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Online Simulation of Emotional Interactive Behaviors with Hierarchical Gaussian
Process Dynamical Models

Nick Taubert∗, Andrea Christensen†, Dominik Endres‡, Martin A. Giese§

Section Computational Sensomotorics, Dept. of Cognitive Neurology,
Hertie Institute for Clinical Brain Sciences and Center for Integrative Neuroscience, University Clinic Tübingen,

Ottfried-Müller Str. 25, 72076 Tübingen, Germany

Figure 1: Motion sequences of synthesized emotional handshakes. From left to right: neutral, angry, happy and sad. Different emotions are
associated with different postures and ranges of joint movements.
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bution. The definite version will be published in the proceedings of
the ACM Symposium on Applied Perceptions (SAP) 2012.

Abstract

The online synthesis of stylized interactive movements with high
levels of realism is a difficult problem in computer graphics. We
present a new approach for the learning of structured dynamical
models for the synthesis of interactive body movements that is
based on hierarchical Gaussian process latent variable models. The
latent spaces of this model encode postural manifolds and the de-
pendency between the postures of the interacting characters. In ad-
dition, our model includes dimensions representing emotional style
variations (for neutral, happy, angry, sad) and individually-specific
motion style. The dynamics of the state in the latent space is mod-
eled by a Gaussian Process Dynamical Model, a probabilistic dy-
namical model that can learn to generate arbitrary smooth trajecto-
ries in real-time. The proposed framework offers a large degree of
flexibility, in terms of the definition of the model structure as well
as the complexity of the learned motion trajectories. In order to
assess the suitability of the proposed framework for the generation
of highly realistic motion, we performed a ’Turing test’: a psy-
chophysical study where human observers classified the emotions
and rated the naturalness of the generated and natural emotional
handshakes. Classification results for both stimulus groups were
not significantly different, and for all emotional styles, except for
neutral, participants rated the synthesized handshakes equally natu-
ral as animations with the original trajectories. This shows that the
proposed method generates highly-realistic interactive movements
that are almost indistinguishable from natural ones. As a further ex-
tension, we demonstrate the capability of the method to interpolate
between different emotional styles.
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1 Introduction

Accurate probabilistic models of interactive human motion are im-
portant for many technical applications, including computer ani-
mation, robotics, motion recognition, and for the analysis of data
in neuroscience and motor control. A particular important problem
in these fields is the online synthesis and simulation of human body
motion, since often models have to react to inputs or behavior of the
user, e.g. when real humans are immersed in an environment with
virtual characters or humanoid robots. Alternatively, such move-
ments might have to be fitted online to sensory inputs, for example
when tracking people in computer vision. Such applications are
difficult to address with methods for the offline synthesis of human
motion, e.g. by motion capture and subsequent filtering or inter-
polation between stored trajectories [Bruderlin and Williams 1995;
Wiley and Hahn 1997]. Ideal for many applications are representa-
tions in terms of dynamical systems, which can be directly embed-
ded in control architectures or real-time processing loops for people
tracking.

The development of such dynamical models is difficult because of
the high dimensionality of human motion data (e.g. 159 dimen-
sions for the motion capture data used in this paper). However, the



intrinsic dimensionality of such data is typically rather small. Thus,
dimensionality reduction techniques offer a way to preserve the rel-
evant variability in a low-dimensional latent space, and these meth-
ods are an important part of most human motion models. Gaus-
sian process latent variable models (GP-LVM) have been proposed
as a powerful approach for data modeling through dimensionality
reduction [Lawrence 2004; Lawrence 2005]. The resulting low-
dimensional latent representations are suitable for generalizations
and extractions of characteristic features from few training exam-
ples. GP-LVMs are able to represent smooth nonlinear continuous
mappings from the latent space to the data space and make it possi-
ble to model complex data manifolds in relatively low-dimensional
latent spaces. Consequently, these methods have been used for the
modeling of human movements in computer graphics and robotics.
Since GP-LVMs are generative probabilistic models, they can serve
as the building blocks of hierarchical architectures [Bishop and Tip-
ping 1998; Lawrence and Moore 2007] to model conditional depen-
dencies. In this paper we use them for the modeling of the kinemat-
ics of coordinated movements of multiple actors in an interactive
setting.

2 Background

Statistical motion models have been used for the modeling and syn-
thesis of human motion data (see e.g. [Grochow et al. 2004; Chai
and Hodgins 2005]) and the editing of motions styles (e.g. [Li et al.
2002; Lau et al. 2009]) or style interpolation [Brand and Hertzmann
2000a; Ikemoto et al. 2009]. However, most of these techniques
result in off-line models that are not suitable for the modeling of
reactions of external inputs or to input from other characters in the
scene.

The dominant approach for the construction of dynamic models is
physics-based animation. Early approaches have been based on
simple optimization principles, such as the minimization of en-
ergy ([Witkin and Kass 1988; Fang and Pollard 2003]). However,
it turned out that the generation of realistic and stylized complex
human body motion is difficult. Recently such physics-based an-
imation has been combined with the use of motion capture data
and learning techniques in order to improve the quality of physics-
based animation (e.g. [Popovic and Witkin 1999; Safonova et al.
2004; Sulejmanpasic and Popovic 2005; Ye and Liu 2008]). A few
approaches have used statistical approaches to learn dynamical sys-
tems that generate human motion [Brand and Hertzmann 2000a;
Hsu et al. 2005; Wang et al. 2008], where the major problem is
to develop methods that are accurate enough to capture the details
of human motion, and at the same time generalize well for similar
situations.

Gaussian Process latent variable models have been used in com-
puter graphics for the modeling of kinematics and motion interpo-
lation (e.g. [Grochow et al. 2004; Mukai and Kuriyama 2005; Ike-
moto et al. 2009]) and for the learning of low-dimensional dynam-
ical models [Ye and Liu 2010]. Here, we try specifically to devise
a flexible method for learning hierarchical models of this type that
can capture dependencies between multiple interacting characters.

The modeling of realistic motion with emotional style is a classical
problem in computer graphics [Brand and Hertzmann 2000b; Rose
et al. 1998; Unuma et al. 1995; Wang et al. 2006]. It is essential to
capture the emotional movement with high accuracy, because the
emotional perception depends more on the motion than on the body
shape [Atkinson et al. 2004]. Even though neural activities differ
when real and virtual stimuli are shown to human observers ([Perani
et al. 2001; Hana et al. 2005]), the perception of emotional content
is highly robust and for the most part independent of the character’s
body [McDonnell et al. 2008]. However, motion representations

without body shapes are generally perceived as less emotionally
intense than in the case where body shape is present [McDonnell
et al. 2009].

Here, we develop a method that allows us to model emotional inter-
active motion with high accuracy in the context of real-time anima-
tion systems. For this purpose, we extend our previous hierarchical
model [Taubert et al. 2011] in two directions:

• we introduce a dynamical nonlinear mapping similar to the
GPDM to model (and learn) the dynamics of interactive
movements, and

• we introduce style variables to modulate the emotional con-
tent and represent the personal style of the actors.

The nonlinear dynamical mapping replaces the Hidden Markov
Model (HMM) which we used in [Taubert et al. 2011] for the gener-
ation of time series. The advantage of this mapping over the HMM
is increased accuracy, which e.g. allows for the modeling of hand
contact during handshakes in a top-down fashion. This was very
hard to achieve with the HMM.

We exemplify our approach on emotional handshakes between two
individuals. We validate the realism of the movements of the devel-
oped statistical model by psychophysical experiments and find that
the generated patterns are hard to distinguish from natural interac-
tion sequences.

3 Gaussian Process Latent Variable Model

Gaussian Process latent variable models are a special class of non-
linear latent variable model that map a low-dimensional latent space
on the data [Bishop 1999]. Here, a high dimensional data set
Y = [y1, ...,yN ]T ∈ <N×D is represented by instances of low
dimensional latent variables X = [x1, ...,xN ]T ∈ <N×q , where
N is the length of the data set, D is the dimension of the data space
and q is the dimension of the latent space. Data points are generated
from points in the latent space x by applying a function f(x) and
adding isotropic Gaussian noise ε,

y = f(x) + ε, f(x) ∼ GP (mY (x), kY (x,x′)), (1)

where f(x) is drawn from a Gaussian process with mean function
mY (x) and kernel function kY (x,x′). We assume a zero mean
function mY (x) = 0 and use a non-linear radial basis function
(RBF) kernel [Rasmussen and Williams 2008] for a high dimen-
sionality reduction and smooth trajectories in latent space. Further-
more, the variance term for ε can be absorbed into this kernel via
the noise precision γ3:

kY (x,x′) = γ1 exp
(
−γ2

2
|x− x′|2

)
+ γ−1

3 δx,x′ , (2)

where γ1 is the output scale and γ2 the inverse width of the RBF
term. Let KY denote theN×N kernel covariance matrix, obtained
by applying the kernel function (eqn. 2) to each pair of data points.
Then the likelihood of the latent variables and the kernel parameters
γ̄ = (γ1, γ2, γ3) can be written as

p(Y|X, γ̄) =

D∏
d=1

N (y:,d|0,KY ).

where KY depends on γ̄ and X. Learning the GP-LVM is ac-
complished by minimizing the negative log-posterior of the latent
variables and the kernel parameters via scaled conjugate gradients



Figure 2: Graphical model representation. A couple C consists
of two actors ∈ {1; 2}, which performed R trials of handshakes
with N time steps per each trial and emotional style e. y{1;2}: ob-
served joint angles and their latent representations x{1;2} for each
actor. The x{1;2} are mapped onto the y{1;2} via a shared function
f(xz) which has a Gaussian process prior. i: latent interaction
representation, mapped onto the individual actors’ latent variables
by a function g(i) which also has a Gaussian process prior. The
dynamics of i are described by a second order dynamical model
with a mapping function h(i<n, c<n, e<n), where < n indicates
time steps before n, here: n− 1 and n− 2. Prior mean and kernel
functions have been omitted for clarity.

(SCG) [Lawrence and Moore 2007],

L = − ln(p(Y|X, γ̄)p(X)p(γ̄))

= −DN
2

ln 2π − D

2
ln |KY | −

1

2
YTK−1

Y Y

− 1

2

N∑
n=1

xnx
T
n −

∑
j

ln γj .

(3)

We choose an isotropic Gaussian prior over the latent variables and
a scale-free prior over the kernel parameters, since we have no rea-
son to believe otherwise.

4 Emotional interaction model

In order to learn the interactions between pairs of actors we devised
a hierarchical model based on GP-LVMs with RBF kernels and a
Gaussian Process Dynamical Model (GPDM) [Wang et al. 2007b]
with linear+RBF kernel for the temporal evolution, see Figure 2.
Furthermore, we introduce style variables [Wang et al. 2007a] to
capture the emotional content (e) and individual motion style of
the actors (c). Our model is comprised of three layers, which are
learned jointly. This mode of learning includes both the bottom-up
and top-down contributions at each hierarchy level.

4.1 Bottom Layer

In the bottom layer of our model each actor ∈ {1; 2} is modeled by
a GP-LVM. Observed joint angles Y (D = 159) of one individual
actor are represented by a 6-dimensional latent variable X. The
Y were treated as independent of actor identity, trials, emotional
styles and time by sharing the mapping function in eq. (1) for the
two GP-LVMs (see fig. 2)

yz = f(xz) + ε, f(xz) ∼ GP (0, kY (xz,xz ′)), z ∈ {1, 2}.
(4)

This approach forces the GP-LVM to learn a latent representation
which captures the variation w.r.t. these variables (in particular,
variation across emotional style, actor style and time).

The negative joint log-probability for the two GP-LVMs in the bot-
tom layer is

L = − ln(p(Y1|X1, γ̄)p(Y2|X2, γ̄)p(X1,X2)p(γ̄)). (5)

Note that the shared mapping function (eq. (4)) is responsible for
the dependency of both observations to the same kernel parameters
γ̄.

4.2 Interaction Layer

The latent representation (X1,X2) of the joint angle data of the
bottom layer model forms the 12-dimensional observation variable
in the interaction layer. The mapping is represented by a GP-LVM
and a 6-dimensional latent variable I. The negative log-probability
of the interaction layer model can be written as

L = − ln(p(X1,X2|I, β̄)p(I)p(β̄)). (6)

We use a a non-linear RBF kernel in this layer, with parameters β̄.

Furthermore, we want to model style modulation in this latent
space, i.e. the characteristics of the couples of actors and their emo-
tions. We make use of the multifactor model [Wang et al. 2007a],
where a kernel matrix is constructed by an element-wise product
of kernel matrices generated by different kernel functions. The
element-wise multiplication of the matrices has a logical ’AND’
effect in the resulting kernel matrix and is very useful for binding a
specific style to pairs of latent points. For example, we enforce that
points corresponding to different emotions do not correlate.

In this layer, we therefore introduce new latent variables in 1-of-
K encoding [Bishop 2007]: an emotional style (out of K possible
styles) is represented by a unit vector along an axis of the latent
space, e.g. e = (1, 0, 0, 0) is ’neutral’, e = (0, 1, 0, 0) is ’an-
gry’ etc. The couple identity (and hence, individual motion style)
c is encoded similarly. The total kernel function in the interaction
model is thus:

kX([i, c, e], [i′, c′, e′])

= (cT c′)(eT e′)

{
β1 exp

(
−β2

2
|i− i′|2

)}
+ β−1

3 δi,i′ ,

where the factors (cT c′) and (eT e′) correlate training data points
from the same couple and same emotional style, respectively. For
these style variables we used a linear kernel because we would also
like to interpolate between the styles (see the supplementary video
for an interpolation example).

The resulting negative log-probability with style variables therefore
has the form

L = − ln(p(X1,X2|I,C,E, β̄)p(I)p(β̄)), (7)

and can be optimized w.r.t. the style variables, too.

4.3 Dynamic Layer

In the top layer we learn the temporal evolution of I, i.e. the dy-
namics. To this end, we use a second-order GPDM [Wang et al.
2007b] which allows us to model e.g. dynamical dependencies on
velocity and acceleration of I. Furthermore, a GPDM can capture
the non-linearities of the data without overfitting and it can learn
complex dynamics from small training sets. The dynamic mapping



Figure 3: Handshake trajectories in the latent spaces of the in-
teraction layer. The separation between emotional styles is clearly
visible.

on the latent coordinates I is conceptually similar to the GP-LVM
with the difference that the interaction variables from previous time
steps in−1, in−2 are mapped onto the current in,

in = h(in−1, in−2) + ξ,

h(in−1, in−2) ∼ GP (0, kI([in−1, in−2], [iν−1, iν−2])).
(8)

where ξ is isotropic Gaussian noise. This kind of mapping results in
a Markov chain and leads to a non-linear generalization of a hidden
Markov model (HMM) [Li et al. 2000],

p(I|ᾱ) = p(i1, i2)

N∏
n=3

p(in|in−1, in−2, ᾱ)p(ᾱ), (9)

where ᾱ are the parameters of the kernel function and p(i1, i2) is
an isotropic Gaussian prior with zero mean and unit variance. Since
this is a second-order GPDM, the kernel function depends on the
last two latent positions. We use a linear+RBF kernel

kI([in−1, in−2], [iν−1, iν−2])

= α1 exp
(
−α2

2
|in−1 − iν−1|2 −

α3

2
|in−2 − iν−2|2

)
+α4i

T
n−1iν−1 + α5i

T
n−2iν−2 + α−1

6 δn,ν .

Similar to the regular RBF kernel in eq. (2) is α1 the output scale,
α2 and α3 are the inverse width of the RBF terms. The parameters
α4, α5 representing the output scales of the linear terms and α6 is
the precision of the distribution of the noise ξ. The RBF terms of
the kernel allows us to model nonlinear dynamics in the GPDM, the
linear terms enable interpolation.

Since individual and emotional style modulate the dynamics, we
also extend this kernel function with factors depending on these
styles:

kI([in−1, in−2, cn−1, cn−2, en−1, en−2], (10)
[iν−1, iν−2, cν−1, cν−2, eν−1, eν−2])

= (cTn−1cν−1 · cTn−2cν−2)(eTn−1eν−1 · eTn−2eν−2)

×
{
α1 exp

(
−α2

2
|in−1 − iν−1|2 −

α3

2
|in−2 − iν−2|2

)
+α4in−1i

T
ν−1 + α5in−2i

T
ν−2

}
+ α−1

6 δn,ν ,

to suppress correlation between points which differ in content and
style in the kernel matrix of the GPDM. Let the training outputs

Iout = [i3, ..., iN ]T . From eq. (9) we obtain a negative log-
probability of the dynamic layer

L = − ln(p(I|C,E, ᾱ)p(ᾱ))

= −q(N − 2)

2
ln 2π − q

2
ln |KI | −

1

2
IToutK

−1
I Iout

− 1

2
(i1i

T
1 + i2i

T
2 )−

∑
j

lnαj ,

(11)

where KI is the (N−2)× (N−2) kernel matrix constructed from
the training inputs Iin = [[i2, ..., iN−1]T , [i1, ..., iN−2]T ] and style
variables C,E.

The whole model can be learned by adding the negative log-
probabilities from the different layers (eqns. (5,7,11)), dropping
the isotopic Gaussian priors of the bottom and interaction layer be-
cause of the top-down influence from the next higher layer:

L = − ln {p(Y1|X1, γ̄)p(Y2|X2, γ̄)

× p(X1,X2|I,C,E, β̄)

× p(I|C,E, ᾱ)p(ᾱ)p(β̄)p(γ̄)
}
,

(12)

and minimizing it w.r.t. the latent variables, style variables and the
kernel parameters.

So far we have described the learning for one motion sequence.
Learning multiple sequences proceeds along the same lines, but at
the beginning of each sequence, the first two points have no prede-
cessors and hence have the isotropic Gaussian prior from eqn. 9. In
other words, the Markov chain is restarted at the beginning of each
sequence.

4.4 Motion Generation

Our model is fully generative. We generate new interaction se-
quences in the latent space of the interaction layer by running mean
prediction on the GPDM.

Given the training pairs, Iin, Iout, the training style variables,
C,E, the target style variables, C̃, Ẽ and the kernel function in eq.
(10), the predictive distribution for generating new target outputs,
Ĩout, can be derived. With the (second order) Markov property (eq.
9) of the GPDM, a new target output point can be generated given
the previous steps and style values,

ĩn ∼ N (µI([̃in−1, ĩn−2, c̃, ẽ]), σ2
I ([̃in−1, ĩn−2, c̃, ẽ])1).

where

µI([̃in−1, ĩn−2, c̃, ẽ]) = kI([̃in−1, ĩn−2, c̃, ẽ])K−1
I Iout, (13)

σ2
I ([̃in−1, ĩn−2, c̃, ẽ])

= kI([̃in−1, ĩn−2, c̃, ẽ], [̃in−1, ĩn−2, c̃, ẽ])

− kI([̃in−1, ĩn−2, c̃, ẽ])TK−1
I kI([̃in−1, ĩn−2, c̃, ẽ]),

(14)

and 1 is the identity matrix. The function kI([̃in−1, ĩn−2, c̃, ẽ]) re-
sults in a vector, constructed from the test style values, the previous
test inputs, all the training inputs and their associated style values,

kI([̃in−1, ĩn−2, c̃, ẽ])

= kI([̃in−1, ĩn−2, c̃, ẽ], [Iin,C,E]).
(15)



For trajectory generation, we set the latent position at each time step
to be the expected point given the previous steps,

ĩn = µI([̃in−1, ĩn−2, c̃, ẽ]). (16)

Similarly, new poses can be generated by going top-down through
the hierarchy of the model to produce new target outputs in each
layer, given the generated outputs of the next upper layer,

X̃{1;2} = µX{1;2} (̃I),

Ỹ{1;2} = µY {1;2}(X̃{1;2}).

We applied this method to generate online four types of emotional
handshakes. We processed 12 motion capture trajectories with three
repetitions for each emotion. On an Intel Quad-Core 2.7GHz com-
puter this took about 20 hours. The generated movements look
quite natural (to see in the supplementary video), as was further
corroborated by our psychophysical analysis below.

5 Results

5.1 Psychophysical validation

To test whether the accuracy of the developed probabilistic model
is sufficient for the generation of emotionally expressive computer
animations that are perceived as natural movements we conducted a
’Turing test’, where human observers had to judge naturalness and
emotional content of both natural and generated movements in a
psychophysical study.

Nine participants (3 female, mean age: 32 years, 4 months ) took
part in this experiment. All were naı̈ve with respect to the purpose
of the study. Each participant was tested individually and the exper-
imenter left the testing room when the testing started to avoid that
participants would feel observed while entering their responses.

Stimuli were rendered video clips showing two gray avatars shaking
hands on a light gray background. Rendering was done in a pipeline
working process using commercial software from Autodesk. With
Motion Builder we applied the natural and generated motion data
to the avatars and rendered them in a next step with 3d studio MAX
where the length of the stimuli varied between 2 and 4 seconds.

See Figure 1 and the supplementary video for an illustration of the
appearance of the avatars. The appearance of the avatars was kept
as simple as possible (e.g. omitting clothing, hair, and facial expres-
sions) to keep the participants focussed on the bodily movements.
The complete stimulus set consisted of the animated movements of
three original handshakes and one generated handshake per emo-
tion (neutral, happy, angry, and sad), it thus consisted of 16 dif-
ferent video clips, each repeated three times in randomized order.
The used emotions were chosen from the set of basic emotions de-
scribed by Ekman [Ekman and Friesen 1971] that have been shown
previously to be conveyed by full body movements [Roether et al.
2009; Taubert et al. 2011].

Presentation of the stimuli and recording of the subjects’ responses
was done using Matlab and the Psychophysics toolbox [Brainard
1997].

Participants performed two tasks: an emotion classification task
and a naturalness rating task. In the emotion classification task
we tested whether the generated handshake movements still con-
veyed the intended emotion. In each trial participants observed the
video clip twice before they answered the question: ”‘Which emo-
tion did the avatars express?”’ by pressing one out of four keys on

synthesized handshakes

perceived emotion
intended emotion

neutral happy angry sad

neutral 66.33 7.33 11 18.33
happy 7.33 73.78 22 0
angry 18.44 18.33 66.22 3.67
sad 7.33 0 0 77.56

class. rate 70.97± 17.6

natural handshakes

perceived emotion
intended emotion

neutral happy angry sad

neutral 78.78 3.67 23.3 13.44
happy 18.41 82.52 25.74 0
angry 2.44 13.44 50.41 0
sad 0 0 0 86.26

class. rate 74.52± 15.4

Table 1: Classification Results. Emotion classification of synthe-
sized (top) and natural (bottom) handshakes. Intended affect is
shown in columns, percentages of subjects’ (N=9) responses in
rows. Bold entries on the diagonal mark rates of correct classi-
fication. class. rate: overall mean correct classification rate ±
standard deviation across subjects for generated and natural move-
ments. This standard deviation, a measure for the agreement be-
tween subjects, is similar for synthesized and natural handshakes.

standard keyboard marked with letters corresponding to the tested
emotions. Stimuli were repeated three times in random order. The
discrimination performance of the participants was determined us-
ing a contingency-table analysis (χ2 − test).

In the second part of the experiment we investigated whether the
computer animations of synthesized movements were perceived as
less natural than animations created from original motion capture
data. For this purpose we conducted a rating task in which par-
ticipants rated the naturalness of the displayed video clips. Partic-
ipants were instructed that the stimuli they would see throughout
the experiment could either show recorded movements of real hu-
mans interacting naturally or artificial computer generated move-
ments. They rated the stimuli on a Likert scale ranging from 1
(very artificial) to 6 (very natural). The same stimulus set as in
the emotion classification task was used for the naturalness rat-
ing task. Again, each stimulus was repeated three times and the
presentation order was randomized. Since the number of natural
(4 emotions × 3 prototypes × 3 repetitions) and synthesized
(4 emotions×1 generated movement×3 repetitions) stimuli
were not counterbalanced we used non-parametric statistical test-
ing to investigate paired differences between these stimulus classes.
Again, participants observed each stimulus twice before they re-
sponded by keypress.

5.2 Results

The classification results are shown in Table 1. Participants clas-
sified the expressed emotions of the handshake movements with
high accuracy. Overall, participants classified the original natu-
ral handshakes in 74.52% of the trials correctly. The synthesized
movements were on average classified correctly in 70.97% of the
trials. These results were confirmed by a contingency-table analy-
sis testing the null hypothesis that the variables ’intended emotion’
and ’perceived emotion’ were independent. We found highly sig-
nificant violations of this null hypothesis (generated movements:
χ2 = 501.22, d.f. = 9, p < 0.001; original/natural movements:
χ2 = 591.01, d.f. = 9, p < 0.001). Comparisons of the percent-
ages of correct classification of synthesized and natural animations



Figure 4: Mean ratings of naturalness for original (colored) and
synthesized (colored, dotted areas) handshake movements. On av-
erage the naturalness ratings are comparable for both, synthesized
and original movements. Only the neutral synthesized handshake
movement was rated as less natural than its original counterpart.
For all other emotions participants were unable to distinguish orig-
inal from synthesized movements. Error bars show standard er-
rors, asterisks indicate significant pairwise difference (** p< 0.01,
Wilcoxon rank-sum test).

for the four tested emotions revealed no differences between anima-
tion classes for any of the emotions (paired Wilcoxon rank-sum test,
all p > 0.1). Thus, the animations created from generated hand-
shake movements still conveyed correctly the intended emotions.
Furthermore, the standard deviation across subjects, a measure for
between-subjects agreement, is similar for synthesized (17.6%) and
natural (15.4%) handshakes.

The mean results of the naturalness ratings are shown in Figure 4.
For happy, angry, and sad handshakes participants were unable to
distinguish between natural and synthesized movements. The mean
naturalness ratings for those emotional movements did not differ
from each other as has been tested with a non-parametric paired
difference test (Wilcoxon rank-sum tests, all p < 0.16). Only the
neutral synthesized handshake movement was rated as less natural
than its original counterpart (p < 0.01).

This surprising result for the neutral stimuli can be likely explained
by the nature of the motion capture prototypes for the neutral hand-
shakes that were used to generate the synthesized pattern. In one of
the three original movements one actor made a communicative ges-
ture after the handshake: he raised his right arm instead of taking
it down to the starting position (see the supplementary video for an
illustration). This gesture had effects on the naturalness ratings in
two ways. On the one hand, it made this movement unique which
lead to the participants’ perception that this movement is very nat-
ural (median rating: 5) because they would not assume a computer
to generate such individual gestures. On the other hand, this ges-
ture also altered the generated movement that interpolates between
the training examples. As a result, in the synthesized movement the
right arm of the character shows a slight raising movement, which
might have looked unnatural. Future experiments will use train-
ing movements with improved segmentation in order to avoid such
problems.

6 Conclusion

We have devised a new online-capable method for the accurate sim-
ulation of interactive human movements. The method is based on
a hierarchical probabilistic model that combines layers containing
Gaussian Process Latent Variable Models, and a dynamics in the
latent space that is implemented with a Gaussian Process Dynam-
ical Model. In addition, the proposed method is able to model the
emotional style by appropriate additional dimensions in the latent
space.

The results of our psychophysical experiments confirm the suitabil-
ity of the derived probabilistic model for the generation of emotion-
ally expressive movements. The animations of those synthesized
movements conveyed the correct information about style changes.
Furthermore, when the motion capture examples used to train the
system were appropriately segmented, the resulting online gener-
ated patterns were perceived as almost as natural as the original mo-
tion capture data. This highlights the importance of a robust auto-
matic segmentation process, for which we will employ our own pre-
viously developed Bayesian segmentation approach [Endres et al.
2011].

Future work will extend the modular architecture of our model to
build algorithms for continuous interpolation of emotional styles
(an early example of this is contained in the supplementary video).
In addition, we will embed the learned model in an online anima-
tion pipeline in order to study interactions between real and virtual
humans.
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