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Abstract
In BAYESIAN NETWORK STRUCTURE LEARNING (BNSL),
we are given a variable set N and parent scores for each
vertex of N and aim to compute a DAG, called Bayesian
network, that maximizes the sum of parent scores, possibly
under some structural constraints. Even very restricted spe-
cial cases of BNSL are computationally hard, and, thus, in
practice heuristics such as local search are used. In a typi-
cal local search algorithm, we are given some BNSL solu-
tion and ask whether there is a better solution within some
pre-defined neighborhood of the solution. We study ordering-
based local search, where a solution is described via a topo-
logical ordering of the variables N . We show that given
such a topological ordering of N we can compute an opti-
mal DAG whose ordering is within inversion distance r in
time 2O(

√
r·log r) ·poly(|I|) where |I| is the instance size; the

parameter r allows to balance between solution quality and
running time of the local search algorithm. This running time
bound can be achieved for BNSL without any structural con-
straints and for all structural constraints that can be expressed
via a sum of costs that are associated with each parent set. We
show that for other modification operations on the variable or-
derings, algorithms with a running time of f(r) ·poly(|I|) are
unlikely. We also outline the limits of ordering-based local
search by showing that it cannot be used for common struc-
tural constraints that are defined via the moralized graph of
the Bayesian network.

Introduction
Bayesian networks are arguably the most popular and impor-
tant model for representing dependencies between variables
of multivariate probability distributions (Darwiche 2010).
A Bayesian network consists of a directed acyclic graph
(DAG) D and a a set of conditional probability tables, one
for each vertex of D. The vertices of the network are the
variables of the distribution and the conditional probability
table specifies the probability distribution of the correspond-
ing vertices given the values of its parents. Thus, the value
of each variable depends directly on the values of its parents.
The graph D is called the structure of the network. Given a
set of observed data over some variable set N one needs to
learn the structure D from this data. This is usually done
in two steps. First, for each variable v and each possible
set of parents a parent score fv(P ) is computed. Roughly
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speaking, the score represents how useful it is to choose this
particular set of parents in order to faithfully represent the
probability distribution that created the observed data. Sec-
ond, given for each vertex v a set of possible parent sets and
the scores for each such parent set, we aim to compute the
DAG that maximizes the sum of the parent scores of its ver-
tices. This problem, called BAYESIAN NETWORK STRUC-
TURE LEARNING (BNSL), is NP-hard (Chickering 1995).

The current-best worst-case running time bound for exact
algorithms for BNSL is 2n ·poly(|I|) where n is the number
of variables and |I| is the size of the instance. Clearly, this
running time is impractical for larger variable sets. More-
over, even very restricted special cases of BNSL, for exam-
ple when every possible parent set has constant size remain
NP-hard (Ordyniak and Szeider 2013). Finally, restricting
the topology of the DAG to sparse classes such as graphs
of bounded treewidth or bounded degree leads to NP-hard
learning problems as well (Korhonen and Parviainen 2013,
2015; Grüttemeier and Komusiewicz 2020).

Due to this notorious hardness of BNSL, it is mostly
solved using heuristics. One of the most successful heuristic
approaches relies on local search (Tsamardinos, Brown, and
Aliferis 2006). More precisely, after computing the possible
parent sets and their scores, in this approach one starts with
an edgeless DAG D and adds, removes, or reverses an edge
while this results in an increased network score. More recent
local search approaches do not use DAGs as solution rep-
resentations but rather orderings of the variables (Alonso-
Barba, de la Ossa, and Puerta 2011; Lee and van Beek 2017;
Scanagatta, Corani, and Zaffalon 2017). This approach is
motivated by the fact that given an ordering τ of the vari-
ables, one may greedily find the optimal DAG D among all
DAGs for which τ is a topological ordering.

Our Results. We study different versions of local search
on variable orderings. In contrast to previous work that de-
fined the local neighborhood of an ordering as all orderings
that can be reached via one operation, we consider parame-
terized local search (Fomin et al. 2010; Marx and Schlotter
2010; Gaspers et al. 2012; Fellows et al. 2012). Here, one
sets a parameter r and aims to find a better network that
can be reached via at most r modifications of the order-
ing. The hope is that, by considering such a larger neigh-
borhood, one may avoid being stuck in a bad local opti-
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mum. We consider three different kinds of operations in this
work. We first study insertions, where one may move one
variable to an arbitrary position in the ordering and swaps
where two arbitrary variables may exchange their positions.
We observe that the local search problem can be solved in
polynomial time for both variants if r is constant. The de-
gree of the polynomial, however, depends on r. We show
that, under widely accepted complexity-theoretic assump-
tions, this dependence cannot be avoided. Afterwards, we
consider only swaps of adjacent vertices, we call this opera-
tion inversion. Our main result is an algorithm with running
time 2O(

√
r log r) · poly(|I|) for deciding for a given vari-

able ordering, whether there is a better ordering that can be
reached via at most r inversions.

Our algorithms work not only for the standard BNSL
problem but also for some structural constraints that we may
wish to impose on the final DAG. To formulate algorithms
compactly, we introduce a generalization of BNSL, where
each possible parent set is associated with a score and a
cost and the aim is to find the highest scoring network that
does not exceed a specified cost bound. We show that this
captures natural types of structural constraints. As a side
result, we show that a previous polynomial-time algorithm
for acyclic directed superstructures (Ordyniak and Szeider
2013) can be generalized to this new more general problem.

Finally, we show that for using an ordering-based local
search approach in the presence of structural constraints it
is essentially necessary, that the corresponding variant of
BNSL is polynomial-time solvable on instances where the
directed super structure is acyclic. This implies for sev-
eral important structural constraints that ordering-based lo-
cal search is unlikely to be useful.

Due to lack of space, several proofs are deferred to a full
version of this article.

Problem Definition
Notation. We consider directed graphs D = (N,A)
which consist of a vertex set N and an arc-set A ⊆ N ×N .
If D contains no directed cycle, then D is called a directed
acyclic graph (DAG). An arc (u, v) ∈ A is incoming into v
and outgoing from u. A source is a vertex without incom-
ing arcs, and a sink is a vertex without outgoing arcs. The
set PAv := {u ∈ N | (u, v) ∈ A} is the parent set of v,
and for every u ∈ PAv , v is called child of u. Given a sub-
set S ⊆ N and a vertex v, the vertices in S ∩ PAv are called
the S-parents of v. Throughout this work let n := |N |.
Given f : X → Y and X ′ ⊆ X , we let f |X′ : X ′ → Y de-
note the limitation of f toX ′ which is defined by f |X′(x) :=
f(x) for every x ∈ X ′.

Orderings. Given a vertex set N , an ordering of N is
an n-tuple τ = (v1, . . . , vn) containing every vertex of N .
For i ≤ n, we let τ(i) denote the ith vertex appearing on τ .
We write u <τ v if the vertex u appears before v on τ . A
partial ordering of τ is an ordering σ of a subset S ⊆ N
such that for all u, v ∈ S it holds that u <τ v if and only
if u <σ v. Given a vertex set S, we let τ [S] denote the par-
tial ordering containing exactly the vertices from S, and we

let τ − S := τ [N \ S] denote the partial ordering we obtain
when removing all vertices of S from τ . For i ≤ j ≤ n we
define τ(i, j) as the partial ordering τ(i)τ(i + 1) . . . τ(j).
Given a partial ordering σ of τ , we let N(σ) be the set
of all elements appearing on σ. If σ = τ(i, j) we may
write Nτ (i, j) := N(τ(i, j)). Let D := (N,A) be a di-
rected graph. An ordering τ of N is a topological ordering
of D if u <τ w for every arc (u,w) ∈ A. A directed graph
has a topological ordering if and only if it is a DAG. A dis-
tance d is a mapping that assigns an integer to every pair
of orderings τ and τ ′ of N such that d(τ, τ ′) = d(τ ′, τ)
and d(τ, τ) = 0. For an integer r, we say that an ordering τ ′
is r-close to τ with respect to d if d(τ, τ ′) ≤ r. If τ and d
are clear from the context we may only write τ ′ is r-close.

Bayesian Network Structure Learning with Multi-
weights. Let N be a set of vertices. A mapping F is a col-
lection oflocal multiscores for N if F(v) ⊆ 2N\{v}×N0×
N0 for each v ∈ N . Intuitively, if (P, s, ω) ∈ F(v) for some
vertex v ∈ N , then choosing P as the parent set of v may si-
multaneously give a local score of s and a local weight of ω.
Throughout this work we assume that for every v there exists
some s ∈ N0 such that (∅, s, 0) ∈ F(v), that is, every vertex
has a local multiscore for the empty parent set with weight
zero. Given v ∈ N and F , the possible parent sets are de-
fined byPF (v) := {P | ∃(P, s, ω) ∈ F(v)}∪{∅}. GivenN
and F , the directed graph SF := (N,AF ) with AF :=
{(u, v) | ∃P ∈ PF (v) : u ∈ P} is called the superstructure
of N and F (Ordyniak and Szeider 2013).

Definition 1. Let N be a vertex set, let F be multiscores
for N . An arc-set A ⊆ N ×N is called F-valid if (N,A) is
a DAG and PAv ∈ PF (v) for all v ∈ N .

We say that an F-valid arc-set has weight at most k
if for every v ∈ N there is some (PAv , sv, ωv) ∈ F(v)
such that

∑
v∈N ωv ≤ k. For a given integer k and an F-

valid arc-set A we define scoreF (A, k) :=
∑
v∈N sv as

the maximal score one can obtain from any choice of
triples (PAv , sv, ωv) ∈ Fv, v ∈ N , with

∑
v∈N ωv ≤ k.

If F is clear from the context we may write score(A, k) :=
scoreF (A, k). We now formally define the problem.

WEIGHTED BAYESIAN NETWORK STRUCTURE
LEARNING (W-BNSL)
Input: A set of vertices N , local multiscores F , and
two integers t, k ∈ N0.
Question: Is there an F-valid arc-set A ⊆ N × N
such that score(A, k) ≥ t?

Throughout this work we assume that for an instance I :=
(N,F , t, k) of W-BNSL it holds that k ∈ poly(|I|). Given
an instance I := (N,F , t, k) of W-BNSL, we call an F-
valid arc-set A with score(A, k) ≥ t a solution of I .

We consider a version of W-BNSL where one is addition-
ally given an ordering of the vertex set and an integer r and
aims to learn a DAG that has a topological ordering that is r-
close to the given ordering. Given a distance d, this problem
is formally defined as follows.
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d-LOCAL W-BNSL
Input: A set of verticesN , local multiscores F , an or-
dering τ of N , and three integers t, k, r ∈ N.
Question: Is there an F-valid arc-set A such
that score(A, k) ≥ t and (N,A) has a topological or-
dering τ ′ that is r-close to τ with respect do d?
Given an instance I of d-LOCAL W-BNSL we call an

arc-setA feasible for I ifA is F-valid with weight at most k
and (N,A) has a topological ordering that is r-close to τ . A
feasible arc-set that maximizes score(A, k) is called a solu-
tion of I .

The notation of W-BNSL generalizes the classi-
cal BAYESIAN NETWORK STRUCTURE LEARNING
(VANILLA-BNSL). In VANILLA-BNSL one is given a
set N of vertices and one local score s for each pair consist-
ing of a vertex v ∈ N and possible parent set P ⊆ N \ {v}
and the goal is to learn a DAG such that the sum of the
local scores is maximal. This problem can be modeled with
local multiscores F(v) containing triples (P, s, 0). Since
VANILLA-BNSL is NP-hard (Chickering 1995) and the
weights ω are not used for this construction, it follows
that W-BNSL is NP-hard even if k = 0.

The general problem W-BNSL also allows to model
Bayesian network structure learning under additional spar-
sity constraints: One example for such a constrained version
is BOUNDED ARCS-BNSL (BA-BNSL). In BA-BNSL
one aims to learn a DAG that contains at most k arcs for
some given integer k. This can be modeled with multiscores
containing triples (P, s, |P |). BA-BNSL is known to be
fixed-parameter tractable when parameterized by the num-
ber k of arcs (Grüttemeier and Komusiewicz 2020).

A further example is BOUNDED INDEGREE c-BNSL
(BI-c-BNSL) which is defined for every constant c. In
BI-c-BNSL one aims to learn a network that contains at
most k vertices that have more that c parents for a given
integer k. This scenario can be modeled with containing
triples (P, s, ω) with ω = 1 if |P | > c and ω = 0 otherwise.
Next, we observe that W-BNSL is solvable in polynomial
time if the superstructure is a DAG. This generalizes algo-
rithms for VANILLA-BNSL (Ordyniak and Szeider 2013)
and BA-BNSL (Grüttemeier and Komusiewicz 2020).
Theorem 2. W-BNSL is solvable in polynomial time if SF
is a DAG.

Proof. Let I = (N,F , t, k) be an instance of W-BNSL
where the superstructure SF is a DAG and let τ be a topolog-
ical ordering of SF . We describe a dynamic programming
algorithm to solve I . The dynamic programming table T has
entries of type T [i, k′] with i ∈ [1, n + 1] and k′ ∈ [0, k].
Each entry stores the maximal score of an arc-set A of
weight at most k′ where only the vertices of V (τ(i, n)) are
allowed to learn a non-empty parent set and only the local
multiscores of the vertices of V (τ(i, n)) count towards the
score and weight of A. We start to fill the table T , by set-
ting T [n + 1, k′] := 0 for all k′ ∈ [0, k]. The recurrence to
compute an entry for i ∈ [1, n] and k′ ∈ [0, k] is

T [i, k′] := max
(P,s,ω)∈F(v)

ω≤k′

s+ T [i+ 1, k′ − ω].

where v := τ(i). Thus, to determine if I is a yes-instance
of W-BNSL, it remains to check if T [1, k] ≥ t. The cor-
responding network can be found via traceback. The formal
correctness proof is straightforward and thus omitted.

The dynamic programming table T has (n+ 1) · (k + 1)
entries. Each entry can be computed in linear time. Hence,
the total running time is O(n · k · |I|).

Input representation. Throughout this work we assume
that each vertex v only chooses a parent set from PF (v).
For N = {v1, . . . , vn} the local multiscores F are given
as a two-dimensional array F := [Q1, . . . , Qn], where
each Qi is an array containing a quadruple (s, ω, |P |, P ) for
each (P, s, ω) ∈ F(v). The instance size |I| is the number
of bits needed to store this two-dimensional array.

Parameterized Complexity. A problem is slicewise poly-
nomial (XP) for some parameter k if it can be solved in
time O(|I|f(k)) for a computable function f . That is, the
problem is solvable in polynomial time when k is constant.
A problem is called fixed-parameter tractable (FPT) for a
parameter k if it can be solved in time f(k) · |I|O(1) for a
computable function f . If a problem is W[1]-hard then it
is assumed to be fixed-parameter intractable. For a detailed
introduction into parameterized complexity we refer to the
standard monographs (Cygan et al. 2015; Downey and Fel-
lows 2013).

Parameterized Local Search for Insert and
Swap Distances

A swap operation on two vertices v and w on an or-
dering τ interchanges the positions of v and w. The dis-
tance Swap(τ, τ ′) is the minimum number of swap opera-
tions needed to transform τ into τ ′. An insert operation on
an ordering τ removes one arbitrary vertex from τ and in-
serts it at a new position. We define Insert(τ, τ ′) as the min-
imum number of insert operations needed to transform τ
into τ ′. This number can be computed as Insert(τ, τ ′) =
|N | − LCS(τ, τ ′), where LCS(τ, τ ′) is the length of
the longest common subsequence of τ and τ ′. That is,
if Insert(τ, τ ′) = r, then there is a subset S ⊆ V of size r
such that τ − S = τ ′ − S.

For both distances, local search approaches for BNSL
have been studied previously (Alonso-Barba, de la Ossa, and
Puerta 2011; Lee and van Beek 2017; Scanagatta, Corani,
and Zaffalon 2017). We now focus on the parameterized
complexity regarding the parameter r which is the radius of
the local search neighborhood. We first prove that there are
XP algorithms for INSERT-LOCAL W-BNSL and SWAP-
LOCAL W-BNSL when parameterized by r. That is, both
problems are solvable in polynomial time if r is a constant.
However, the degree of the polynomial depends on r. After-
wards we show that there is little hope that this algorithm
can be improved to a fixed-parameter algorithm by showing
that both problems are W[1]-hard when parameterized by r.

Theorem 3. INSERT-LOCAL W-BNSL and SWAP-LOCAL
W-BNSL are solvable in nO(r) · |I|O(1) time.
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Theorem 4. INSERT-LOCAL W-BNSL and SWAP-LOCAL
W-BNSL are W[1]-hard when parameterized by r even
if k = 0, |F(v)| ≤ 2 for all v ∈ N , SF is a DAG, and
every potential parent set has size at most two.

Proof. We describe a parameterized reduction from the
CLIQUE-problem which is W[1]-hard when parameterized
by k (Downey and Fellows 2013).

Given an instance I = (G = (V,E), k) of CLIQUE,
we compute an equivalent instance I ′ = (N,F , τ, t, k′, r)
of INSERT-LOCAL W-BNSL in polynomial time. Let n :=
|V |,m := |E|, let V = {v1, . . . , vn}, and let E =
{e1, . . . , em}. We start with an empty set of vertices N and
add for every edge ei ∈ E the verticeswi and {w1

i , . . . , w
k
i }.

Moreover, we add the vertices of V to N and k additional
vertices x1, . . . , xk.

For every ei ∈ E we set F(wi) := {(ei, k, 0)}
and F(wji ) := {({wi}, n9, 0)} with j ∈ [1, k]. Further,
we set F(xi) := {({xi−1}, n9, 0)} for all i ∈ [2, k]

and F(v) := {({xk},
(
k
2

)
− 1, 0)} for every vertex v ∈ V .

Moreover, for each v ∈ N , we also add (∅, 0, 0) to F(v).
Note that SF is a DAG.

For each j ∈ [1,m] we set τj := (wj , w
1
j , w

2
j , . . . , , w

k
j )

and τ := τ1 · τ2 · . . . · τm · (x1, . . . , xk, v1, . . . , vn).
Finally, we set r = k, k′ = 0, and t = (mk+ k− 1)n9 +

n(
(
k
2

)
− 1) + k which completes the construction of I ′.

Since any parent set has weight zero, we abbreviate in the
following score(X) := score(X, k′) for every x ⊆ N ×N .
Let A∗ := {(wi, wji ) | ei ∈ E, 1 ≤ j ≤ k} ∪ {(xi−1, xi) |
2 ≤ i ≤ k} be the set of arcs for parent sets of score n9

and let Â := A∗ ∪ {(xk, vi) | vi ∈ V } be the set of all
arcs of parent sets with positive score that do not violate the
topological ordering τ . By construction, score(Â) = t− k.

The idea is that every arc-set A of score at least t has to
contain all the arcs of A∗. Moreover, if D = (N,A) has a
topological ordering which is r-close to τ , then at most r
of the vertices of N change their position. Intuitively, these
should be the vertices of the clique S in G such that all par-
ent sets can be learned that represent edges between the ver-
tices of S in G. The vertices of S should be inserted at the
beginning of the new ordering of N such that wi can learn
the parent set ei for each ei ∈ EG(S).

Claim 1. I is a yes-instance of CLIQUE if and only if I ′ is
a yes-instance of INSERT-LOCAL W-BNSL.

Next, we describe how we can modify this construction
to obtain the hardness result for SWAP-LOCAL W-BNSL.
We add k additional vertices y1, . . . , yk with F2(yj) :=
{(∅, 0, 0), ({xk}, n8, 0)} for each j ∈ [1, k] and F2(v) :=
F(v) for each v ∈ N . Moreover, we set σ = (y1, . . . , yk) ·τ
and t2 := t + k · n8. Next, we show that I ′ is a yes-
instance of INSERT-LOCAL W-BNSL if and only if I2 :=
(N2,F2, σ, t2, k

′, r) is a yes-instance of SWAP-LOCAL W-
BNSL. By construction and the above argumentation, an
arc-set A has score at least t2 − k = score(Â) + k · n8
if and only if A∗ ∪ {(xk, yj) | 1 ≤ j ≤ k} ⊆ A. Conse-
quently, each swap operation has to swap a different vertex

from {y1, . . . , yk} with a vertex which is later in the cur-
rent topological ordering than xk, that is, with a vertex of V .
Let S be the vertices of V that are swapped with the vertices
of {y1, . . . , yk}. Then, score(A) ≥ t2 if and only if S forms
a clique in G due to the equivalence between I and I ′.

Parameterized Local Search for Inversions
Distance

In this section we study parameterized local search for the
inversions distance. An inversion on an ordering is an oper-
ation that swaps the positions of two consecutive vertices of
the ordering.

We describe a randomized algorithm to solve Inv-LOCAL
W-BNSL. The algorithm has constant error probability and
runs in subexponential FPT time for r, the local search
neighborhood. The FPT algorithm is closely related to a pa-
rameterized local search algorithm for FEEDBACK ARC SET
IN TOURNAMENTS (FAST) (Fomin et al. 2010). In FAST
the input is an arc-weighted directed graph where between
every pair u, v of vertices either (u, v) or (v, u) is present.
The task is to find a minimum-weight set of arcs to delete
such that the remaining graph is acyclic. Note that FAST
can be modeled as a special case of W-BNSL. The local
search neighborhood considered by Fomin et al. (2010) is
the number of arc-flips, which correspond to our inversions
in the topological ordering. With our algorithm we general-
ize the local search algorithm for FAST and show that we
can use it to obtain a local search algorithm for W-BNSL.

We first introduce some formalism of inversions. Let τ =
(v1, . . . , vn) be an ordering of a set N . An inversion on
position i ∈ {1, . . . , n − 1} transforms τ into the order-
ing hi(τ) := (v1, . . . , vi−1, vi+1, vi, . . . , vn). A sequence
of inversions S = (s1, . . . , s`) is a finite sequence of el-
ements in {1, . . . , n − 1}. Applying S on τ transforms τ
into the ordering S(τ) := hs` ◦ hs`−1

◦ · · · ◦ hs1(τ). The
distance Inv(τ, τ ′) is the length of the shortest sequence of
inversions S such that S(τ) = τ ′.

Our algorithm is based on the following intuition: If an
ordering τ ′ is r-close to τ , there are only some windows of
length at most r in τ such that the vertices inside these win-
dows change their positions. The remaining vertices keep
their positions. We exploit this and provide an algorithm that
finds orderings for the vertices of these windows by solving
small sub-instances of Inv-LOCAL W-BNSL. We then com-
bine the solutions to obtain a solution for the whole instance.

We describe the algorithm in three steps: First, we de-
scribe a randomized algorithm that solves Inv-LOCAL W-
BNSL in nO(

√
r) ·poly(|I|) time. Second, we argue how we

may combine and split solutions of Inv-LOCAL W-BNSL.
Third, we make use of the results from the two previous
subsections and provide an FPT algorithm that solves Inv-
LOCAL W-BNSL. More precisely, we show that we can
compute the solution of an instance of Inv-LOCAL W-
BNSL by solving polynomially many sub-instances with at
most r vertices and combining their solutions.
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A Randomized Algorithm for Inv-Local W-BNSL
We first provide a randomized algorithm that solves Inv-
LOCAL W-BNSL in nO(

√
r) ·poly(|I|) time with a constant

error probability. The key idea behind the algorithm is as fol-
lows: If we are given a set of suborderings of τ which do not
change their relative positions in the resulting network, then
we have a limited space of possible orderings which can be
obtained with r inversions. Our algorithm is based on color
coding (Alon, Yuster, and Zwick 1995) and runs in subexpo-
nential time in r. The concrete technique is closely related
to a subexponential time algorithm for FEEDBACK ARC SET
IN TOURNAMENTS (Alon, Lokshtanov, and Saurabh 2009).
Intuitively, we randomly color all vertices with O(

√
r) col-

ors in a way that vertices of the same color keep their relative
positions.

Before we describe the algorithm we need some defini-
tions: Let N be a set of vertices. A function χ : N →
{1, . . . , `} is called a coloring (ofN with ` colors). For each
color i ∈ {1, . . . , `}, we call Zi := {v ∈ N | χ(v) = i}
the color class of i. We next establish the definition of a col-
orful valid arc-set and a colorful solution which is important
for the color coding algorithm.

Definition 5. Let I := (N,F , τ, k, r) be an instance of Inv-
LOCAL W-BNSL, let χ : N → {1, . . . , `} be a col-
oring, and let A be an F-valid arc-set. We say that A
is a colored arc-set if there is a topological ordering τ ′

of (N,A) such that Inv(τ, τ ′) ≤ r and τ [Zi] = τ ′[Zi]
for every color class Zi. A colored arc-set A that maxi-
mizes score(A, k) is called a colored solution of I and χ.

We next describe a deterministic algorithm that efficiently
finds a colored solution.

Proposition 6. Given an instance I := (N,F , τ, k, r)
of Inv-LOCAL W-BNSL and a coloring χ : N →
{1, . . . , `} for I , a colored solution A can be computed
in O(n` · poly(|I|)) time.

Proof. We describe a dynamic programming algorithm. To
this end, we first introduce some notation. For every color
class Zi consider the sub-ordering τ [Zi] that contains only
the vertices of Zi. Given some integer x ≤ |Zi| we de-
fine zi(1), zi(2), . . . , zi(x) as the first x vertices on τ [Zi]
and set Zix := {zi(1), zi(2), . . . , zi(x)}. Note that Zi0 =
∅. Given an integer vector ~p = (p1, . . . , p`) with pi ∈
{0, 1, . . . , |Zi|}, we define τ(~p) := τ [Z1

p1∪Z
2
p2∪· · ·∪Z

`
p`
].

As a shorthand, for the set of vertices appearing on τ(~p)
we set N(~p) := N(τ(~p)) and we define F~p by F~p(v) :=
{(P, s, ω) ∈ F(v) | P ⊆ N(~p)} for every v ∈ N(~p) as
the limitation of F to N(~p). Note that, given a partial order-
ing τ(~p), the vertex zi(pi) is the last vertex of color class Zi

appearing on τ(~p). Throughout this proof we let~0 denote the
integer vector of length ` where all entries equal zero, and ~ei
the integer vector of length ` where the ith entry equals one
and all other entries equal zero.

Every color class can be seen as a chain of vertices
that keep their relative position in the ordering. A vector ~p
describes which prefixes of these chains we consider. In-
tuitively, our dynamic programming algorithm starts with

empty chains and then recursively adds the next vertex of
one of the chains and finds a solution of this instance.

Formally, the dynamic programming table T has entries
of the type T [~p, k′, r′] with k′ ∈ {0, . . . , k} and r′ ∈
{0, . . . , r}. Each entry stores the score of a colored solution
of the Inv-LOCAL W-BNSL instance

I~pk′,r′ := (N(~p),F~p, τ(~p), t, k′, r′).
The intuitive idea behind this algorithm is to recursively find
the best sink of the current network and combine this with
a colored solution of the remaining network. To specify the
contribution of a sink to the score, we introduce the follow-
ing definition: For given i ∈ {0, . . . , `}, k′ ∈ {0, . . . , k},
and ~p, we define the value f~p(i, k′) as the maximal local
score of a parent set P ⊆ N(~p) of zi(pi) that simultane-
ously has weight at most k′. More formally,

f~p(i, k
′) := max

(P,s,ω)∈F(zi(pi))
P⊆N(~p)
ω≤k′

s.

The value of f~p(i, k′) can be computed in poly(|I|) time by
iterating over the array representing F(v).

We next describe how to fill the dynamic programming
table. As base case we set T [~0, k′, r′] := 0 for all k′ ∈
{0 . . . , k} and r′ ∈ {0, . . . , r}. The recurrence to compute
an entry for ~p 6= ~0 is

T [~p, k′, r′] := max
k′′≤k′

max
i, pi>0
R(~p,i)≤r′

(f~p(i, k
′′)

+T [τ(~p− ~ei), k′ − k′′, r′ −R(~p, i)]),
where R(~p, i) := |{v ∈ N(~p) | zi(pi) <τ(~p) v}| is the num-
ber of elements that appear after zi(pi) in τ(~p). The score
of a colored solution of I and χ can be computed by evalu-
ating T [(|Z1|, |Z2|, . . . , |Z`|), k, r]. The corresponding net-
work can be found via traceback.

We next show that the dynamic programming recurrence
is correct.

Claim 2. For each ~p, k′, and r′ it holds that T [~p, k′, r′] is
the score of a colored solution of I~pk′,r′ and χ|N(~p).

We next consider the running time of the dynamic pro-
gramming algorithm. The table T hasO(n` ·(k+1)·(r+1))
entries. Each entry can be computed in time polynomial
in |I|. Thus, the algorithm runs inO(n` ·poly(|I|)) time.

We now describe how to use the algorithm behind Propo-
sition 6 to obtain a randomized algorithm for Inv-LOCAL

W-BNSL. We randomly color the vertices with
√
8r colors

and use the algorithm from Proposition 6 to find a colored
solution. Given an instance I and a coloring χ, we say that χ
is a good coloring of I if every colored solution of χ and I is
an (uncolored) solution of I . We next analyze the likelihood
of randomly choosing a good coloring.
Lemma 7. Let I be an instance of Inv-LOCAL W-BNSL
and let χ : N → {1, . . . ,

√
8r} be a coloring that results

from randomly uniformly assigning a color to each vertex.
Then, the probability that χ is a proper coloring of I is at
least (2e)−

√
r/8.
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Applying the algorithm behind Proposition 6 with random
colorings (2e)

√
r/8 times gives the following result.

Proposition 8. There exists a randomized algorithm for Inv-
LOCAL W-BNSL that, in timeO((2e)

√
r/8·n

√
8r ·poly(|I|))

returns an F-valid arc-set A with weight at most k. With
probability at least 1− 1

e , the set A is a solution.

Combining and Splitting Solutions
Recall that we want to use the algorithm behind Proposi-
tion 8 as a subroutine and apply it on instances of Inv-
LOCAL W-BNSL that have a small number of vertices. In
this subsection we provide technical lemmas which specify
how we may combine (Lemma 10) and split (Lemma 14)
solutions of Inv-LOCAL W-BNSL-instances. These lemmas
are the main technical tools that we need to show correctness
of the FPT algorithm in the next subsection.

For our purpose we are interested in combining and split-
ting solutions of sub-instances of the Inv-LOCAL W-BNSL
problem. Our sub-instances contain the vertices of a win-
dow τ(a, b). Changing the ordering in τ(a, b), these vertices
may learn a parent set containing vertices from τ(1, b). For
our purpose, only the new parents in τ(a, b) are important,
hence we may hide the parents in τ(1, a− 1). We next give
a formal definition of these sub-instances.
Definition 9. Let I := (N,F , τ, k, r) be an instance of Inv-
LOCAL W-BNSL. Moreover, let k′ ≤ k, r′ ≤ r, a, b ∈
{1, . . . , n} with a ≤ b. An inner instance is then defined
as Ba,bk′,r′ := (Nτ (a, b),F|Nτ (a,b), τ(a, b), k′, r′), where the
multiscores F|Nτ (a,b) are defined by F|Nτ (a,b)(v) := {(P ∩
Nτ (a, b), s, ω) | (P, s, ω) ∈ F(v) and P ⊆ Nτ (1, b)}.

The following lemma formalizes how we may combine
solutions of inner instances.
Lemma 10. Let I := (N,F , τ, k, r) be an instance of Inv-
LOCAL W-BNSL, let a ∈ {1, . . . , n − 1}, let k′, k′′ ∈
{0, . . . , k} with k′ + k′′ ≤ k, let r′, r′′ ∈ {0, . . . , r}
with r′ + r′′ ≤ r, and let N1 := Nτ (1, a) and N2 :=
N \ N1 = Nτ (a + 1, n). Moreover, let A1 be a solution
of B1,a

k′,r′ and let A2 be a solution of Ba+1,n
k′′,r′′ . Then, there

exists an arc-set A ⊆ N ×N that is feasible for I with

scoreF (A, k
′ + k′′) ≥ scoreF|N1

(A1, k
′)

+ scoreF|N2
(A2, k

′′).

We next focus on how to find the instances that we solve
during the fixed-parameter algorithm. That is, we find posi-
tions where we may split a given solution of an instance into
two solutions of inner instances. To this end, we introduce
the concept of borders.
Definition 11. Let N be a set of vertices and let τ, τ ′ be
two orderings of N . A position i ∈ {1, . . . , n} is called a
border of τ and τ ′ if there exists a sequence S of inversions
transforming τ into τ ′ such that |S| is minimal and i does
not occur on S.

Obviously, the position n is a trivial border for all or-
derings τ and τ ′ of N . Moreover, if i < n is a border
of τ it holds that Nτ (1, i) = Nτ ′(1, i) and Nτ (i + 1, n) =

N ′τ (i + 1, n). Intuitively, a border is a position that splits τ
and τ ′ into two parts such that the corresponding parts of the
orderings contain the same vertices. We next define borders
of instances of Inv-LOCAL W-BNSL.
Definition 12. Let I := (N,F , τ, k, r) be an instance
of Inv-LOCAL W-BNSL. We say that i ∈ {1, . . . , n} is a
border of I if there exist a solution A of I and a topological
ordering τ ′ of (N,A) with Inv(τ, τ ′) ≤ r such that i is a
border of τ and τ ′.

We next prove two lemmas that are important for the cor-
rectness of our FPT algorithm. The first lemma states that
for any position j in an ordering τ there exists a border i
that is close to j.
Lemma 13. Let I := (N,F , τ, k, r) be an instance of Inv-
LOCAL W-BNSL. Then, for every j ∈ {1, . . . , n} there ex-
ists an i ∈ {j, . . . ,min(n, j + r)} such that i is a border
of I .

Proof. Since n is always a border, the statement trivially
holds if n ≤ j+r. Let j+r < n. Observe that {j, . . . , j+r}
contains r+1 elements. LetA be a solution of I and let τ ′ be
a topological ordering of (N,A) with inversions(τ, τ ′) ≤ r.
Furthermore, let S be a minimal sequence of inversions that
transforms τ into τ ′. Then, Inv(τ, τ ′) ≤ r implies |S| ≤ r.
Hence, there exists some i ∈ {j, . . . , j+r} that does not oc-
cur on S. Consequently, i is a border of τ and τ ′ and there-
fore, i is a border of I .

The next lemma formalizes how we may split solutions.
Lemma 14. Let I := (N,F , τ, k, r) be an instance
of Inv-LOCAL W-BNSL that has a border at position i ∈
{1, . . . , n − 1}, and let A be a solution of I . Then, there
exist r′ ≤ r, k′ ≤ k and arc-sets A1 and A2 such that

a) A1 is feasible for B1,i
r′,k′ ,

b) A2 is feasible for Bi+1,n
r−r′,k−k′ , and

c) score(A, k) ≤ scoreF|N1
(A1, k

′)+scoreF|N2
(A2, k−k′),

where N1 := Nτ (1, i), and N2 := Nτ (i+ 1, n).

An FPT-algorithm for Inv-Local W-BNSL
We now provide a randomized fixed-parameter algorithm
for Inv-LOCAL W-BNSL when parameterized by the search
radius r. The algorithm is based on dynamic programming
and uses the observation from the previous two subsections.
Theorem 15. There exists a randomized algorithm for Inv-
LOCAL W-BNSL that, in time 2O(log(r)

√
r) · poly(|I|), re-

turns an F-valid arc-set with weight at most k. With proba-
bility at least 1− 1

e , the returned arc-set is a solution.

Proof. Let I := (N,F , τ, k, r) be an instance of Inv-
LOCAL W-BNSL. We describe the algorithm in two steps.
We first describe a deterministic algorithm that finds a so-
lution of I in polynomial time when using an oracle that
gives solutions of inner instances with at most r vertices. Af-
terwards, we describe how to replace the oracle evaluations
with the randomized algorithm from Proposition 8 to obtain
a randomized algorithm for Inv-LOCAL W-BNSL with the
claimed running time and error probability.
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The oracle algorithm. We fill a dynamic programming
table T that has entries of the type T [j, k′, r′] with j ∈
{1, . . . , n + 1}, k′ ∈ {0, . . . , k}, and r′ ∈ {0, . . . , r}. The
idea is, that each entry T [j, k′, r′] with j ≤ n stores the score
of a solution of the inner instance instance Bj,nk′,r′ .

We next describe how to fill T . As base case we set T [n+
1, k′, r′] = 0 for all k′ and r′. The recurrence to compute an
entry for j ≤ n is

T [j, k′, r′] := max
p∈{j,...,min(n,j+r)}

max
k′′≤k′
r′′≤r′

(Val(Bj,pk′′,r′′)

+ T [p+ 1, k′ − k′′, r′ − r′′]),

where Val(Bj,pk′′,r′′) denotes the score of a solution
of Bj,pk′′,r′′ . Observe that all of these inner instances have at
most r vertices. The score of a solution of I can be computed
by evaluating T [1, k, r]. The ordering of the corresponding
network can be found via traceback. We next show that the
dynamic programming algorithm is correct.

Claim 3. For each j ∈ {1, . . . , n}, k′ ∈ {0, . . . , k},
and r′ ∈ {0, . . . , r} it holds that T [j, k′, r′] is the score of a
solution of the inner instance Bj,nk′,r′ .

The correctness of Claim 3 relies on Lemmas 10 and 14.
Replacing the Oracle Evaluations. The dynamic program-

ming table has (n+1)(k+1)(r+1) entries. Each entry can
be computed by using at most r2k oracle evaluations. Thus,
there are at most x := (n + 1)(k + 1)(r + 1) · r2 · k ∈
O(poly(|I|)) oracle evaluations. We replace every oracle
evaluation by applying the algorithm behind Proposition 8
exactly x times and keeping a result with maximal score.

Observe that the algorithm always computes a feasible
arc-set for I . The probability that the correct result of one
oracle evaluation is returned is at least 1− 1

ex . Consequently,
the success probability of the algorithm is at least (1 −
1
ex )

x ≥ (1− 1
e ). The inequality holds since we have equality

in the case of x = 1 and the left hand side of the inequality
strictly increases when x ≥ 1 increases.

We next analyze the running time of the algorithm. As
mentioned above, the dynamic programming table has (n+
1)(k + 1)(r + 1) ∈ O(poly(|I|)) entries. For each entry we
apply the algorithm from Proposition 8 on x inner instances
with at most r vertices. Since x ∈ O(poly(|I|)) we have a
total running time of 2O(log(r)

√
r) · poly(|I|).

Limits of Ordering-Based Local Search
As mentioned above, W-BNSL can be used to model
Bayesian network learning under additional sparsity con-
straints like a bounded number of arcs. However, some
important sparsity constraints cannot be modeled with our
framework, for example sparsity constraints that are posed
on the moralized graph (Elidan and Gould 2008): The mor-
alized graph of a DAG D is an undirected graphM(D) :=
(V,E1 ∪ E2) with V := N , E1 := {{u, v} | (u, v) ∈ A},
and E2 := {{u, v} | u and v have a common child in D}.
The edges in E2 are called moral edges.

Table 1: Further sparsity constraints.

Version Constraint onM(D)
B-EDGES-BNSL bounded number of edges
B-VC-BNSL bounded vertex cover size
B-DN-BNSL bounded dissociation number
B-TW-BNSL bounded treewidth

Table 1 displays versions of BNSL under sparsity con-
straints for the moralized graph. Since all these problem
versions are NP-hard even when restricted to instances
where the superstructure is acyclic (Korhonen and Parvi-
ainen 2013, 2015; Grüttemeier and Komusiewicz 2020), it
is unlikely that they can be modeled in our framework since
W-BNSL is solvable in polynomial time on such instances.

We now argue that there is little hope that one can ef-
ficiently find improvements of a given DAG by applying
changes on its topological ordering. For all problem ver-
sions in Table 1 it is NP-hard to learn a DAG of a given
score t even when SF is a DAG and t is polynomial in n
and all local scores are integers (Korhonen and Parviainen
2013, 2015; Grüttemeier and Komusiewicz 2020). Further-
more, observe that all the constraints on M(D) from Ta-
ble 1 are true if D does not contain arcs. Assume one can
find improvements of a given DAG in polynomial time if the
radius r of the local search neighborhood is constant. Then,
we can solve instances with acyclic superstructure by set-
ting r = 0, starting with an empty DAG and a topological
ordering of SF , and improve the score t times. This would
be a polynomial time algorithm for instances where t is poly-
nomial in n and SF is a DAG which would imply P = NP.

Conclusion
To assess whether parameterized local search is in principle
a viable approach to ordering-based BNSL, we performed
some preliminary experiments for VANILLA-BNSL. Given
an instance, we compute 20 random topological orderings.
For each such ordering, we repeat the following two steps
until no further improvement was found: First, apply sin-
gle insert operations until no further improvement can be
found. Afterwards, slide a window of given size r over the
ordering and find an optimal ordering for this window. The
sliding window can be seen as a permissive local search
for the r-inversion neighborhood. We ran experiments for
each r ∈ {3, 5, 7, 9, 11} using the same 20 random or-
derings for a fair comparison. We used the data sets pro-
vided at the GOBNILP (Cussens and Bartlett 2013) home-
page1. For most of the instances the best results are obtained
for r ∈ {9, 11}; we remark that the running time bottleneck
in our preliminary experiments was not the combinatorial
explosion in r but rather the slow implementation of the in-
sert operation. Overall, it seems promising to consider pa-
rameterized local search for the number of inversions. In the
future, we plan to evaluate the practical usefulness of the ap-
proach further by studying it extensively from an algorithm
engineering perspective.

1https://www.cs.york.ac.uk/aig/sw/gobnilp/
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