + 1, . . . , k j}
0 otherwise

(23)

where δ(x) is the Dirac delta function. In words, this
probability density is concentrated at the firing rate f j

of that bin which contains the time index t if f j = f̃ .
By adding the condition that the lower bound of bin j
is equal to the latency, we can compute the probability
density of the firing rate in the first bin after the latency,
i.e. in the strong transient part of the response. If {km}
and { fm} are given, then this firing rate f j depends on
the latency only through the signal level S, because
f j ≥ S (see Eq. (21)). Thus, we can compute the joint
probability (density) of ‘latency L = t’ and ‘firing rate
is f̃ ’ by multiplying the r.h.s of Eq. (23) with the r.h.s of
Eq. (21) if f̃ ≥ S:

p( f (t) = f̃ , L = t|{km}, { fm}, M, S)

=
⎧
⎨

⎩

p( f (t) = f̃ |{km}, { fm}, M)

×P(L = t|{km}, { fm}, M, S) if f̃ ≥ S
0 otherwise.

(24)

Averaging this probability density over the posterior
Eq. (8) is done by an algorithm similar to the one
used for latency, as detailed in Appendix C. This yields
P( f (t) = f̃ , L = t, {�zi}|M, S). Therefore we have

p( f (t) = f̃ |L = t, {�zi}, M, S)

= p( f (t) = f̃ , L = t, {�zi}|M, S)

P(L = t, {�zi}|M, S)
(25)

i.e. the probability density of the firing rate being f̃
given that the latency is at t, the signal level is S and
the data {�zi} for a model with M bins. Averaging this
firing rate density across trials yields Fig. 8, right. Here,
firing rates were found to decrease with stimulus con-
trast. Furthermore, the posteriors are unimodal—this
indicates that modelling the trial-by-trial variations in
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firing rate by e.g. a mixture of binomial with a unimodal
mixing distribution might be a viable strategy.

5 Information-theoretic analysis of latency
and firing rate

It is often interesting to quantify the amount of in-
formation which a neural response carries about vari-
ous stimulus parameters. Information theory (Shannon
1948) provides the mathematical framework to address
this question: mutual information I(U; C) (Cover and
Thomas 1991) measures how much we can expect to
learn about a (discrete) stimulus parameter C from a
(discrete) neural response measure U , and vice versa.
Given a joint probability distribution P(U, C), I(U; C)

is defined as

I(U; C) =
∑

C

∑

U

P(U, C) log

(
P(U, C)

P(U)P(C)

)
(26)

where P(U) = ∑
C P(U, C) and likewise for P(C). If a

second neural response measure V and the joint prob-
ability distribution P(U, V, C) is available, it is possi-
ble to define conditional mutual information I(U; C|V)

and joint mutual information I(U, V; C) (Cover and
Thomas 1991):

I(U; C|V) =
∑

C

∑

U

∑

V

P(U, V, C)

× log

(
P(U, C|V)

P(U |V)P(C|V)

)
(27)

I(U, V; C) =
∑

C

∑

U

∑

V

P(U, V, C)

× log

(
P(U, V, C)

P(U, V)P(C)

)

= I(U; C|V) + I(V; C) (28)

I(U; C|V) can be understood as the amount of infor-
mation we expect to gain about C by observing U if we
knew V, whereas I(U, V; C) is the expected informa-
tion gain about C if we learned the values of both U and
V. Extending these definitions to continuous variables
is straightforward (Cover and Thomas 1991).

In Sections 4.1 and 4.4, we developed the formalism
to compute the posterior distribution of the latency L
(Eq. (22)) and the posterior density of the firing rate

f (t) in the first bin after latency (Eq. (25)), providing
the joint density

p( f (t) = f̃ , L = t|{�zi}, M, S)

= p( f (t) = f̃ |L = t, {�zi}, M, S) P(L = t|{�zi}, M, S)

(29)

which we need to compute joint, conditional and
marginal mutual informations between L, f (t) and
any stimulus parameter. Note that these distribu-
tions/densities are conditioned on the signal level S.
So far, we described a procedure to determine S for a
single stimulus condition C (see end of Section 4.1). We
define S for multi-valued C based on two assumptions:

1. the signal level S is a property of the cell, not of
the stimulus. In other words, there is a single S
per cell across all C. If S was allowed to vary with
C, the choice of S would inject stimulus-related
information into the information estimates which is
not present in the data.

2. S is determined by maximising the marginal proba-
bility of latency existence P(L exists|S) (and there-
fore, signal existence)

P(L exists|S) =
∑

C

P(L exists|S, C)P(C) (30)

where P(C) is the prior probability of each stimulus
condition, which is controlled by the experimenter.

3. We assume that there is no a-priori dependency
between S and C.

Assumption 2 is a consequence of the experimental
design which we are about to analyse. Cells and stimuli
were selected such that there was at least one stimulus
which evoked a strong response, and at least one that
evoked a weak response (possible none). Maximising
the marginal probability of latency existence thus has
the effect of choosing an S such that as many stim-
ulus conditions as possible have a detectable latency.
If there is a strong and a weak (but still detectable)
response, this procedure chooses a relatively small S
such that P(L exists|S, C) is high for both C. However,
if there is a strong and a non-detectable response, the
value of S will be higher, since it will be driven only by
the strong response. It remains to be seen if this pro-
cedure needs to be adapted for different cell/stimulus
choices.

5.1 Results on simulated data

We mentioned in Section 4.2 that the latency posterior
inevitably contains information about the change in
firing rate at the latency. To illustrate this point, we
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performed an information-theoretic analysis of a two-
stimulus scenario on simulated data. Each stimulus
evoked a 50 ms long transient response, followed by a
sustained response (duration 250 ms) with a firing rate
between the transient and the 10 Hz baseline. In the
‘no difference’ condition, the two simulated responses
had the same underlying generator. We also varied just
the firing rate (transient: 100 Hz vs. 30 Hz), just the
latency (80 ms vs. 90 ms) or both firing rate and latency.
Each dataset contained 10 trials per stimulus and was
analysed trial-by-trial (i.e. one PSTH inferred per trial).
The average results from 10 repetitions of the simula-
tions are summarised in Table 2. This table shows the
mutual informations between stimulus identity C, and
the variables:

– E: latency exists, i.e. L ∈ {30 ms, . . . , 250 ms}.
– L: L = t for t ∈ {30 ms, . . . , 250 ms}, see Eq. (22).

Additionally, L has a special value indicating that a
latency does not exist (i.e. no transition from below
the signal threshold S to above S).

– f : firing probability f (t) = f̃ in the first bin after
latency for f̃ ∈ [S, 1], see Eq. (25). f also has a
special value indicating that a firing probability in
the first bin after latency does not exist.

Note that both L and f determine E: if latency
is somewhere in the latency search interval or if the
firing rate in the first bin after latency is somewhere
above the signal level, then E is true, otherwise E is
false. E can also be read as ‘firing rate went above
the signal level S somewhere in the latency search
interval’, and might therefore be viewed as a firing rate
related variable, rather than a property of latency. This

Table 2 Mutual information I in [bit] for simulated neurons with
a baseline firing rate of 10 Hz, trial-by-trial analysis

Difference in I(E; C) I(L; C|E) I( f ; C)

No difference 0.002 ± 0.001 0.045 ± 0.004 0.008 ± 0.002
f : 100/30 Hz 0.255 ± 0.023 0.079 ± 0.014 0.314 ± 0.023
L: 80/90 ms 0.007 ± 0.002 0.084 ± 0.010 0.016 ± 0.004
f : 100/30 Hz, 0.206 ± 0.026 0.072 ± 0.007 0.265 ± 0.023
L: 80/90 ms

C is stimulus identity, there were two stimuli. L is latency, f
is firing rate in the first bin after latency and latency existence
is E. The latter is the truth value of the proposition ‘Latency
is somewhere between 30 ms and 250 ms after stimulus onset’.
Difference in f means that the peak firing rates were 30 Hz for
one stimulus and 100 Hz for the other, duration of peak response
50 ms, latency 80 ms after stimulus onset. In the ‘difference in
L’ condition, both neurons had a peak firing rate of 100 Hz for
50 ms, with a latency of 80 ms for one stimulus and 90 ms for the
other. ‘No difference’ means that both peak firing rates (100 Hz)
and latencies (80 ms) were equal. Errors are SEM computed from
10 repetitions of the simulations. For details, see text

ambiguity highlights the difficulty of separating firing
rate and latency related information, which is due to
latency being defined by a firing rate based criterion.
We choose to interpret E as carrying firing rate infor-
mation, since latency is concerned with the timing of
response onset, rather than just the presence or absence
of a response. Thus, information about C in L is given
by the conditional mutual information I(L; C|E).

The values in the ‘no difference’ condition in Table
2 represent the overestimation biases of our method
in this scenario. Overestimation of mutual information
(and the closely related underestimation of entropy)
from small datasets is a well-known problem, and
many remedies have been devised for it (Optican et al.
1991; Panzeri and Treves 1996; Nemenman et al. 2004;
Paninski 2004; Endres and Földiák 2005). However,
most of these methods assume a set of datapoints as
a starting point, not a set of posterior distributions.
Hence, they can not be applied to our analysis un-
altered. Further work will be needed to understand
how best to provide, within our analysis framework,
information estimates whose overestimation is as small
as possible.

If there is only a difference in firing rates, then
I( f ; C) > I(L; C|E) but I(L; C|E) is still significantly
greater than in the ‘No difference’ condition. In other
words, even though the simulated cells were designed
to have the same latency (80 ms), the latency posterior
distributions inferred from a finite sample carry infor-
mation about the magnitude of the firing rate change –
a large response allows for the determination of latency
with greater certainty than a small one. Compare this
to the ‘difference in L’ condition: while I(L; C|E) is
about as large as before, I(L; C|E) > I( f ; C), i.e. our
method is able to distinguish between (un)certainty
related and variability related latency information via
the information in f . Furthermore, in both ‘difference
in f ’ conditions, E contains a large fraction of the
firing rate information, i.e. knowing whether the signal
threshold was crossed is the most informative aspect
of f .

In summary, our method yields the results one would
expect for each condition: if the stimulus identity C is
encoded in f , then I( f ; C) is maximal, if changes in C
cause changes in L, I(L; C|E) is maximal. If both L and
f are influenced by C, then both can be used together
to determine C.

5.2 Results on STSa data

It is known that stimulus contrast influences latency of
STSa neurons (Oram et al. 2002; van Rossum et al.
2008). We now examine responses to high-contrast
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Table 3 Average trial-by-trial mutual informations and standard
errors of the mean (SEM) computed from 29 STSa neurons under
high-contrast viewing conditions

Mutual information between C and Average ± SEM [bit]

Signal existence E I(E; C) 0.0594 ± 0.0191
Latency L given E I(L; C|E) 0.0650 ± 0.0075
Firing rate f I( f ; C) 0.0730 ± 0.0205
Firing rate given latency I( f ; C|L) 0.0136 ± 0.0020
Latency given firing rate I(L; C| f ) 0.0649 ± 0.0077
Joint code I( f, L; C) 0.1379 ± 0.0074

Entropy of stimulus identity C is H(C) ≈1 bit for all cells. E,
L and f have the same meaning as in Table 2. Firing rate f in
the first bin after latency carries slightly more information about
stimulus identity C than latency L. For details, see text

presentations to ask whether latency changes convey
stimulus identity related information in the absence of
contrast change. The results of a trial-by-trial analysis
of mutual informations computed from 29 STSa neu-
rons under high-contrast viewing conditions are shown
in Table 3. Entropy of stimulus identity C is H(C) ≈1
bit for all cells. Since I( f ; C) > I(L; C|E), firing rate
f in the first bin after latency carries slightly more
information about C than latency L, but the difference
is not significant. The joint code of latency and firing
rate is almost as informative as the sum of the indi-
vidual codes, I( f, L; C) ≈ I( f ; C) + I(L; C|E). This is
also indicated by I(L; C| f ) ≈ I(L; C|E): the stimulus
identity information in firing rate which is redundant
with latency is almost completely contained in E. In
other words, the most informative firing rate feature is
whether the firing rate crosses the signal threshold or
not. To decode stimulus identity, we should therefore
answer questions about latency and firing rate in the
following order of importance: has the cell fired above
S, when has it fired above S, how much has it fired
above S? While these conclusions are certainly condi-
tioned on our small stimulus set (2 stimuli per cell), the
values of the mutual informations are small compared
to the theoretical maximum of 1 bit. This makes ceiling
effects unlikely.

6 Summary

We have extended our exact Bayesian binning method
(Endres et al. 2008) for the estimation of PSTHs. Be-
sides treating uncertainty—a real problem with small
neurophysiological datasets—in a principled fashion, it
also outperforms several competing methods on real
neural data. Amongst the competitors, we found that

only BARS (DiMatteo et al. 2001) offers compara-
ble predictive performance. However, BARS requires
sampling to compute posterior averages, which can
potentially take very long or even get stuck, a problem
which we observed on data sets containing only a small
number of spikes. Bayesian binning allows for the ex-
act evaluation of posterior averages (within numerical
roundoff errors) independent of the contents of the
data set. It also offers automatic complexity control
because the model posterior can be evaluated. While
its computational cost is significant, it is still fast enough
to be useful: evaluating the predictive probability takes
less than 1s on a modern PC,2 with a small memory
footprint (<10 MB for 512 spiketrains). We showed
how our approach can be adapted to extract charac-
teristic features of neural responses in a Bayesian way,
e.g. response latencies or firing rate distributions. But
we are not restricted these features: we can use our
method to compute expectations of any function of
the PSTH, subject to the condition that the function
depends on the PSTH in a bin-wise fashion. A free
software implementation is available at the machine
learning open source software repository.3 This imple-
mentation contains a short tutorial, computes expected
PSTH and posterior standard deviations, separation
level and latency posterior. It also allows for the opti-
misation of the prior hyperparameters. The code for the
information theoretic calculations is available from the
authors on request, but it requires a cluster computer to
run efficiently: the integration over the posterior distri-
bution of the firing rate needs to be done numerically
and is time consuming (≈1–2 days per processor per
spiketrain for a trial-by-trial analysis).

The latency alignment procedure of Ventura (2004)
was developed to quantify trial-by-trial variation of
the response latencies, and as such was not intended
to determine an absolute latency estimate. However,
Ventura (2004) suggested that the minimal latency es-
timate from the individual trials could be used. We find
this yields a poor estimate of absolute latency which
tends to get worse with increasing number of trials.
We therefore used the half height method from Gawne
et al. (1996a) on the aligned spiketrains to improve the
absolute latency estimate. This appears to make the
estimate largely independent of the number of trials
(see Fig. 7). In the majority of cases, this procedure
still underestimates the absolute latency, since the trials

23.2 GHz Intel Xeon™, SuSE Linux 10.1.
3http://www.mloss.org, package ‘binsdfc’.

http://www.mloss.org
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are aligned to the minimal trial latency. To counter
this systematic underestimation, we experimented with
shifting all aligned trials by the difference between the
total pre-alignment and post-alignment means, thereby
restoring the original total mean spike time. However,
this did not improve results notably. Aligning trials
by mean spike time works well on relatively regular
spiketrains (such as the gamma order 8 ISI distribution
simulations used in Ventura (2004)). In our simulations
with short transients and Bernoulli spike generation, it
appears not to work. We would therefore conclude that
the poor performance of this method is due to poor
estimates of the mean spike time of each trial.

Substituting our observation model (Eq. 2) with any
other distribution is straightforward, as long as the
replacement is also comprised of bins. One might e.g.
model each spike train within a bin by a separate
Bernoulli process and mix these with a suitable distribu-
tion to capture the inter-trial differences. Alternatively,
one could use a model similar to that of Shinomoto and
Koyama (2007): choose a Gamma process for the inter-
spike intervals and model the time-dependent rate with
a bin model.

There are a number of other approaches to
PSTH/SDF estimation which were not included in
our comparisons. Perhaps most noteworthy (from a
Bayesian perspective) are Shinomoto and Koyama
(2007) and a recent Gaussian process model (Cunning-
ham et al. 2008). We have not yet directly compared our
method to either of them. Comparisons to Cunningham
et al. (2008) and Shinomoto and Koyama (2007) will be
interesting future work, once the authors of these works
release their code.

Finally, we used our approach to compute exact
(up to roundoff errors) expectations of information-
theoretic quantities, e.g. mutual informations between
latency, firing rate and stimulus identity. We demon-
strated that STSa neurons convey most of the informa-
tion about stimulus identity through changes in firing
rate. Specifically, we found that the crossing of a signal
threshold S is the most informative firing rate feature.
However, extra information about stimulus identity can
be gained by looking at the response latency.
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Appendix A: Computing the evidence with dynamic
programming

The evidence, or marginal likelihood of a model with
M bins is given by (see Eq. (9)):

P({�zi}|M) =
T−2∑

kM−1=M−1

kM−1−1∑

kM−2=M−2

. . .

. . .

k1−1∑

k0=0

P({�zi}|{km}, M)P({km}|M) (31)

where the summation boundaries are chosen such that
the bins are non-overlapping and contiguous and

P({�zi}|{km}, M)

=
∫ 1

0
d{ fm}P({�zi}|{ fm}, {km}, M)p({ fm}|M). (32)

Recall that the probability of a (multi)set of spiketrains
{�zi} = {z1, . . . , zN}, assuming independent generation,
is given by Eq. (3):

P({�zi}|{ fm}, {km}, M) =
N∏

i=1

M∏

m=0

f s(�zi,m)
m (1 − fm)g(�zi,m)

=
M∏

m=0

f s({�zi},m)
m (1 − fm)g({�zi},m)

(33)

where s({�zi}, m) = ∑N
i=1 s(�zi, m) is the number of spikes

in all spiketrains in bin m and g({�zi}, m) = ∑N
i=1 g(�zi, m)

is the number of all non-spikes, or gaps. The prior of the
firing rates (Eq. (5)) is

p({ fm}|M) =
M∏

m=0

B( fm; σm, γm). (34)

The integrals in Eq. (32) can be evaluated by virtue of
Eqs. (33 and 34):

P({�zi}|{km}, M)=
M∏

m=0

B(s({�zi}, m)+σm, g({�zi}, m) + γm)

B(σm, γm)

(35)

where B(x, y) = �(x)�(y)

�(x+y)
is Euler’s Beta function (Davis

1972). Equation (35) is a product with one factor per
bin, and each factor depends only on spike/gap counts
and prior parameters in that bin. To compute Eq. (31),
we can therefore use an approach very similar to that
described in (Endres and Földiák 2005; Endres 2006)
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in the context of density estimation and in (Hutter 2006,
2007) for Bayesian function approximation: define the
function

getIEC(ks, ke, m) := B(s({�zi}, ks, ke)

+σm, g({�zi}, ks, ke) + γm) (36)

where s({�zi}, ks, ke) is the number of spikes and
g({�zi}, ks, ke) is the number of gaps in {�zi} between the
start interval ks and the end interval ke (both included).
Furthermore, collect all contributions to Eq. (31) that
do not depend on the data (i.e. {�zi}) and store them in
the array pr[M]:

pr[M] :=
∏M

m=0
1

B(σm,γm)(
T − 1

M

) . (37)

Substituting Eq. (35) into Eq. (31) and using the defini-
tions (36) and (37), we obtain

P({�zi}|M) ∝
T−2∑

kM−1=M−1

. . .

. . .

k1−1∑

k0=0

M∏

m=1

getIEC(km−1 + 1, km, m)

×getIEC(0, k0, 0) (38)

with kM = T − 1 and the constant of proportionality
being pr[M]. Since the factors on the r.h.s. depend only
on two consecutive bin boundaries each, it is possible to
apply dynamic programming (Bertsekas 2000): rewrite
the r.h.s. by ‘pushing’ the sums as far to the right as
possible:

P({�zi}|M)

∝
T−2∑

kM−1=M−1

getIEC(kM−1+1, T−1, M)

×
kM−1−1∑

kM−2=M−2

getIEC(kM−2 + 1, kM−1, M − 1)

× . . .

k1−1∑

k0=0

getIEC(k0 + 1, k1, 1)getIEC(0, k0, 0).

(39)

Evaluating the sum over k0 requires O(T) operations
(assuming that T � M, which is likely to be the case
in real-world applications). As the summands depend
also on k1, we need to repeat this evaluation O(T)

times, i.e. summing out k0 for all possible values of
k1 requires O(T2) operations. This procedure is then

Table 4 Computing the evidences of models with up to M bin
boundaries

1. for k := 0 . . . T − 1 : subE[k] := getIEC(0, k, 0)

2. E[0] := subE[T − 1] × pr[0]
3. for m := 1 . . . M :

(a) if m = M then l := T − 1 else l := m

(b) for k := T − 1 . . . l

subE[k] := ∑k−1
r:=m−1 subE[r] × getIEC(r + 1, k, m)

(c) E[m] = subE[T − 1] × pr[m]
4. return E[]

repeated for the remaining M − 1 sums, yielding a total
computational effort of O(MT2). Thus, initialise the
array subE0[k] := getIEC(0, k, 0), and iterate for all
m = 1, . . . , M:

subEm[k] :=
k−1∑

r=m−1

getIEC(r + 1, k, m)subEm−1[r],

(40)

A close look at Eq. (39) reveals that while we sum over
kM−1, we need subEM−1[k] for k = M − 1; . . . ; T − 2 to
compute the evidence of a model with its latest bound-
ary at T − 1. We can, however, compute subEM−1[T −
1] with little extra effort, which is, up to a factor
pr[M − 1], equal to P({�zi}|M − 1), i.e. the evidence for
a model with M − 1 bin boundaries. Moreover, having
computed subEm[k], we do not need subEm−1[k − 1]
anymore. Hence, the array subEm−1[k] can be reused to
store subEm[k], if overwritten in reverse order. Table 4
shows this algorithm in pseudo-code (E[m] contains
the evidence of a model with m bin boundaries inside
[tmin, tmax] after termination).

Appendix B: Computing the posterior distribution
of the latency

We compute the joint probability of the latency L = t
and the observed spiketrains {�zi} given the number of
bins and the signal separation level S via

P(L = t, {�zi}|M, S) =
T−2∑

kM−1=M−1

kM−1−1∑

kM−2=M−2

. . .

. . .

k1−1∑

k0=0

P(L = t, {�zi}, {km}|M, S)

(41)
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where

P(L = t, {�zi}, {km}|M, S)

=
∫ 1

0
d{ fm}P(L = t|{km}, { fm}, M, S)

× p({�zi}, { fm}, {km}|M). (42)

Note that P(L = t|{km}, { fm}, M, S) is the r.h.s of
Eq. (21) and p({�zi}, { fm}, {km}|M) is the numerator of
the r.h.s. of Eq. (8). As a consequence of Eq. (21), the
only nonzero contributions to the average are models
which have a (lower) bin boundary at t. Assume t was
at the lower bound of bin j, i.e. at t = k j−1 + 1 (the {km}
are inclusive upper bin boundaries, as defined above).
Carrying out the integrals over the { fm} yields:

P(L = t, {�zi}, {km}|M, S)

=
∫ 1

0
d{ fm}P(L = t|{km}, { fm}, M, S)

× p({�zi}, { fm}, {km}|M)

=
∫ S

0
df0 . . .

∫ S

0
df j−1

∫ 1

S
df j

∫ 1

0
df j+1 . . .

. . .

∫ 1

0
dfM p({�zi}, { fm}, {km}|M) (43)

The integration boundaries in the last line of Eq. (43)
are a consequence of our latency definition: all bins m <

j will contribute to the integral only as long as fm < S,
hence the upper bound of their integrals is at S. Bin j
contributes only if f j ≥ S, thus the lower bound of the
integral over f j is S. The bins m > j are not affected by
the latency probability (Eq. (21)) whence their integrals
still run from 0 to 1. By virtue of Eqs. (3) and (5), we
obtain

P(L = t, {�zi}, {km}|M, S)

=
j−1∏

m=0

BS(s({�zi}, m) + σm, g({�zi}, m) + γm)

× B̃S(s({�zi}, j) + σm, g({�zi}, j) + γm))

×
M∏

m= j+1

B(s({�zi}, m) + σm, g({�zi}, m) + γm)

×
M∏

m=0

1

B(σm, γm)
P({km}|M) (44)

where BS(a, b) = ∫ S
0 ta−1(1 − t)b−1dt is the incomplete

Beta function (Davis 1972) and B̃S(a, b) = ∫ 1
S ta−1(1 −

t)b−1dt = B(a, b) − BS(a, b) is its complement. Note

that up to the factor P({km}|M), Eq. (44) is basically
Eq. (35) with some of the Beta functions replaced
by incomplete Beta functions. Hence, the remaining
summations over the {km} can be carried out by using

getIECL(ks, ke, m) :=

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BS(s({�zi}, ks, ke)

+ σm, g({�zi}, ks, ke) + γm) if ke < t

B̃S(s({�zi}, ks, ke)

+ σm, g({�zi}, ks, ke) + γm)) if ks = t

B(s({�zi}, ks, ke)

+ σm, g({�zi}, ks, ke) + γm) if ks > t

0 otherwise

(45)

instead of getIEC(ks, ke, m) (Eq. (36)) in the evidence
computation algorithm. This procedure yields the de-
sired P(L = t, {�zi}|M, S). The above derivation is an
instance of the general framework for computing ex-
pectations of functions of bin boundaries and firing
probabilities described in Endres and Földiák (2005).

Appendix C: Computing the posterior density
of the firing rate

We compute the joint probability density of the fir-
ing rate f (t) = f̃ , the latency L = t and the observed
spiketrains {�zi} given the number of bins and the signal
separation level S via

P( f (t) = f̃ , L = t, {�zi}|M, S) =

=
T−2∑

kM−1=M−1

kM−1−1∑

kM−2=M−2

. . .

. . .

k1−1∑

k0=0

P( f (t) = f̃ , L = t, {�zi}, {km}|M, S) (46)

where

p( f (t) = f̃ , L = t, {�zi}, {km}|M, S)

=
∫ 1

0
d{ fm}P( f (t) = f̃ , L = t|{km}, { fm}, M, S)

× p({�zi}, { fm}, {km}|M) (47)
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Note that P( f (t) = f̃ , L = t|{km}, { fm}, M, S) is the
r.h.s of Eq. (24) and p({�zi}, { fm}, {km}|M) is the
numerator of the r.h.s. of Eq. (8). As a consequence of
Eq. (24), the only nonzero contributions to the average
are models which have a (lower) bin boundary at t and
f (t) ≥ S. Assume t was at the lower bound of bin j,
i.e. at t = k j−1 + 1 (the {km} are inclusive upper bin
boundaries, as defined above). Integrating out the { fm}
yields

p( f (t) = f̃ , L = t, {�zi}, {km}|M, S)

=
j−1∏

m=0

BS(s({�zi}, m) + σm, g({�zi}, m) + γm)

× f̃ s({�zi}, j)+σm−1 (1 − f̃ )g({�zi}, j)+γm)−1

×
M∏

m= j+1

B(s({�zi}, m) + σm, g({�zi}, m) + γm)

×
M∏

m=0

1

B(σm, γm)
P({km}|M) (48)

where the second line is a result of Eq. (3) and (5)
multiplied with the Dirac delta function in Eq. (23).
Hence, the remaining summations over the {km} can be
carried out by using

getIEC f,L(ks, ke, m) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BS(s({�zi}, ks, ke)

+ σm, g({�zi}, ks, ke) + γm) if ke < t

f̃ s({�zi},ks,ke)+σm−1

× (1 − f̃ )g({�zi},ks,ke)+γm−1 if ks = t

B(s({�zi}, ks, ke)

+ σm, g({�zi}, ks, ke) + γm) if ks > t

0 otherwise

(49)

instead of getIEC(ks, ke, m) (Eq. (36)) in the evi-
dence computation algorithm. Thus we obtain P( f (t) =
f̃ , L = t, {�zi}|M, S).
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