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Abstract

We consider the problem of enumerating all connected induced subgraphs of or-
der k in an undirected graph G = (V,E). Our main results are two enumeration
algorithms with a delay of O(k2∆) where ∆ is the maximum degree in the input
graph. This improves upon a previous delay bound [Elbassioni, JGAA 2015] for
this problem. Moreover, we show that these two algorithms can be adapted to
give algorithms for the problem of enumerating all connected induced subgraphs
of order at most k with a delay of O(k+∆). Finally, we perform an experimental
comparison of several enumeration algorithms for k ≤ 10 and k ≥ |V | − 3.

1. Introduction

We study algorithms for the following fundamental graph problem.

Exact Connected Induced Subgraph Enumeration (E-CISE)
Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected induced subgraphs of order k of G.

We call a connected subgraph of order k a solution in the following. The enu-
meration of connected subgraphs is important in many applications. It is used,
for example, in the identification of network motifs (statistically overrepresented
induced subgraphs of small size): a straightforward algorithm to find such motifs
is to enumerate all connected induced subgraphs and to count how often each
subgraph of order k occurs [8, 19]. A further application arises when semantic
web data is searched using only keywords instead of structured queries [6]. In
this application, one is interested in all connected subgraphs not only induced
ones. E-CISE can be used as a subroutine here, however, since all connected
subgraphs can be obtained by enumerating all connected subgraphs of each
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E-CISE solution. Finally, many fixed-cardinality optimization problems can
be solved by an algorithm whose first step is to enumerate connected induced
subgraphs of order k [11]. This algorithm can solve for example Connected
Densest-k-Subgraph, the problem of finding a connected subgraph of order k
with a maximum number of edges. Experiments showed that enumeration-based
algorithms can be competitive with other algorithmic approaches [9, 12].

At first sight, providing any nontrivial upper bounds on the running time
of E-CISE seems hopeless: As evidenced by a clique on n vertices, graphs may
have up to

(
n
k

)
E-CISE solutions. Even very sparse graphs may have

(
n−1
k−1
)
E-

CISE solutions as evidenced by a star graph with n− 1 leaves. It is maybe due
to these lower bounds that, despite its importance, E-CISE has not received
too much attention from the viewpoint of worst-case running time analysis.

One way to achieve relevant running time bounds is to consider degree-
bounded graphs. Here, the number of solutions is much smaller than in general
as shown by the following bound due to Bollobás [4].

Lemma 1 ([4, Equation 7]) Let G be a graph with maximum degree ∆. Then
the number of connected induced subgraphs of order k that contain some vertex v
is at most (e(∆ − 1))(k−1). Hence, the overall number of connected induced
subgraphs of order k in G is O((e(∆ − 1))(k−1) · (n/k)) where n is the number
of vertices of G.

This observation can be exploited to obtain an algorithm for E-CISE that runs
in O((e(∆− 1))(k−1) · (∆ + k) · (n/k)) time [11].

A second approach to provide nontrivial running time bounds is to prove
upper bounds on the delay of the enumeration. The delay is the maximal time
that the algorithm spends between the output of consecutive solutions. The
reverse search framework is a general paradigm for enumeration algorithms
with bounded delay. The basic idea is to construct a tree where each node
represents a unique solution of the enumeration process. By traversing this
tree from the root, each element is enumerated exactly once. By using reverse
search, one can enumerate all induced subgraphs of order at most k with poly-
nomial delay [2]. When we are interested only in solutions of order exactly k,
one may use the algorithm for enumerating solutions of order at most k and
simply filter those of order less than k. The running time of this algorithm,
however, is not output-polynomial, that is, it is not bounded by a polynomial
in the input and output size. Consequently, the algorithm does not achieve
polynomial delay either. A different reverse search algorithm, however, achieves
delay O(kmin(n− k, k∆)(k(∆ + log k) + log n)) [5].

Thus, k and ∆ appear to be central parameters governing the complexity
of E-CISE. Motivated by this observation, we aim to make further progress at
exploiting small values of ∆ and k.

Related Work. Most known E-CISE algorithms follow the same strategy: start-
ing from an initial vertex set S := {v} for some vertex v, build successively
larger connected induced subgraphs G[S] until an order-k subgraph is found.
Wernicke [19] describes a very simple procedure following this paradigm, which
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we refer to as Simple. The idea is to branch into the different possibilities to add
one vertex u from N(S), the neighborhood of S. Another popular enumeration
algorithm is Kavosh [8] which also considers adding vertices of N(S) but creates
one branch for each subset of N(S) that has size at most k − |S|.

A slightly different strategy is to first pick a vertex p of the current set S
whose neighbors are added in the next step and then branch on the up to (∆−1)
possibilities for adding a neighbor of this vertex. The vertex p is called the active
vertex of the enumeration. The corresponding algorithm, which we call Pivot,
has a worst-case running time of O((4(∆ − 1))k · (∆ + k) · n) [10]. A further
variant of Pivot achieves the running time of O((e(∆− 1))(k−1) · (∆ + k) · n/k)
mentioned above [11]. This variant of Pivot, which we call Exgen, generates
exhaustively all subsets S′ of N(p) \ S of size at most k − |S| and creates for
each such set S′ one branch in which S′ is added to S. A further algorithm for
E-CISE is BDDE [15]. For a fixed vertex v, BDDE enumerates the connected
subgraphs containing v for increasing subgraph orders. The main idea is to use
two functions, one to discover new graph edges and one to copy already explored
parts of the enumeration tree.

An output-sensitive algorithm for E-CISE with running timeO(
∑

G∗∈S |G∗|),
where S is the set of all E-CISE solutions and |G∗| is the total size of G∗, was
presented by Ferreira [7]. This running time is optimal in terms of the overall
running time when the task is to fully output all solutions, not only their ver-
tex sets. The basic idea of this algorithm, which is closely related to Simple,
is to create a binary search tree whose nodes represent connected sets S of G
and whose leafs represent solutions. In each search tree node, the algorithm
selects a vertex v from N(S) and branches into two cases: first it enumerates
the solutions that contain S ∪ {v}, then those containing S but not v. Further,
a certificate is used to ensure that in each node of the search tree, there exists
at least one solution that contains S. Ferreira [7] does not bound the delay of
this algorithm.

The known algorithms with polynomial delay [5] work differently. They
use reverse search or, more generally, the supergraph method [2]. There, for
a given graph G and parameter k, the supergraph G contains a node for each
E-CISE solution in G. Furthermore, two nodes in G are connected if and
only if the corresponding connected subgraphs differ in exactly one vertex.
Let |G| denote the number of vertices in G, that is, the number of E-CISE so-
lutions. The basic idea is to explore the supergraph G efficiently. The first
variant, which we refer to as RwD (Reverse Search with Dictionary) has a delay
of O(kmin (n− k, k∆)(k(∆+log k)+log n)) and requires O(n+m+k|G|) space
where m is the number of edges in the input graph G. The second vari-
ant, which we refer to as RwP (Reverse Search with Predecessor), has a delay
of O((kmin (n− k, k∆))2(∆ + log k)) and requires O(n+m) space [5]. Hence,
RwD has a better delay than RwP but requires exponential space, since |G| may
grow exponentially with the size of G.

For the problem of enumerating all connected induced subgraphs of G that
have order at most k, an algorithm with delay O(nm) was presented already
in the work that introduced the reverse search framework [2]. The more recent
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RSSP algorithm enumerates all connected induced subgraphs with delay O(nc)
where nc is the size of the largest connected component of G [1]. The basic
idea of RSSP is also to use reverse search but with a more strict neighborhood
definition. Finally, when the running time for outputting the solution is not
counted, then all connected induced subgraphs can be enumerated in amortized
time O(1) per connected induced subgraph [18].

Our Results. We show how to adapt Simple and Pivot for E-CISE in such a
way that the worst-case delay between the output of two solutions is O(k2∆)
and that the algorithm requires O(n+m) space. This improves over the previous
best delay bound of RwD [5] while requiring only linear space. As a side result,
we show that these variants of Simple and Pivot achieve an overall running time
of O((e(∆ − 1))(k−1) · (∆ + k) · n/k). For Simple this is the first running time
bound; for Pivot this is a substantial improvement over the previous running
time bound. In addition, we further explore the connections between Simple and
Pivot and show that a certain implementation of Pivot is in fact just a variant
of Simple. Furthermore, we improve the delay of RwP to O(k2 min (n− k, k∆) ·
min (k∆, (n− k)(∆ + log k))).

Moreover, we give delay bounds for the problem of enumerating all connected
induced subgraphs of order at most k. More precisely, we show that Simple
and Pivot achieve a delay of O(k + ∆). Hence, the best known delay bound is
much lower than for E-CISE.

We then implement these algorithms in Python and compare them experi-
mentally with Python implementations of Kavosh [8], Exgen [11], and BDDE [15].
For k ≤ 10, we observe that RwD and RwP are significantly slower than the
other algorithms, which behave quite similarly in terms of the overall running
time. For very large k, that is, for k close to the order of the largest connected
component of G, RwD and RwP are again slower than the other algorithms
and the differences between these algorithms are larger in this case. Here, Pivot
has the best overall running times. Finally, for the variant where we aim to
output all solutions of order at most k, we included RSSP in the comparison
and excluded RwD and RwP since they were not designed for this variant. The
main result is that all algorithms behave roughly similar in this case.

2. Preliminaries and Main Algorithm

Graph Notation. We consider undirected simple graphs G = (V,E). The order
of a graph is the number of its vertices. We let n andm denote the order ofG and
the number of edges in G, respectively. For a vertex v, N(v) := {u | {u, v} ∈ E}
denotes the open neighborhood of v, and N [v] := N(v) ∪ {v} denotes the closed
neighborhood of v. Let W ⊆ V be a vertex set. Then N(W ) :=

⋃
v∈W N(v)\W

denotes the open neighborhood of W and N [W ] := N(W ) ∪ W denotes the
closed neighborhood of W . The graph G[W ] := (W, {{u, v} ∈ E | u, v ∈ W}) is
the subgraph induced by W . The graph G −W := G[V \W ] is the subgraph
of G obtained by deleting the vertices of W . A connected component of G is
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Algorithm 1 The main loop for calling the enumeration algorithms; Enum-
Algo can be any of Simple, Pivot, Exgen, Kavosh, and BDDE.

1: procedure Enumerate(G = (V,E))
2: while |V (G)| ≥ k do
3: choose vertex v from V (G)
4: enumerate all E-CISE solutions containing v with Enum-Algo
5: remove v from G

a maximal subgraph where any two vertices are connected to each other by at
least one path.

Enumeration Trees and the Main Algorithm Loop. With the exception of RwD
and RwP, the enumeration algorithms use a search tree method which is called
from a main loop whose pseudocode is given in Algorithm 1. Different al-
gorithms, for example Simple or Pivot, can be used as Enum-Algo in Line 4
in Algorithm 1. For each vertex in the graph, Algorithm 1 creates a unique
enumeration tree. In other words, Algorithm 1 produces a forest consisting
of |V | − k + 1 enumeration trees. To avoid confusion, we refer to the vertices
of the enumeration trees as nodes. Each node represents a connected induced
subgraph G[S] of order at most k. We refer to the vertex set S of this subgraph
as subgraph set of the enumeration tree node. Roughly speaking, a node N is
a child of another node M if the subgraph corresponding to M is an induced
subgraph of the subgraph corresponding to N . The exact definition of child
depends on the choice of Enum-Algo. A leaf is a node without any children.
Furthermore, a leaf is interesting if S has size k; otherwise it is boring. A node
leads to an interesting leaf if at least one of its descendants is an interesting
leaf.

In the main algorithm loop, we enumerate for each vertex of the input graph
all E-CISE solutions containing the vertex v by calling the respective enumer-
ation procedures; the first call of the enumeration procedure is the root of the
enumeration tree and it represents the connected subgraph G[{v}]. After enu-
merating all solutions containing v, the vertex v is removed from the graph.

Cleaning the Graph. The removal of v may create connected components of
order less than k. If Enumerate chooses all vertices from such connected com-
ponents, then we will not achieve the claimed delays. Hence, we show how to
remove these connected components quickly.

Lemma 2 Let G be a graph such that each connected component has order at
least k and let v be an arbitrary vertex of G. In O(k2∆) time we can delete
every vertex of G− {v} that is in a connected component of order less than k.

Proof. The only vertices of G−{v} that are in connected components of order
less than k, are those that are in the same connected component as v in G. We
may thus check for each connected component of G − {v} which contains at
least one neighbor of v whether this component has order at most k− 1. Using
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Algorithm 2 The Simple algorithm; the initial call is Simple({v}, N(v)).

1: procedure Simple(P,X)
2: if |P | = k then
3: output P
4: return True

5: hasIntLeaf := False

6: while X 6= ∅ do
7: u := choose last vertex from X
8: delete u from X . The current set P will be extended
9: X ′ := X ∪ (N(u) \N [P ])

10: if Simple(P ∪ {u}, X ′) = True then
11: hasIntLeaf := True

12: else
13: return hasIntLeaf . Stop recursion if no new solution found

14: return hasIntLeaf

depth-first search, this check needs O(k2) time per neighbor. Moreover, for
each neighbor which is in a connected component of order less than k, we can
remove the connected component from G in O(k2) time. Since v has at most ∆
neighbors in G, the total running time of the algorithm is O(k2∆). �

3. Polynomial Delay with Simple

We now adapt Simple to obtain a polynomial delay algorithm; the pseu-
docode is shown in Algorithm 2. In Simple, we start with a single vertex v and
find successively larger connected subgraphs containing v. The subgraph set is
denoted by P . Furthermore, the set X ⊆ N(P ), called extension set, contains
those neighbors of P which can be added to P to enlarge the subgraph G[P ]. In
Lines 7-9, when putting u ∈ X in the set P , we remove u from X and add to X
each neighbor of u which is not in N [P ]. Lines 5 and 10–13 of Algorithm 2 and
returning the Boolean flag hasIntLeaf are not part of the plain version of Sim-
ple [19]. In these lines, a new pruning rule is performed; this rule is necessary
to establish polynomial delay for E-CISE.

To describe the pruning rule, we introduce some notation. Let T1, . . . , Ti
denote the nodes of a path from the root T1 to a node Ti of the enumeration
tree. We denote the subgraph set of a node Ti by Pi and its extension set by Xi.
To avoid unnecessary recursions, we check after each recursive call of Simple in
node Ti whether this call reported a new solution. If not, we return in Ti to
its parent Ti−1. First, we prove that this pruning rule is correct. Recall that
a leaf Tj is interesting if the corresponding subgraph set Pj is a solution for
E-CISE, that is |Pj | = k, and that Tj is boring otherwise.

Lemma 3 Let Ti be a node in the enumeration tree of Simple. If the output of
a recursive call of Simple in node Ti is empty, then no subsequent recursive call
of Simple in node Ti leads to an interesting leaf.
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Proof. Let Ti, . . . , Tj denote the path in the enumeration tree from node Ti to a
leaf Tj , where node T`+1 is the first child of node T` for each ` ∈ {i+1, . . . , j−1}.
By assumption, the leaf Tj is boring, that is, |Pj | < k. This implies that Tj
has an empty extension set Xj . Hence, the number j − i of vertices that are
added between node Ti and leaf Tj is equal to the number of all vertices in the
graph G − (N [Pi] \Xi) which are in a connected component with the vertices
of the subgraph set Pi of node Ti. In other words, adding all possible vertices
in node Ti does not give a connected subgraph of order at least k.

After returning from node Ti+1 to node Ti, the vertex u that was added
to the subgraph set Pi+1 of node Ti+1 is removed from the extension set Xi.
Hence, the number of vertices in G−(N [Pi]\Xi) which are in the same connected
component with all vertices of the subgraph set Pi is at least one more than the
number of vertices in G− (N [Pi] \ {Xi \ {u}}) which are in the same connected
component with all vertices of the subgraph set Pi. Thus, also the next child of
node Ti, and any further child of Ti will not lead to an interesting leaf. �

By the above, we can return to the parent Ti−1 of Ti as soon as one of the
recursive branches fails to output a solution.

To check efficiently whether the pruning rule applies, we do the following:
Each enumeration tree node T has a Boolean flag hasIntLeaf initialized with
False in Line 5. As soon as at least one recursive call has an interesting leaf,
the Boolean flag hasIntLeaf is set to True. Therefore, the algorithm correctly
returns whether or not T leads to an interesting leaf. If some recursive call does
not lead to an interesting leaf, then the algorithm returns immediately to the
parent of node T which is correct due to Lemma 3. The overall overhead for
performing the pruning is only a constant factor.

We now show that Simple achieves a polynomial delay when this pruning
rule is performed. To achieve the claimed delay of O(k2∆), we present a new
data structure to store the extension set during the algorithm. In the following,
we denote by pi the vertex which was added to the subgraph set Pi when Ti
is created. In other words, if Ti−1 is the parent of Ti, then Pi \ Pi−1 = {pi}.
First, we prove that for a node Ti in the enumeration tree we need O(∆) time
to either compute the sets Pi+1 and Xi+1 of its next child Ti+1 or to restore the
sets Pi−1 and Xi−1 of its parent node Ti−1.

Lemma 4 Simple can be implemented in such a way that for every node Ti of
the enumeration tree, we need O(∆) time to either compute the next child Ti+1

or to restore the parent Ti−1 and that the overall space needed is O(n+m).

Proof. We describe the data structures that we use to fulfill the running time
and space bounds of the lemma. To check whether a vertex is in some extension
set, we color some vertices of G with k+1 colors c0, . . . , ck as follows. Following
the notation of Wernicke [19], for a node Ti, we call the vertices which are
in N [Pi] \N [Pi−1] where Ti−1 is the parent of Ti the exclusive neighbors of pi.
These are exactly the vertices that are added to Xi−1 in Line 9 of Algorithm 2
to construct the extension set Xi for the node Ti. Throughout the algorithm
we maintain the following invariant:
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u1 u2 u3 u4 u5 u6 u7 u8 u9

π(A, 4)
π(A, 6)π(A, 3)π(A, 5)π(A, 1)

null

π(A, 2)

11233

Figure 1: An example for the pointer movement: Pointer π(A, 6) points to u9, an exclusive
neighbor of p6. Before adding u9 to the subgraph set P6, we move pointer π(A, 6) to the
left to u8, an exclusive neighbor of vertex p3. Since T5 is the parent of T6 we move π(A, 6)
to u3 which is the position of pointer π(A, 5). Next, we create a child of T6 by adding u9 to
the subgraph set P6. The next time we are in node T6, we move π(A, 6) one to the left to
vertex u2 and create a child of T6 by adding u3 to P6. After returning from this child, we
move π(A, 6) to vertex u1 which is an exclusive neighbor of vertex p1. Since T2 is the parent
of T3 we move π(A, 6) to the position of π(A, 2). Afterwards, we create a child by adding u2
to P6. The next time we come back to node T6, we delete pointer π(A, 6), since π(A, 6) points
to null, and return to the parent T5 of node T6.

Let T1, . . . , Ti for i ≤ k be the path from the root T1 to a node Ti.
The vertex p1 has color c0. A vertex v has color ci, i ≥ 1, if and
only if v is an exclusive neighbor of pi.

Altogether, for 0 ≤ j ≤ k, the colors c0, . . . , cj represent the vertices in N [Pj ].
It is necessary to use k+ 1 different colors to determine in which node a vertex
was added to the extension set. Note that every vertex may have at most one
color.

The extension sets of all nodes on the path from the root T1 to an enumer-
ation tree node Ti are represented by an array A of length min(k∆, n) with up
to k pointers pointing to positions of A. There is one pointer π(A, i) corre-
sponding to Ti and one pointer π(A, j) for each ancestor Tj of Ti. An entry
of A is either empty or contains a pointer to a vertex of the extension set Xi. In
Line 9 of Algorithm 2 when the new extension set X ′ is created from X, the new
vertices of N(u)\N [P ] replace the left-most empty entries of A. Pointer π(A, i)
points to the vertex x in the extension set Xi which will be added to Pi in the
next recursive call of Simple in node Ti. If for node Ti already all children of Ti
have been created, then π(A, i) points to null. Hence, we may check in constant
time whether Ti has further children and restore the sets Pi−1 and Xi−1 to the
parent Ti−1 if this is not the case.

In addition to A, we use two further simple data structures: The subgraph
set Pi at a node Ti is implemented as stack Q that is modified in the course of
the algorithm with the top element of the stack being pi. Also, for each node Ti,
we create a list Li of its exclusive neighbors. This list is necessary to undo some
later operations. We now describe how these data structures are maintained
throughout the traversal of the enumeration tree.

Initialization. At the root T1 of the enumeration tree, we initialize A as fol-
lows: add all neighbors of the start vertex p1 := v to A, and set pointer π(A, 1) to
the last non-empty position in A. Hence, the initial extension set is represented
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by all vertices from the first vertex in A to the initial position of pointer π(A, 1).
These are precisely the vertices of the exclusive neighborhood of v. The stack Q
consists of the vertex v and L1 contains all neighbors of v.

Creation of new children. As discussed above, a node Ti has a further
child Ti+1 if π(A, i) points to an index containing some vertex x. We create
child Ti+1 as follows:

1. move the pointer π(A, i) to the left,

2. check whether x is an exclusive neighbor of pi, and remove x from A if
this is the case, and

3. create the child Ti+1 with pi+1 = x and enter the recursive call for Ti+1.

We now specify how to move the pointer π(A, i) to the left when it currently
points to vertex x of color c`; an example of the pointer movement is given in
Figure 1. The vertex x is an exclusive neighbor of p` for some ` ≤ i. Note
that if x is an exclusive neighbor of pi, we have i = `. If x is contained in the
first entry of A, then redirect π(A, i) to null. Otherwise, decrease the position
of π(A, i) by one. If π(A, i) now points to a position containing a vertex y of
color cj such that j < `, then move π(A, i) to the position that π(A, `−1) points
to. Since y is an exclusive neighbor of pj pointer π(A, j) points to y. Observe
that if j = `− 1 this means that the pointer does not move in the second step.

We now describe how the algorithm creates a child Ti+1 of Ti after fix-
ing pi+1 := x as described above. If node Ti+1 is an interesting leaf, that is,
if i = k − 1, we output Pi+1 ∪ {x} and return to node Ti. Otherwise, we add
vertex x to the stack Q representing the subgraph set and create an initially
empty list Li+1. Then we update A so that it represents Xi+1. For each neigh-
bor u of x, check if u has some color cj . If this is not the case, then color u with
color ci+1 and add u to Li+1. Now, store the vertices of Li+1 in the left-most
non-empty entries of A. Finally, create the pointer π(A, i+1) and let π(A, i+1)
point to the last non-empty position in A. Observe that this procedure runs
in O(∆) time.

Restoring the parent. Finally, we describe how the algorithm returns to the
parent Ti−1 of a node Ti. Note that the case that Ti is an interesting leaf was
already handled above. In the following, assume that Ti is not an interesting
leaf. When returning to Ti−1, first delete the last element pi of stack Q. Then,
for each vertex in Li, we remove its color ci. Finally, remove pointer π(A, i)
from array A. Observe that this can be done in O(∆) time as well.

We conclude that the overall running time is O(∆) as claimed. Moreover,
the size of stack Q is bounded by k, array A has a length of min(k∆, n), and
the sum of the sizes of all lists Li is at most min(k∆, n). Hence, Simple needs
O(n+m) space.

We now prove that the pointer structure faithfully represents the extension
sets during the course of the algorithm. More precisely, we show that each
pointer π(A, i) visits all the vertices that are contained in the extension set Xi

when Ti is created. To this end, we define inductively, for each π(A, j) pointing
on the array A, a subset A≤j of the entries of A: The set A≤1 contains all entries
to the left of π(A, 1) including the entry that π(A, 1) points to. The set A≤j
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contains all entries of A that are to the left of π(A, j) and either in A≤j−1
or exclusive neighbors of Tj . We now claim the following invariant during the
algorithm by induction over the operations of the algorithm.

Let Ti be a enumeration tree node, and let T1, . . . , Ti denote the
nodes on the path from the root T1 of the enumeration tree to
node Ti. At any point in time A≤i contains exactly the set Xi.

The claim is obviously true for the root T1: Initially, A contains exactly the
vertices of N(p1) and all of them are to the left of the position of π(A, 1). Every
time the pointer π(A, 1) moves to the left, it moves by exactly one position and
removes exactly one vertex from X1 as prescribed in Line 8 of Algorithm 2.

Now, assume by induction that the claim holds for all Tj with j < i. When
creating Ti, the extension set Xi may, according to the pseudocode of Simple,
contain all vertices which are in Xi−1 or exclusive neighbors of pi. When cre-
ating Ti, the pointer π(A, i) points to the rightmost non-empty position in the
array A. Thus, A≤i contains all vertices which are exclusive neighbors of pi or
are contained in A≤i−1. By the inductive hypothesis, the latter set contains
exactly the vertices of Xi−1. When the pointer π(A, i) is moved to the left,
this corresponds to removing the element that π(A, i) points to from Xi as pre-
scribed in Line 8 of Algorithm 2 (where we remove u). To prove the claim that
the procedure of moving to the left is correct, we show that the pointer stops at
the rightmost position of A containing an element of Xi. We distinguish three
cases:

Case 1: π(A, i) now points to some vertex with color ci. Then this vertex is
an exclusive neighbor of Ti and the pointer has moved exactly one position to
the left. Hence, the pointer stops at the rightmost position of A containing an
element of Xi.

Case 2: π(A, i) now points for the first time to some vertex x with color cj
such that j < i. Then π(A, j) points to the same position as π(A, i), since x is
the rightmost remaining vertex of the extension set Xj . If j = i − 1, then the
pointer position is not changed further and π(A, i) now points to the rightmost
exclusive neighbor of Ti−1 which is the rightmost vertex of Xi in A since A
contains no exclusive neighbors of Ti anymore. Otherwise, the pointer jumps to
the position of π(A, i − 1). Since all elements of Xi−1 are contained in A≤i−1
and since, by induction, π(A, i− 1) points to the rightmost element of Xi−1 we
have that π(A, i) points at the rightmost position of A containing an element
of Xi.

Case 3: π(A, i) was moved from a vertex with color cj such that j < i to the
left. In that case, the movement of π(A, i) is exactly the same as the movement
of π(A, i − 1) when the algorithm visits node Ti−1. By induction, we assume
that this movement visits all the vertices of Xi−1.

Hence, when moving the pointer to the left, we do not miss an element of Xi

and we only stop at elements of Xi. �

With this running time bound to compute the next child or to restore the
parent at hand, we may now prove the claimed delay.
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Theorem 1 Enumerate with Simple solves E-CISE for any graph G where
each connected component has order at least k and the maximum degree is ∆
with delay O(k2∆) and space O(n+m).

Proof. Enumerate chooses an arbitrary start vertex v. According to Lemma 2,
after the deletion of vertex v, we can delete every vertex of each connected
component with less than k vertices in O(k2∆) time. Thus, it is sufficient to
bound the time which is needed to output the next solution within Simple.

We compute the sets P1 and X1 in O(∆) time. Since Lemma 2 was applied,
by adding k − 1 vertices, we obtain a solution for E-CISE. Outputting the
corresponding connected induced subgraph needs O(k) time. Hence, the first
solution for a call of Enumerate will be output in O(k∆) time.

Next, we show that in O(k2∆) time we either find a new solution for E-
CISE or end this call of Enumerate. By induction we will show that in O((k−
j)k∆) time we can restore the sets Pj and Xj of node Tj for some j < k.
Let Tk be an interesting leaf. According to Lemma 4, the sets Pk−1 and Xk−1
of node Tk−1 can be restored in O(∆) time. Assume the sets Pj and Xj are
restored in O((k − j)k∆) time. Every time we call Simple recursively, we add
exactly one vertex to the subgraph set. Hence, we need at most k iterations
to reach a leaf T`. If T` is interesting, that is, if ` = k, then we output the
corresponding connected induced subgraph in O(k) time. Thus, in this case
the algorithm outputs the next solution in O((k − j + 1)k∆) time. If T` is
boring, that is, if ` < k, then according to Lemma 3 the pruning rule applies
to each node Tq on the path from T` to Tj since no other subsequent child of
node Tq yields a path to an interesting leaf. Hence, we will return in altogether
O(k∆) time to the parent Tj−1 of node Tj . Hence, the sets Pj−1 and Xj−1 can
be restored in O((k − j + 1)k∆) time. Thus, in O(k2∆) time we either output
the next solution or return in T1 and end this call of Enumerate. Hence, the
overall delay is O(k2∆). The space complexity follows from Lemma 4. �

Observe that it is necessary to delete vertices of components with less than
k vertices after one call of Enumerate to obtain the claimed delay of O(k2∆):
Otherwise, after some calls to Simple we may end up with a graph containing
many vertices which are not contained in solutions. Starting the enumeration
from these vertices one after the other would not give a delay that is polynomial
in k and ∆.

We can use Lemma 4 also to bound the overall running time of the algorithm.

Proposition 1 Enumerate with Simple has running time O((e(∆−1))k−1 ·(∆+
k) · n/k).

Proof. Each connected induced subgraph with at most k vertices is output
exactly once [19]. Hence, for two different nodes T and Q in the enumeration
tree, we have PT 6= PQ. In other words, each enumeration tree node corresponds
to a different connected subgraph of order at most k. According to Lemma 1, the
overall number of these subgraphs containing some vertex v is O(

∑k
i=1(e(∆ −

1))i−1) = O((e(∆−1))k−1) where the equality follows from the fact that 2(e(∆−
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Algorithm 3 The Pivot algorithm; the initial call is Pivot({v}, {}, v, {}).
1: procedure Pivot(P, S, p, F )
2: if |P ∪ S| = k then
3: output P ∪ S
4: return
5: if p =null then
6: if P 6= ∅ then
7: p := choose some element of P
8: else
9: return

10: for z ∈ N(p) \ {P ∪ S ∪ F} do
11: Pivot(P ∪ {z}, S, p, F )
12: F := F ∪ {z}
13: Pivot(P \ {p}, S ∪ {p}, null, F )
14: return

1))i−1 < (e(∆− 1))i for ∆ ≥ 2. Consequently, the total number of enumeration
tree nodes in all calls of Enumerate with Simple is O((e(∆− 1))k−1 · n/k).

Now, we bound the time per node T in the enumeration tree. Let pT be the
vertex that was added to the subgraph set to create the node T . Determining
the neighbors of vertex pT and adding the exclusive neighbors of pT , that are
those without a color, to XT needs O(∆) time. For each vertex z in XT we
make a recursive call where we add z to the subgraph set. The recursive call
includes updating the subgraph set and the extension set and can be done in
O(∆) time per call. By charging this running time to the corresponding child in
the enumeration tree, we obtain a running time of O(∆) per enumeration tree
node. Since outputting a solution needs O(k) time we obtain a running time
of O(k + ∆) per enumeration node. The overall running time follows. �

4. From Pivot to a Variant of Simple

We now adapt Pivot of Komusiewicz and Sorge [10] to obtain polynomial
delay and a better running time bound. More precisely, we show that a careful
implementation of an adaption of Pivot actually turns it into a variant of Simple.
The pseudocode of Pivot as described by Komusiewicz and Sorge [10] can be
found in Algorithm 3; the algorithm works as follows. In each enumeration tree
node, the subgraph set is partitioned into two sets P and S. The set P contains
those vertices whose neighbors may still be added to extend the subgraph set
and set S contains the other vertices of this subgraph, that is, no neighbor
of S may be added to the subgraph. Moreover, we have a set F containing
further vertices that may not be added to the connected subgraph. Each node
in the enumeration tree has an active vertex of the set P whose neighbors will be
added to the subgraph. After adding each possible neighbor, the vertex becomes
inactive and is removed from P and added to S. This version of the algorithm
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Algorithm 4 An adaptation of Pivot without active vertex; the initial call is
Pivot({v}, ∅, ∅).

1: procedure Pivot(P, S, F )
2: if |P ∪ S| = k then
3: output P ∪ S
4: return
5: while P 6= ∅ do
6: p := choose first element of P
7: for each z ∈ N(p) \ (P ∪ S ∪ F ) do
8: Pivot(P ∪ {z}, S, F )
9: F := F ∪ {z}

10: P := P \ {p}
11: S := S ∪ {p}
12: return

has a running time bound of O(4k(∆ − 1)kn(n + m)) [10] and no polynomial
delay.

The pseudocode of the adaption of Pivot can be found in Algorithm 4.
This variant already has, up to polynomial factors, a worst-case optimal overall
running time. Since our implementation of this algorithm eventually leads to
a variant of Simple, we omit the proof and show running time bounds only
for the final version. Nevertheless, we believe it is instructive to discuss this
intermediate version of the algorithm. Consider a path T1, . . . , Ti from the
root T1 to a node Ti of the enumeration tree. We will not associate enumeration
tree nodes with active vertices. Instead, with each node Ti we associate the set Pi

which is the subset of the subgraph set which can have further neighbors, the
set Si which is the remaining subgraph set, and the set Fi which is the set of
forbidden vertices. Now, instead of creating a new child when choosing a new
active vertex we are using the while-loop starting in Line 5 in Algorithm 4. In
this while-loop we do the following until Pi is empty: Pick the vertex p ∈ Pi

that was added first to Pi. That is, if pi is the ith vertex that was added in the
creation of the node Ti, then pi becomes the active vertex p exactly after pi−1
moves from P to S. Otherwise, the algorithm is the same as the original one.
Observe that when creating a child in Line 8, the active vertex (which is now
only implicitly given) remains the same by the choice of p in Line 6.

We now further modify this variant of Pivot. Assume that the current ver-
tex p is the ith vertex pi that was added to P . The main idea is to show that
the set N(p) \ (P ∪S ∪F ) in Line 7 from which the next vertex z is chosen can
be computed already when pi is added to P . By the convention that pi is chosen
as the first vertex of P , the set S when pi becomes active is predetermined, it
is exactly {p1, . . . , pi−1}. Moreover, whenever a vertex pj , j < i, moves from P
to S in Line 10, every neighbor of pj is either in P ∪ S or in F . Hence, the
set N(p)\(P ∪S∪F ) for p = pi is exactly the set N(pi)\N [P ∪S]. Thus, instead
of saving the set F of forbidden vertices, we may work with a representation
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Algorithm 5 The Simple-Forward algorithm, an implementation of Pivot ; the
initial call is Simple-Forward({v}, N(v)).

1: procedure Simple-Forward(P,X)
2: if |P | = k then
3: output P
4: return True

5: hasIntLeaf := False

6: while X 6= ∅ do
7: u := choose first vertex from X
8: remove u from X . The current set P will be extended
9: X ′ := X. append(N(u) \N [P ])

10: if Pivot(P ∪ {u}, X ′) = True then
11: hasIntLeaf := True

12: else
13: return hasIntLeaf . Stop recursion if no new solution found

14: return hasIntLeaf

of an extension set X as in Simple. When adding a vertex z to the subgraph
set, we add exactly those neighbors of z to the extension set X that are not
neighbors of any vertex in P ∪S, that is, we add the vertices in N(z)\N [P ∪S].

As for Simple, the extension set X will be represented by an array A with
several pointers pointing on this array. The difference is that these pointers
move through A in forward direction, that is, from low indices to high indices.
The subgraph set will be denoted by P only, that is, there is no need to store
the set S anymore, it is implicitly represented by the position of a pointer on A.
The same is true for the set F which is also not stored explicitly anymore. The
pseudocode of this new implementation of Pivot is shown in Algorithm 5; in
light of the previous discussion, we will call it Simple-Forward. To highlight
the differences between Simple and Simple-Forward, we emphasize that X has
an order by using list notation, that is, initially X is a list of the neighbors
of v = p1, new vertices in X are appended and the next vertex is chosen from
the front of the list instead of from the back as in Simple. Before proving
the running time bounds for Simple-Forward, let us remark that an inspection
showed that the implementation of Simple in the FANMOD tool of Wernicke
and Rasche [20] is essentially the same as Simple-Forward except for the parts
that are relevant for the pruning rule which is needed to establish polynomial
delay (Lines 5 and 10–13 and returning the Boolean flag hasIntLeaf).

Next, we prove that with suitable data structures for maintaining the sets P
and X during the enumeration, we can quickly traverse the enumeration tree.

Lemma 5 Simple-Forward can be implemented in such a way that for every
node Ti of the enumeration tree, we need O(∆) time to either compute the
next child Ti+1 or to restore the parent Ti−1 and that the overall space needed
is O(n+m).

Proof. We use the same data structures as described in Lemma 4: an array A
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for the representation of X, for each i, a list Li representing the exclusive
neighborhood of a vertex pi, a stack Q representing the subgraph set P , and
a coloring of the vertices to allow for an O(1)-time test for containment in the
exclusive neighborhood of some Pi. There is one difference, however: Instead
of using k + 1 colors, one for each exclusive neighborhood, we use only one
color c for all vertices in N [Pi]. Next, we describe how these data structures are
maintained during the enumeration tree.

Initialization. At the root T1 of the enumeration tree, we initialize A as
follows: add all neighbors of the start vertex p1 := v to A, set pointer π(A, 1)
to A[1]. Hence, the initial extension set is represented by all vertices from the
first vertex in A to the initial position of pointer π(A, 1). These are precisely
the vertices of the exclusive neighborhood of v. The stack Q consists of the
vertex v and L1 contains all neighbors of v.

Creation of new children. A node Ti has a further child Ti+1 if π(A, i) points
to an index of A containing some vertex x. We create child Ti+1 as follows:
If x is the last entry of A, redirect π(A, i) to null. Otherwise, move π(A, i)
one position to the right. Afterwards, create the child Ti+1 with pi+1 := x as
follows. If node Ti+1 is an interesting leaf, that is, if i = k−1, we output Pi∪{x}
and return to node Ti. Otherwise, we add vertex x to the stack Q representing
the subgraph set and create an initially empty list Li+1. Then we update A
so that it represents Xi+1: For each neighbor u of x, check if u has color c. If
this is not the case, then color u with color c and add u to Li+1. Now, store
the vertices of Li+1 in the left-most non-empty entries of A. Finally, create the
pointer π(A, i+ 1) and let it point to the same position as pointer π(A, i), then
enter the recursive call for Ti+1. Observe that this procedure runs in O(∆) time.

Restoring the parent. We describe how the algorithm returns to the par-
ent Ti−1 of a node Ti; the case that Ti is an interesting leaf was already handled
above. Hence, assume that Ti is not an interesting leaf. When returning to Ti−1,
first delete the last element of stack Q. Then, for each vertex in Li, we remove
its color c. This procedure runs in O(∆) time.

The overall space complexity of O(n+m) follows by the same arguments as
in the proof of Lemma 4.

It remains to show that the pointer structure faithfully represents the ex-
tension sets during the course of the algorithm. We have to show that each
pointer π(A, i) visits all vertices contained in the extension set Xi when node Ti
is created. By A>i we denote the set of vertices in A beginning at π(A, i)
and ending at A[|L1| + . . . + |Li|]. Note that A[1, . . . , |L1| + . . . + |Li|] repre-
sents N [Pi] \ {p1}. As for Simple, we claim the following invariant during the
algorithm by induction over the operations of the algorithm.

Let Ti be a enumeration tree node, and let T1, . . . , Ti denote the
nodes on the path from the root T1 of the enumeration tree to Ti.
At any point in time A>i contains exactly the set Xi.

As for Simple, the statement is obviously true for the root T1 with the
difference that π(A, 1) initially points to A[1]. Now, assume the claim holds for
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all Tj with j < i. When node Ti is created, the corresponding extension set
is Xi := Xi−1 ∪N(Pi) \N [Pi−1]. According to the induction hypothesis A>i−1
correctly represents Xi−1. Furthermore, Li = N [Pi] \N [Pi−1]. Hence, when Ti
is created, A>i correctly represents Xi. Each time a child Ti+1 of node Ti
is created, pointer π(A, i) is moved exactly one position to the right. Hence,
pointer π(A, i) visits all vertices in Xi. �

The correctness of the pruning rule for Simple-Forward is similar to the proof
of the correctness of the pruning rule for Simple in Lemma 3 . Moreover, the
proof of the delay bound of Simple in Theorem 1 also applies to Simple-Forward.
Hence, we obtain directly obtain the following bound.

Corollary 1 Enumerate with Simple-Forward solves E-CISE for any graph G
where each connected component has order at least k and the maximum degree
is ∆ with delay O(k2∆) and space O(n+m).

Finally, the proof of Proposition 1 which bounds the overall running time for
Simple applies also to Simple-Forward.

Corollary 2 Enumerate with Simple-Forward has running time O((e(∆−1))k−1·
(∆ + k) · n/k).

5. Enumeration via Reverse Search

In this section, we describe the reverse search algorithms of [5]. Moreover, we
present a small modification of one of the algorithms that leads to an improved
delay bound for the case of small k.

5.1. Reverse Search with Dictionary (RwD)

The reverse search method enumerates all solutions by traversing the su-
pergraph G where every solution corresponds to exactly one node of G. The
pseudocode of the first of the two algorithms, RwD, is shown in Algorithm 6.
During the algorithm each node in G gets the following labels: visited means
that the node was visited by the algorithm, discovered means that the node was
not yet visited but is a neighbor of an already visited node, and a node is not
discovered otherwise. The algorithm stores all visited and discovered nodes in
a set K. Furthermore, all discovered nodes are put in a queue Q.

In the first step, we have to determine an initial connected order-k subgraph
in G, so we determine a start node T in G. This can be done with depth-
first search. Hence, only node T is assigned with the label discovered and all
remaining nodes have the label not discovered. So, initially queue Q and set K
consist of node T .

As long as the queue Q is not empty we do the following: We remove the first
node T of Q. Let S denote the solution represented by T . Next, we output S.
In a next step, we have to determine all neighbors of T in the supergraph G and
add them to Q if they are not already discovered or visited. To this end, for
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Algorithm 6 The RwD algorithm.

1: procedure RwD(G, k)
2: Queue Q := ∅, K := ∅ . K stores the enumerated solutions
3: for each connected component C in G do
4: S := lexicographically largest solution in C
5: Q. enqueue(S), K := K ∪ {S}
6: while Q 6= ∅ do
7: S := Q.dequeue()
8: output S
9: for vertex v ∈ S do

10: S′ := S \ {v}
11: N := common neighborhood of connected components of S′

12: for vertex w ∈ N do
13: S′′ := S′ ∪ {w}
14: if S′′ /∈ K then
15: Q. enqueue(S′′), K = K ∪ {S′′}

each vertex v of S we try to find connected subgraphs containing S′ := S \ {v}
and avoiding v. Now, the subgraph G[S′] may be disconnected. To obtain
a connected subgraph, we first determine the connected components of G[S′].
Afterwards, we determine the set N containing all vertices of V \S that have at
least one neighbor in each connected component of G[S′]. We call this set the
common neighborhood of the connected components of G[S′]. In the algorithm
of Elbassioni [5], the common neighborhood is determined as follows: Check
each vertex of V \ S and determine whether it has at least one neighbor in
each connected component of S′. Each vertex in N extends G[S′] to another
solution. To output each solution exactly once, we use the set K, that is, we
check whether a solution has already been discovered or visited. A node is added
to the queue Q only if it is not discovered.

For this algorithm, we implemented another method to determine the com-
mon neighborhood N of the connected components of S′. Instead of checking
for each vertex of V \ S whether it has at least one neighbor in each connected
component of G[S′], we compute for each connected C component of G[S′] the
set of vertices NC that are from V \S and have at least one neighbor in C. Then,
we intersect all of these sets. The resulting set is N . This does not change the
worst-case delay of RwD.

5.2. Reverse Search with Predecessor (RwP)

This algorithm is almost the same as algorithm RwD. The main difference
is the following: Instead of having the set K which stores all visited and discov-
ered nodes (which requires exponential space) it uses a predecessor function for
solutions. The basic idea of this method in this context is the following: All so-
lutions are sorted lexicographically and each solution has a unique predecessor.
We determine neighbors of a node S in G. If we determine a new candidate B
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for a connected order-k subgraph, we only put B into the queue of discovered
nodes if the predecessor of B is S.

Now, we explain this method in more detail: We apply depth-first search for
the graph G and every vertex in G is assigned a number when it is discovered by
this depth-first search. More precisely, the first vertex is assigned with the high-
est number |G| and all following vertices get a smaller number. The depth-first
ordering of the vertices implies a lexicographical ordering of the solutions. The
initial connected order-k subgraph for the enumeration is the lexicographically
largest subgraph. Next, we define the predecessor function f : The lexicograph-
ically largest subgraph is its own predecessor. For all other nodes, f is defined
by f(S) := (S \ {v}) ∪ {w} where (v, w) is the lexicographically smallest pair
of numbers such that (S \ {v})∪{w} is connected and lexicographically smaller
than S.

For the correctness, it is necessary to consider an ordering based on depth-
first search instead of an arbitrary ordering [5]. As in the RwD algorithm, we
determine the connected components of G[S \ {v}] by a union-find structure
with path compression and union-by rank and the common neighbors of these
components are computed similarly. The pseudocode of this algorithm can be
found in Algorithm 7.

The original algorithm used DFS to find all solutions for E-CISE. To achieve
the claimed delay it was necessary to distinguish between nodes of odd and
even depth. We implemented this algorithm with BFS. In other words, we use
a queue to store subgraphs that are discovered but not processed . Hence, our
implemented algorithm has a space bound of O(m+n+k|G|), instead of a linear
one.

A Slightly Improved Delay for RwP for small k. For RwP, we obtain an im-
proved delay in the case k < n/2. To this end, we decrease the time which is
needed to determine the predecessor of a solution. In the original RwP algo-
rithm [5] this step needs O(k(∆ + log k) min (n− k, k∆)) time. We show that
this step can be done in O(k2∆) time using the new approach for computing
the common neighborhood of some connected components that we proposed
for RwD.

Proposition 2 The predecessor of a connected order-k subgraph can be deter-
mined in O(k2∆) time.

Proof. Let S be a connected order-k subgraph. To determine the predecessor
of S, we find the vertex u ∈ S with lowest index and the vertex v /∈ S with
highest index such that S \ {u} ∪ {v} is connected as follows: We test for each
vertex w of S in increasing index order whether removing w from S gives the
predecessor. Each time, we do the following: In O(kmin (k,∆)) time we deter-
mine the connected components of G[S \ {w}]. Afterwards, we determine the
common neighborhood N of the connected components in G[S \ {w}] in O(k∆)
time as follows: Compute for each connected C component of G[S \ {w}] the
set of vertices NC that are from V \ S and have at least one neighbor in C.
Then, intersect all of these sets in O(k∆) time; the resulting set is N . Finally,
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Algorithm 7 The RwP algorithm.

1: procedure RwP(G, k)
2: Queue Q := ∅
3: for each connected component C in G do
4: S := lexicographically largest solution in C
5: Q. enqueue(S)
6: while Q 6= ∅ do
7: S := Q.dequeue()
8: output S
9: for vertex v ∈ S do

10: S′ := S \ {v}
11: N := common neighborhood of connected components of S′

12: for vertex w ∈ N do
13: S′′ := S′ ∪ {w} . Now determine predecessor of S′′

14: for vertex u ∈ S′′ according to ascending index sorting do
15: S∗ := S′′ \ {u}
16: M := common neighborhood of connected components

of S∗

17: x := vertex with highest index in M
18: if u = w and x = v then
19: Q. enqueue(S∗ ∪ {x})

pick the vertex u with highest index in N . The set (S ∪ {u}) \ {w} is the pre-
decessor of S. The overall running time is O(k2∆) since we consider at most k
possibilities for w. �

The bottleneck for the delay of RwP is the time spent in the for-loop starting
in Line 9. By Proposition 2, each execution of the predecessor check (Lines 14–
19) takes O(k2∆) time. Moreover, this check is called at most k ·min (n− k, k∆)
times: we consider each vertex in S as a candidate for removal from S and check
the common neighborhood. Overall, we arrive at the following.

Corollary 3 The modified RwP algorithm solves E-CISE for any graph G with
maximum degree ∆ and integer k with polynomial delay O(k3∆ min (n− k, k∆)).

If k ≤ n/2, then min (n− k, k∆) ≥ k. Hence, our modified RwP algorithm
has a better delay than the original RwP algorithm in this case. Consequently,
combining both approaches and choosing one of both algorithms depending on
the value of parameter k leads to the following delay.

Corollary 4 The modified RwP algorithm solves E-CISE for any graph G with
maximum degree ∆ and integer k with polynomial delay O(k2 min (n− k, k∆) ·
min (k∆, (n− k)(∆ + log k))).
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6. Polynomial Delay for Enumerating Connected Subgraphs of Size
at most k

We now consider the problem of enumerating all connected subgraphs of
order at most k.

Bounded Connected Induced Subgraph Enumeration (B-
CISE)
Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected induced subgraphs of order at most k
of G.

Avis and Fukuda described the first algorithm with polynomial delay for B-
CISE. This algorithm is based on reverse search and has a delay of O(nm) [2].
Recently, the RSSP algorithm achieved a delay of O(nc) [1], where nc is the
order of the largest connected component of G, for the special case when k = n,
that is, when there is no size restriction. It is possible to adapt this algorithm
to the case of arbitrary k which gives a delay bound of O(nc + k) for B-CISE.
We omit the details of this adaption and instead proceed to show that by adapt-
ing Simple and Simple-Forward, we obtain algorithms with delay O(k+∆) that
need O(n+m) space.

Theorem 2 Enumerate with Simple or Simple-Forward solves B-CISE for any
graph G with maximum degree ∆ with delay O(k + ∆).

Proof. As shown in Lemmas 4 and 5, Simple and Simple-Forward both spend
O(∆) time at each enumeration tree node before either creating the next child Ti+1

or returning to the parent Ti−1 of the current enumeration tree node Ti.
To achieve the claimed delay bound, we adapt each enumeration algorithm as

follows: Enumerate chooses an arbitrary start vertex v. After the enumeration
of all connected induced subgraphs of order at most k containing vertex v,
vertex v and all incident edges can be deleted in O(∆) time. Furthermore, we
do not use the introduced pruning rules.

We output solutions for B-CISE according to the alternative output rule [17]:
Consider a node Ti in the enumeration tree with subgraph set Pi. If i is odd,
then output Pi when node Ti is created. Otherwise, if i is even, then output Pi

when the algorithm returns to the parent Ti−1 of node Ti. In the following, a
node Ti with i odd is called an odd node. Otherwise, node Ti is called even.

To prove that this adaption leads to a delay of O(k + ∆) for B-CISE,
we bound the time between outputting two consecutive solutions for B-CISE.
Clearly, the first solution of B-CISE is output afterO(1) time, since the vertex v
chosen by Enumerate is a solution. Now, assume we just output a solution for
B-CISE in some node Ti.

Case 1: Node Ti is odd. Then, node Ti was created directly before Pi was
output.

Case 1.1: Node Ti has a further child Ti+1. The algorithm needs O(∆) time
to construct this node. If node Ti+1 has a further child Ti+2, then the algorithm
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constructs this odd node in O(∆) time. Since Ti+2 is odd, the algorithm imme-
diately outputs the corresponding subgraph set Pi+2 in O(k) time. Otherwise,
node Ti+1 has no child and we return in O(∆) time to node Ti. Since Ti+1 is
even, the algorithm then outputs the subgraph set Pi+1 in O(k) time.

Case 1.2: Node Ti has no further child. Hence, the algorithm returns
in O(∆) time to the even node Ti−1. If node Ti−1 has a further child, the algo-
rithm constructs in O(∆) time the next child T ′i which is odd. Hence, subgraph
set P ′i is output in O(k) time directly after the construction of T ′i . Otherwise,
if node Ti−1 has no further child, the algorithm returns to its parent Ti−2 and
since node Ti−1 is even, the subgraph set Pi−1 is then output in O(k) time.

Case 2: Node Ti is even. Then, Pi was output directly before the algorithm
returns to the parent Ti−1 of Ti in O(∆) time.

Case 2.1: Node Ti−1 has a further child T ′i . The algorithm constructs this
node in O(∆) time. If node T ′i has a child, the algorithm computes the first
child T ′i+1 of node T ′i in O(∆) time. Since node T ′i+1 is odd, the algorithm imme-
diately output the subgraph set P ′i+1 in O(k) time. Otherwise, the even node T ′i
has no children, and the algorithm outputs the subgraph set P ′i in O(k) time
directly before returning to Ti−1 .

Case 2.2: Node Ti−1 has no further child. Hence, the algorithm constructs
in O(∆) time its even parent Ti−2. If Ti−2 has a further child, the algorithm
computes in O(∆) time its next child T ′i−1. Since T ′i−1 is odd, the algorithm out-
puts P ′i−1 in O(k) time. Otherwise, node Ti−2 has no further child. Since Ti−2 is
even, the algorithm outputs the subgraph set Pi−2 in O(k) time directly before
returning to Ti−3.

In all cases, the delay between two consecutive outputs of a solution for
B-CISE is O(k + ∆). �

Since ∆ < nc, Simple and Simple-Forward give improved delay bounds for
small k and ∆ while achieving the same delay bound as RSSP in the previously
considered case k = nc.

7. An Experimental Comparison

We now present an experimental comparison of Simple, Pivot, Simple-Forward,
Exgen, Kavosh, RwD, RwP, and BDDE. For a detailed description of Exgen,
Kavosh, and BDDE, refer to the appendix.

7.1. Experimental Setup

We implemented our algorithms2 in Python 3.6.8 using the graph data struc-
ture igraph; the core modules of igraph are written in C.3 Each experiment was
performed on a single thread of an Intel(R) Xeon(R) Silver 4116 CPU with 2.1

2The source code of our implementation is available at https://box.uni-marburg.de/

index.php/s/RGTekb95tTE0CRC
3http://igraph.org/python/
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GHz, 24 CPUs and 128 GB RAM. For the BDDE algorithm, we used NetworkX
(https://networkx.github.io/) as graph library for building the enumeration
tree. This choice is due to the fact that the graph modification operations of
igraph are inefficient. The reported running times include the time needed to
write the output to the hard drive.

As benchmark data set we used 30 sparse social, biological, and technical
networks obtained from the Network Repository [16], KONECT [14], and the
10th DIMACS challenge [3]. We group the real-world instances into three sub-
sets of size 10: small networks with n < 500, medium-size networks with 500 ≤
n < 5000 and large networks with n ≥ 5000. An overview of the instance
properties and names is given in Table 1.

In addition, we performed experiments on random instances generated in
the G(n, p) model where n is the number of vertices and each edge is present
with probability p. We generated one instance for each n ∈ {100, 200, . . . , 1000}
and p ∈ {0.1, 0.2}. For each network, we considered each k ∈ {3, 4, . . . , 10}
and k ∈ {nc − 1, nc − 2, nc − 3}. For each instance, we set a running time
threshold of 10 minutes.

7.2. Implementation Details

To speed up the enumeration for large k for E-CISE, we implemented the
following pruning rule for Exgen, Kavosh, Simple and Simple-Forward : We
store the order of each connected component of G. Let Ti be a node in an
enumeration tree of one of these four algorithms with subgraph set Pi and
set Fi of forbidden vertices. Without loss of generality, assume that the vertices
of Pi are contained in a connected component C of size |C| of G. To avoid some
unnecessary recursions, we check if |C| − |Fi| < k. If yes, we return in Ti to its
parent Ti−1. Now, we prove that this pruning rule is correct.

Lemma 6 Let Ti be a node in an enumeration tree of Exgen, Kavosh, Simple
and Simple-Forward. Let Pi be the corresponding subgraph set in a connected
component C of G and let Fi be the corresponding set of forbidden vertices.
If |C| − |Fi| < k, then no subsequent recursive call in node Ti leads to an
interesting leaf.

Proof. For each subsequent child Tj with forbidden vertex set Fj we have Fi ⊂
Fj . In other words, in node Tj no vertex of Fi can be part of the subgraph set Pi.
Since |C|−|Fi| < k, adding all possible vertices of component C to the subgraph
set does not yield to an induced subgraph of size k. Thus, we can abort this
branch and return to the parent Ti−1 of node Ti. �

In the following we refer to this rule as the k-component rule. This rule does
not improve the delay of these algorithms. We now give some further details on
how we implemented the algorithms.

We implemented Exgen, Kavosh, Simple and Simple-Forward recursively
and iteratively. Preliminary experiments showed that for each k the iterative
variants of the algorithms are at least a factor of two faster compared to the
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Table 1: Networks used for our experiments.

Size Name n m

Small moreno-zebra 27 111
ucidata-zachary 34 78
contiguous-usa 49 107
dolphins 62 159
ca-sandi-auths 86 124
adjnoun adjacency 112 425
arenas-jazz 198 2 742
inf-USAir97 332 2 126
ca-netscience 379 914
bio-celegans 453 2 025

Medium bio-diseasome 516 1 188
soc-wiki-Vote 889 2 914
arenas-email 1 133 5 451
inf-euroroad 1 174 1 417
bio-yeast 1 458 1 948
ca-CSphd 1 882 1 740
soc-hamsterster 2 426 16 630
inf-openflights 2 939 15 677
ca-GrQc 4 158 13 422
inf-power 4 941 6 594

Large soc-advogato 6 541 51 127
bio-dmela 7 393 25 569
ca-HepPh 11 204 117 619
ca-AstroPh 17 903 196 972
soc-brightkite 56 739 212 945
coAuthorsCiteseer 227 320 814 134
coAuthorsDBLP 299 067 977 676
coPapersCiteseer 434 102 16 036 720
soc-twitter-follows 404 719 713 319
coPapersDBLP 540 486 15 245 729

recursive variant. This factor increases for large k. Hence, we only compare the
iterative variants. Furthermore, preliminary experiments showed that Kavosh
outperforms Exgen on almost every instance. Hence, we do not report the
results for Exgen. Each of Kavosh, Simple and Simple-Forward is implemented
with and without the k-component rule, and the corresponding pruning rules.

Enumerate. We did not implement the removal of the vertex v after the call of
Enum-Algo as described in the proof of Lemma 2, because igraph was relatively
inefficient with respect to graph modifications. Instead we assign an index to
every vertex and process the vertices in descending index order. Then, in the
call of Enum-Algo where we enumerate all solutions containing v, we remove all
vertices with higher index than v when constructing the set of neighbors of any
vertex.
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Simple. The set P is implemented as a list. When creating a new node of the
enumeration tree in Simple, we add the new vertex u to this list. When the
algorithm returns to its parent, we remove the vertex u from the list. The
extension set is implemented as described in Lemma 4. We have two additional
arrays. The first array B is used for applying the pruning rule described in
Lemma 3, that is, it is used for implementing the Boolean flag hasIntLeaf.
When we create a new child Ti+1 of a node Ti, the values B[i] and B[i + 1]
are set to 0. If an interesting leaf is detected, each entry of B is set to 1. If a
boring leaf is detected, the last vertex from the subgraph set is removed, until
a node Tj is reached with B[j] = 1. In the second array we store the orders of
the connected components of the graph G to test the k-component rule.

Simple-Forward. We implemented the old variant of Pivot described in Algo-
rithm 3, the adapted variant of Pivot described in Algorithm 4 and Simple-
Forward. For Simple-Forward we implemented the data structures described in
Lemma 5. As in Simple, we have an additional array to store the result of test-
ing the pruning rule and an additional array to store the orders of the connected
components of the graph G to test the k-component rule.

Kavosh. We implemented Kavosh as described in Algorithm 9. To compute
each M ⊆ X for a fixed set X we used itertools. The original implementation
used the revolving door ordering for this step [13, 8] . As in Simple and Simple-
Forward, we have an additional array to store the result of testing the pruning
rule described in Proposition 4 and an additional array to store the orders of
the connected components of the graph G to test the k-component rule.

RwD and RwP. We implemented our versions of RwD and RwP as described
in Section 5.

7.3. Results for E-CISE

In each plot only the fastest variant of Simple, Simple-Forward, and Kavosh
with and without the k-component rule and with and without the corresponding
pruning rule is plotted. The left part of Figure 2 shows the result for k ∈
{3, . . . , 10}. There, only the new versions of RwD and RwP are plotted since
they are roughly 20% faster than the corresponding original algorithms. There
was almost no difference in the running times of Simple with and without the k-
component rule and with and without the pruning rule described in Lemma 3.
Simple without the k-component rule and without the pruning rule was slightly
faster than the other three variants of Simple. For Kavosh we obtained similar
results. All four variants (with and without the k-component rule and with
or without the pruning rule described in Proposition 4) have almost the same
running time, with the plain version of Kavosh without the pruning rule and
without the k-component rule being the fastest. We obtained similar results for
Simple-Forward. To conclude, for small k the plain versions of the algorithms
are the fastest.
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Figure 2: Comparison for E-CISE. Left: Comparison for k ∈ {3, . . . , 10}. Right: Comparison
for k ∈ {nc − 1, nc − 2, nc − 3} where nc is the order of the largest connected component in
the graph.

Table 2: Average running times for E-CISE on instances that are solved by all algorithms for
small k.

Category BDDE Kavosh Simple Simple-Forward
Small 40.9 39.3 37.5 34.2

Medium 91.4 87.7 86.2 78.5
Large 151.3 151.9 153.9 149.4

RwD is five times faster than RwP. Furthermore, all instances solved by RwD
within the time limit of 600 seconds, were solved by the other four algorithms
within 15 seconds. In other words, RwD is 40 times slower than the other four
algorithms. There was almost no difference in the running times for BDDE,
Kavosh, Simple and Simple-Forward. Simple-Forward is slightly faster than
the other three algorithms. Simple solved 130 out of 400 instances, one more
than Simple-Forward. The average running time of a solved instance for each
algorithm in our comparison can be found in Table 2. On average, Simple-
Forward is the fastest algorithm in all three categories. Hence, for small k, one
should use the plain version of Simple-Forward.

The right part of Figure 2 shows the result for k ∈ {nc − 1, nc − 2, nc − 3}
where nc is the order of the largest connected component in the graph. Again,
only the new versions of RwD and RwP are plotted, since they are slightly
faster than the corresponding old versions of the algorithms. Kavosh, Sim-
ple and Simple-Forward without the corresponding pruning rules and without
the k-component rules and BDDE solve only three out of 150 instances. Fur-
thermore, many memory errors occurred in BDDE. This is not surprising since
BDDE stores huge parts of the enumeration tree to copy branches. RwD has
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Figure 3: Comparison for B-CISE for k ∈ {3, . . . , 10}.

no memory errors since the cutoff time of 600 seconds was so small that RwD
only enumerated a few solutions.

Kavosh with the pruning rule and without the k-component rule is much
faster than Kavosh without both rules. We cannot estimate a concrete speed-
up factor since Kavosh without both rules solves only three instances. The
variant of Kavosh with the k-component rule and with the pruning rule is
roughly 30% faster than Kavosh with the k-component rule and without the
pruning rule. Both versions are 20 times faster than Kavosh only with the prun-
ing rule. Kavosh without the pruning rule and with the k-component rule is only
slightly slower than Kavosh with the pruning rule and with the k-component
rule. Simple with the pruning rule and without the k-component rule is much
faster than the plain version. Similar to Kavosh we cannot estimate a speed-up
factor since the plain version solved only very few instances. Simple with the k-
component rule and with the pruning rule is slightly faster than Simple with
the k-component rule and without the pruning rule. Both variants are roughly
30 times faster than Simple only with the pruning rule. We obtained similar
results for Simple-Forward as for Simple. In our experiments the k-component
rule gives a much higher speedup than the corresponding pruning rules since k
was at least nc− 3. To conclude, for large k the versions of the algorithms with
the pruning rule and with the k-component rule are the fastest.

RwD is roughly two times faster than RwP. All instances solved by RwD
are solved by Kavosh in less than two seconds. Simple is roughly three times
faster than Kavosh and Simple-Forward is roughly two times faster than Simple.
Simple-Forward solved 69 out of 150 instances. Hence, for large k, one should
use Simple-Forward with the pruning rule and the k-component rule.
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Table 3: Average running times for B-CISE on instances that are solved by all algorithms for
small k.

Category BDDE Kavosh RSSP Simple Simple-Forward
Small 45.9 45.4 44.6 39.7 44.9

Medium 76.5 75.3 62.4 68.6 70.7
Large 141.6 145.4 159.0 141.7 140.6

7.4. Results for B-CISE

We tested the plain versions of Kavosh, Simple and Simple-Forward for B-
CISE. We compare these three algorithms with BDDE and RSSP [1]. BDDE is
slightly slower than Kavosh, which is slightly slower than RSSP. Simple-Forward
is slightly faster than RSSP and Simple is slightly faster than Simple-Forward.
Overall, Simple is roughly 20% faster than BDDE. Simple solved 129 out of 400
instances. The average running time of a solved instance for each algorithm
in our comparison can be found in Table 3. Simple is the fastest algorithm
for small instances, RSSP is the fastest algorithm for medium instances and
Simple-Forward is the fastest algorithm for large instances. To conclude: To
solve B-CISE one should use Simple since it is overall the fastest algorithm for
this task.

8. Outlook

We have used the implementations of Simple, Simple-Forward, and Kavosh
as the basic enumeration methods in an efficient generic algorithm for fixed-
cardinality optimization problems in graphs [9]. For this application, Simple-
Forward turned out to be the most efficient implementation. Concerning future
work for E-CISE, one goal is to further improve the delay bounds. It seems that
a bound ofO(k∆) is within reach. Moreover, it would be interesting to study the
algorithm of Ferreira [7] from the viewpoint of bounded delay. Since the depth
of the enumeration tree in this algorithm is not bounded by k, one would need a
different analysis to prove delay bounds for this algorithm. A further interesting
route to obtain better enumeration algorithms could be to replace the maximum
degree ∆ by provably smaller parameters such as the degeneracy of the graph.
Finally, it would be interesting to determine systematically whether putting
restrictions on the connected induced subgraphs that shall be enumerated gives
better delay bounds. For example, can we achieve a substantially better delay
bound when we are only interested in enumerating induced paths of length
exactly k?
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Algorithm 8 The Exgen algorithm; the initial call is Exgen({v}, ∅, ∅).
1: procedure Exgen(P, S, F )
2: if |P ∪ S| = k then
3: output P ∪ S
4: return True

5: hasIntLeaf := False

6: p := choose element of P
7: X := N(p) \ (P ∪ S ∪ F )
8: for i from k − |P ∪ S| down to 0 do
9: hasIntLeafi := False

10: for each M ⊆ X such that |M | = i do
11: if Exgen(P ∪M \ {p}, S ∪ {p}, F ∪X = True then
12: hasIntLeafi := True; hasIntLeaf := True;

13: if hasIntLeafi = False then
14: return hasIntLeaf . Stop recursion if no new solution was found

15: return hasIntLeaf

9. Appendix: Pseudocode and Analysis of Further Algorithms In-
cluded in the Experimental Comparison

In this section, we the describe the other algorithms that we include in our
experimental comparison. For Exgen and Kavosh, we provide a pruning rule
that will be useful in the case where k is large. For Kavosh and BDDE, we
provide the the first running time bounds based on Lemma 1. Afterwards, we
describe the RSSP algorithm [1].

9.1. Exgen

The Exgen algorithm is a variant of Pivot. The pseudocode of Exgen (in-
cluding the new pruning rule (Lines 13 and 14)) is shown in Algorithm 8. The
Exgen algorithm was described by Komusiewicz and Sorge [11] since, compared
to Pivot, it was easier to bound the number of recursive calls by the number
of E-CISE solutions. The sets P , S, and F are defined as in Section 4, that
is, P contains the vertices of the subgraph set whose neighbors may still be
added, S contains the other vertices of the subgraph set, and F contains the
vertices which may not be added to the subgraph anymore. In each recursive
call, we choose one pivot vertex p from the set P and determine the set X of its
neighbors which are not in P ∪ S ∪ F . Next, we move the pivot vertex p from
set P to set S, since in the recursive calls of Exgen, no further neighbors of p
may be added to the subgraph. Afterwards, for each subset M of X which has
at most k−|P ∪S| vertices, we call Exgen recursively with M added to the sub-
graph set P (the size bound comes from the fact that we search for subgraphs
of order k only). Note that M = ∅ is a valid choice, since a solution does not
need to contain a neighbor of p.

Next, we introduce a similar pruning rule as we did it for Simple and Pivot.
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To apply the rule, we enumerate all subsets M of the possible neighbors X in
the following way: We start by creating children for subsets of size i := k−|P∪S|.
If none of the children which correspond to these choices for M leads to an
interesting leaf, then we prune the enumeration tree, that is, we return to the
parent of the current enumeration tree node. Otherwise, we decrease the size i
of the subsets M of X that we want to generate by one and continue.

Proposition 3 The pruning rule performed in Lines 13–14 of Algorithm 8 is
correct.

Proof. Consider a node T in the enumeration tree with vertex sets PT , ST ,
and FT and current pivot vertex p. Furthermore, let XT be the set of neighbors
of vertex p which are not in PT ∪ ST ∪ FT . Now assume that for some size m,
for each size-m set M ⊆ XT , the recursive call for PT ∪M does not output
any solution. Now consider a child R of T for which |PR| − |PT | = m − 1
holds, that is, PR is obtained by adding a set MR of size m− 1 to PT . By the
choice of m, there exists some child Q of T obtained by adding MQ to PT such
that MQ\MR = {v} for some vertex v and Q does not lead to an interesting leaf.
Now suppose that R leads to an interesting leaf. Consider a vertex u /∈MR∪PT

that is a leaf of some spanning tree of the corresponding subgraph. Removing u
and adding the vertex v to this subgraph gives a connected subgraph that has
to be enumerated in the enumeration subtree rooted at Q. This contradicts
that Q does not lead to an interesting leaf. Hence, node R cannot lead to an
interesting leaf. Consequently, no child obtained by adding a set M of size m−1
to PT leads to an interesting leaf. By applying this argument inductively, we
have that no child obtained by adding a set M of size smaller than m leads to
an interesting leaf. �

This pruning rule is much weaker since it does not lead to a polynomial delay:
Consider a node T in the enumeration tree. Furthermore, let XT be the set of
possible neighbors, where |XT | ≤ ∆. The first time that we may return to the
parent of T is if no branch for M ⊆ X with |M | = k − |P ∪ S| − 1 leads to
an interesting leaf. There may be Θ(∆k−1) possibilities for choosing M which
is not polynomial if k is not a constant. Nevertheless, the pruning rule proved
very useful in the case of large k.

The following running time bound was observed by Komusiewicz and Sorge [11]
and is stated only for the sake of comparison with the other running time bounds.

Theorem 3 ([11]) Enumerate with Exgen enumerates each connected subgraph
of order at most k exactly once and has a worst-case running time of O((e(∆−
1))k−1 · (∆ + k) · n/k time.

9.2. Kavosh

The next algorithm in our comparison is Kavosh [8]. It was introduced for
the computation of network motifs and is in some sense a mixture of Simple
and Exgen; the pseudocode is shown in Algorithm 9.
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Algorithm 9 The Kavosh algorithm; the initial call is Kavosh({v}, ∅, ∅).
1: procedure Kavosh(P, S, F )
2: if |P ∪ S| = k then
3: output P ∪ S
4: return True

5: hasIntLeaf := False

6: X := N(P ) \ (P ∪ S ∪ F )
7: . Add at least one vertex to the subgraph
8: for i from k − |P ∪ S| down to 1 do
9: hasIntLeafi := False

10: for each M ⊆ X such that |M | = i do
11: if Kavosh(M,S ∪ P, F ∪X) then
12: hasIntLeafi := True; hasIntLeaf := True;

13: if hasIntLeafi = False then
14: return hasIntLeaf . Stop recursion if no new solution was found

15: return hasIntLeaf

In each enumeration tree node, we have the sets P , S, and F as defined in
Pivot and Exgen, that is, P contains the vertices of the subgraph set whose
neighbors may still be added, S contains the other vertices of the subgraph set,
and F contains the vertices which may not be added to the subgraph anymore.
The basic idea of Kavosh is that instead of choosing one pivot vertex, we extend
the subgraph set by creating all possible subsets of the neighborhood of P . In
other words, we now determine the set X of neighbors of P which are not
in P ∪S ∪F . Then, for each non-empty set M ⊆ X of size at most k− |P ∪S|,
we call Kavosh recursively with M being the vertex set whose neighbors are now
considered, P being added to S, and with X being added to F ; in this child
we aim to enumerate those subgraphs extending P ∪ S that contain all vertices
of M and no further vertices of X.

We provide a similar pruning rule for Kavosh as we did it for Exgen. That
is, we create the sets M in decreasing order of size; if for some size M , we do not
obtain interesting leafs for any of the recursive calls, then we return immediately
to the parent of the current enumeration tree node. The proof of correctness of
this pruning rule follows by similar arguments as the proof for Exgen.

Proposition 4 The pruning rule performed in Lines 13–14 of Algorithm 9 is
correct.

Proof. Consider a node T in the enumeration tree with vertex sets PT , ST ,
and FT . Furthermore, let XT be the set of neighbors of PT which are not
in PT ∪ ST ∪ FT . Furthermore, consider some m such that for each subset M
of XT of size m the recursive call of Kavosh(M,PT ∪ ST , FT ∪ XT ) does not
lead to an interesting leaf. We show that any recursive call for a set M ′ ⊆
X of size less than m does not lead to interesting leaves. Let R be a child
of T which was obtained by such a recursive call and assume R leads to an
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interesting leaf. Clearly, node T contains a child L created by the recursive call
Kavosh(M,PT ∪ ST , FT ∪ XT ) where M ′ ( M where |M | = m. Since L does
not lead to an interesting leaf and PR ⊂ PL, SL = SR, and FL = FR we have
that R cannot lead to an interesting leaf. �

As in the case of Exgen, this pruning rule does not make Kavosh a polynomial
delay algorithm for E-CISE. For example, consider the star graph with one
vertex v of degree n− 1 and assume v is added in the root of the enumeration
tree. After trying all subsets of size k − 1 of N(v), the algorithm tries to add
each subset of size k − 2, none of which gives a solution. The number of these
subsets is

(
n−1
k−2
)

which is not polynomial if k is not a constant. Hence, there
is a superpolynomial delay between the output of the last solution and the
termination of the algorithm. Nevertheless, in the experiments, this pruning
rule proved to be critical in the case of large k.

We conclude by bounding the overall running time of Enumerate with Kavosh.

Lemma 7 Enumerate with Kavosh has a worst-case running time of O((e(∆−
1))(k−1) ·∆ · n).

Proof. Enumerate with Kavosh enumerates each connected subgraph of order
at most k exactly once [8]. This implies that for each pair of different nodes T
and Q in the enumeration tree with the respective sets PT , ST , PQ, and SQ we
have that PT ∪ST 6= PQ∪SQ. That is, each enumeration tree node corresponds
to a different connected subgraph of order at most k. According to Lemma 1,
the overall number of nodes in the enumeration trees over all calls to Kavosh
is O((e(∆− 1))(k−1) · (n/k)).

It remains to bound the time per node T in the enumeration tree. Determin-
ing the neighbors XT of the subgraph set PT needs O(k∆) time since |PT | ≤ k
and each vertex has up to ∆ neighbors. For each subset M of XT of size at
most k−|PT∪ST | we make a recursive call with parameters M,PT∪ST , FT∪XT .
The recursive call includes computing the three sets which can be done in O(k∆)
time per call. By charging this running time to the corresponding child in the
enumeration tree, we obtain a running time ofO(k∆) per enumeration tree node.
Outputting a solution needs O(k) time. Hence, we obtain a delay of O(k∆) per
node in the enumeration tree. The overall running time follows. �

9.3. BDDE: Breadth-First Discovery, Depth-First Extension

A further, seemingly more involved, enumeration algorithm in our compar-
ison is BDDE [15]. The pseudocode of BDDE is shown in Algorithm 10. The
idea is to start with a vertex v and to enumerate all subgraphs of order at most k
such that each connected subgraph S that contains v is enumerated before S′

if S ⊆ S′. This algorithm was used to enumerate all connected subsets S such
that f(S) ≥ t for a given function f and a fixed threshold t. In our case of
enumerating all connected subgraphs of order k, f(S) = |S| and t = k.

To enumerate for a given vertex v all connected induced subgraphs of order
at most k containing v in the order of their inclusion relation, the algorithm will
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Algorithm 10 The BDDE algorithm. Here, Tree is the enumeration tree which
is initially empty. The initial call is Depth([ ] , v, [ ]).

1: procedure Depth(P, u, C)
2: X := N(u) \N [P ]
3: P := P ∪ {u}
4: x := Tree.number of vertices
5: Tree. add vertex(x, id = u)
6: . The id of x is the vertex u ∈ V (G) represented by x
7: if |P | = k then
8: output P
9: return −1

10: C ′ := [ ]
11: for y ∈ C do
12: x′ := Breadth(P, y,X)
13: if x′ 6= −1 then
14: Tree. add edge(x, x′)
15: C ′. append(x′)

16: for z ∈ X do
17: x′ := Depth(P, z, C ′)
18: if x′ 6= −1 then
19: Tree. add edge(x, x′)
20: C ′. append(x′)

21: return x

22: procedure Breadth(P, x,X)
23: if Tree. vertex(x)[id] ∈ X then
24: return −1

25: P := P ∪ {Tree. vertex(x)[id]}
26: if |P | := k then
27: output P
28: return −1

29: x′ := Tree.number of vertices
30: Tree. add vertex(x′, id = id(x))
31: for y ∈ Tree. successor(x) do
32: x∗ := Breadth(P, y,X)
33: if x∗ 6= −1 then
34: Tree. add edge(x′, x∗)

35: return x′
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copy parts of the enumeration tree. The algorithm consists of two functions:
Depth to discover new vertices, and Breadth to copy parts of the enumeration
tree.

In the enumeration tree T each node has a label id which represents exactly
one vertex in the graph G and each path from the root to a another node in the
tree represents a connected subgraph in G. Hence, the set of leaves in depth k
corresponds to the set of connected subgraphs of order k. Clearly, the root has
id v. Consider node x with id u in the enumeration tree. The set P is referred
to as the set of ids of the nodes in the enumeration tree which are predecessors
of x. The exclusive neighborhood X(u) := N(u) \ N [P ] is the set of neighbors
of u in the graph G which are neither in P nor neighbors of the vertices in P
and not in the set P .

Clearly, a sibling s of a node t in the enumeration tree has many children
similar to children of t. The algorithm uses this fact as follows: Let r be a child
of s. If r is not an exclusive neighbor of t, copy the subtree which is rooted
at r and call this copy r′. Next, make r′ a child of t. This will be achieved by
the procedure Breadth. Furthermore, procedure Depth will be used to add new
edges and to discover new vertices.

Now, we describe the procedures Depth and Breadth in further detail.
Depth has three parameters: The set P , which is the set of all ids of prede-

cessors of p, the vertex u, which is the actual vertex we consider, and a list C
which stores all successors of nodes representing the last vertex in P . First, we
make a new node x in the enumeration tree with the id u and we create a new
list C ′ for the branches of x. Second, with Breadth we copy the branches stored
in C as new branches of x. If we copy a branch x′ successfully we add an edge
from x to x′ and append x′ to C ′. Third, for each vertex z ∈ X(u) we call
Depth. If we created a branch x′ successfully, we create an edge from x to x′

and append x′ to C ′. In the end we return x.
Breadth has three parameters: The set P is the set of all ids of predecessors

of node x, the node x which is a sibling of the node this function will create, and
the set X is the exclusive neighborhood of the last node in the set P created from
the function Depth. The set X is needed to avoid enumerating some subgraphs
twice. If the id of x is in the set X, we return. Otherwise, we create a new
node x′ which has the same id as node x. Then for each successor y of x in T ,
we call Breadth recursively. If this call returns a node x∗, we make an edge
from x′ to x∗. In the end of this function, we return x′.

Now we bound the running time of BDDE.

Proposition 5 Enumerate with BDDE has a worst-case running time of O((e(∆−
1))k · k ·∆ · n) time.

Proof. It was shown that for two nodes T and S in the enumeration trees of
Enumerate with BDDE the vertex sets PT and PS are different [15, Lemma 5].
In other words, each subgraph of size at most k is enumerated exactly once.

We now bound the running time for each call of the procedures Depth and
Breadth. We start with Depth with parameters P, u, and C. Since each vertex
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has degree at most ∆, the size of the exclusive neighborhood X of u is bounded
by O(∆). By marking each vertex of N [P ] with a color, we can determine the
exclusive neighborhood X in O(∆) time. In each recursive call of Depth, we
enlarge C by at least ∆, the size of X. Hence, there are at most k∆ recursive
calls of Breadth. Each recursive call of Breadth includes computing the new
vertex which can be done in O(∆) time. We charge this running time to the
corresponding child in the enumeration tree. Furthermore, there are at most ∆
calls of Depth. Similar, each recursive call of Depth includes computing the new
vertex which can be done in O(∆) time. Again, we charge this running time to
the corresponding child. Overall, Depth needs O(∆) time to construct the next
child.

Now, we consider Breadth with parameters P, x, and X. Checking existence
of the id of node x in the set X can be done in constant time. Since each vertex in
the graph has degree at most ∆, there are at most ∆ recursive calls for Breadth.
Again, we charge the running time of each recursive call to the corresponding
children. Overall, Breadth needs O(∆) time to construct the next child.

Since each solution can be output in O(k) time, we obtain a running time
of O(k + ∆) per enumeration tree node. The overall running time follows. �

Since the basic idea of BDDE is to start with a vertex v and to enumerate all
connected subgraphs of order at most k such that each connected subgraph S
which contains v is enumerated before S′ if S ⊆ S′, BDDE does not yield a
polynomial delay for E-CISE. For example, consider the case k = n and G is
complete. Then BDDE enumerates each connected induced subgraph of order
less than k, before enumerating the graph G. Clearly, these are exponentially
many.

9.4. RSSP

The last algorithm in our comparison is RSSP [1]. It was introduced to
enumerate all connected induced subgraphs and to mine all maximal cohesive
subgraphs. The pseudocode is shown in Algorithm 11.

Each enumeration tree node Ti consists of a subgraph set P and a set X
of vertices which can be added to P . Fix an ordering on the vertices of V .
For x, y ∈ P , we let dist(x, y) denote the length of a shortest path from x to y
in G[P ]. Let z ∈ P be the vertex with smallest label with respect to the fixed
ordering, and let W ⊆ P be the set of vertices of P which have the longest
shortest path in G[P ] to vertex v. Let u ∈ W be the vertex with maximal
index. The subgraph set of the parent Ti−1 of node Ti is P \{u}. Let w ∈ N(P ).
If dist(z, w) > dist(u,w) or dist(z, w) = dist(u,w) and the index of w is larger
than the index of u, then node Ti has a child with subgraph set P ∪ {w}. To
obtain the children Ti+1 efficiently, all distances to vertex v are stored. Due
to the strict child definition, a vertex x ∈ Xi cannot be a valid candidate to
expand Pi+1. To this end, after adding vertex pi to Pi to obtain Pi+1, all vertices
in Xi are checked if they are still a valid candidate to expand Pi. Because of this
step, a similar pruning rule as introduced for Simple and Pivot is not possible
since the ordering of X changes during the exploration of the enumeration tree.
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Algorithm 11 The RSSP algorithm; the initial call is RSSP({v}, N(v)).

1: procedure RSSP(P,X)
2: s := first vertex of P
3: z := last vertex of P
4: if |P | = k then
5: output P
6: return
7: while X 6= ∅ do
8: u := choose first vertex from X
9: delete u from X

10: remove invalid candidates from X
11: for w ∈ N(u) do
12: if dist(s, w) > dist(s, z) or (dist(s, w) = dist(s, z) and w > z)

then
13: X := X ∪ {w}
14: RSSP(P ∪ {u}, X)

15: return

37


	Introduction
	Preliminaries and Main Algorithm
	Polynomial Delay with Simple
	From Pivot to a Variant of Simple
	Enumeration via Reverse Search
	Reverse Search with Dictionary (RwD)
	Reverse Search with Predecessor (RwP)

	Polynomial Delay for Enumerating Connected Subgraphs of Size at most k
	An Experimental Comparison
	Experimental Setup
	Implementation Details
	Results for E-CISE
	Results for B-CISE

	Outlook
	Appendix: Pseudocode and Analysis of Further Algorithms Included in the Experimental Comparison
	Exgen
	Kavosh
	BDDE: Breadth-First Discovery, Depth-First Extension
	RSSP


