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Abstract
Attention can be biased by previous learning and experience. We present an algorithmic-level model of this selection history
bias in visual attention that predicts quantitatively how stimulus-driven processes, goal-driven control and selection history
compete to control attention. In the model, the output of saliency maps as stimulus-driven guidance interacts with a history
map that encodes learning effects and a goal-driven task control to prioritize visual features. The model works on coded
features rather than image pixels which is common in many traditional saliency models. We test the model on a reaction
time (RT) data from a psychophysical experiment. The model accurately predicts parameters of reaction time distributions
from an integrated priority map that is comprised of an optimal, weighted combination of separate maps. Analysis of the
weights confirms selection history effects on attention guidance. The model is able to capture individual differences between
participants’ RTs and response probabilities per group. Moreover, we demonstrate that a model with a reduced set of maps
performs worse, indicating that integrating history, saliency and task information are required for a quantitative description of
human attention. Besides, we show that adding intertrial effect to the model (as another lingering bias) improves the model’s
predictive performance.

Keywords Visual attentionmodeling · Selection history · Feature integrated theory · Integrated prioritymap · Self-information
maximization · Ex-Gaussian distribution

Introduction

Selective visual attention is a brain function that filters irrel-
evant sensory inputs to facilitate focusing on relevant items.
Stimulus-driven and goal-driven mechanisms have tradi-
tionally been proposed to control the process of attention
guidance. Object saliency and environment features shape
the attentional process in a stimulus-driven manner while
the goal-driven process is mostly controlled by observer
intentions and preferences. In addition to goal-driven and
stimulus-driven contributions also “selection history” can
play a significant role in guiding attention toward a specific
target (Theeuwes, 2019). Selection history (as a third mecha-
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nism of attentional guidance) comes into playwhen an object
is emphasized just because of previous attendance in the same
context (Awh et al., 2012). To clarify the distinction between
goal-driven guidance and selection history, Theeuwes argued
that selection history is a fast, effortless, and automatic ver-
sion of attention control while goal-driven selection is slow
and effortful (Theeuwes, 2018). The term “selection history”
includes several phenomena that can neither be considered as
goal-driven nor as stimulus-driven control, such as lingering
effects, statistical learning, emotional and also reward-based
biases (Failing & Theeuwes, 2018).

One special formof selection history has been investigated
in Feldmann-Wüstefeld et al. (2015), Kadel et al. (2017), and
Henare et al. (2020). These studies combined an associative
learning task with a visual search task. The results showed
that observers attended more to a stimulus they experienced
as response-predictive in the preceding feature discrimina-
tion task. To examine to what extent selection history can be
suppressed by goal-driven process, Kadel et al. (2017) tested
different goal-driven-influenced modes of task preparations
such as pretrial task cuing. As their results showed, atten-
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tional biases induced by selection history persisted despite
task preparation. Their results show that even with these
preparations, selection history still plays a noticeable role in
biasing attention toward a formerly experienced target (see
also Abbasi et al. 2022). Wolfe and Horowitz (2017) men-
tioned that not only the three aforementioned contributions
but also the scene structure and the relative value of the tar-
gets and distractors must be considered in modern visual
guidance theories. In Guided Search 6.0 (Wolfe, 2021)—the
latest version of the Guided Search model on visual search
and selective attention—these five factors are integrated in a
spatial priority map to guide attention.

An integrated priority map was also proposed by Awh
et al. as a theoretical framework for explaining how selec-
tion history and other factors of attention guidance interact
(Awh et al., 2012; Theeuwes, 2019). Priority maps have been
successfully employed by many authors (Fecteau & Munoz,
2006; Zelinsky & Bisley, 2015; Klink et al., 2014; Todd &
Manaligod, 2017; Veale et al., 2017; Chelazzi et al., 2014)
to explain the result of attentional priority and guidance in
a visual scene. In a review, Klink et al. (2014) summarized
how goal-driven and stimulus-driven maps in cortex com-
bine with a value-based map in midbrain. This combination
results in a priority map for the frontal eye fields. Zelinsky &
Bisley (2015) speculated about the importance of a priority
map in relationship with visual working memory and also
with the motor system. They also highlighted this map as an
appropriate construct for predicting behavior.

Stimulus-driven models of attention were developed early
on Itti et al. (1998). These models tend to ignore the effects
of selection history, task or training (Itti & Borji, 2015). Itti
et al. (1998) implemented feature integration theory (three
feature maps including color, intensity and orientation), the
winner-take-all principle, inhibition of return and a normal-
ization method to model visual attention in a stimulus-driven
manner. This model (or its elaborated version; Itti & Koch
2000) was subsequently expanded (Ramirez-Moreno et al.,
2013; Tanner & Itti, 2019). de Brecht & Saiki (2006) showed
how Itti and Koch’s model (Itti & Koch, 2000) can be
implemented by neural networks with biologically realistic
dynamics based ondata fromelectrophysiology experiments.
This model was also expanded later by integrating motion
saliency computation (Ramirez-Moreno et al., 2013). Itti’s
stimulus-driven model was also combined in a goal-driven
model (Tanner & Itti, 2019) to represent the effect of goal-
relevant information on attention or eye movement. Veale
et al. (2017) validated aneural implementationof Itti’smodel.
In another stimulus-drivenmodel, Bruce&Tsotsos (2009)—
using self-information maximization (− log(p(x))), where
x is a feature—proposed a computational model of saliency
that is called “Attention based on Information Maximiza-
tion (AIM),” because attention is attracted by surprising, i.e.,
potentially informative, regions of an image.

Most of the models reviewed so far were developed to
explain data from highly controlled experiments with impov-
erished artificial stimuli. However, humans deploy their
attention in uncontrolled natural settings replete with com-
plex stimuli. Thanks to deep learning advances, there has
been recent progress in deep visual saliency models that can
process complex natural images (Borji, 2019). DeepGaze II
is a saliency model that predicts where people look using
features from a pre-trained convolutional neural network
(VGG-19) and a few layers on top that are trained to read out
saliency (Kümmerer et al., 2016). While these models have
near-human performance compared to observers in front of
a screen, they mostly explain saliency effects at their current
state of development. It will be interesting to include other
attentional guidance mechanisms in them, which go beyond
the currently presented scene.

Itti and Borji reviewed more than 50 computational
stimulus-driven models (Itti & Borji, 2015). Computational
models that integrate goal-driven control (Navalpakkam &
Itti, 2005; Hwang et al., 2009; Borji et al., 2014) are less well
researched than saliency models, likely because they require
information not available in the stimulus. Some models inte-
grate stimulus-driven and goal-driven signals in attentional
guidance (Kimura et al., 2008). Chikkerur et al. (2010) used
a Bayesian framework to explain how a combination of
stimulus-driven and goal-driven attentional guidance work
together in cortex.

Previous studies showed that attention can be biased more
toward a target feature which was selected in the last trial
(Maljkovic & Nakayama, 1994; Kristjánsson & Campana,
2010; Theeuwes & van der Burg, 2011; Kadel et al., 2017).
This effect, known as intertrial priming, is one of the linger-
ing biases attributed to selection history (Theeuwes, 2018).
Selection history has hardly been modeled despite being a
well-known phenomenon. Tseng et al. (2014) implemented a
Ratcliff-type diffusion model (Ratcliff, 1978) for a 2-forced-
choice task and showed that intertrial priming can affect
diffusion model parameters.

In this paper we introduce an algorithmic-level or “mech-
anistic” model (in the sense of Marr 1982) to show how
stimulus-driven processes, goal-driven control and selection
history compete to guide visual attention toward a specific
target1. We operationalize selection history as the effect of
training-phase learning on the test phase (see Feldmann-
Wüstefeld et al. 2015; Kadel et al. 2017; Henare et al. 2020).
The model comprises a priority map to integrate goal-driven,
saliency-based and history-related biases in awinner-take-all
manner. Stimulus-drivenguidance, featuremaps and saliency
maps aremade based on feature integration theory (Treisman
& Gelade, 1980) and self-information maximization (Bruce

1 A preliminary version of this modeling study has been presented at
COGSCI 2021 https://cognitivesciencesociety.org/cogsci-2021/.
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& Tsotsos, 2009). Feature integration theory, developed by
Treisman & Gelade (1980), posits that separable dimensions
(such as shape and color) are processed separately before
being integrated on-demand. Using this theory, the proposed
model, codes the input into three types of features (color,
shape and orientation) and computes a saliency map for
each feature dimension using self-information maximization
(Bruce&Tsotsos, 2009).Unlike saliencymodelswhichwork
on image pixels, we represent 1-out-of-K encoded maps,
becauseweare primarily interested in the interactionbetween
different attentional guidance mechanisms on a conceptual
level.

The model also incorporates an intertrial effect which
emphasizes the response-relevant feature dimensions (either
color or shape in learning task and orientation in search task,
see Fig. 4) of the last trial in the current one; Found &Müller
(1996). Additionally, a history map contributes to the inte-
grated priority map to reflect the effect of selection history
and learning in the model. Finally, task-relevant information
controls the map integration weights that generate predic-
tions for responses and response times. These integration
weights are our model for the goal-driven influences. We test
this model on a behavioral database from an experiment by
Feldmann-Wüstefeld et al. (2015). The model can predict
the reaction time distribution parameters for each participant
and also across the experimental groups. To find the best fit-
ted distribution on reaction times, several probability density
functions are compared minimizing negative log-likelihood
and the best fitting one—anex-Gaussian distribution (Matzke
& Wagenmakers, 2009)—is used in the model.

The rest of the paper is organized as follows:we review the
experiment and explain its details required for a full under-
standing of the model. We then compare models that differ
in the information that enters into the integrated priority map
and show that a model with selection history information—
on feature level—performs best. We also show that the
inclusion of intertrial effect variables leads to an increase
of the (approximate) Bayesian model evidence. More infor-
mation about reaction time distributions can be found in

Appendices A and B. Besides, a general linear model is pre-
sented in Appendix C.

Experimental Data

The data used in this study comes from the first experiment
of Feldmann-Wüstefeld et al. (2015). They investigated the
impact of associative learningon covert selective visual atten-
tion to examine whether selection history effects generalize
from particular features (e.g., “blue” or “green”) to the entire
color dimension. The experiment consisted of a “practice”
and a “main” phase, in which two types of tasks (learning
and search) were performed. A central fixation cross was
presented on the screen, which was then surrounded by eight
different elements on an imaginary circle (Fig. 1). 28 par-
ticipants were divided randomly into two different groups,
namely “color group” and “shape group.” They were first
naive about their group membership, but had to learn it on a
trial and error basis in the practice phase.

In the “practice phase,” participants had to learn that either
color or shape was the response-relevant dimension in this
learning task (see Fig. 1a).Members of the color group had to
report the color of the color singleton (blue or green),whereas
members of the shape group had to respond to the shape of
the shape singleton (triangle or pentagon). They had to use
their left hand to press one of two buttons that were placed on
the left side of the response pad. Auditory feedback indicated
whether they pressed the incorrect key.

In the “main phase” a second visual search taskwas added,
and participants performed both tasks in random order. In the
search task (Fig. 1b), all participants had to search for a shape
target and report the orientation of a line presented inside
the diamond-shaped target. In half of the trials, a response-
irrelevant red circle was presented as distractor. Participants
used their right hand to press one of two buttons on the right
side of the pad to indicate the line orientation (horizontal
versus vertical).

(b)(a)

Fig. 1 Experiment displays. Learning task (a): Participants in the color
group had to respond to the color (green vs. blue) and participants in the
shape group had to respond to the shape (pentagon vs. triangle). Search

task (b): The orientation (horizontal vs. vertical) of the line embed-
ded in the diamond had to be reported in distractor-absent (left) and
distractor-present trial (right)
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The results of this study showed that the history of
selection acquired in the learning task affected the partici-
pants’ performance in the search task. Reaction time analysis
showed that responses in distractor-present trials were slower
than in distractor-absent trials, and the distractor cost was
larger in color group participants than in participants in the
shape group. Concurrently recorded EEG signals also sug-
gested that participants in the color group deployed attention
toward the red color distractor, thiswas not the case for partic-
ipants in the shape group. Accordingly, the authors suggested
that the participants’ history of either shape or color selection
in the practice phase had resulted in a selection history bias.
Feldmann-Wüstefeld et al. had done their study in 4 experi-
ments to examine the influence of task switching. In the first
and the second experiments, learning and search trials were
intermixed. In experiment three, the tasks were presented
block-wise and in the fourth one, the tasks were performed
on separate days. The results of all experiments demon-
strated the presence of selection history effect on attention
deployment even when the tasks were done on different days
(Feldmann-Wüstefeld et al., 2015). We decided to use the
intermixed presentation trials to model the effect of repeat-
ing the response-relevant feature dimension from trial n-1
to trial n (intertrial effect) along with goal-driven, stimulus-
driven and selection history influences on attentional control.
We present a generalized linear model analysis of the effects
of distractor presence and intertrial inAppendixC. This anal-
ysis confirms the presence of decisive evidence (in the sense
of Kass & Raftery 1995) for both effects in the data.

We developed a model of this selection history bias in the
current study based on the behavioral data from the main
phase, which comprises a total of 28,672 trials across all
participants. More details about the experiment can be found
in Feldmann-Wüstefeld et al. (2015).

The Algorithmic Model

We assembled an algorithmic-level model to explain how
goal-driven and stimulus-driven influences competitively
interactwith visual selection history to guide attention toward
a specific stimulus. Inspired by the integrated priority map
in Awh et al. (2012), we used a “history map” reflecting the
influence of selection history on current attention deploy-
ment, see Fig. 2.Additionally, there is an overall saliencymap
for stimulus-driven influences.How thesemaps combine into
an integrated priority map is determined by task-dependent
weights. Figure2 also shows how the output of the integrated
priority map is used to predict ex-Gaussian distribution
(Luce, 1986) parameters of reaction times (left exit path in the
figure) and response likelihoods (the right exit path). Eval-
uating these response likelihoods and reaction times against
participants’ reaction times allows us to fit the model to

the experimental data, see Eq. 5 below. Since the model
employs the ex-Gaussian as an RT distribution, we detail
in Appendix A how this distribution was chosen based on a
model comparison.

The input stage of the model is based on assumptions
made by visual search theories such as feature integration
(Treisman&Gelade, 1980) and guided search (Wolfe, 2021).
The model extracts three types of features (color, shape
and orientation) and feature maps—as shown in Fig. 2—are
computed. In the next processing step, saliency maps that
model the effect of stimulus-driven control on visual atten-
tion (Koch & Ullman, 1985) are derived from the feature
maps by computing Shannon’s Self-Information on the fea-
ture statistics. Our approach is therefore related to Attention
based on Information Maximization (AIM) (Bruce & Tsot-
sos, 2009). However, in AIM self-information is computed
from features extracted from the image pixels, rather than
our predefined features. We chose predefined features due to
the stereotypical nature of our stimulus images. Equations 1
and 2 show the actual calculations behind map computation.
Feature maps are M×N ×K vectors where M is the number
of trials, N is the number of objects in each trial and K is
the number of distinct values that each feature can take on,
i.e., we are using 1-out-of-K encoding for the features, with
the value 1 indicating which feature value is present. In the
current experiment M = 1024 (for each participant), N = 8
and K = 4. Figure3 illustrates the method of building fea-
ture maps for some example trials. For all trials, we take the
feature maps fi for i ∈ {color , shape, orientation} and
compute the self-information Xi :

∀k : Xi [k] = − log

( N∑
n=1

fi [n][k]/N
)

(1)

which yields the saliency of all trials si [n]:

∀n : si [n] = Xi

[
argmax

k
( fi [n][k])

]
(2)

where, due to the 1-of-K feature encoding, we can use
argmax to pick the self-information corresponding to the
current feature value.

Saliency maps si are fed into the integrated priority map
along with history information (h) to compete in a softmax
model for the predicted response target. Selection history,
the third category of attentional guidance (Awh et al., 2012),
carries the effect of learning (participants learned about color
or shape in our experiment) into the priority map (p).

Tomodel the intertrial effect on participant’s RT,we added
another parameter (wt ) to the model. The parameter wt

includes a weight for each feature dimension (correspond to
Dimension Weighting Account; Liesefeld et al. 2019) and it
modulates the saliency weights when the maps are combined
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Fig. 2 An overview of the
algorithmic model. The blue
arrows show the direction of
data flow from visual input to
response and gray arrows show
the direction of feedback.
ws , wh, wt and wd are model
parameters that weigh how
strongly different maps enter
into the integrated priority map
or the RT prediction. ws is
saliency weight with three
elements for color, shape and
orientation. wt is intertrial effect
weight and also has three
elements for color, shape and
orientation. wh is history map
weight. wd is distribution
parameters weight and has three
elements for μ, σ and τ . Bd is
distribution parameters’ bias
containing Bμ, Bσ and Bτ . The
goal-relevant information (on
the right side of the figure) helps
the model to guide attention to
the target location

into the priority map:

∀m, n : p[m][n] = sof tmax
n

(∑
i

(
(wsi + wti ∗ ti [m]) (3)

∗si [m][n]) + wh ∗ h[m][n]
)

The weights (wh for history and wsi for i ∈ {color, shape,
orientation}) are used to combine the history map and the
saliency maps computed from color, shape and orientation.
These weights reflect the influence of the content of the
respective map on the integrated priority map for the tasks
that the model will be optimized for. In Eq. 3 t is a M × i

matrix which carries information from the last trial: in each
row of t , a “1” indicates the feature dimension which had to
be selected by the participants in the last trial (see Fig. 4).
The softmax function is used to ensure that the winning
location receives the most attention while keeping the map
interpretable as a probability distribution.

In our model, Eq. 3 can be interpreted as the first layer of
a (two-layer) neural network. The second layer is a (linear)
mapping from the integrated priority map to reaction time
distribution parameters:

∀m : d[m] =
N∑

n=1

(p[m][n] ∗ wd) + Bd (4)

Fig. 3 Feature maps, history
map and goal-relevant
information for two random
trials. We use 1-out-of-K
encoding for the feature vectors,
i.e., all components but one are
zero. The nonzero component
indicates the feature value (see
the green box). In each row of
history map the location of
learned feature is marked. In
goal-relevant information the
location of the response-relevant
feature is marked

Features:
C4 = [1,0,0,0]
S4 = [1,0,0,0]
O4 = [0,1,0,0]

Features:
C3 = [1,0,0,0]
S3 = [0,0,0,1]
O3 = [0,0,0,1]

Color Map: [C1 … C8]
Shape Map: [S1 … S8]
Orientation Map: [O1…O8]

Feature Maps

History Map

0 0 0 0 0 0 1 0
.
.
.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
.
.
.

0 0 1 0 0 0 0 0

History Map

0 0 0 0 1 0 0 0
.
.
.

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0
.
.
.

0 0 0 0 0 0 0 0

Color Group Shape Group

Goal-relevant 
Information

Goal-relevant 
Information
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Fig. 4 Intertrial effect. This effect in our model is depicted by solid
lines for shape, and dashed lines for color. Attending a particular fea-
ture (e.g., triangle shape in trial n-4) primes shape dimension attention
in the next trial, here: pentagon in trial n-3. Likewise for color dimen-

sion. Line orientation priming is possible too, shown for trial n-2 →
trial n-1 (upper orange arrow). Note that shape priming is possible in
the color group too if two search trials follow each other (lower orange
arrow)

where w and B are weights and biases of ex-Gaussian dis-
tribution parameters’ d[m] ∈ (μ[m], σ [m], τ [m]) for each
trial m.

We also compute a 1-out-of-K representation of the goal-
relevant information (g in Eq. 5) (see Fig. 3) which is used
for machine-learning the weights with which the historymap
and the saliency maps are combined in the priority map. Psy-
chologically, we can interpret the role of this as combined
guidance of stimulus-driven and history toward the location
of the target.

Theweights and biases, which comprise themodel param-
eters θ = (wh, ws, wt , wd , Bμ, Bσ , Bτ ) for both tasks are
determined by minimizing the loss function. This function
comprises the negative logs of the joint RT distributions, the
goal-relevant information (g) under the distribution predicted
by the integrated priority map (p) and eventually the prior
distributions over the model parameters p(θ):

Loss = −
M∑

m=1

log
(
ExG

(
RT [m] | μ[m], σ [m], τ [m])) (5)

−
M∑

m=1

N∑
n=1

(
log p[m][n] ∗ g[m][n]) − log p(θ)

where ExG is the ex-Gaussian density function. The prior
distributions are:

wh|s|t |d ∼ N (0.0, 1.0)

Bμ ∼ N (600.0, 100.0)

Bσ ∼ N (75.0, 4.0) (6)

Bτ ∼ N (200.0, 20.0)

when the mean and the standard deviation of the last three
distributions are selected in a way that matches results from
similar experiments (Feldmann-Wüstefeld et al., 2015;Kadel
et al., 2017).

To find the weights and biases that minimize the loss (Eq.
(5)), we draw random initial values from these distributions
(Eq. (6)) and then optimized using Python 3.8.8, PyTorch
1.8.1 andAdamoptimizerwith learning rate 0.1. In each opti-
mization step, maps’ weights (e.g., wh, ws) and the reaction
time distribution parameters (μ, σ, τ ) are updated to reach to
the best possible distribution fit on the data (see Fig. 5a). The
model approximates the reaction time distribution parame-
ters very well (as can be seen in Fig. 5b). To quantify how
close themodel-predicteddistributions are to the best fit to the
data, we evaluate an approximation to the Kullback-Leibler
(KL) divergence (Bishop, 2006):

K L(p||q) =
∫

p(RT ) log
( p(RT )

q(RT )

)
dRT (7)

≈ 1

M

M∑
m=1

log p(RTm) − 1

M

M∑
m=1

log q(RTm)

where RTm is the reaction time in trialm, p(RT) and q(RT) are
model-predicted and best-fit distributions respectively. For
both color and shape group RTs, we find K L(p||q) ≤ 10−4

which is very close to the minimal possible value of zero.

Results and Discussion

To investigate how selection history and saliency maps
quantitatively predict attentional guidance, we tested seven
versions of the model. Table 1 summarizes these versions. In
the first model (M1), the history map contains the response-
relevant features of the learning phase (blue and green for the
color group, triangle and pentagon for the shape group). This
model is used as the basis for models M2 to M7, which are
altered versions thereof. In M2 the history map includes all
color singletons (for participants in the color group) and all
shape singletons (for participants in the shape group). Here,
the assumption is that the participants have learned response
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Fig. 5 Ex-Gaussian distributions of a participant’s reaction times. (a)
The model-predicted distributions are plotted every 1000 iterations of
the model optimization. At iteration 0, the optimization begins with
parameters randomly drawn from the priors. The darkest plot (after 5000
iterations) shows the best fit. (b) Best model-free fit to the data (red) and
model-predicted distribution (green). For more examples please refer
to Appendix B

predictiveness on the dimensional level (color or shape), not
on the level of single features (such as green or blue). So
not only blue, green, triangle and pentagon but also red and
diamond are included. InM3, priming information from pre-
vious trials is removed from the model. In M4, we exclude
the history map from the model testing the assumption that
only goal-driven and stimulus-driven guidance direct atten-
tion. In M5, M6 and M7, shape, color and orientation maps
are removed to see if all feature maps are needed to guide
attention in this experimental paradigm.

To compare the versions of the model, we use a Laplace
approximation to the Bayesian model evidence (Bishop,
2006; Barber, 2011; Endres et al., 2013):

L AP = log(p(D|θ̂ , Q))︸ ︷︷ ︸
log-likelihood

+ log(p(θ̂ |Q))︸ ︷︷ ︸
log-prior

− 1

2
log(|H |) + L

2
log(2π)︸ ︷︷ ︸

log-posterior-volume

(8)

where θ is the vector of parameters for each model (Q),
L = dim(θ) is the number of parameters and θ̂ is the value
of θ at the mode of the posterior distribution. H is a Hessian
matrix: a L × L matrix of the second-order derivatives (of
the negative log-posterior) evaluated at θ̂ , and |H | denotes
the determinant of H .

As shown in Eq. 8, the Laplace approximation (LAP)
consists of three components. The first component (log-
likelihood) measures the goodness of fit and is defined as:

log(p(D|θ̂ , M)) =
M∑

m=1

log
(
ExG

(
RT [m] | μ[m], σ [m], τ [m]))

︸ ︷︷ ︸
reaction time log-likelihood

(9)

+
M∑

m=1

N∑
n=1

(
log p[m][n] ∗ g[m][n])

︸ ︷︷ ︸
attention log-likelihood

which is also part of our loss function (see Eq. 5 and the
text below that for more details). The third component (log-
posterior-volume) of Eq. 8, measures how well the data
constrain the parameters. The sumof this component and log-
prior, which is known as “Occam’s razor” (Bishop, 2006),
penalizes the complexity of the model and guarantees that
models with more parameters do not score better by simply
overfitting the data.

In our model comparisons, we first use LAP to find the
best version of the model. Then we look at the LAP com-
ponents to see what exactly causes a model to score better
than the others. The model evidences (LAP values) for seven
versions of the model are shown in Fig. 6. These models are
described at the beginning of this section and are also summa-
rized in Table 1. Eachmodel version is fit individually to each
participant; then, LAP scores are added per model version.
The results show M1 being the most probable model. Please
note that the values on Fig. 6 are loge probabilities. So for
instance since the difference between M1 and M3 (the sec-
ond best model) is about 20, M1 is approximately 108 times
more probable than M3. The M1 model includes saliency
maps for color, shape and orientation, a history map—with
the features that were predictive during learning—and also
the effect of the last trial on the current one (i.e., an inter-
trial effect). By excluding the orientation map from M1 we
get the least probable model (see M7 on Fig. 6). To find
out what causes this big reduction in model evidence, we
look at the LAP components: reaction time log-likelihood,
attention log-likelihood, log-prior and log-posterior-volume.
The bar charts in Fig. 7 indicate the difference between M1
andM7 regarding LAP components, separately for color and
shape group participants. The first component (reaction time
log-likelihood) indicates which model predicts RTs and their
distribution parameters better. The results show all models
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Table 1 A summary of the
model versions

Models Shape map Color map Orientation map History map Intertrial effect

M1
√ √ √

Featural
√

M2
√ √ √

Dimensional
√

M3
√ √ √

Featural –

M4
√ √ √

–
√

M5 –
√ √

Featural
√

M6
√

–
√

Featural
√

M7
√ √

– Featural
√

A featural history map contains all response-relevant features in the practice phase
A dimensional history map contains all the features related to the learned dimension

are equally accurate in predicting these parameters. On the
other hand, the second component (attention log-likelihood)
indicates how well the model predicts target locations. If we
compare M1 and M7 regarding this component, M1 shows a
much better performance in color group participants.

The log-posterior-volume terms are comparable in both
groups, indicating that the parameters of all models in all
groups are similarly well constrained. The log-prior terms
differ substantially between M1 and M7 in the color group
only. This is due to M7 having to put a large weight on the
featural selection history map to guide attention away from
the color distractor. Such a large weight is improbably under
the prior (see Eq. 6), making M7 less likely a posteriori.
Yet, even with this large weight, M7 is a worse explanation
of participants’ behavior, as can be seen by the difference
in the attention-LL terms. This is illustrated in Fig. 8: M1
is a better predictor of a color group participant’s attention
guidance to the correct target location.We interpret this result
as evidence for the hypothesis that orientation can be used to
deploy attention, too.

In addition, we would like to point out that the poten-
tial effect of orientation on attentional deployment arises
from the way in which our models integrate individual

(saliency/history) maps into an overall priority map. Since
in our experimental data the orientation is unique (either
horizontal or vertical) and at the same locationwith diamond-
shaped target, we have at this point no independent causal
evidence for or against this model-based hypothesis, as
pointed out by one of our reviewers.

Under the assumption that there is at least an approxi-
mately linear mapping from the priority map to the reaction
time distribution parameters, the model machine-learns to
predict the history map weight (wh), saliency map weights
(ws), intertrial effect weights (wt ) and also the distribution
parameters weights and biases (wd , Bd ) (see Fig. 2). A com-
parison of the learned weights and their differences between
the color group and the shape group is shown in Fig. 9. As one
might expect, the color weight is higher in the color group,
whereas the shape weight dominates in the shape group. This
leads to a stronger influence of the respective saliency map
on the contents of the integrated prioritymap,which is shown
in Fig. 10 for a distractor-present trial. In other words, while
we assume that saliency is a property of the physical stim-
ulus statistics, the weight with which saliency enters into
the integrated priority map can be varied by (learnable) task
demands. In Fig. 10 the individual map activations and their

Fig. 6 Model comparison. We computed a Laplace approximation to
the Bayesian model evidence across all participants (see LAP, Eq. (8)).
The LAPs are plotted relative to M7 (the least probable model). Bigger

LAP is better. M1, which is called themainmodel, contains the saliency
maps, intertrial effect and the historymap on response-relevant features.
This model scores best. For models descriptions, see the text
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Fig. 7 Model comparison based on Laplace approximation (LAP)
components. The components are shown on x-axis: RT log-likelihood
(LL), attention log-likelihood, log-posterior-volume and priors log-
likelihood. The details about the components can be found in Eqs. 8
and 9. The difference between the most and the least probable models
(M1 and M7, relatively) are shown on the y-axis. For each model we
calculated the mean of the model evidences (LAP values) for all partic-
ipants in a specific group (either color or shape group). Error bars are
very small and cannot be seen

weighted combinations are shown in color coding. The color
group model’s attention is strongly drawn toward the (red)
color distractor. In contrast, the shape groupmodel prioritizes
the correct target location.

As Fig. 9 shows, the “history map” has a higher weight
(wh) in the color group than in the shape group: to solve the
learning task, the color group model has to rely on the colors
(blue and green) encountered during the practice phasewhich
is reflected in the large weight of the history map. Although
these colors could be found in the “color map” as well, there
is another color (red) in this map which is task-irrelevant and
has to be suppressed, hence the smaller weight of the color
map. This is the reason for the increased attention capture by
the red distractor in color group members which is reported
in Feldmann-Wüstefeld et al. (2015). In other words, the
presence of a color distractor leads to a down-weighting of
dimensional color saliency in favor of a feature-level color
representation. For the search task, a high orientation weight
is employed by the color group model, since orientation can
potentially influence attention deployment. Please see the
discussion below in this section.

In contrast, the shape group model can afford to rely
mostly on the “shape map,” because the items in its his-
tory (triangle and pentagon) exist in the “shape map” too
(triangle, pentagon and diamond), and there is no shape dis-
tractor. Therefore, by using a high shape map weight, both
the learning task can be solved and attention can be guided
to the shape singleton containing the target in the search task
(diamond).

To summarize, the weight of the “orientation map” is
larger in the color group than in the shape group, indicat-
ing that the color group model relies on orientation saliency
in the search task. However, the shape group model focuses
on the “shape map” which is response-relevant in both tasks.
Also, the weight of the “color map” was higher in the color
group than in the shape group model, since the latter group
can ignore color altogether.

As it is highlighted earlier (seeFig. 6), themodel evidences
fall down when any of the feature maps are excluded from
the model. By that we claim all feature maps are needed to
have a better prediction on the locations of the targets. This
observation is more significant when the orientation map is
excluded (M7 in Fig. 6). A closer look at the model compar-
ison method (see Fig. 7) confirms this finding—specifically
for the color group participants. The model also predicted a
higher weight for the orientation map than the other maps
in the color group (see Fig. 9). One might claim that what
we have reported here regarding the role of the orientation
in guiding attention contradicts with the design and the main
assumption of the additional singleton paradigms.

Additional singleton paradigms (Theeuwes, 1991) have
often been used to investigate how selection history effects—
such as reward (Anderson et al., 2011), learning (Feldmann-
Wüstefeld et al., 2015) or predictability of distractor location

Fig. 8 Attending location, predicted by the models M1 and M7 trained
on a color group participant. (a) Stimulus of a distractor-present trial.
(b) Integrated prioritymap for bothmodels for a color group participant.
The brighter the colors are, themore likely it is that attention is deployed
to a location. M1 makes a better prediction of attention being correctly
deployed to the target location
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Fig. 9 Mapweights. Optimalmapweights for the first model are shown
for the color and the shape group. A higher weight means a stronger
influence of the correspondingmap onto the response and reaction time.
The hatched parts are the weights modulations by the intertrial effect.
Note that the final weight of each saliency map is a sum over the map

weight and the priming weight, see Eq. 3 and also Fig. 2. Priming mod-
ulations on color maps are very small (close to zero) and can be hardly
seen. Priming modulation on shape map in color group is negative.
The error bars represent the standard deviations of the posterior, i.e.,
standard errors

(Wang & Theeuwes, 2018)—alter visual attention. In the
additional singleton paradigm, participants are confronted
with search displays where the target is defined in a par-
ticular dimension (e.g., shape) and an additional distractor,
salient in a different dimension (e.g., in color), is presented
in some of the trials. Crucially, the search-relevant and the
response-relevant features differ; the response-relevant is
neither defined in shape nor in color, but it is a line orientation
embedded inside a display item that indicateswhich response
key has to be pressed. The idea behind using such a com-
pound task was to keep the response-related, post-selection
processing parts separate from those processes that relate to
attentional selection processes. Having that said, more recent
literature has proven the difficulty of separating pre- from
post-selective processes. When considering the target tem-
plate that an observer needs to maintain as a representation
of the task-relevant features in working memory (e.g., Geng
& Witkowski 2019; Tünnermann et al. 2021), orientation
seems a likely candidate to be part of this representation as
well. This does not imply that orientation is a feature of sim-
ilar importance as shape to guide attention to the target item,
but orientation is definitively needed to accomplish the task.

There has been considerable debate regarding whether
participants can successfully perform the task by focusing
solely on orientation while attempting to disregard color and
shape information. Theeuwes argued that this might not be
feasible, contending that participants cannot pre-attentively
identify orientations (Theeuwes, 2010, 1991). However, the
results of another study suggest that participantsmight indeed
be capable of more swiftly identifying the response-relevant
orientation by ignoring colors or shapes (Wu et al., 2019).
This finding contradicts the conclusions drawn by Theeuwes

(1991), underscoring the need for further research to gain a
deeper understanding of how attention operates within the
additional singleton paradigms.

Based on the model results, the response-relevant feature
(the line embedded in the diamond-shape target) could poten-
tially influence attention deployment if it partook in saliency
processing and entered into the prioritymap.This assumption
can be examined from (at least) two different perspectives:

On one hand, the line embedded in the targetwas of unique
orientation in the display. Consequently, it might have con-
tributed to selection via saliency-driven processing, at least
to some extent. This iswhatwe concluded fromourmodeling
results. On the other hand, the model primarily emphasizes
guiding attention to the target’s location, and the decision-
making stage is not explicitly modeled. Therefore, the effect
that we observe and interpret as the role of orientation in
guiding attention could potentially be part of a response
preparation process that initiates before attentional selection
was completed. Given our reliance on behavioral data, it is
important to consider that, in addition to attentional selec-
tion, other processes such as decision-making might have
contributed. Total reaction time represents an accumulation
of various components, and these components may overlap
at certain points.

Another crucial aspect to highlight is the role of inter-
trial effect. To see how intertrial effect is defined in our
model, please refer to Fig. 4. Our assumption is that inter-
trial effect is dimension-specific rather than feature-specific.
This is also claimed by Liesefeld et al. (2019). In our model,
intertrial effect has three weights (wt ) for color, shape and
orientation. See also Eq. 3 and the hatched parts in Fig. 9.
In the color group the modulatory intertrial effect causes an
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Fig. 10 Maps activation in distractor-present search task trials for a
color group (a) and a shape group (b) participant model. To visualize
this activation the weighted value of each map is used as a color code:
((wsi +wti )∗ si ) for each saliency map (i) and (wh ∗h) for history map.

See Fig. 2 for variable names. Warmer colors indicate higher activation.
Individual weighted maps activation is integrated in the final priority
map and attention is guided to the location with the highest feature
activity. See Eq. 3 for a computational description

increased orientation map weight and also a reduction of the
shape map weight. The former indicates that the generally
high reliance of a color group model on orientation during a
search task is amplified during repetition of search task trials.
The latter might represent task switching: switching from the
search task (reporting orientation embedded in a shape sin-
gleton target) to the learning task (reporting colors and not
shape singletons) is best accomplished by down-weighting
shape features temporarily. Interestingly, for color group par-
ticipants, there is no intertrial-driven weight modulation of
color map. Irrespective of the previous trial’s type, a color
group model relies more on the history map than on the color
map to ignore the red distractor. In our opinion, this rules out
the alternative hypothesis that longer response times in the
color group are induced by task switching efforts only, and
not by selection history and the need to suppress the red dis-
tractor. This is in agreement with the results of experiments
3 and 4 reported in Feldmann-Wüstefeld et al. (2015). In

both of these task variants, learning and search tasks were
separated, either block-wise, or by asking participants to
perform the tasks on separate days. Search performance of
the color group, however, was still affected by their prior
selections in the learning task, even though participants now
performed only search tasks trials, and task switching no
longer occurred.

Conclusion

The presented model shows how saliency, selection history
and goal-driven demands collaborate in guiding visual atten-
tion. The model implements the idea that selection history
plays an important role in attention guidance as claimed
in Feldmann-Wüstefeld et al. (2015). We compared differ-
ent versions of the model and the results show that the one
which includes selection history (long-learned selection pref-
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erences and also intertrial effect), besides stimulus-driven
and goal-driven control, is best suited for a quantitative
description of the behavioral (RT) results.

Visual attention modeling may have various purposes,
such as image classification (Mnih et al., 2014), computer
vision and robotics (Hiruma et al., 2022) or studying a spe-
cific experimental observation (which was also the goal of
this paper). Consequently, as Tsotsos & Rothenstein (2011)
mentioned, comparing models does not seem straightfor-
ward, fair, or useful so it might be better to compare some
parts of the models which have relevant functionalities. The
presented model in this paper, is similar to GS 2.0 in the
way that it describes attention as a result of bottom-up and
top-down activation in the priority map. Unlike GS which
is a descriptive-level model, the presented model is on algo-
rithmic level. An algorithmic-level model is a combination
of descriptive models, mathematics and data fitting (Tsot-
sos & Rothenstein, 2011). In GS 6.0 (Wolfe, 2021), more
attentional factors (reward, scene information and prior his-
tory) are taken into consideration. Clearly, a model with
more mechanisms will give a better chance to move toward
future naturalistic models since attention in the real world is
influenced by many factors and not just saliency. We have
already built the model composing three factors. Including
more mechanisms in this model requires future experimental
and modeling plans.

This paper is our first effort to model selection history as
an attentional mechanism. To make the model more compre-
hensive, we plan the following future steps: since previous
experiments on selection history effects were done with
impoverished stimuli and simple participant responses, we
planned to run an experiment in natural or semi-natural
(virtual reality) environments. The data obtained in richer
environments will likely require an extension of the model,
in particular with respect to stimulus representation and
response capability.

To construct a comprehensive computational model of
visual attention, several interconnected modules must be
developed. At a minimum, we require the implementa-
tion of early vision, scene understanding, priority mapping,
and decision-making components (Wolfe, 2021). While we
acknowledge the significance of modeling the decision-
making component, the focus of this study was on model-
ing the priority map. The priority map furnishes essential
information for the decision-making process. The decision-
making process has been frequently modeled using a dif-
fusion process over the past several decades (Wolfe, 2007;
Moran et al., 2013). In future research, our objective is to
integrate these components to create a more comprehen-
sive model that can guide attention in natural(istic) settings,
drawing on previous proposals (Wolfe, 2007; Moran et al.,
2013; Schwarz & Miller, 2016; Allenmark et al., 2018).

Furthermore, we intend to develop a dynamical version of
the priority map that supports decision-making in chang-
ing environments, rather than responding to static stimuli.
Importantly, our model does not yet include an explicit rein-
forcement learning component. Participants did learn the
tasks from negative reinforcement only. Our model captures
participants’ behavior after this reinforcement learning phase
is completed,whichwas determined by a high enough perfor-
mance level (see Feldmann-Wüstefeld et al. 2015). It would
be interesting to model this first phase in future work, too.
Another interesting avenue of investigation, which would
help in constraining the model, would be the addition of
physiological variables. For example, adding EEG signals to
disentangle processes of target selection and distractor sup-
pression would shed further light on attentional guidance
processes.

Appendix A: Reaction Time Distribution

Reaction time measurements have been widely employed in
psychological experiments to analyze behavioral responses
to well-defined tasks. Psychologists agree that there are three
main types of reaction times: simple reaction times, recog-
nition reaction times, choice reaction times and also some
more forms such as discrimination reaction times and deci-
sion reaction times that come from combining varieties of
experimental tasks (Harald Baayen & Milin, 2017).

Many distributions have been used to describe RT in neu-
rocognitive and psychological research. In Santhanagopalan
et al. (2018), the Gamma distribution is used to model PEBL
(Psychology Experiment Building Language) Go/No-Go
tests, with the primary motivation that RTs can be mod-
eled better with a right-skewed distribution. In another study,
inverse Gaussian (Wald) is used in a theoretical analysis of
psychophysical parameters in a 2AFC design (Stone, 2014)
with the assumption that if RT is the time needed for an evi-
dence accumulation to reach a fixed boundary—similar to
Brownian diffusion process—it is distributed as an inverse
Gaussian. Another popular distribution is the Recinormal
(Martin & Fermin, 2008) which is introduced in LATER
model to describe psychological decision-making processes
(Carpenter, 1981; Noorani & Carpenter, 2016).

We tried to find the best fitting distribution model for the
reaction times in our data by testing the following distri-
bution types against each other by approximate Bayesian
model comparison: Gaussian, Gamma, inverse Gamma,
inverse Gaussian, Recinormal and exponential Gaussian
(ex-Gaussian). We fitted the distributions on each par-
ticipant’s RT and also on aggregates defined by group
memberships and trial types. We then compared the negative
log-likelihoods, which showed that the best fit is achieved
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Fig. 11 Distribution functions
fitted on RT datasets for a
random participant.
Ex-Gaussian fits best

with an ex-Gaussian. For illustration, Fig. 11 shows the dif-
ferent densities (red lines) fitted to one of the participant’s
RT data (histograms). Visual inspection indicates that the ex-
Gaussian provides the best fit. For a quantitative comparison
we computed each distribution’s parameters that minimized
the sum of negative log-likelihood scores (participants-based
and also group-based). These scores are depicted in Fig. 12,
lower is better. The best fits are ex-Gaussian and inverse
Gaussian models respectively. To fit the distributions on data
we used Python 3.8.8 and PyTorch 1.8.1.

The ex-Gaussian distribution is a convolution of Gaussian
and exponential distributions, see, e.g., Luce (1986). It has

Fig. 12 Distribution comparison using −log-likelihood score, lower
is better. Distributions are fitted on individual participant’s data and
on group-based data (all color group participants and all shape group
participants). The best distribution is Ex-Gaussian, followed by inverse
Gaussian

three parameters: μ, σ and τ that are the mean and stan-
dard deviation of the Gaussian component and the mean of
the exponential component, respectively. The mean and the
variance of this distribution are μ+τ and σ 2 + τ 2. Equation
10 shows the probability density function (Moret-Tatay et al.,
2018) where erfc is the complementary error function:

f (x) = 1

2τ
e

1
2τ (2μ+ σ2

τ
−2x)erfc(

μ + σ 2

τ
− x√

2σ
) (10)

Response times are not distributed normally (Whelan,
2008). Because of their long tail on the right, RT distribu-
tions might have an exponential component. Christie & Luce
(1956) and also McGill (1963) therefore proposed that RT
distributions are a convolution of two components. For an
ex-Gaussian distribution to arise, one of them has to have an
exponential distribution. The above-mentioned authors had
opposite beliefs about the source of this exponential com-
ponent: Christie and Luce mentioned that decision time is
exponentially distributed but McGill related that to move-
ment response. Hohle (1965) also tried to show that the RT
distribution is a convolution of normal and exponential com-
ponents by auditory RT experiments.

The ex-Gaussian has been popular recently in psycholog-
ical research. In Palmer et al. (2011) several distributions
are fitted on behavioral data of three visual search tasks.
The best fits all have an exponential component and the ex-
Gaussian is one of those. Ex-Gaussian parameters can even
be useful in evaluating attention disorders (Hwang-Gu et al.,
2019; HwangGu et al., 2013).More research on ex-Gaussian
parameters analysis can be found inOsmon et al. (2018);Dias
(2014).
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AppendixB:Model-predictedandModel-free
Distributions

Fig. 13 Ex-Gaussian distributions of 12 participants’ reaction times.
Best model-free fits to the data are shown in red and model-predicted
distributions are shown in green. This figure is an expansion of Fig. 5.
“P” is participant number and “G” is group membership which is be

either “color” or “shape” based on the participant’s learning experience.
Note that all versions of the model are equally good in predicting the
distributions
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Fig. 14 GLM comparison by
Laplace approximation (LAP) to
the logarithm of the model
evidence, for different condition
indicator combinations. LAP is
relative to baseline model
without any condition
indicators. The best GLM
accounts for trial type, distractor
presence and intertrial effect

 
 

 
 

Appendix C: Generalized Linear Model

The findings fromFeldmann-Wüstefeld et al. (2015) indicate
that participants who perceived color as response-relevant in
a learning task show larger distractor interference (calcu-
lated as the RT increase in distractor-present compared to
distractor-absent trials) than participants in the shape group.
This observed effect is further reflected in our presented
model, wherein the distinction in weighting between the
history and color maps contributes to capturing this phe-
nomenon (see page 20 and Fig. 9).

Another influence on attention guidance reflected in our
model is the intertrial effect. The results of the model com-
parison underscore an enhanced fit to the data when intertrial
effect is considered (see Fig. 6).

To corroborate our findings, we conducted a generalized
linear model analysis on reaction times (RTs). This model
explores how the conditions (Cond = {trial t y pe, distractor
present, inter trial e f f ect}) influence the parameters of

Fig. 15 The influence of trial type, distractor presence, and intertrial
effect on the mean of the RT distributions in GLM1. We fitted one
model per participant, computed the weights and reported the mean of
the weights per group. The error bars represent the standard deviation
across participants within a group

the ex-Gaussian RT distribution:

∀m : μ[m] =
∑

i∈Cond

(Wi
μ · Xi [m]) + Bμ

σ [m] =
[ ∑
i∈Cond

(Wi
σ · Xi [m]) + Bσ

]

+
(11)

τ [m] =
[ ∑
i∈Cond

(Wi
τ · Xi [m]) + Bτ

]

+

where W and B are weights and biases of a linear model for
the ex-Gaussian distribution parameters (μ, σ, τ ) per each
trial m. The Xi are indicator variables ∈ {0, 1}. For trial m,
Xi [m] = 1 if trialm fulfils condition i , and Xi [m] = 0 other-
wise. Condition “intertrial effect” is specifically awithin-task
intertrial effect and applies if both trial m and trial m − 1
belong to the same task type, either learning or search.
[z]+ = 1

20 log(1 + exp(20 · z)) is a softplus function that
constrains σ and τ to be positive.

The weights (W ) and biases (B) are determined by mini-
mizing the loss function:

Loss = −
M∑

m=1

log

(
ExG

(
RT [m] | μ[m], σ [m], τ [m])

)

− log p(θ) (12)

where ExG is the ex-Gaussian density function (see Eq. 10)
and p(θ) contains the prior distributions over the model
parameters (Wμ, Wσ , Wτ , Bμ, Bσ and Bτ ). These priors
are:

Wμ|σ |τ ∼ N (0.0, 10.0)

Bμ ∼ N (600.0, 100.0)

Bσ ∼ N (75.0, 4.0) (13)

Bτ ∼ N (200.0, 20.0)

We compared five Generalized Linear Model (GLMs)
with the conditions combinations shown in Fig. 14 by
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computing a Laplace approximation (LAP) to the loga-
rithm of the model evidence, summed across all participants.
Figure 14 shows the LAP relative to the baseline model,
which does not include any condition information. The
results indicate that all the aforementioned conditions pos-
itively contribute to predicting participants’ reaction times.
The approximate log of Bayes factor (Kass & Raftery, 1995)
for the comparison of GLM1 (the linear model with all con-
ditions) and GLM3 (when intertrial effect is excluded) was
BFloge (GLM1/GLM3) = 830.3, indicating “decisive evi-
dence” in favor of GLM1 and the role of intertrial effect. The
log of Bayes factor for GLM1 vs. GLM2 (where distractor
information was excluded) was BFloge (GLM1/GLM2) =
254.5, also providing decisive evidence in favor of distractor
effects on RTs.

When comparing the weights (Wμ, Wσ and Wτ ) for each
condition, group differences become evident, see Fig. 15.We
plotted the condition-dependent weights (W ) that determine
ex-Gaussian distribution’s means (μ + τ ). While there is
hardly a group effect on the “trial type” differences between
the RT means, the “distractor” clearly has a stronger effect
on the color group than on the shape group. This difference is
about 9.3±2.8, seeFig. 15. “Intertrial effect” is strongonboth
groups (color group:−30.5±4.1, shape group:−24.2±3.2).
Furthermore is more effective in reducing the mean for color
group members than for shape group members (−7.4±5.2).
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