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dmytro.velychko@gmail.com

{nick.taubert,dominik.endres,martin.giese}@uni-tuebingen.de

Abstract. We describe a new probabilistic model for learning of cou-
pled dynamical systems in latent state spaces. The coupling is achieved
by combining predictions from several Gaussian process dynamical mod-
els in a product-of-experts fashion. Our approach facilitates modulation
of coupling strengths without the need for computationally expensive
re-learning of the dynamical models. We demonstrate the effectiveness
of the new coupling model on synthetic toy examples and on high-
dimensional human walking motion capture data.
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1 Introduction

Mathematical models of dynamical systems are a used in many fields of science.
For example, coordinated motor patterns have been accounted for by networks of
coupled dynamic movement primitives or ’central pattern generators’ [7]. We are
primarily concerned with the modeling of human motion data for experiments
in psychophysics and neuroscience, but our approach lends itself naturally to
applications in computer graphics and robotics.

While whole-body human motion data is high-dimensional, the intrinsic di-
mensionality is usually much smaller. Applying dynamical models to such data
directly often results in poor generalization abilities, e.g. when one wants to
vary parameters affecting the dynamical coupling strength between body parts.
Therefore, a dimensionality reduction component is usually part of such a model.
Lawrence [11] introduced a new probabilistic, non-linear dimensionality reduc-
tion method, the Gaussian process latent variable model (GPLVM), which is
based on Gaussian processes (GP). A GP can be obtained from a neural net-
work with a particular prior on the weights and biases in the limit of infinitely
many hidden units [16]. The GPLVM was extended by a latent dynamics in
[23] resulting in the Gaussian process dynamical model (GPDM). Due to its
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probabilistic nature, it is well equipped to handle the variability of natural mo-
tion data. It is possible to model full-body human motion with just one GPDM
[21, 23, 20]. However, such ’monolithic’ motion models do not allow for modu-
lation of parts of the dynamics (e.g. different motion styles of body parts for
movmement design in computer graphics) or for recombining previously learned
component dynamics for complex coordinated movements. Such a recombina-
tion would allow us to construct a rich repertoire of full-body movements from
a much smaller set of dynamical primitives. We therefore present an approach
to coupling GPDMs based on a product-of-experts (PoE) [9] construction. PoE
results in less uncertain overall predictions than any of its parts, which is con-
ducive to stability. Furthermore, we can then modulate the coupling strengths
after learning, without costly re-training of the components.

We briefly review related work in section 2, and introduce the model’s build-
ing blocks in section 3. The main theoretical development of this paper, the
product-of-experts kernel is derived in section 4. Section 5 presents results on
illustrative toy examples, and on human locomotion data.

2 Related work

There are, broadly speaking, two approaches for learning of dynamical systems:
as a deterministic system of differential equations (see e.g. [10, 5]), and statistical
approaches, where the evolution of a system is described in terms of a probabilis-
tic mapping from the previous state to the next, for example [3, 22, 8, 4]. Both
approaches may be augmented with deep hierarchies.

Deterministic systems based on differential equations have to be carefully
designed and tuned. Even though the theory of learning of complex dynamical
systems for motion synthesis is in active development, and some sophisticated
applications of it for robotics, computer graphics and neuroscience exist [12,
10, ?], the nature of nonlinear dynamical systems makes it hard to design and
train such models. One approach for their design is contraction theory [14], which
allows for the construction of dynamically stable systems from stable components
[1, 15].

On the other hand, probabilistic approaches promise to capture the variabil-
ity of human motion and its styles [22, 8, 20]. Ease of learning and manipulating
of the parameters are crucial advantages for such applications as psychophysical
experiments in emotions perceptions [20], computer graphics [13] and human
locomotion modeling [21]. However, a stability analysis of these models is non-
trivial, and has not been accomplished to date.

3 Model components

Gaussian Process Latent Variable Model (GPLVM). A GPLVM com-
prises a prior on mappings fY (X) from a a (possibly vector-valued) latent vari-
able X onto observable variables Y [11]. The fY (X) is drawn from a Gaussian
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Process (GP) prior, parametrized by a mean function (constant zero in this pa-
per) and kernel (covariance function) k(X,X ′). Furthermore Y may be corrupted
by additive Gaussian noise with standard deviation β, see fig. 1, left. The prior
on X is typically an isotropic Gaussian, too, but may be replaced by predictions
from a higher level model in a hierarchical architecture [20].
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Fig. 1. Left: Graphical model representation of a GPLVM, which is a prior on functions
from a (low-dimensional) latent spaceX to a (high-dimensional, observed) space Y [11].
Right: in a GPDM, a Markov chain in the latent space X models the dynamics of the
observed data Y [23]. For details, see text.

Assume D = dim(Y ), q = dim(X) and that we had observed N instances yi

of Y . We index component d of instance i as yd,i. We also use slice notation for
arrays, e.g. ỹ = yd,: denotes the vector comprised of all instances of component
d, whereas yi = y:,i. We write p(y) as a short-hand for p(Y = y). Like in [11], we
learn the GPLVM by maximizing the joint posterior density of the corresponding
x:. Since all finite-dimensional marginals of a GP are multivariate Gaussian with
density N (y|µ,Σ), and the components of a vector-valued GP are independent,
it follows that the likelihood of y:,d is given by

p(y:,d|kY (X,X ′), β,x:) = N (y:,d|0N ,KY + β21N,N ) (1)

where KY is the kernel matrix, with (KY )i,j = kY (xi,xj) and 1N,N is the N -
dimensional identity matrix. Thus, the total posterior of the latent variables is
proportional to

p(x:|y:, k(X,X ′)) ∝
∏

d

p(y:,d|, k(X,X ′), β,x:)
∏

i

p(xi) (2)

which can be optimized by standard non-linear methods; we use [19].

Gaussian Process Dynamical Model (GPDM). Wang [23] extended the
GPLVM with a dynamical auto-regressive prior on the latent Xi, where the data
point index i now denotes discrete time. The evolution function fX(X) of this
dynamics is drawn from a GP with kernel kX(X,X ′) and xi+1 = fX(xi)+η; η ∼
N (0q, ξ

21q×q). This approach leads to a non-linear, continuous generalization of
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a hidden Markov model. For a first-order dynamics, one obtains (cf. fig. 1, right):

p(x:|kX(X,X ′), ξ, ǫ) = p(x1|ǫ)
N∏

i=2

p (xi|xi−1, fX(X), ξ) (3)

p (xi|xi−1, f(X), ξ) = N
(
xi|f(xi−1), ξ

21q×q

)
(4)

p(x1|ǫ) = N (x1|0q, ǫ
21q×q) , f(X) ∼ GP (kX(X,X ′)) (5)

The GPDM is easily extensible to higher-order dynamics. The mapping onto
observable variables Y is done in the same fashion as for the GPLVM.

4 Coupling GPDMs with a Product-of-Experts Kernel
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Fig. 2. Coupled latent space dynamics with two parts, observables Y m omitted for
clarity. Left: full model. Every part m of the latent Xm

i−1 at time step i − 1 gen-
erates a prediction Xm,r

i about every part r at time step i via an evolution func-
tion fm,r(X

m). These individual predictions are combined through a Product-of-
Experts approach. Right: after the (closed-form) marginalization of the Xm,r

i and
the fm,r(X

m), the model can be equivalently written as having only one evolution
function fm(X1, . . . , XM ) per part m. For details, see text.

We now derive a way of coupling the dynamics of a latent space partitioned
into M parts, X1:M . In a nutshell, we introduce M×M dynamics, each of which
makes a prediction about a part of the latent space from the previous state of
some (other) part, and these predictions are combined via product-of-experts
(PoE) [9]. Observables Y m are generated from the corresponding Xm as in the
GPLVM.

More specifically, let Xm
i−1 be the latent state of part m at (discrete) time

i−1. We introduce M ×M evolution functions fm,r(X
m) generating the predic-

tion Xm,r
i which the latent state of part m makes about the latent state of part

r at time i, see fig. 2, left, for an example with M = 2. The fm,r(X
m) are drawn

from GPs with kernels km,r(X
m, Xm′). Observables Y m have been omitted to

keep graphical model less cluttered . The Xm,r
i are the means of Gaussian ’ex-

perts’ with isotropic coupling variances σ2
m,r. Denoting the total predictive PoE

variance of part r by

4 ICANN2014, 073, v3: ’Coupling Gaussi...’



Coupled GPDMs with PoE Kernels 5

σ2
r =

(∑

m

σ−2
m,r

)−1

(6)

we find, by multiplying the parts’ densities together and renormalizing:

p(xr
i |x:,r

i , σ:,r) ∝
∏

m

N
(
xr
i |xm,r

i , σ2
m,r

)

⇒ p(xr
i |x:,r

i , σr) =

exp

[
− 1

2σ2
r

(
xr
i − σ2

r

∑
m

xm,r
i

σ2
m,r

)2]

(2πσ2
r)

dim(Xr)
2

(7)

Note that the total PoE variance (eqn. 6) is smaller than any of the individual
coupling variances.

Next, we marginalize the part predictions Xm,r
i and the evolution functions

fm,r(X
m), to obtain the joint density of the Xm

i . To this end, we make use
of conditional independence properties of the model, which can be read off the
graphical model (fig. 2, left) using the D-separation rules [17]. In the following,
assume the X :

: were fixed. Then, the tail-to-tail paths from Xm,r
i to any Xm,q

i

with r 6= q are blocked. Also, the head-to-tail paths from Xm,r
i to any Xq,p

j

for j 6= i are blocked, because there is (at least one) fixed node between them.
There are no other open paths from Xm,r

i to any Xq,p
j for r 6= p, hence the part

predictions about part r are independent from those about p across all time
steps. On the other hand, fixing Xr

i opens head-to-head paths between the X :,r
i .

Finally, observe that there is an open tail-to-tail path fromXm,r
i andXm,r

j for all
i, j through the function node fr,m(Xm), which induces a dependency between
predictions about the same part across time steps. Hence, we can marginalize
the Xm,r

i separately for each r, but we need to do so jointly across all m and i.
The dependency between the X :,r

i through fixed Xr
i is multivariate Gaussian

for every i, see eqn. 7. The dependency induced by the unobserved evolution
functions is multivariate Gaussian in time, because these functions are drawn
from GPs. Since the priors on Xm

1 are Gaussian, the joint density of the Xm
i

must be a multivariate Gaussian as well. Hence, the marginalization boils down
to a multivariate Gaussian integral, which we carry out using the following

Lemma 1. Let v and w be multivariate Gaussian random variates. Assume
p(v|w) = N (v|Pw,Σ) and p(w) = N (w|µ,K), where P is a dim(v)× dim(w)
projection matrix, and both Σ and K are positive definite. Then p(v) = N (Pµ,Σ+
PKPT ).

Proof. Marginalize w using standard matrix algebra results [18].

To use this lemma, let v = xr
d,2:N for some part r and component d. Construct

the M(N − 1)-dimensional vector w by stacking the xm,r
d,2:N for all m. Then, by

virtue of eqn. 7, Σ = σ2
r1(N−1)×(N−1) and P = σ2

r(σ
−2
1,r , . . . , σ

−2
M,r)⊗1(N−1),(N−1)

(⊗ denotes the Kronecker product). K is a block-diagonal matrix, with M blocks
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Km, where the entries of these kernel matrices are computed from the kernel
functions km,r(X

m, Xm′) (cf. fig. 2) asKm
i,j = km,r(x

m
:,i, x

m
:,j) with i, j = 2, . . . , N .

Since all GPs in our model have zero mean, µ = 0M(N−1). Thus, the mean of
v = Pµ = 0N−1. The covariance matrix of v is given by

Σ+PKPT = σ2
r1(N−1)×(N−1) + σ4

r

M∑

m=1

Km

σ4
m,r

(8)

Since this holds for any choice of xm
:,i, the Kolmogorov extension theorem guar-

antees the existence of a GP with constant zero mean function and a kernel
function kr generating these covariance matrices:

kr (X
:, X :′) = σ2

rδ(X
:, X :′) + σ4

r

M∑

m=1

km,r(X
m, Xm′)

σ4
m,r

(9)

where X : denotes the tuple (X1, . . . , XM ) and δ(X,Y ) is the Dirac delta func-
tion. We can therefore rewrite the graphical model of the coupled dynamical
systems as depicted in fig. 2, right: for every part r, there is one evolution func-
tion that generates the currentXr

i from all previousXm
i−1. This function is drawn

from a GP prior with zero mean and a kernel as in eqn. 9. Note that we could in
principle choose different kernel parts km,r(X

m, Xm′) for every m, r. That eqn.
9 is a valid kernel also follows from standard ’kernel engineering’ rules [2].

5 Results

We tested the model on simple synthetic data sets first, see fig. 3. The data (blue
lines) were created by sampling sine waves at 50 time steps with amplitudes 1, 2,
and 3, and adding isotropic Gaussian noise with standard deviation 0.1. All three
curves in one panel have the same frequency but different phase. We learned a
coupled 2nd order GPDM with three parts and an RBF+linear dynamics kernel
for the parts. The latent space had 2 dimensions, latent points formed a circle
after learning. The coupling matrices in fig. 3 show the learned values of the
relative coupling variances σ2

r,r/σ
2
m,r, which are the higher the stronger the cou-

pling is. After learning, we generated the red data by running the GPDMs in
generative mode to to show that they can reproduce and continue the training
data. In the data on the left side of fig. 3 (panels A-C), all generating frequen-
cies were different between panels. Consequently, the CGPDM learns that there
should be no strong coupling between the parts (small off-diagonal values). In
contrast, on the right side of of fig. 3, the sine waves of panels E and F have the
same frequencies, but shifted phases. Here, the coupling from part E to parts E
and F is strong. Hence, part E can be used to drive both parts E and F.
Human walking data. To illustrate the power of the CGPDM on real-world
data, we learned a two-part model on human walking data recorded with a Vicon
motion capture system. The latent space of each part was three-dimensional, we
used a RBF+linear+isotropic noise kernel for each coupling, and second order
dynamics. The raw data were converted into exponential map format [6], which
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Fig. 3. Toy example. Observed data for three parts (panels A-C and D-F) were
synthesized from sine waves with different or same frequencies f and phases, Gaussian
noise was added (blue lines). The learned model could reproduce and continue the
data (red lines). Matrices show relative coupling variances σ2

rel = σ2
r,r/σ

2
m,r from part

m (row) to r (column), large values indicate strong coupling (cf. eqn. 7). For details,
see text.

is suitable for learning with GPs since it represents a joint rotation as a 3 dimen-
sional real vector with unconstrained component values. The data were divided
into upper body (thorax, arms and head) and lower body (legs and pelvis). After
learning, we found that the relative coupling variances were ≈ 1 for both upper-
to-lower and lower-to-upper coupling. We then synthesized walking motions by
running the CGPDM generatively. Panel a) of the supplemental movie available
at http://www.compsens.uni-tuebingen.de/icannCoupledDynamics.html

shows a generated walk with the learned coupling variances. It looks quite nat-
ural, including variability between steps, but a rigorous psychophysical test of
this observation has yet to be conducted. In panels b) & c), the upper and
lower body were started with a phase-shift of 20 frames, and coupled strongly
(b) or weakly (c, small relative coupling variances). The difference in synchro-
nization speed is clearly visible. Panels d) & e) show the result of driving one
body part completely by the other: using the lower body as the driver leads to a
smooth walking motion, whereas unnatural variability in the legs appears when
the coupling is reversed. Finally, panel f) demonstrates that the body parts will
not synchronize when completely decoupled.

6 Conclusion

We have derived a coupled GPDM from a product-of-experts principle, and
demonstrated its ability to learn complex full-body human motion. Natural
variability in the data is preserved. The coupling strengths can be modulated
without needing to re-train the individual dynamics. Future work will focus
on establishing dynamical stability conditions for the coupling kernel, possibly
employing contraction theory [14]. Futhermore, we would like to extend our ap-
proach towards learning causal relations, e.g. for EEG and human motion data
analysis. Acknowledgments: This work was supported by EU projects TANGO

FP7-249858-TP3, AMARSi- EC FP7-ICT-248311; DFG GI 305/4-1, DFG GZ: KA

1258/15-1; BMBF, FKZ: 01GQ1002A, FP7-PEOPLE-2011-ITN(Marie Curie): ABC

PITN-GA-011-290011, HBP FP7-ICT-2013-FET-F/ 604102; Koroibot FP7-ICT-2013-
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