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Abstract. Probabilistic systems for image analysis have enjoyed in-
creasing popularity within the last few decades, yet principled approaches
to incorporating occlusion as a feature into such systems are still few
[11,7,8]. We present an approach which is strongly influenced by the
work on noisy-or generative factor models (see e.g. [3]). We show how
the intractability of the hidden variable posterior of noisy-or models can
be (conditionally) lifted by introducing gates on the input combined with
a sparsifying prior, allowing for the application of standard inference pro-
cedures. We demonstrate the feasibility of our approach on a computer
vision toy problem.
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Occlusion in Bayesian Models of Images: an Initial Study In KI2011: Advances
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1 Introduction

Both computer vision systems and models of (mammalian) biological vision have
been researched extensively in the past few decades [4,5,10]. A key decision
to make in the design of both types of system is which aspects of the visual
environment are represented explicitly, and what details are to be disregarded
by the system. The former determines the specificity of (the parts of) the system,
while the latter are referred to as invariances. For example, invariance against
shift, rotation, scaling and deformative transformations have been extensively
modeled, which is due to these transformations being an ubiquitous part of the
processes that generate natural images. We are concerned with another aspect
of the image-generating process which has received less attention: occlusion. We
argue, like [11,7], that occlusion is an important (and frequent) enough aspect

http://dx.doi.org/10.1007/978-3-642-24455-1
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to warrant explicit modeling, rather than treating it as noise. In other words, we
propose to treat occluded parts of objects in an image as unobserved data, rather
than formulating a generative model which expects these parts to be visible (this
would e.g. be the assumption underlying linear generative models, or standard
noisy-or models).

2 The Gated Convolutional Model
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Fig. 1. Factor (left) and directed (right) graphs of a model layer with categorical
factors and sparsity-promoting bits b. The factor graph uses plate notation and gates
[9]. The observable data x are explained by the emission model (here: Gaussian clusters)
associated with a latent variable z, if the gating variable s which connects x and z at
a given point in the image is ’on’. A gating variable s can only be ’on’ for a given x/z
combination if the corresponding b is ’on’. We use a sparsity-promoting prior on b, i.e.
most b are ’off’ most of the time. Thus, the model will try to explain the image with
few z only.

Our model is a convolutional directed Bayesian model in which the image
is generated from a set of discrete latent variables, each of which has connec-
tions with a local receptive field in the image, where neighboring receptive fields
are shifted by one pixel with respect to each other3. This effectively makes it
a mixture model over (overlapping) image patches of fixed size. The novelty of
our approach lies in the fact that we do not combine the predictions of multiple
mixture models converging on one input, nor do we infer about a global ordering
over the generated image patches [7,8]. Instead we introduce auxiliary variables
which assign each input to a single mixture model only. This effectively imple-
ments an occlusion model because the image generated by one mixture model
can ’occlude’ parts of the image generated by a neighboring mixture model.
In the following we will call these auxiliary variables ’gates’. Interestingly, this

3 Our receptive fields are quadratic regions of the image and pixels contain all available
channels of the image. For example, in an RGB image a pixel comprises a three-tuple
with one real number per channel.



approach corresponds to the common variational approximation to the poste-
rior of the QMR-DT multiple-causes model [6], where similar selector variables
are introduced, effectively turning the noisy-or into an exclusive-or. We em-
ploy mixture models with categorical latent variables mainly for computational
simplicity; factor models [7,8] could in principle also be used. To promote the
forming of proper object hypotheses and to avoid simplistic solutions where each
input pixel is modeled by a separate latent variable, we place sparsity promoting
priors on the gates, encouraging them to use only few latent variables to explain
the input.
The joint distribution for a layer with gated mixture models is:

p(x, z, s,b,Θ) =
∏
ijk

[
p(xi | Θijk)sijzjkp(zj)

]bj
(1)

×
∏
ij

1I [bj ∨ (¬sij ∧ ¬bj)] p(b)p(s)p(Θ).

where i is an input variable index, j is a latent variable index, k is the mix-
ture component index (components are shared among latent variables, i.e. the
network is convolutional). Θijk are the parameters of the emission model (here:
Gaussian clusters with diagonal covariance) which connect the latent variables
zj to the observable data xi. The latent variables zj are vectors in 1-out-of-K
encoding. Similarly, the gate variables s are comprised of I vectors in 1-out-of-J
encoding. p(z) and p(s) are the priors over the latent and gate variables, respec-
tively. We furthermore introduce one binomial variable bj per latent variable,
indicating the availability of latent variables for explaining the data. When the
bj associated with a latent variable is ’off’, gate settings which assign an input to
the latent variable become forbidden. By assigning a low prior probability to the
’on’ state of each bj , sparsity of the bj is encouraged, therefore the inputs will
be assigned to a small subset of latent variables. The second product with the
indicator function ensures that no gate switches to a latent variable whose bit is
off. p(b) is a product of identical binomial distributions for each bit. The above
graphical model is sketched in plate and gate notation (see [9] for an explanation
of the gate notation) in figure 1. Note that due to the convolutional nature of
the network together with the possibility to ’pick’ a subset of receptive fields
for explaining the data, we can get shift invariance for free, since the gates can
always choose a receptive field with the ’right’ shift to explain some subset of
input pixels (i.e. an ’object’).

Inference in our model can be performed efficiently by blocked Gibbs sam-
pling, since the latent variables are independent given the gates, and the gates
are independent given the bits and the latent variables. During sampling gate
proposals within one receptive field are generated together with proposals for
the corresponding latent variable. Note that a latent variable whose bit is ’off’
does not need to be updated, since it has no observable effects.

Learning the parameters: We put conjugate exponential priors on all pa-
rameters and use the inferred latent and gate variable distributions to compute



an approximate posterior. In effect, this is variational Bayesian expectation max-
imization (VBEM) [1]. For the mixture prior we use the truncated stick breaking
approximation to the Dirichlet process, thus avoiding the need for random ini-
tialization and reducing the effect of the (arbitrary) choice of the number of
available mixture components [2].

3 Results and Conclusion
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Fig. 2. Left : two example frames from the toy example sequence. The full sequence is
one hundred frames long. Each frame has a size of 80x80 pixels. Middle Left : Expected
receptive fields of the mixture components learned from the toy data. Due to the spar-
sity promoting prior the model is forced to explain the data with few latent variables,
leading to a proper representation of the encountered objects and the background by
separate mixture components. Middle Right : object localization accuracy on the toy
data set. Localization degrades gracefully with increasing occlusion. Right : Expected
receptive field of the mixture components learned without the sparsity prior (i.e. all
latents are always available for explaining the input).

We demonstrate the ability of the model to separate objects that have a
constant shape but occlude each other in various configurations on a toy data
set consisting of an artificially generated RGB image sequence in which three
geometric shapes of red greed and blue color move randomly over a black back-
ground. The shapes occasionally occlude each other, examples are shown in figure
2, left4. For this experiment receptive field sizes are chosen to match the size of
the ’objects’.
To promote sparse solutions, we assign a very low ’on’ probability to each bj

5.
We use 5 Gibbs iterations per latent variable during inference. The model learns
a separate component for each of the three objects and the background (see
figure 2, middle left). For comparison we have also trained a model without the

4 Here the input pixels thus consist of RGB-triples, and thus a separate gate variable
exists for each such triple.

5 we usually used a sparsity prior of 0.0001, but the exact value, as long as it is below
the actual expected sparsity, did not make much of a difference



sparsity promoting prior, meaning that any latent can be used to explain the
input at any time, and the resulting expected receptive fields are shown in figure
2, right. In this case a single high entropy component is learned, and the image
is explained purely by the gates, i.e. no object concept is formed.
The model with sparsity promoting prior can now be used as an object detec-
tor: A detection is indicated by a latent variable, with enabled associated bj ,
selecting one of the object representing components. The object location of this
detector is defined as the most probable location of the original object image
within the expected receptive field of the corresponding mixture component. In
figure 2, middle right, we plotted the accuracy of this localization as a function of
object occlusion. Localization performance degrades gracefully with increasing
occlusion.

To conclude, we have shown a feasible approach for modeling occlusion
in a Bayesian image model. Its main features are a gated ’competition’ be-
tween possible foreground explanations and strong sparsity promotion. We have
demonstrated the viability of this approach by applying it to a toy dataset, were
we could also demonstrate the key role of the sparsity prior for forming stable
object hypothesises.

Acknowledgments: this work was supported by EU projects FP7-ICT-
215866 SEARISE, FP7-249858-TP3 TANGO and FP7-ICT-248311 AMARSi.
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