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Abstract

The cerebellum allows us to rapidly adjust motor behavior to the needs of the situation. It is

commonly assumed that cerebellum-based motor learning is guided by the difference

between the desired and the actual behavior, i.e., by error information. Not only immediate

but also future behavior will benefit from an error because it induces lasting changes of par-

allel fiber synapses on Purkinje cells (PCs), whose output mediates the behavioral adjust-

ments. Olivary climbing fibers, likewise connecting with PCs, are thought to transport

information on instant errors needed for the synaptic modification yet not to contribute to

error memory. Here, we report work on monkeys tested in a saccadic learning paradigm

that challenges this concept. We demonstrate not only a clear complex spikes (CS) signa-

ture of the error at the time of its occurrence but also a reverberation of this signature much

later, before a new manifestation of the behavior, suitable to improve it.

Author summary

The cerebellum allows us to rapidly adjust motor behavior to the needs of the situation.

This cerebellum-based motor learning is guided by the difference between the desired and

the actual behavior, i.e., by error information. It is usually assumed that not only immedi-

ate but also future motor behavior will benefit from error information because it induces

lasting modifications of parallel fiber synapses on cerebellar Purkinje cells (PCs). These

modifications affect the transformation of movement-related input into PC output and

thence behavioral adjustments. Olivary climbing fibers, likewise connecting with PCs, are

thought to transport information on instant errors needed for the synaptic modification

yet not to contribute to error memory. Here, we report work on monkeys’ motor learning

that challenges this concept. We not only identify a neural signature of the error at the

time of its occurrence but also a reverberation of this signature much later, before a new

manifestation of the behavior and therefore potentially involved in its improvement.
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Introduction

Ever since the publication of David Marr’s seminal theory of cerebellar cortex [1], thinking

about the role of the cerebellum has revolved around the idea of motor learning, a view that has

received support from studies of a variety of motor and oculomotor model systems [2–6]. A

central feature of this concept has been the assumption that information on possible insufficien-

cies of the subject’s behavior, needed to improve future manifestations of the same behavior, is

conveyed by one of the two types of afferent fibers reaching cerebellar cortex, namely climbing

fibers, originating from the inferior olive. The second one is the mossy fiber system that conveys

information relevant for the shaping of the behavior at stake, handed over to parallel fibers,

which in turn connect with Purkinje cells (PCs). Climbing fibers contact PCs directly, where

they ignite complex spikes (CS), usually studied as proxy for climbing fiber activity. According

to the Marr–Albus–Ito (MAI) theory [1,7,8], the occurrence of an error changes the climbing

fiber/CS discharge, which in turn induces heterosynaptic modification of simultaneously active

parallel fiber synapses on the PC dendritic tree. It is this modification of the parallel fiber impact

on PCs that in turn leads to changes of the PC output, which is ultimately responsible for the

change of behavior. In other words, the MAI theory suggests that the climbing fiber system uses

error information to facilitate a specific pattern of parallel fiber input, allowing the optimization

of behavior. A central aspect of this concept is the assumption that the role of the climbing fiber

signal is limited to providing information on the occurrence of an instant error. However, in

order to avoid the same error in the future, the system should certainly conserve a memory of

this error and consider it also for the shaping of future manifestations of the same behavior.

This requirement is met by the MAI theory, as it posits longer-lasting changes of the synapses of

parallel fiber with PCs brought about by the original error. In other words, a memory of past

errors is implicitly stored in the parallel fiber synapses impinging on the PC.

Although this concept has received support from a number of studies, not all findings have

been readily compatible with the idea that the role of the climbing fiber is confined to commu-

nicating instant errors. One example is our recent work on short-term saccadic adaptation

(STSA), studied as a model of cerebellum-based motor learning, in which we observed patterns

of CS that were at odds with the assumptions of the MAI theory [9]. In studies of STSA, the

subject is asked to make a saccade towards a peripheral visual target. Then, while the eyes

move to the target, the target is shifted to a nearby position [10], a shift that is unnoticed

because of saccadic suppression [11]. Since the subject is unaware of the target shift, the eyes

arrive at where the target was expected to be, which is why a subsequent corrective saccade has

to be added in order to acquire the target at its final location. If the target shifts are repeated

time and again in a consistent manner, one typically observes that the metric of the primary

saccade adapts such as to bring the eyes closer to the final position of the target. STSA is a form

of motor learning that depends on the integrity of the oculomotor vermis (OMV) [12]. When

recording CS of OMV PCs, we surprisingly observed a gradual buildup of a specific saccade-

related CS modulation that became most pronounced at the end of adaptation, i.e., at a time

the error had been annulled, a modulation that actually outlasted the end of the adaptation

period. On the other hand, we could not retrieve a significant influence of the original error on

the CS discharge even early during adaptation [9]. Moreover, when studying a second form of

oculomotor learning, likewise dependent on OMV PCs—smooth-pursuit adaptation—we

made fully congruent observations, namely the absence of an error signature and the buildup

of a stable CS pattern paralleling the learning [13]. Both paradigms have the drawback of

inducing the buildup of strong behavioral changes that quickly reduce the original error,

thereby potentially concealing its influence. This is why we decided to resort to a random

error saccadic adaptation paradigm. It avoids both problems (the gradual buildup of strong
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behavioral changes and the accompanying diminution of the error), potentially obscuring the

electrophysiological fingerprint of the original error. When analyzing CS of PCs in the OMV

recorded in conjunction with the behavior, we found not only a CS signature of the error at

the time of its occurrence but in addition a reverberation of this signature later, before a new

manifestation of the behavior. Hence, the climbing fiber system helps to conserve information

on error for the future, rather than being confined to conveying information on instant errors.

Results

Retinal errors induce trial-by-trial adaptation

The monkeys performed visually guided saccades in eight randomly chosen directions in the

frontoparallel plane, and in each trial, there was a probability of one-third for the target to stay

put, to jump partially back towards the center during the saccade, or to jump further out. As

exemplified in Fig 1A and S1 Fig, as a consequence of intrasaccadic target jumps, the primary

saccade over- or undershoots the target, respectively, causing a saccadic error that was subse-

quently corrected by a secondary saccade.

We investigated the effect that the retinal error in a certain direction in trial n − 1 had on the

amplitude of the saccade in the next trial n made into the same direction. Note that as a conse-

quence of the randomization, this trial n could directly follow trial n − 1 or be delayed by a vary-

ing number of in-between trials made into other directions (Fig 1A). Fig 1C plots the amplitudes

of primary saccades in trial n as a function of the retinal error in trial n − 1 for a set of trials per-

formed into a particular direction (downwards) for an exemplary individual session of one of

the experimental animals. This plot clearly shows that a retinal error not only prompted a correc-

tive saccade in trial n − 1 but also led to clear and significant (one-way ANOVA, p< 0.01)

changes in the metrics of the saccade in trial n, increasing the amplitude of the primary saccade

in the case of an outward error and, conversely, decreasing it in the case of inward errors. In

other words, the amplitude changes observed in trial n were such as to reduce the size of a retinal

error in trial n had it been subject to the same intrasaccadic target shift as trial n − 1.

The amplitude changes from trial n − 1 to n, reflecting trial-by-trial adaptation of saccade

amplitude, reached significance in approximately 35% of all individual data sets (individual

experimental sessions × eight directions) obtained from the three monkeys (one-way ANOVA

with the repeated measure factor “error class,” p< 0.05 in 35.25% of the tests). When we con-

sidered only directions for which at least 90 trials both for trial n − 1 and trial n had been col-

lected (30 trials for each error condition), the same analysis yielded significant amplitude

changes in 50% (p< 0.05) of the cases. Fig 1D plots the pooled data of this analysis; the por-

tions of directions with significant trial-by-trial adaptation for each direction and monkey can

be seen in S2 Fig. Performing a regression in the normalized amplitudes of saccades in trials n
(Fig 1D) resulted in a slope of 0.059 ± 0.0046, indicating that amplitude changes due to the

visual error in trial n − 1 amounted to approximately 6% of the size of the error. The same

regression analysis for trials from all three monkeys, considering directions with nonsignifi-

cant effect of trial-by-trial adaptation only, is shown in S3 Fig. The regression suggests a slight

deviation from the horizontal in a direction that qualitatively corresponds to the one for signif-

icant trials in Fig 1D. The slope of 0.021 of this regression line is roughly three times smaller

than the one for significant trials shown in Fig 1C and 1D.

The significant amount of transfer is all the more astonishing given the fact that, on average,

trials n − 1 and n in a given direction were separated by a mean of 6.04 trials in other direc-

tions. We did not observe a consistent transfer of the visual error in trial n − 2 on trial n (slope

of −0.0047; not significantly different from 0, S4 Fig). However, when again restricting the

analysis to directions for which at least 90 trials for all three error conditions had been
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Fig 1. The random error paradigm and its influence on saccade amplitude. A Scheme explaining the selection of

trials, considering the type of error and saccade direction in trial n. An arbitrary sequence of trials (first row),

represented by boxes, is shown. The direction of the enclosed arrow indicates the direction of the primary saccade in

the plane of the screen, and the color depicts the error condition of that particular trial (blue = inward error,

green = no error, red = outward error). For the analysis of a particular direction, the sequence is filtered for trials of a

specific direction (second row), and following trials are analyzed according to the error condition of the respective trial

n − 1. B Trajectories of the visual target (dashed curves) and the changes in eye position they evoked (solid curves) in a

sequence of two exemplary trials in which the target stepped out (trial n − 1, red traces) or in (trial n) during the

primary saccade. The numbered intervals at the bottom mark the different periods considered for analysis: I, baseline

fixation; II, primary visual error; III, secondary visual error; IV, post correction; the period of the primary saccade falls

between intervals II and III. The nonshaded area marks those parts of the trials relevant for transferring error

information from trial n − 1 to trial n for the purpose of adapting the primary saccade in trial n. Traces are aligned to

the onset of the primary saccade. C Trial-by-trial adaptation in a particular direction (downwards). Data are taken

from an exemplary session of monkey H. Saccade amplitude on trial n is plotted over the visual error in trial n − 1;

highly negative visual errors correspond to an inward shift of the visual target on trial n − 1 (blue symbols), while

highly positive visual errors correspond to an outward shift of the visual target on trial n − 1 (red symbols). The green

symbols reflect trials without target shift. In this case, the resulting visual error reflects insufficiencies of the primary

saccade. Crosses give the mean and standard deviation for each cluster. The means for the three conditions were

significantly different (ANOVA, p< 0.01). D Normalized saccade amplitude as a function of normalized visual error.

Population data is based on sessions from all three monkeys, considering only directions with a significant effect of

Climbing fibers convey a memory of past errors
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collected, 14.23% of the individual data sets yielded a significant correlation of the visual error

in trial n − 2 and the amplitude in trial n, again indicating an amplitude change that would

reduce the size of a persistent error.

The probability of CS occurrence is influenced by visual error

The primary and the secondary error interval (Fig 1A) comprise periods in which the retinal

target image does not fall onto the fovea, a “visual error” that is given by the vector connecting

the fovea with the retinal target image. Even casual visual inspection of the 129 CS units col-

lected in 110 sessions suggested that in these periods, the firing of many CS units seemed to

deviate from baseline, at least for particular directions. In order to determine if the change in

CS discharge provided information on the direction of the saccade within these periods or

beyond, we calculated the mutual information (MI) between CS spike firing and trial direction

over the time course of a whole trial (Fig 2A). This analysis was carried out on all 129 CS units

and for each of the three conditions (inward error, outward error, no error control) separately.

The results are summarized in S1 Table. We found that 79 out of 129 units exhibited a CS dis-

charge modulation that resulted in at least one or more significant MI peak(s). To begin with,

we determined the period in which the maximally significant MI peak was located, ignoring

any possible secondary significant peaks that were seen in 23 CS units (Fig 2A). More than two

significant peaks were not observed. Moreover, if a particular CS unit exhibited a significant

MI peak in more than one condition (control, outward or inward error), only the condition

with the maximal peak was considered (see S5 Fig for the full set of MI curves for the exem-

plary CS unit in Fig 2). Most (34 out of 79 CS units; 43.04%) of the maximal peaks were found

in the secondary error interval (III) between the end of the primary saccade and the beginning

of the corrective saccade. Significant MI in this period could reflect information on the direc-

tion of the preceding primary saccade as well as information on the direction of the intrasacca-

dic target shift. The second most (29 out of 79 CS units; 36.7%) preferred period was the

primary error interval (II), the time between the onset of the saccade target and the end of the

primary saccade. The remaining 16 units (20.3%) had their maximal significant MI peaks in

the post-correction interval (IV) after the corrective saccade. The number of CS units with a

significant peak in the MI was larger for the outward error condition than for the inward error

or the control condition, respectively (49.4% versus 34.6% versus 16.5%, S1 Table). In a nut-

shell, almost two-thirds of all CS units provided an indication of directional selectivity.

We next mapped the time points at which the recorded CS exhibited their maximal MI into

a histogram of a trial with normalized time course, eliminating differences in the duration of

the various components of the sequence of events in a trial (for details, see S6B Fig), indepen-

dent of whether the trial had been a control, an inward error, or an outward error trial. The

resulting histogram, depicted in Fig 2C, shows two peaks, the larger one in the secondary error

and post-correction interval (III–IV) and the smaller one in the primary error interval (II).

The early, smaller peak represents information early enough to contribute to the decision on

the direction of the primary saccade. The later, larger peak occurs about the time of the correc-

tive saccade (however, in most cases, probably too late to contribute to its control). The notion

trial-by-trial adaptation as described in the results section. Variables were normalized to the median of each data

cluster—in terms of amplitude as well as visual error—obtained from individual sessions for the three target shift

conditions before being pooled. The black crosses give the means and standard deviations for each cluster. This plot,

generated for illustration purposes only, is based on a randomly chosen, representative subsample of 10% of the real

data to maintain a clear visual separation of the three clusters. A regression yields a transfer of adaptation from the

visual error in trial n − 1 to trial n of approximately 6% (slope of 0.059 ± 0.0046). Underlying data available from the

Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8

https://doi.org/10.1371/journal.pbio.2004344.g001
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that this second larger peak cannot be fully related to the control of the secondary saccade is

actually supported by the fact that not all units contributing to it exhibited their maximal MI

under error conditions: Actually, four of the 34 (11.8%) CS units (contributing to the later

peak) were from the non-error control condition, 22 (64.7%) from the outward error, and

eight (23.5%) from the inward error condition. In fact, 63.3% of all CS units exhibited their

highest MI peak when aligned with points in time prior to the start of the corrective saccade,

which further suggests that the secondary saccade itself is not the driver of this clear accumula-

tion of MI modulation. Only 36.7% showed a maximal MI peak when the onset of the correc-

tive saccade was chosen as reference for the alignment, 19% when it was the initial target

jump, 25.3% when set to the start of the primary saccade, and, finally, 19% when the end of the

primary saccade served as reference (S1 Table).

The probability of CS occurrence reflects a memory of the past

We next asked if the occurrence of a specific visual error in trials n − 1 led to changes in the

probability of CS firing in subsequent trials n in the same direction. To this end, we sorted tri-

als n according to the presence of an inward error, an outward error, or the absence of an

error in preceding trials n − 1. We then calculated the MI between the inward error and the

control group, the control and the outward error group, and the inward error and outward

error group and determined the maximally significant MI for each direction. Once we found

that a CS unit exhibited a significant MI modulation for any of the three pairs, we regarded

that CS unit as conveying reverberation of the direction of error in the previous trial n − 1.

In total, 111 out of 129 CS units showed at least one significant MI peak in at least one

direction. In an attempt to pinpoint the period exhibiting the maximal influence of past errors

on CS firing, we resorted to the approach also used in the analysis of direction selectivity,

namely to map the times of maximal MI modulation into a normalized saccade trial. The

resulting population histogram (Fig 3C) shows a clear accumulation of information right

before the primary saccade on trial n (S7 Fig summarizes the associated adaptation effects; see

Fig 3A and 3B for an exemplary CS unit and the related behavior). Note that the MI modula-

tion can be undoubtedly related to the error condition in trial n − 1 only until the end of the

primary saccade. Beyond this point in time, any error information could be biased by the

Fig 2. Single-cell and population analysis of direction-dependent CS modulation. A Exemplary CS unit. The upper

panel is a raster plot of CS occurrence as function of time for the eight directions (arrows) tested. Only inward error

trials are considered here. The two dashed vertical black lines demarcate the baseline fixation interval, on which the

calculation of a significant MI threshold at p = 0.05 (red dashed line) rested upon. All trials were aligned to the end of

the primary saccade, represented by the vertical dashed green line. The raster plots are complemented by CS density

function (Gaussian kernel, width of 40 ms). The raw MI function (grey) was obtained by calculating the MI in a

250-ms sliding window and then smoothed with a 20-ms running average filter (black). Note that the inward error

condition shown in this example induces a corrective saccade in a direction opposite to that of the primary saccade.

Hence, the directions of visual errors prevailing in the periods before the primary and the secondary saccade

respectively are opposite. Further note that the intervals distinguished at the bottom are approximate, as the different

events jitter from trial to trial due to the monkeys’ response times. B Direction-tuning plot of the average CS rate in the

intervals of the two MI peaks (width at half-maximum of each peak). C Distribution of the times of MI value maxima

within trials based on all CS units exhibiting significant MI, pooled across error conditions. Units exhibiting their

maximal response later than 200 ms after the onset of a corrective saccade were not considered in this histogram. The

red probability density function was derived from the histogram via a kernel density estimate with a normal kernel of a

bandwidth of 50 ms. For CS units with a directional preference, it illustrates how likely it is to observe its modulation at

a certain point in time; it is intended to serve as a visual illustration aid. The black curve is the average eye trace

(original eye traces in grey) and should help to relate the time course of the histogram to the main events of a trial

(dashed lines from left to right: primary target jump; primary saccade onset; primary saccade offset; corrective saccade

onset). Refer to S6B Fig for a description of how the time points indicating major events in a trial were calculated.

Underlying data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8. CS, complex

spikes; MI, mutual information.

https://doi.org/10.1371/journal.pbio.2004344.g002
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secondary retinal error of trial n. In other words, a population of 111 CS units (86%; 111 out of

129) offers information on the error in trials n − 1 in a period of time optimally suited to cause

the observed changes of the metrics of the upcoming saccade in trials n due to preceding errors

(see Fig 4D).

The MI analysis detects significant changes in CS firing but does not reveal if this change is

a consequence of a drop in CS firing rates or, alternatively, an increase. In the case of saccadic

Fig 3. CS modulation is impacted by information from the past trial. A Exemplary CS unit represented by raster plot and the

respective CS density curve (top) and plot of MI as function of time (bottom). The colors distinguish the error type in trial n − 1,

preceding the trials shown in the raster plot (green: control, red: outward error); same direction for primary saccades. All trials were

aligned to the onset of the primary saccade, represented by the vertical dashed green line. Note that the biggest difference between the two

conditions lies right before the primary saccade, indicating that information about the condition in trial n − 1 is available before the

primary saccade on trial n is executed. Note further that the inequality in the number of trials per condition is taken into account by the

MI analysis. Further note that the designated intervals at the bottom are approximate and for visual illustration only, as the different

events jitter from trial to trial due to the monkeys’ varying response times. B Plot of saccade amplitude in trial n as function of visual error

in the preceding trial n − 1, demonstrating a clear impact of random errors on amplitude in one direction. The plot is based on the same

set of trials from one direction of an exemplary session for which the CS discharge is shown in Fig 3A. Green dots correspond to trials

with no target jump (control condition) in trial n − 1, and red dots indicate trials with an outward error condition (outward target jump)

in trial n − 1. Black crosses indicate mean and standard deviation of each cluster. The mean saccade amplitudes are significantly different

for the two sets (ANOVA, p< 0.01). C Distribution of times of significant trial-by-trial MI modulation of CS units. The time points of

maximal significant modulation were mapped into the frame of a standardized saccade trial as in Fig 2C. The resulting distribution

analogous to Fig 2C demonstrates that given a CS unit exhibits a change in CS activity in trial n due to a certain error condition in trial n
− 1, it is most likely to observe this modulation before the primary saccade in trial n. The grey shaded area marks those intervals of trial n
in which an influence of error information from trial n − 1 can no longer be disentangled from the error information associated with the

performance in trial n. Underlying data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8. CS, complex

spikes; MI, mutual information.

https://doi.org/10.1371/journal.pbio.2004344.g003
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adaptation prompted by error information that is consistent over long series of trials, it is the

direction of the change that decides whether saccade amplitude is up- or down-regulated [9].

In order to clarify if the pattern of CS changed around the time of a saccade whose amplitude

would change because of a preceding error, we calculated correlations between the size of the

visual error in trial n − 1 and the mean CS rate in the time of significant modulation in interval

II (the primary error period) of trial n (Fig 4). The distribution of correlation coefficients

obtained based on pooling all directions from all CS units with significant MI (Fig 4B) is

bimodal and can be fitted by a sum of two Gaussians (r2 = 0.98). Bimodality is to be expected,

as CS units whose preferred directions are aligned with the outward error will exhibit a positive

correlation with the size of the outward error and a negative correlation with the size of the

inward error, assuming that the nonpreferred direction is opposite to the preferred direction.

Fig 4. Correlation of visual error in trial n − 1 and CS activity in trial n. Correlation analysis of influence of the size of visual error in trial n − 1 on the average CS

activity during the significant MI interval in interval II (the primary error period) of trial n. The correlation was carried out for all directions with significant MI. A

Schematic graph explaining the emergence of positive and negative correlation coefficients between the secondary visual error in trial n − 1 and the CS activity in trial n.

B The distribution of correlation coefficients obtained is bimodal and can be fitted by a sum of two Gaussians (r2 = 0.98). C CS units whose preferred directions are

aligned with the outward error will exhibit a positive correlation with the size of the outward error and a negative correlation with the size of the inward error, the latter

assuming that the nonpreferred direction is opposite to the preferred direction (left). Conversely, CS units whose preferred directions are aligned with the inward error

will exhibit the inverse behavior (right). The colored arrows indicate the direction of the error (and the corrective saccade), the solid black arrow the CS unit’s preferred

direction, and the dashed black arrow its nonpreferred direction. D Blue, grey, and red curves show the average CS spike density functions ± SEM prior to primary

saccade onset in trial n for the three different error conditions (outward, inward, no error = “control”) in trial n − 1. The curve on the bottom shows the Hedges’ g effect

size in grey and indicates a significant (t test, p = 0.05) difference between the red and the blue curve in black. The vertical dashed lines indicate from left to right the

approximate time of the target jump, the start of the primary saccade as alignment point, and the approximate end of the primary saccade at 50 ms. The solid black curve

in the center of each panel is an eye trace of a 10-degree saccade shown to facilitate relating the CS SDF to the time course of a saccade. For the rightmost panel, we

skipped the averaged control condition to focus on the subtle difference between inward and outward error conditions. Note also that the control condition will be

influenced by visual errors that might have prompted corrective saccades, as saccades amplitude vary across an ideal size and may even—depending on the individual—

exhibit systematic deviations in the one or the other direction. Underlying data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8. CS,

complex spikes; MI, mutual information; SDF, spike density function.

https://doi.org/10.1371/journal.pbio.2004344.g004
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Conversely, CS units whose preferred directions are aligned with the inward error will exhibit

the inverse behavior (see Fig 4A and 4C for illustration). This is the reason we distinguished

the two pools of CS units with negative and positive correlation coefficients when calculating

average CS density functions aligned with the onset of the primary saccade separately for the

three error conditions (i.e., outward, inward, no error control) (Fig 4D). As can be seen there,

the average CS density functions clearly diverge before saccade onset. In the case of positive

correlation coefficients (i.e., CS unit’s preferred direction and direction of outward error paral-

lel; Fig 4D, left panel) the CS density function exhibits more activity in the period of interest

than the control function and the one for inward errors. In the case of negative correlations

(middle panel), the order is reversed. Finally, pooling CS units with positive and negative cor-

relation coefficients annihilates the differences (right panel).

Taking the differences in CS activity one step further, one would expect that the above

shown effects of adaptation also find a direct reflection in the behavior, namely the saccade

amplitude in trial n. By applying the same segregation into error directions in parallel and anti-

parallel to the preferred direction of a CS unit, we calculated the correlation between CS activ-

ity in the same interval—prior to the primary saccade—of trial n as in Fig 4B and the

amplitude of the primary saccade in trial n, which is shown to undergo adaptation on the pop-

ulation level (S7 Fig). As a result, we see a shift between the populations indicating direct alter-

ation of the saccade amplitude by the occurrence of CS in the primary error interval (S8 Fig)

Links between the firing of simple spikes (SS) and CS in the context of motor learning are

well established [3,14,15], which is why we wondered if the observed effects on CS might actu-

ally be secondary to error-related changes in simple spike discharge. In order to address this

concern, we performed an MI analysis on the SS discharge for all units and directions for

which we had obtained a significant effect of past errors on the CS, for which well-isolated SS

responses were available (82 units). In other words, we checked if those datasets, which exhib-

ited a significant modulation of their CS, also exhibited a significant modulation of their SS.

The analysis was modified to consider SS within a 150-ms window and not a 250-ms window

as in the case of the CS analysis. We found a significant modulation of SS responses for only 35

directions, which are only 18.1% of the 193 directions with a significant MI modulation of CS

activity (compare to Fig 3C). Hence, although in very few cases, a role of the preceding SS

activity for the CS modulation cannot be excluded; the analysis clearly speaks against the possi-

bility that the SS would be able to account for the reflection of past errors in the CS activity. S9

Fig conveys the distribution of time points of significant SS modulations.

One might argue that the subtlety of the changes of the CS discharge contradicts the clear

behavioral effects and may doubt that the altered probability of CS before a primary saccade

influenced by past errors is actually relevant for the behavioral change. Continuing in the same

vein, one may also wonder if the pattern of CS occurrences is really able to reveal the full role

of the CS. This was the reason that we decided to also take a closer look at the duration of CS,

expecting to see changes, possibly complementing changes in CS discharge. However, as

described in S1 Text, we failed to unravel any changes in the duration of OMV CS. The analy-

sis of CS duration was restricted to a group of 38 particularly well-isolated and stable CS with

discharge rate dependencies not different from the complete sample in terms of directional

preferences and an influence of the error (see S10 Fig, S11 Fig). Therefore, it is unlikely that a

simple sampling bias can account for our failure to detect meaningful CS duration changes.

Discussion

We studied single-trial saccadic adaptation induced by randomized visual errors. We found

not only clear evidence of adaptation but also conspicuous accompanying changes of the
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probability of the occurrence of CS fired by PCs in the OMV, reflecting the influence of a

visual error annulled by a subsequent saccade. In accordance with previous studies on visually

guided hand movements [16,17], saccades [18,19], and smooth-pursuit eye movements

[20,21], we observed that in many cases CS responses to visual errors were directional, i.e.,

they were sensitive to the direction of the vector connecting the fovea with the location of the

target image in the periphery of the visual field. Interestingly, we found that sensitivity to a par-

ticular type of error direction depended on whether the error preceded the primary or the sec-

ondary saccade (corrective saccade) with many more CS units responsive to the latter. Only

the secondary error is a performance error. Hence, the observed stronger influence of the sec-

ondary error on the CS firing might be expected in the light of the MAI theory, which posits a

role of the climbing fiber system in reporting performance errors. A less-ambitious explana-

tion may in principle be a lower sensitivity to the larger amplitudes characterizing the primary

error. Although it is usually assumed that CS do not exhibit significant amplitude tuning [19],

our data do not allow us to firmly exclude a role of saccade amplitude. In any case, the observa-

tion of directional sensitivity to the presence of a visual error is in accordance with the notion

that the climbing fiber system offers information that may change future behavior such as to

avoid the occurrence of similar errors [9,17,22]. How could changes in the probability of CS

that coincide with the occurrence of an error change future behavior? The standard answer to

this question, based on a solid body of evidence, is the assumption that these changes will

induce longer lasting modifications of parallel fiber–PC synapses, modifying the transmission

of future signals relevant for the behavior at stake [23]. Without questioning the viability of

this mechanism, our observations suggest an alternative, not necessarily exclusive way past

error experiences might shape future behavior, namely by changing the probability of future

CS occurrences. Our analysis clearly showed that the presence of a visual error in the period

following a primary targeting saccade, induced by shifting the target during the saccade to a

new position, led to highly significant changes in the probability of CS preceding the primary

saccade in subsequent trials made into the same direction.

Although unequivocal, the dependencies of the CS discharge on past and current visual

errors were extremely subtle in absolute terms and could only be revealed with the help of

sophisticated statistical approaches. This subtlety is of course not surprising given the notori-

ously low probability of CS occurrences. The analytical consequences of this hallmark of CS

were further aggravated by the random structure of the adaptation paradigm used, which pre-

vented simple averaging across sequences of stereotypical trials with consistent errors. The

lack of consistency of error information notwithstanding, individual visual errors had a pro-

found effect on primary saccades in subsequent trials into the same direction, although on

average, approximately six trials into other directions were interleaved. Our observation that

inconsistent individual errors have a clear effect on future manifestations of the same behavior

is in accordance with previous work on visually guided reaching [24], saccades [25], and

smooth-pursuit eye movements [20]. It is also in line with recent findings [26] that suggest

that the effect of unexpected errors may actually be stronger than the effect of gradual error

increase yet less stable.

We interpret the significant change in the probability of CS firing before the primary sac-

cade in a trial made in the same direction as the one in which an error had occurred in an ear-

lier trial as a reverberation of the influence of the past error. One might argue that it is not a

reverberation of the past error that determines the CS modulation but the motor command

driving the new primary saccade. We think that a consideration of the timing clearly speaks

against a role of a motor command generated upstream of the cerebellum: the CS reverbera-

tion starts roughly around 300 ms before the upcoming primary saccade (Fig 4D). On the

other hand, saccades evoked by microstimulating the deeper layers of the superior colliculus
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(SC), the likely source of the motor command, have latencies around 20–30 ms [27]. Even if

we assume that a command signal from the SC may influence the inferior olive a few ms earlier

than the overt onset of the saccade, it would be too late to cause the CS modulation. Actually, a

much more plausible scenario, linking behavioral changes and the changes of the CS firing, is

suggested by a consideration of the SS discharge. A fraction of the PCs tested showed signifi-

cant changes in their SS around the time of the upcoming primary saccade (S12 Fig), either

with or without accompanying CS reverberation activity prompted by past errors (S9 Fig). We

know from previous work that saccadic learning is a consequence of changes of a SS popula-

tion signal [28,29]. Against this backdrop, it seems likely that the SS changes observed in our

experiment in trials in which the upcoming primary saccade is influenced by past errors in the

same direction is responsible for the adaptation effects observed in such trials. In other words,

the SS modulation most probably mediates the modification of the motor command needed.

This modulation comes too late to account for the CS reverberation signal. Conversely, the

temporal relationship of the CS and SS signals might be compatible with the former causing

the latter, considering the well-established pauses of SS firing following CS, a consequence of

the recruitment of inhibitory interneurons and the activation of calcium-dependent potassium

channels of PCs [30,31]. On the other hand, the modulation of the SS discharge close to the

primary saccade might also be a consequence of changes of the strength of parallel fiber–PC

synapses brought about by the CS signal, reflecting the performance error in the earlier trial.

Not surprisingly, these changes in parallel fiber efficacy would become detectable statistically

only at times of sufficient mossy fiber drive, i.e., at the time of the new primary saccade. This

latter scenario is intriguing, as it might offer a tentative answer to the question of how the CS

reverberation signal might be generated in the first place: the idea is that performance error-

related CS activity leads to changes of the PC SS population output, which is then fed back to

the inferior olive by nucleo-olivary projection neurons in the deep cerebellar nuclei. Of course,

we can only speculate as to how the putative feedback influence might lead to the delayed acti-

vation of the inferior olive, compatible with the timing of the CS reverberation signal.

In any case, although clear, the influences on the CS firing frequency are subtle. This is why

we wondered if the changes of the pattern of CS occurrences due to past errors might be

accompanied by changes in the duration of CS. The idea behind this interest in CS duration is

that the amount of calcium influx, responsible for the CS impact [23,32], should not only

increase with CS frequency but also with CS duration. As both seem to be linked [33], one

might expect that subtle changes in CS frequency might become amplified by yoked changes

in CS duration. Actually, the idea that changes in CS duration may contribute to learning-

based behavioral changes has received support from a recent study of the role of floccular PC

CS in smooth-pursuit eye movement adaptation [20]. However, we failed to unravel any

changes in the duration of OMV CS. Notwithstanding the possibility of an additional role of

the CS duration or, more generally, CS waveform, our inability to reveal it in our data contrasts

with the statistically clear changes in the CS discharge rate, in particular the changes we found

as a reflection of past errors in the CS discharge before the upcoming saccade.

Previous discussions of the role of the climbing fiber in saccadic learning have been charac-

terized by seemingly incompatible findings. Soetedjo and colleagues [19,22] have emphasized

the presence of an error signature in the ongoing CS firing of OMV PCs in the secondary error

interval (III) before the corrective saccade, when using a double-step paradigm. On the other

hand, Catz and colleagues [9], when resorting to saccadic adaptation paradigms, in which the

target was consistently shifted outward or, conversely, inward during the saccade, inducing

gain increase and decrease adaptation, respectively, failed to reveal an influence of the error-

driving adaptation. However, they demonstrated the gradual buildup of a strong and highly

specific CS modulation around the time of the primary saccade, paralleling the buildup of
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adaptation. This modulation reached its maximal expression, easily visible already in the raw

raster plots, at the end of adaptation, when the error had been effectively annulled. Completely

analogous observations were subsequently obtained by Dash and colleagues [13] when study-

ing smooth-pursuit eye movement adaptation. The results presented here suggest how these

seemingly incompatible results of Catz and colleagues and Dash and colleagues on the one

hand and Soetedjo and colleagues on the other hand can be easily reconciled. We have demon-

strated a subtle influence of error in the period before the secondary saccade, as well as a clear

influence of this past error before the next primary saccade in the same direction. While the

earlier influence is in line with the Soetedjo and colleagues results, the latter is in accordance

with the observation of Catz and colleagues.

As sketched further up, we suggest that changes in the CS discharge due to a performance

error cause changes in the SS population output, which is in turn able to influence the inferior

olive, thereby reminding the inferior olive of a past error. At the level of the inferior olive, this

input would in principle be able to interact with information on a new performance error if

the timing of the two inputs could be matched. In this case, a new error, consistent with the

old one, would boost the climbing fiber output. On the other hand, if the two were contradic-

tory, they would annihilate the climbing fiber modulation. In other words, this mechanism

would basically serve as an error integrator that would provide a persistent CS modulation

able to stabilize the new behavior, reflecting consistent error reports even in the absence of

fresh errors of the same kind. In other words, we think that our results fully support the notion

that the CS serves a dual role, initiating new behavior and as well stabilizing it in the absence of

countermanding error signals, a notion that is line with similar thoughts prompted by recent

findings on the role of CS in eye blinking [34].

Materials and methods

Ethics statement

The project relied on nonhuman primates (NHPs; macaque monkeys) in its study of the cerebel-

lar underpinnings of saccadic learning as the oculomotor systems of NHPs and of humans are

virtually identically. A similar correspondence does not hold for any other group of mammals.

Moreover, only NHPs offer the cognitive flexibility and trainability required by the demanding

behavioral paradigms needed. There is no alternative to the NHP model in studies of the neuro-

nal underpinnings of saccadic learning and the role of the cerebellum. Any effort was under-

taken to keep the number of animals used in the work reported as small as possible and to

minimize the burden for those involved in full accordance with the 3R principle. This also

involves continuous efforts to refine the experimental procedures, e.g., by optimizing surgical

protocols, by developing less invasive head holders largely integrated into healthy tissue, or by

warranting group housing of experimental animals in large rooms accommodating completely

normal social interactions. A complete description of all relevant aspects of the procedures and

the legal and organizational framework is provided in the Materials and methods section.

The experiments were approved by the local authorities in charge (Regierungspräsidium

Tübingen and Landratsamt Tübingen, license N1/08 and N6/13), conducted in accordance

with German and European law and the Guidelines of the National Institutes of Health for the

Care and Use of Laboratory Animals, and carefully monitored by the veterinary service of

Tübingen University.

Animals

Three male rhesus monkeys (Macaca mulatta) were prepared for high-precision eye position

recording using the scleral search coil technique [35]. To painlessly immobilize the monkeys’
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heads, a titanium pole was attached to the skull with titanium bone screws three to six months

prior to the initial training. After a successful training period of approximately one to three

months (dependent on individual progress), recording chambers for electrode access to the

OMV (i.e., to lobule VIc/VIIa), also titanium-based, were implanted in the midline over the

posterior part of the skull, tilted backward relative to the frontal plane by 30˚. All surgical pro-

cedures were conducted under general anesthesia, and after surgery, monkeys were supplied

with analgesics until full recovery. See Prsa and colleagues [36] for more details.

Behavioral paradigm

We confronted the saccadic system with randomized visual errors by deploying the following

paradigm: A trial started with the presentation of a fixation target (white dot, diameter 0.2˚)

straight ahead of the monkey on a monitor. After a variable fixation period of 1 to 1.2 seconds,

the fixation target disappeared, and at the same time, a saccade target with the same shape and

color became visible at an eccentricity of 10˚ in one out of eight randomly chosen directions

(0˚, 45˚, etc.). During the ensuing “primary” saccade to this target, it was randomly stepped

further out by 3˚ (“outward error” trials), back towards the fixation point by 3˚ (“inward

error” trials), or stayed put at its original location (“control” trials). The probability of these

three trial variants was one-third each. Note that in all three cases, the primary saccades were

guided by the target at its original location, and the corrective saccades were either in the same

(in the case of an “outward error” trial) or in the exact opposite (in the case of an “inward

error” trial) direction of the primary saccade (see also Fig 1A, S1 Fig). Therefore, up to the end

of the primary saccade, the experimental conditions were identical across the different error

conditions for all trials performed into the same direction. Overall, the probability of having a

trial in a specific direction with a specific target displacement was 1 out of 24. Different trial

types were randomized in order to prevent the formation of an expectation of specific errors.

In order to reveal the influence of a saccadic endpoint error in a given trial n − 1 in a particular

direction on an upcoming trial n in the same direction, we first sorted all trials according to

direction and then—for a given direction—according to the type of error prevailing in trial n
− 1 (i.e., no error, inward error, outward error; see Fig 1). For later analyses, the visual error

was defined as the target position minus the eye position, both determined 50 ms after the end

of the primary saccade.

Electrophysiological recordings from the OMV

Extracellular recordings were carried out with commercial glass-coated tungsten electrodes.

Online signal processing, filtering, and template-based spike detection were done with com-

mercial Alpha Omega hardware and software. The position of the region of interest, the OMV,

was approached based on stereotactic calculations that considered the position and orientation

of the chamber relative to the brain, validated by postsurgical anatomical MRI scans. The

OMV could then be easily identified relying on its characteristic electrophysiological signature,

the dense saccade-related background activity reflecting granule cell activity, and the high

probability occurrence of well-isolated saccade-related Purkinje and Golgi cell action poten-

tials. Moreover, we observed that the eye movement–related granule cell multiunit back-

ground was correlated with conspicuous saccade-related deflections in the local field potential

(LFP; low pass-filtered raw signal with a cutoff frequency of 150 Hz). These saccade-related

LFP deflections were not observed outside the OMV. Distinct LFP deflections emerged as a

consequence of the occurrence of CS. Their polarity depended on the layer in which the CS

were recorded (see S10A–S10C Fig). Individual CS were identified based on their long dura-

tion, their multiphasic structure with several individual spikelets, the prominent footprint in
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the LFP mentioned before, and, finally, their conspicuously low firing rate. Individual PC CS

were taken as proxy of climbing fiber activity. Spikes with more “simple” morphology were

taken as SS of PCs if the stream of these SS was interrupted by occasional CS, and correspond-

ingly, CS-triggered SS histograms showed a SS pause right after the CS. SS and CS were

detected online using template matching, and the validity of the online detection of CS was

checked offline in the stored raw records sampled at 25 kHz. The offline visual inspection was

supported by considering the CS stamps in the LFP mentioned earlier and suggestions made

by an offline spike sorting algorithm (WaveClus2, written by [37]).

CS duration and number of CS spikelets

The experiments involved 250 to 1,800 individual trials; in other words, they usually required

fairly long recordings of individual CS units. Hence, not surprisingly, they were in many cases

associated with changes in the signal-to-noise ratio (SNR) and changes in the morphology of

recorded CS units, arguably a consequence of subtle shifts in the position of the electrode tip

relative to the unit. Unlike the rather robust analysis of CS occurrences, any estimate of CS

morphology can be expected to be influenced by these long-term changes in the quality of

recordings and therefore to confound the detection of task-dependent effects. In an attempt to

avoid this problem to the best possible extent, we restricted the analysis of duration and spike-

let number to a subset of 38 CS units out of the total of 129 units recorded in which the SNR

was particularly good and the appearance of spikes stable over the whole duration of the

experiment.

Duration measurements and spikelet counts were based on visual inspection of individual

CS by one of the authors (MJ). His judgment was doubled by another one, ZS, in one-third of

the units. CS duration was measured from the first deflection of the extracellular potential up

to the final return to baseline potential. To determine the number of spikelets within a CS, we

counted the number of full oscillations following the initial deflection. The visual inspection of

CS was carried out with the two investigators being blind as to trial type or time of CS occur-

rence relative to trial onset. Whereas the spikelet numbers estimated by the two authors did

not differ, their estimates of CS durations deviated significantly (bootstrap test; p< 0.05 for

the duration means; p> 0.05 for the number of spikelets). In other words, the recognition of

spikelets had been consistent, but obviously, the subjective criterion for the end of a CS had

been systematically different, with ZS reporting on average 2.4 ms shorter durations. However,

this difference between observers was nondetrimental as it did not affect the comparison of CS

durations across conditions.

We relied on the measurements of MJ and ZS for the analysis of dependencies of CS dura-

tion on visual error. We first determined the preferred direction of CS units relying on control

trials (i.e., no intrasaccadic shift of the target). The preferred direction was obtained by identi-

fying the direction with the highest probability of CS occurrence in the secondary error inter-

val (interval III in Fig 1B), i.e., the period from primary saccade offset to corrective saccade

onset considered to last for 250 ms, using a peri stimulus time histogram (PSTH) analysis. We

relied on control trials for the identification of the preferred direction, which avoids a possible

mixing of contradicting directional activity from around the primary saccade and the subse-

quent corrective saccade. Hence, subsequent analyses of dependencies of CS duration were

restricted to the preferred direction and to trials with an outward error in trial n − 1, as they

have the advantage that—in contrast to inward error trials—both the primary error (i.e., the

retinal vector pointing to the peripheral target before the generation of the primary saccade)

and the secondary error (i.e., the retinal error that results from the target shift during the pri-

mary saccade) are in the same direction. As we could corroborate the tight relationship
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between CS duration and the number of spikelets (see S10D Fig) reported by previous work

[20,33], we could confine the analysis of possible learning-related changes of the two CS

parameters to CS duration.

For the analysis of learning-based changes in saccade amplitude, we compared the ampli-

tude of the primary saccade in a given trial n with the one in the last preceding trial n − 1, hav-

ing the same direction. Note that due to the random structure of the paradigm, the time

between the two members of this pair varied depending on the number of intervening trials

made into other directions. One trial lasted for 2.2 s and was followed by an intertrial interval

of 0.1-s duration. In order to investigate the relationship between behavioral changes and

changes in CS duration, also used as proxy of the number of CS spikelets, we extracted all pairs

with CS in the secondary error interval (III) and divided the pairs up into three groups, con-

taining n − 1 trials with short-, medium-, or long-duration CS. The differentiation of the three

duration classes was based on first calculating the mean CS duration plus standard deviation

for each unit and then to decide if the duration of an individual CS would fall into the middle

range of the population distribution (mean ± 0.44 std ≙ medium duration), below (≙ short

duration), or above (≙ long duration) this range. S11A Fig compares the resulting distributions

of short-, medium-, and long-duration CS. For details, compare Yang and Lisberger [20].

MI analysis of CS firing

To determine whether the occurrence of CS carries information about saccadic errors, we

measured the MI between the CS discharge Y and a behavioral variable of interest X in 250-ms

sliding windows, a window width chosen to approximate the mean CS rate, thereby ensuring a

maximal temporal resolution without the risk of spurious transients. For a CS unit firing on

average at 1/s, a 250-ms window will contain between 0–2 CS with a probability of approxi-

mately 99% at an entropy of 0.89 bit, which is therefore the upper limit for the MI in our analy-

sis and would allow us to distinguish approximately between two saccade directions. Since the

actually observed MI values are much lower, increasing the window size would only reduce

temporal resolution, with little extra gain in MI resolution. This would make it difficult to

assign MI peaks to particular trial phases. The reason for the 20-ms smoothing kernel was our

interest to make the curve more easily visually interpretable by smoothing it. The value chosen

is admittedly arbitrary, yet none of our quantitative results depend on this choice. MI was

given by:

MI X; Yð Þ ¼
X

x

X

y

pðx; yÞ log
pðx; yÞ

pðxÞpðyÞ

� �

where the joint distribution p(X,Y) = p(Y|X)p(X) factorizes into the marginal distribution of

the behavioral variable, p(X) and the conditional distribution of the CS discharge given the

behavior p(Y|X). We control p(X) by choosing the stimuli, estimate p(X|Y) from the data, and

compute p(Y) = ∑xp(Y,x) by marginalization. To reduce the probability that any result obtained

might be due to random fluctuations of the very low complex spike rates (approximately equal

to 0.5–2 Hz), we computed a baseline distribution of MI in the fixation interval (interval I in

Fig 1B), which—by construction of the paradigm—could not contain any saccadic error-

related information. We tested the response in every 250-ms window against this baseline dis-

tribution to determine whether it was likely to contain an amount of MI significantly above

baseline. Hence, the MI value that had to be exceeded to reach significance at p< 0.05

depended on the individual unit.

We chose MI for two reasons: first, it is a very general, nonlinear measure of dependency

between two random variables, which relates to other widely used measures like correlation or
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classification rate under specific distributional assumptions [38]. Compared to these measures,

MI has the (theoretical) advantage of being invariant against information-preserving transfor-

mations of the random variables, such as relabeling of the error directions or nonlinear one-

to-one transformations of the spike rate, thereby obviating the need to build an explicit decod-

ing model. Secondly, it was employed in previous studies on the role of complex spikes in sac-

cadic error encoding [9,17,19]. Thus, we maintain comparability to these studies.

Measuring mutual information from neural data is a notoriously difficult problem, typically

due to an overestimation bias, which results from small sample sizes [39]. Several approaches

to deal with this problem were proposed in the past. For instance, Panzeri and Treves [40]

compute an analytical expansion of the bias and subtract the leading terms from the mutual

information estimates. In Nemenman and colleagues [41], a Bayesian approach is derived, in

which the authors construct a flat prior on the mutual information in the limit of a very large

response space. We resorted to the Bayesian binning approach [42] developed by one of the

authors (DE), which solves the overestimation problem by Bayesian model selection: a promi-

nent source of mutual information overestimation are noisy parameter estimates. Bayesian

binning gives high posterior weight to models whose degrees of freedom are well constrained

by the data, thus effectively reducing this bias. It was demonstrated [42,43] that this approach

works well on extracellular single-cell recording data. Mutual information analysis was coded

in C++ and interfaced by customized Python and Matlab scripts. A detailed description of the

Bayesian binning algorithm can be found in [42]. All non-information-theoretic analyses were

performed with customized Matlab scripts.

To identify direction selective CS units, we grouped trials according to the direction in

which the visually guided saccade was performed and estimated the mutual information

between the occurrence of a CS (spike count) and the direction it was observed in (behavioral

variable). This allowed us to directly determine if a CS unit is selective for saccade direction

and when this selectivity occurs in the time course of a trial (Fig 2A).

We also calculated the MI between the error type in trial n − 1 (behavioral variable: no

error (control trials), inward error trials, outward error trials) and the occurrence of CS (spike

count) in subsequent trials n in the same direction (Figs 1B and 3A) for each direction

independently.

We furthermore explored the effects of aligning the spike train data in four different ways

prior to the MI analyses, namely with respect to the primary target jump, the start of the pri-

mary saccade, the end of the primary saccade, and the start of the secondary, corrective saccade

(the latter of course does not exist in the case of control trials, i.e., trials without secondary tar-

get shift). Hence, for every recorded CS unit we obtained 11 MI time courses (three error

categories × four alignments—one missing alignment in case of control trials) for each direc-

tion. An example of why an individual alignment for each CS unit is needed can be seen in

S6A Fig. It shows MI curves for the outward error condition aligned either to primary saccade

onset (left) or to the onset of the corrective saccade (right). Only in the case of the latter is a sig-

nificant MI peak at the time of the corrective saccade is visible.

We regarded a CS unit as significantly modulated if its MI curve crossed the significance

threshold of p< 0.05 in at least one of these 11 possible combinations of category and align-

ment. To determine this threshold, we estimated the distribution of the MI in a baseline inter-

val comprising 400 ms of fixation, 200 ms prior to the initial visual target jump for each

combination of error category and alignment from the MI profile. Since we computed MI in

250-ms sliding windows, we corrected the individual estimates by assuming that they are cor-

related because of the overlaps between these sliding windows. We assumed that the MI esti-

mates within the sliding windows were drawn from a multivariate Gaussian distribution,

with a covariance whose off-diagonal elements are proportional to the overlap between MI
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estimation windows. Specifically, the multivariate Gaussian sample is a vector with 400 − 250

+ 1 = 151 entries, one for each sliding window position within the baseline window. The

covariance matrix entry at position i,j is σ2 � (250 − |i − j|), where σ2 is the variance of the MI at

any point in time and let μ be its expected value. This covariance matrix has 151 × 151 entries.

The mean vector of the multivariate Gaussian is 151 entries long, each of which is μ. Estima-

tion of σ2 and μ is done with closed-form Bayesian inference under a standard Gauss–gamma

prior. This procedure results in a Student t MI posterior. The significance threshold S was

determined by numerical integration of this posterior to the MI value where p = 0.05, i.e., we

determined S such that

Z 1

S
dMI

Gðnþ 0:5Þ
ffiffiffiffi
V
p

GðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1þ dt=bð Þdt

p 1þ
ðMI � mdtÞ2

1þ dt=bð Þdt
V
2

� �� n� 0:5

¼ 0:05

Where μ, β, ν, and V are the mean, precision, concentration parameter, and shape parame-

ter of the Gauss–gamma posterior obtained by conditioning on the baseline data and dt is the

chosen discretization of the time axis (here 1 ms). The code for this algorithm is available from

the authors on demand.

Testing for a significant impact of error in trial n − 1 on the CS pattern in trial n relied on a

bootstrapping approach that tried to estimate the size of MI in the primary error period of trial

n based on a set of trials n − 1 without consistent information on error. Hence, we first calcu-

lated three MI functions for pairwise comparisons of two sets of trials n − 1 (inward error trials

versus outward error trials or either of the two versus control) and determined the pair that

yielded the largest MI in the period of interest. Next, we calculated the MI for the same trials n
− 1 after having randomly assigned them to new sets, thereby annihilating the association with

a particular condition. This procedure was repeated 500 times for each CS unit and direction,

yielding 500 bootstrapped MI functions. We considered a CS unit as exhibiting a significant

MI in trial n due to the presence of an error in trial n − 1 if it exceeded 95% (i.e., the 95th quan-

tile) of these 500 bootstrapped MI functions, provided the MI in the period of interest also

deviated significantly from the baseline MI in trial n.

We defined the event of alignment for which the MI obtained the largest value relative to

baseline as a unit’s event of maximal information. We also determined the interval (Fig 1A) in

which the MI peaked. The first interval considered was the primary error interval (II), the time

between the target jump and the start of the primary saccade expanded by the following phase

of the primary saccade, thereby reaching from the initial target jump to the end of the primary

saccade. This is the time during which visual information on target direction and eccentricity

guiding the primary saccade, not yet modified by feedback on the saccade, can be processed by

the cerebellum. The second interval (III) ranged from the end of the primary saccade to the

start of the secondary, corrective saccade. This is the interval in which the information about

an erroneous performance becomes available, allowing for the planning and initiation of a cor-

rective saccade. Finally, we considered the post-correction interval (IV) after the corrective

saccade in which information about the outcome of the corrective saccade and the overall per-

formance in a given trial is available.

Note that we considered only the maximal significant MI peak independent of error cate-

gory and alignment and did not take into account lower significant peaks in other conditions

or secondary peaks, thus defining exclusively one event per CS unit.

The data underlying all figures and supplemental figures is available from the Dryad Digital

Repository: https://doi.org/10.5061/dryad.p88b8v8 [44].
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Supporting information

S1 Fig. Two-dimensional view on the paradigm. X, Y-plot of eye position of saccades made

in an exemplary experiment. The randomized conditions are distinguished by different colors

(control: green; inward error: blue; outward error: red). Underlying data available from the

Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8.

(TIF)

S2 Fig. Individual contributions of the three monkeys. The bars depict the percentages of

significant trial-by-trial adaptation for the various directions studied. Significance was based

on ANOVA (see Fig 1 for further details). Underlying data available from the Dryad Digital

Repository: https://doi.org/10.5061/dryad.p88b8v8.

(TIF)

S3 Fig. Behavioral negative control. Regression analysis for trials from all three monkeys,

considering directions with nonsignificant effect of trial-by-trial adaptation. The plot shows a

slight deviation from the horizontal in a direction that qualitatively corresponds to the one for

significant trials. The slope of 0.021 of this regression line is roughly three times smaller than

the one for significant trials shown in Fig 1C and 1D. The confidence interval is 0.018 to 0.024;

the effect size 0.16. Underlying data available from the Dryad Digital Repository: https://doi.

org/10.5061/dryad.p88b8v8.

(TIF)

S4 Fig. Effect of adaptation from trial n − 2 to trial n. Plot of normalized saccade amplitude

in trial n as function of normalized visual error in trial n − 2 for all directions that had yielded

a significant effect of trial n − 2 on saccade amplitude in trial n as revealed by ANOVA

(p< 0.05). The slope of the regression was −0.0047 with a 95% confidence interval at −0.0011

and 0.0015 and a Hedges’ g effect size of 0.028 between the clusters for inward error and out-

ward error trials. In other words, it did not reach significance. Underlying data available from

the Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8.

(TIF)

S5 Fig. Directional MI analysis for the exemplary unit presented in Fig 2. The presence of

direction selectivity was tested for the three different conditions: inward error, outward error,

and control. For each condition, the data were aligned to the main four events in a trial (initial

target jump, primary saccade start, primary saccade end, corrective saccade start). For each

alignment, the individual significance threshold was p = 0.05. Note that for this unit, the condi-

tion and alignment with inward error and primary saccade end provided the clearest peak and

is considered the most informative combination for this CS unit. Underlying data available

from the Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8. CS, complex

spikes; MI, mutual information.

(TIF)

S6 Fig. Mapping of the point of significant CS modulation. A Plot of MI as a function of

time for an exemplary CS unit exhibiting its maximal MI after the corrective saccade, when

aligned to the onset of the secondary (corrective) saccade. Both panels are based on the same

data: The panel on the left shows the MI based on trials aligned to the start of the primary sac-

cade (dashed green line) and the right one to the onset of the corrective saccade (dashed green

line). The solid red bar represents the significance threshold as derived from the respective

baseline interval (vertical dashed black lines). B The top panel depicts the MI as function of

time for an exemplary CS unit that underwent the directional preference analysis (i.e., the MI

between CS discharge and the eight directions). Trials are aligned to the onset of the primary
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saccade (green vertical line). The red horizontal line is the individual significance threshold as

derived from the baseline interval. The time course from the end of the baseline interval until

the end of the trial at 2,200 ms (d’) is mapped onto a normalized time course (d) of a trial as

shown in the lower panel. The intervals in the normalized time course were set as follows:

a = 200 ms; b = 300 ms; c = 250 ms; d = 1,000 ms. The solid black and the dashed black curve

illustrate a schematic eye trace with the corresponding target trace for better orientation. In

order to compare the activity across units, we mapped the time point of maximal MI into the

normalized time course. This was done in a linear fashion as captured by the ratio b0
bþa ¼

e0
e . By

following this procedure for every CS unit, we generated a histogram (grey bars) of the time

points of significant CS. The histogram shown is the same as in Fig 2C and based on 79 CS

units. Refer to the Results section for further discussion of the analysis and its implications.

Underlying data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.

p88b8v8. CS, complex spikes; MI, mutual information.

(TIF)

S7 Fig. Effect of adaptation for directions with significant MI modulation. Plot of normal-

ized saccade amplitude in trial n as function of normalized visual error in trial n − 1. All indi-

vidual saccades (independent of direction) are considered, for which the MI analysis presented

in Fig 3C gave significant results (data from N = 266 directions). The slope is 0.041 ± 0.004,

based on a regression of all three clusters (blue: inward error; green: control; red: outward

error). A one-way ANOVA revealed a significant effect of type of target shift (p = 1.74 ×
10−117) and the Hedges’ g as measure of effect size between the clusters of inward and outward

shifts amounted to 0.34. Underlying data available from the Dryad Digital Repository: https://

doi.org/10.5061/dryad.p88b8v8. MI, mutual information.

(TIF)

S8 Fig. Correlation of CS activity in trial n and saccade amplitude in trial n. Analysis of cor-

relation between the size of the CS activity in the primary error interval and the saccade ampli-

tude in trial n, assuming that the CS activity in the period in question will be influenced by the

past error. Plots are based on the same datasets as Figs 3C and 4. The plot on the right gives the

distribution of correlation coefficients obtained when pooling all cases. The distribution is cen-

tered on zero with a tiny yet significant preponderance of negative correlations. The left panel

distinguishes two distributions considering the two possible alignments of a unit’s preferred

direction with the direction of the visual error (see Fig 4 for additional information; the distri-

bution for antiparallel orientations is plotted in blue, the one for parallel orientations in red;

the red distribution is not different from zero [t test, p = 0.84; effect size: 0.017], whereas the

blue population lies in the negative area, indicating that inward errors lead to a higher number

of CS [p = 0.0054; effect size: 0.25]). Both populations differ significantly from one another (t
test, p< 0.05; effect size: 0.29). Underlying data available from the Dryad Digital Repository:

https://doi.org/10.5061/dryad.p88b8v8. CS, complex spikes.

(TIF)

S9 Fig. Significant SS modulation. Distribution of time points of significant SS modulation

analogous to Fig 3C for cases in which a significant effect of past errors on the CS modulation

had been obtained. The red curve of “estimated probability” is, as in the population plots of

Figs 2C & 3C, a kernel density estimation for illustration purposes only. We obtained a signifi-

cant SS modulation prior to the primary saccade end for 104 directions, which are 19.7% of

the 526 directions. Considering SS for which the corresponding CS also showed a significant

modulation, the values change to 35 directions out of 193, which are 18.1%. Underlying data

available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.p88b8v8. CS,
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complex spikes; SS, simple spikes.

(TIF)

S10 Fig. CS recognition is guided by its canonical shape and LFP signal. A Exemplary PC

recording showing a typical complex spike (CS, asterisk) followed by three SS. The upper trace

shows the 250 Hz–10 kHz band pass–filtered signal, whereas the lower trace depicts the low

pass–filtered LFP signal with a cutoff frequency of 150 Hz. Note the long-lasting upward

deflection in the LFP caused by the polyphasic complex spike. B Example of CS observed in

isolation from SS, arguably recorded further away from the cell body in the molecular layer

(upper panel). Again, the lower trace shows a marked LFP deflection paralleling the occur-

rence of the CS. C Example of a less-well–isolated PC, exhibiting SS framed by two CS at 0 and

55 ms. The offline detection of CS in this and similar recordings was greatly facilitated by con-

sidering the LFP signal (lower trace). D Plot of the number of spikelets per CS unit as function

of its duration; the latter occurs binned by the discrete increase in duration with each addi-

tional spikelet. The plot shows data from one CS unit and the inlay depicts an exemplary CS

waveform with three spikelets. Underlying data available from the Dryad Digital Repository:

https://doi.org/10.5061/dryad.p88b8v8. CS, complex spikes; LFP, local field potential; PC, Pur-

kinje cell; SS, simple spikes.

(TIF)

S11 Fig. Effects of CS duration in the random error paradigm. A Distributions of mean CS

duration for the short (2 ms to 7 ms), the medium (3 ms to 8 ms), and the long (3 ms to 12 ms)

CS durations based on N = 38 CS. The calculation for the binning is described in S1 Text. B

Box and whisker plot of the average CS duration for the four trial periods distinguished given

that� 2 CS occurred in the respective interval. The boxes give the median and the whiskers

indicate the 95th-percentile range. A Kruskal–Wallis-test showed no significant difference

between the four trial periods (p> 0.05). C Plot of duration of CS fired during baseline fixation

as function of duration of the same CS when generated in the presence of a secondary visual

error (N = 34 CS units considered). The dashed line is the identity line; the solid line is a

regression line fitted to the data points. It has a slope of 0.73 and an intercept of 1.31 ms. D

Box and whisker plot (format as in B) of change of saccade amplitude from trial n − 1 to trial n
as function of CS duration in the secondary visual error interval (III in Fig 1B) in trial n − 1 (3

bins: short, medium, or long CS duration). The data point on the left depicts the change in the

absence of a CS;� 2 CS were required in the respective interval for a CS unit to be considered.

Underlying data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.

p88b8v8. CS, complex spikes.

(TIF)

S12 Fig. Correlation of visual error in trial n − 1 and SS activity in trial n. SS density func-

tions analogous to Fig 4D. The SS SDF are computed out of those trials for which the CS mod-

ulation exhibits a positive correlation coefficient and for which the average SS rate of the

respective SS unit remained stable between 30Hz and 60Hz to avoid bias. The red trace indi-

cates an outward error on trial n– 1, and the blue trace those trials with an inward error in trial

n − 1. The grey trace depicts those trials for which no induced visual error was present in trial

n − 1. The vertical dashed lines represent (from left to right) the initial target shift, the start of

the primary saccade, and the end of the primary saccade. The grey curve on the bottom depicts

the effect size between the red and the blue curve and times of significant differences (t test,

p< 0.05) are indicated in green. Note that a significant difference between inward and out-

ward error conditions in trial n − 1 becomes visible shortly before the primary saccade or

around the primary saccade, depending on the correlation coefficient of the CS rate of the very
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same PC. The solid curve in the center of each panel is an exemplary eye trace with a primary

saccade of 10-degree amplitude as in Fig 4D. Underlying data available from the Dryad Digital

Repository: https://doi.org/10.5061/dryad.p88b8v8. CS, complex spikes; SDF, spike density

function; SS, simple spikes.

(TIF)

S1 Table. Contributions to the directional analysis. Overview of results of MI-based CS

directionality analysis composing the histogram in Fig 2C. The population of CS units consid-

ered for analysis comprised N = 129 units. Out of this group, N = 79 (61.2%) exhibited signifi-

cant MI values in any of the periods considered. “Error Condition” distinguishes significant

MI values in the three categories of inward error, outward error, or no error control. “Time

point of alignment” are the time points of the oculomotor events to which spike trains were

aligned prior to MI analysis. “Interval” distinguishes the three longer-lasting trial periods fol-

lowing the baseline period. “Two significant MI peaks” indicates units whose MI time course

crossed the significance threshold twice for the same alignment. Percentages are rounded to

one-tenth of a percent. CS, complex spikes; MI, mutual information.

(DOCX)

S1 Text. Analysis of CS duration. A description of the analysis and the results of the analysis

of the CS duration. CS, complex spikes.

(DOCX)
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