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anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken
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Abstract

During a pandemic, it is crucial to decide whom to vaccinate first to limit the
spread of the virus to a minimum. The Critical Node Problem (CNP)
is applicable for modeling such a situations. The CNP receives a graph and
two integers k and x as input. It is asked whether k vertices can be cut from
the graph such that in the remaining graph at most x pairs of vertices are
connected. In this work, we propose two graph-theoretic problems that can
model pandemics more precisely. In addition to the input of the CNP, the new
problems receive a set of vertices A as input. After the cut only connected pairs
with at least one vertex in A are counted. In one of the new problems, we can cut
vertices of A while this is forbidden in the other. We examine the classification
of these two problems within the framework of complexity theory. We show that
the problems are fixed-parameter tractable with respect to various parameters,
as for example k + x. Furthermore, we show that the problems are W[1]-hard
with regard to several parameters. It is notable that the problem variant in
which vertices of A must not be cut is W[1]-hard with respect to k on bipartite
graphs and split graphs, even if A contains only one vertex.

Zusammenfassung

In Situationen wie Pandemien ist es wichtig zu entscheiden, wer zuerst geimpft
werden soll, um die Verbreitung des Virus auf ein Minimum zu beschränken.
Das Critical Node Problem (CNP) ist für die Modellierung solcher Situ-
ationen geeignet. Das CNP erhält einen Graphen und zwei ganzen Zahlen k
und x als Eingabe. Es wird gefragt, ob k Knoten aus dem Graphen gelöscht wer-
den können, sodass im verbleibenden Graphen höchstens x Paare von Knoten
verbunden sind. In dieser Arbeit schlagen wir zwei graphentheoretische Prob-
leme vor, die Pandemien genauer modellieren können. Zusätzlich zur Eingabe
des CNP erhalten die neuen Probleme eine Menge an Knoten A als Eingabe.
Nach der Löschung werden nur verbundene Paare mit mindestens einem Knoten
aus A gezählt. In einem der neuen Probleme können wir Knoten von A löschen,
während dies im anderen Problem verboten ist. Wir klassifizieren diese bei-
den Probleme im Rahmen der Komplexitätstheorie. Weiterhin zeigen wir, dass
die Probleme in Bezug auf verschiedene Parameter, wie zum Beispiel k + x, in
der Klasse FPT liegen. Außerdem zeigen wir, dass die Probleme in Bezug auf
verschiedene Parameter W[1]-schwer sind. Hervorzuheben ist, dass die Prob-
lemvariante, bei der kein Knoten von A gelöscht werden darf, W[1]-schwer
bezüglich k auf bipartiten Graphen und Split-Graphen ist, selbst wenn A nur
einen Knoten enthält.
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Chapter 1

Introduction

1.1 Motivation for the Critical Node Problem

Diseases are a threat for the well-being of all parts of society. Recently, we
saw the devastating effect of the Covid-19 pandemic on politics, social life, eco-
nomics, and, most importantly, it threatened people’s lives all over the planet.
What worsened the situation was that a vaccination had to be developed over
several month and even afterwards the number of doses was limited. It was
tough for epidemiologists and politicians to decide in which areas people would
have to be vaccinated first, in order to minimize the number of people affected
by the coronavirus [CHBA03, ACEP09, HKKN16, NSB16, VHOB18].

This is one of several scenarios that occur in the world in which graph-
theoretic concepts can not only model the situation, but also point to a suitable
reaction. In a graph, we model objects as vertices and we add a line, which is
called an edge, between two objects that have some sort of relationship. One
aspect we want to focus on is whether it is possible to take out only a few
objects from a scenario so that only a limited number of pairs of the remaining
objects are still connected. In the above example about the Covid-19 outbreak,
geographic areas could be modeled as vertices of the graph and between two
vertices an edge is modeled, if a road connects two geographic areas. The
vertices that we want to search are the geographic areas in which we want to
vaccinate people such that the spread of the disease is limited. In the following,
we will discuss some more scenarios and want to explain why this method could
be desired.

Social networks are an important area of modern social interaction. In a
social network, the members of the network are modeled as vertices, and an
edge exists, if two people know each other. So-called influencers know many
people within the network. Therefore, if influencers leave a social network,
the flow of information in the remaining network is impeded. With the graph
theoretic concept that we want to discuss, the owner of a social network can
find the influencers of their social network to give these influencers benefits
when staying active. Keeping influencers active in a social network is important
for the owner to ensure the networks continued stability – which is important
for better advertisements, predictions of upcoming elections, and, as already
mentioned, prevention of spreading diseases [ACEP09, BC09, AGH16].

1



2 CHAPTER 1. INTRODUCTION

In the modern world, it is unimaginable not to have connection to the in-
ternet for a prolonged time. In order to keep everyone online, a lot of internet
routers have to be operating at the same time. In a communication network,
these routers can be modeled as vertices and, if they are physically connected,
we model an edge between the two vertices. Losing specific routers may result
in the breakdown of the communication network. Therefore, it is important
to compute which routers are most crucial to the network. The set of vertices
that we want to search are the routers that, when taken out of the communica-
tion network, would minimize the remaining network. Thus, when the provider
knows which routers are crucial, these routers can be reinforced to strengthen
the network against attacks and physical failure [CHBA03, BC09, DSGL12,
NSB16, VHOB18].

Special networks with high priority for security agencies are terrorist net-
works. Within a terrorist network, terrorists can be modeled as vertices and
those who know each other as edge. Since catching terrorists and keeping them
in prisons is very expensive and can sometimes even cause political tension, only
a limited number of terrorists can be caught. With knowledge of the network,
we can compute the set of vertices that is the optimal group of terrorists to be
targeted so that the network as a whole will have less impact [ACEP09].

Another application of graph-theoretic concepts lies in understanding med-
ical drug design, especially protein-protein interactions. In this scenario, pro-
teins are modeled as vertices. If proteins are interacting, we model an edge
between them. In drug design, it is useful to understand which proteins should
be treated to have a certain desired biological effect. Knowing the most impor-
tant proteins may provide medics with a clue about how to proceed with the
treatment [BC09, VHOB18].

Finally, we want to mention the field of transportation engineering. Since
the difference between roads, rails, conveyor belts, rivers, and so on is marginal
in this case, we will only describe how to model transportation over railroads.
In this scenario, every switch and station is modeled as vertex. If there is a
rail between either switches or stations, we add an edge to the graph. For
transportation of goods, it is essential to not run into a shortage because an
important switch or station broke down. The set of vertices that we want
to compute are some switches and stations that have the capability to break
down the transportation system. For reasons of maintenance, these critical
switches and stations are to be checked for robustness and may be reinforced in
a higher frequence. Therefore, passengers can travel and goods can be delivered
as planned. Having an intact rail system is also important for emergency and
rescue concepts [ACEP09, BC09, NSB16].

One well-studied graph-theoretic problem that can model all of these sce-
narios is the Critical Node Problem (CNP). The problem receives a simple
undirected graph as input for which we ask, if it is possible to delete a small
node set C, called critical node cut, in order to minimize the number of pairs
of vertices which are connected in the remaining graph. Two vertices v0 and vt
are connected in a graph G, if vertices v1, . . . , vt−1 exists such that {vi, vi+1} is
an edge of G for every i < t. The vertex set C in the above problems would be
the areas to be vaccinated, a set of influencers to put more focus on, routers to
be reinforced, terrorists to be caught or the stations and switches to receive the
most attention for maintenance.
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Since the importance of the CNP has now been explained sufficiently, a
formal definition is in order:

Critical Node Problem (CNP)
Input: A graph G = (V,E), and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k

such that G− C has at most x connected pairs
of vertices?

Introduction of Vulnerable Vertices In some situations, the model of the
CNP is not sufficient. Take as an example the Covid-19 pandemic in 2020. In
the following, we present a situation that is not necessarily medically correct,
but exhibits some similarities to reality. We suppose that the virus is only
deadly to a part of the population, such as elderly people, and the rest of the
population can spread the virus, but are not effected by it themselves. In order
to adjust the model to that situation, we consider a subset of the population for
which the connections have to be minimized and we do not care about how many
connections the rest of the population has. As the production and distributions
of vaccinations took some time, it was only possible to vaccinate few people.
Thus, it was not easy to decide who was allowed to be vaccinated. We model
every person as vertex and people who are in contact with each other as edges.
Elderly people are the subset of people whose connections should be minimized.
The question is who should be vaccinated in order to minimize the number of
elderly people who die from Covid-19, for a given number of doses.

In the following, consider a simple undirected graph G = (V,E) and a subset
of the vertices A ⊆ V . We call the vertices of the set A vulnerable. In the
situation we have described, A is the set of elderly people.

In the above scenario, we have several options to formulate a new prob-
lem. We can allow that vertices of A are added to a critical node cut, or we
can restrict vulnerable vertices to not be added to a critical node cut. If some
elderly people have a lot of social contacts and we assume that the vaccines do
not have a side-effect for endangered people, vaccinating at least some of these
elderly people could bring the desired effect of removing a lot of danger.

In the following we define connectivity of a graph G as the number of con-
nected pairs of vertices in G with at least one node in A.

The graph problem variant for the prevention of Covid-19 that we have
described above can be defined as follows:

Critical Node Problem with Vulnerable
Nodes (CNP-V)
Input: A graph G = (V,E), A ⊆ V , and two inte-

gers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such

that the connectivity of G− C is at most x?

Informally, the goal in this problem is to detect a small subset C that is removed
so that there is a minimal number of connections left which lead to a node in A.

We will now describe another scenario. Imagine that the elderly people to
whom Covid-19 is the most dangerous might have bad side-effects after the
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vaccination. Thus, we can not vaccinate elderly people and, in consequence,
the subsets C and A have to be disjoint. It follows that C has to be picked
from V \A. The problem is defined as follows:

Critical Node Problem with Non-Deletable Vulnera-
ble Nodes (CNP-NDV)
Input: A graph G = (V,E), A ⊆ V , and two inte-

gers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \A of size at most k

such that the connectivity of G−C is at most x?

For both problems, we demand the set A to be given as input in the form
of a list or similar structure. We add to all vertices v a Boolean constant c
to indicate whether v is vulnerable. Then, we can iterate over A once and
set c true for every vulnerable vertex. This requires O(|A|) time. Afterwards,
we can iterate over A in linear time and check whether a vertex v is vulnerable
in constant time.

In the rest of the thesis, we will examine CNP-V and CNP-NDV within
the framework of parameterized complexity.

1.2 Related Work

In recent years, a lot of research has been done about the Critical Node
Problem. We want to give an overview of the research and focus it on pa-
rameterized complexity, since we deal with parameterized complexity in this
thesis.

It has been shown by Arulselvan et al. [ACEP09] that CNP is NP-complete,
as they gave a reduction from Vertex Cover to CNP.

Hermelin et al. [HKKN16] proved that, for several parameters, CNP is fixed-
parameter tractable and admits polynomial size kernelizations. The considered
parameters are the maximum number of deleted nodes k, the number of remain-
ing connected pairs x, the number of pairs to delete y, and the treewidth ω of the
input graph. The main results of their paper are that CNP is W[1]-hard with
respect to the single parameters k, x, and ω, and that CNP is fixed-parameter
tractable with respect to the parameters y, k+x, k+ω, and x+ω. They showed
that CNP is W[1]-hard with respect to k by reducing from Clique. To show
that CNP is W[1]-hard with respect to ω, they reduced from W[1]-complete
Multicolored Clique. As CNP with parameter x = 0 is the NP-complete
problem Vertex Cover, we know that CNP is para-NP-hard with respect to
the parameter x. Also, they showed that there is little hope that CNP could
admit a kernelization of polynomial size with respect to x+ ω, or k + y + ω.

Addis et al. [ADSG13] showed that a weighted version of CNP (from now on
called node-weighted CNP), where every vertex has a non-negative weight
and a critical node cut can contain a certain weight at most, is NP-hard on split
graphs, on bipartite graphs, and on complements of bipartite graphs. They also
showed that the node-weighted CNP can be solved in polynomial time on
the family of graphs that have treewidth bounded by a given constant.

Di Summa et al. [DSGL11] showed that the node-weighted CNP is solv-
able in polynomial time on trees. Also, they showed that the problem is
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NP-complete, if every connected pair of vertices has a certain weight and a
certain budget can not be exceeded in the remaining graph (from now on we
call this version connection-weighted CNP). These results have been im-
proved by Lalou et al. [LTK16]. They showed that a related problem 3C-CNP
can be solved in linear time on trees. Furthermore, Lalou et al. [LTK16] showed
that 3C-CNP can be solved on proper interval graphs in polynomial time.

Guan et al. [GLZ21] showed that CNP can be solved in polynomial time on
trees, if the biggest component contains at most c vertices where c is a constant.

The CNP has also been researched within the field of integer linear program-
ming [ACEP09, BC09, DSGL12, NSB16, VHOB18]. In order to solve integer
linear programming faster, Di Summa et al. [DSGL12] introduced additional in-
equalities which can be applied correctly for special appearances of some parts
of the graph which are for example cliques and cycles. For a related version
of the problem, Ventresca et al. [VHOB18] considered that, for a bi-objective
problem definition, an idea is aiming to split the graph into as many connected
components as possible while having a low variance in their cardinalities.

Heuristic algorithms have been presented for CNP [ACEP09, BC09, ZH17,
AGH16]. Arulselvan et al. [ACEP09] have proposed an efficient combinatorial
heuristic for the CNP. Zhou and Hao [ZH17] proposed a heuristic for which they
showed empirically that their algorithm is highly competitive with the state of
the art results. Aringhieri et al. [AGH16] provided an evolutionary algorithm.
Their algorithm ran in ten of sixteen common instances in the best known time.

Ventresca and Aleman [VA14] introduced a randomized rounding-based ap-
proximation algorithm which achieves an approximationratio within constant
bounds.

Nabli et al. [NCH20] described several versions of the Critical Node
Problem, which are closer to a two-player game, where an attacker tries to
infect as many vertices as possible and a defender tries to vaccinate vertices
in a manner that the fewest number of vertices are infected in the end. They
showed for which versions the problem the problem is NP-complete or on a
higher level of the polynomial hierarchy.

1.3 Preliminaries

In this section, we provide the basic graph-theoretic concepts, the basic concepts
of the complexity theory, and of some problem definitions used in the rest of
this thesis. We define [`, t] := {i ∈ N | ` ≤ i ≤ t}.

For every object that we define with a graph as subscript, we do not write
the subscript, if the context makes clear which graph we refer to.

1.3.1 Graph Theory

Graphs A graph G = (V,E) consists of a set of vertices V and a set of
edges E. Each edge e ∈ E is a set of two distinct vertices and exists at most
once per pair. We use the notation V (G) for the set of vertices of G and the no-
tation E(G) for the set of edges of G. We define nG := |V (G)|, mG := |E(G)|.
For vertices v, w ∈ V an edge {v, w} ∈ E is incident with v and w and the
vertices v and w are adjacent. For a given subset of the vertices V ′ ⊆ V we
denote the induced subgraph by G[V ′] = (V ′, E′) where the edges of G[V ′]
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are E′ := {{u, v} ∈ E(G) | u, v ∈ V ′}. For a subset W ⊆ V , we define G−W as
the induced subgraph G[V \W ]. For two graphs G and H we call the graph H
isomorphic to G, if a bijection f : V (G) → V (H) exists such that {u, v} is
an edge of G, if and only if {f(u), f(v)} is an edge of H. If H is isomor-
phic to an induced subgraph of G, we say that G contains H. A path P ` of
length ` with ` ≥ 2 is the graph with ` vertices V := {v1, . . . , v`} and edges
set E := {{vi, vi+1} | i ∈ [1, ` − 1]}. Two vertices u, v ∈ V are connected, if G
contains a path P and u, v ∈ V (P ). A graph G = (V,E) is connected, if every
two vertices u, v ∈ V are connected. A connected component C = (V ′, E′) of
size ` of a graph G = (V,E) is a connected induced subgraph of G and for an
edge {u, v} ∈ E(G) follows u, v ∈ V ′ or u, v 6∈ V ′. A vertex v ∈ V is called uni-
versal, if {v, w} is an edge for every w ∈ V \ {v}.

Structure of Graphs For any vertex u, the degree of u is the num-
ber deg(u) := |{{u, u′} ∈ E | u′ ∈ V }|. The maximum vertex degree of a
graph is defined as ∆ := max{deg(u) | u ∈ V }. Two edges e1, e2 are adja-
cent, if there is a vertex v ∈ V such that v is incident with e1 and e2. For
two vertices v, w ∈ V of a graph G, the distance d(v, w) is the smallest inte-
ger d such that G contains a path of length d in which v and w are the two
vertices with degree 1. If v and w are not connected, we define d(v, w) = ∞.
The diameter diam of a connected graph G = (V,E) is the largest integer such
that vertices v, w ∈ V exist with distance diam. For a graph G that is not
connected, we define diam =∞.

If {u, v} ∈ E is an edge, we call u a neighbor of v. For a set of vertices S,
the open neighborhood of S is the set of vertices NG(S) that contains all vertices
that are a neighbor of at least one vertex of S in the graph G that are not
contained in S. The closed neighborhood of S is NG[S] := NG(S) ∪ S. For a
vertex v ∈ V , we write NG(v) for NG({v}) and NG[v] for NG(v) ∪ {v}. The
`-neighborhood of S is the set of vertices N `

G[S] that contains all vertices v ∈ V
for which the distance to some vertex u ∈ S is at most `.

Notation for vulnerable vertices A vertex v ∈ A is called vulnerable and
a vertex w 6∈ A is called non-vulnerable. If two vertices d ∈ A and v ∈ V are
connected in a graph G, we say that {d, v} is a vulnerable connection in G.
For a graph G, by the connectivity of G, we denote the number of vulnerable
connections in G. A trivial connected component is a connected component
of G that does not contain any vulnerable vertex or has a size 1. In instances
of CNP-NDV, connected components that do not contain a non-vulnerable
vertex are also trivial connected components.

Graph Classes A clique K` with ` vertices is the graph G = (V,E) with ` ver-
tices V := {v1, . . . , v`} which are pairwise adjacent. An independent set
with ` vertices is the graph G = (V,E) with ` vertices and no edges. A cy-
cle C` of length ` is the graph G = (V,E) with vertices V := {v1, . . . , v`} such
that the set of edges is E := {{v1, v`}} ∪ {{vi, vi+1} | i ∈ [1, `]}. A q-star with
center u is the graph G = (V,E) with q + 1 vertices V := {u, v1, . . . , vq} and
the set of edges E := {{u, vi} | 1 ≤ i ≤ q}. A tree with root w is a connected
graph T = (V,E) with a root w ∈ V which does not contain a cycle C` for ` > 2.
The height h of a vertex v ∈ V is the distance from w to v. A neighbor u of v ∈ V
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is called the parent of v, if the height of u is smaller than v. A neighbor u of v ∈ V
is called a child of u, if the height of u is greater than v. A vertex v ∈ V that
is not the root of the tree is a leaf, if v has degree 1. The subtree st(T, v) is the
graph T , if v = w. Otherwise, st(T, v) is the connected component of v in the
graph T−{u}, where u is the parent of v. A forest is a graph G in which all con-
nected components are trees. A planar graph can be drawn in in the Euclidean
plane such that no edges are crossing. A graph G = (V,E) is bipartite with
vertex bipartition (V1, V2), if V1 ∪̇V2 = V and E(G) ⊆ {{v, w} | v ∈ V1, w ∈ V2}.
A complete bipartite graph Kk,` describes the bipartite graph G = (V,E) with
vertex bipartition (V1, V2) where |V1| = k, |V2| = `, and vertices of V1 and V2
are pairwise connected.

For further introduction to graph-theoretic concepts we refer to Diestel [Die17].

1.3.2 Complexity Theory

A language L is a subset of Σ∗ where Σ is a finite alphabet. Every
language L defines a binary decision problem PL : Σ∗ → {true, false}
by P (x) := true, if and only if x ∈ L. We call x a yes-instance of PL, if x ∈ L.
Let F,G : Σ∗ → {true, false} be two binary decision problems. A polynomial-
time reduction h : Σ∗ → Σ∗ is a computable function that for every x ∈ Σ∗

computes the result h(x) in running-time polynomial in |x| such that x is a
yes-instance of F , if and only if h(x) is a yes-instance of G.

P and NP are two classes of binary decision problems. A binary deci-
sion problem T is in P, if an algorithm A : Σ∗ → {true, false} exists so
that for every x ∈ Σ∗ the algorithm A has a running-time polynomial in |x|
and it is T (x) = A(x). A binary decision problem T is in NP, if an algor-
ithm A : Σ∗×Σ∗ → {true, false} and a polynomial p : N→ N exist such that
for every x ∈ Σ∗ the running-time of A is polynomial in |x| and T (x) = true, if
and only if a value u ∈ Σ∗ exists such that |u| ≤ p(|x|) and A(x, u) = true. We
call u a certificate for x with respect to T and A. Therefore, it follows P ⊆ NP.
It is assumed that NP 6= P and some problems which are in NP are therefore
assumed not to be in P. A binary decision problem T is called NP-hard, if for
every binary decision problem S ∈ NP a polynomial-time reduction h : S → T
exists. A problem T is called NP-complete, if T is NP-hard and T is in NP.

1.3.3 Parameterized Complexity

Fixed-Parameter Tractability A parameterized language L for the para-
meter λ is a subset of Σ∗ × N. A parameterized language L for the para-
meter λ induces a parameterized problem P for the parameter λ as
a mapping of P : Σ∗ × N → {true, false} where P ((I, k)) := ((I, k) ∈ L).
We call I an input, k a parameter and (I, k) an instance of P . We call (I, k) a
yes-instance of P , if (I, k) ∈ L, and a no-instance otherwise. For an
algorithm M : Σ∗ × N → {true, false}, we say M returns yes on (I, k),
if M((I, k)) = true, and otherwise we say M returns no on (I, k). In the
rest of this thesis we briefly write problem for a paramerized problem. A para-
meterized problem P : Σ∗ × N → {true, false} for the parameter λ
is called fixed-parameter tractable with respect to λ, if a deterministic algo-
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rithm A : Σ∗ × N → {true, false}, a computable function f : N → N,
and a constant c exist such that the algorithm A returns yes on an
instance (I, k) ∈ Σ∗ × N, if and only if P ((I, k)) = true and A has a run-
ning time bounded by f(k) · |(I, k)|c. The algorithm A is called fixed-parameter
algorithm. The complexity class containing all fixed-parameter tractable prob-
lems is called FPT.

Slice-wise polynomial A parameterized problem P : Σ∗×N→ {true, false}
for the parameter λ is called slice-wise polynomial with respect to the parame-
ter λ, if an algorithm A and two computable functions f, g : N→ N exist such
that the algorithm A on an instance (I, k) ∈ Σ∗ × N returns yes, if and only
if P ((I, k)) = true and A has a running time time bounded by f(k) · |(I, k)|g(k).
The complexity class containing all slice-wise polynomial problems is called XP.

para-NP-hardness We call a parameterized problem P for the parameter λ
para-NP-hard with respect to the parameter λ, if the binary decision
problem Pc : Σ∗ → {true, false}, Pc(I) 7→ P (I, c) is NP-hard for some con-
stant c ∈ N.

Branching Rule For a problem P : Σ∗ × N → {true, false} a computable
function f : Σ∗ × N → (Σ∗ × N)t is called a branching rule, if f maps ((I, k))
to ((I1, k1), . . . , (It, kt)) where (Ii, ki) is an instance of P for every i ∈ [1, t]. A
branching rule is called correct, if (I, k) is a yes-instance of P , if and only if
an i ∈ [1, t] exists such that (Ii, ki) is a yes-instance of P . Applying branching
rules builds up a search tree where the cumulative number of inputs is called
the size of the search tree.

Parameterized reduction Let A,B : Σ∗ × N → {true, false} be two
parameterized problems. A parameterized reduction from A to B is an algo-
rithm A that, given an instance (I, k) of A, outputs an instance (I ′, k′) of B
such that

1. (I, k) is a yes-instance of A if and only if (I ′, k′) is a yes-instance of B

2. k′ ≤ g(k) for some computable function g, and

3. the running time of A is bounded by f(k)·|x|c for a computable function f
and some constant c ∈ N.

W[1]-hardness We call a parameterized problem P for the parameter λ
W[1]-hard with respect to λ, if a W[1]-hard problem Q for the parameter µ
and a parameterized reduction from Q to P exist. It is assumed that when a
parameterized problem P is W[1]-hard with respect to parameter λ that P is
not fixed-parameter tractable with respect to the parameter λ.

Kernelization Given a parameterized problem P : Σ∗ × N→ {true, false}
for the parameter λ, an algorithm A : Σ∗×N→ Σ∗×N is called kernelization for
the parameter λ, if for every instance (J, k) of P the algorithm A computes an
equivalent instance (J ′, k′) with |J ′|+k′ ≤ f(k) for some computable function f
and A has a polynomial running time. If the function f is a polynomial, we say
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that P admits a kernelization of polynomial size. A parameterized problem P
for the parameter λ admits a kernelization for the parameter λ, if and only
if P is fixed-parameter tractable with respect to λ [CFK+15].

For a problem P , a computable function f : Σ∗ × N → Σ∗ × N is called
a reduction rule, if f((I, k)) = (I ′, k′) where (I ′, k′) is an instance of P . A
reduction rule is called safe, if (I, k) is a yes-instance of P if and only if (I ′, k′)
is a yes-instance of P .

For further introduction to complexity theory and parameterized complexity we
refer to Cygan et al. [CFK+15] and Niedermeier [Nie06].

1.4 Results

1.4.1 Known Results

Notice that CNP is the special case of CNP-V with A = V . In this subsection,
we summarize hardness results that exist for CNP and are therefore correct
for CNP-V. Hermelin et al. [HKKN16] showed that CNP is W[1]-hard with
respect to the single parameters solution size k and treewidth ω. As CNP
with x = 0 is the NP-hard Vertex Cover problem, CNP is para-NP-hard
with respect to the parameter x. Unless coNP ⊆ NP/poly, the problem CNP
has no kernelization of polynomial size for the parameters x+ ω and k+ y+ ω.

It has been shown by Hermelin et al. [HKKN16] that, if a graph G has no
isolated vertices, then x + y ∈ Ω(n). If we remove all trivial connected com-
ponents from a graph, the same is true for CNP-V and CNP-NDV. Thus,
CNP-V and CNP-NDV are fixed-parameter tractable with respect to the pa-
rameter x+ y.

1.4.2 Our Results

To the best of our knowledge, we are the first to examine the Critical Node
Problem with vulnerable vertices. For an overview of all parameters considered
in the work, we refer to Table 1.1. Table 1.2 briefly depicts our results.

The parameter |A| and the dual parameter |V \A|. CNP-NDV is
W[1]-hard on bipartite graphs with respect to the parameter n + k + y, even
if |A| = 1 (Theorem 4.1). Also, CNP-NDV is W[1]-hard with respect to the
parameter x, even if |A| = 1 (Theorem 4.5). Thus, CNP-NDV is para-NP-hard
with respect to the parameter |A|. Furthermore, we show that CNP-V is fixed-
parameter tractable with respect to the parameter |A| + x, and CNP-NDV is
fixed-parameter tractable with respect to the parameters |A| + x + ∆ and the
number of non-vulnerable vertices |V \ A|. CNP-NDV admits a kernelization
with O(|V \A| ·

√
x) vertices (Theorem 5.6).

The neighborhood-diversity nd and the vertex cover number vc. We
prove that CNP-V and CNP-NDV are fixed-parameter tractable with re-
spect to the neighborhood-diversity nd (Corollary 3.13) and the vertex cover
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Table 1.1: All parameters that we consider in this work.

Parameter Meaning
|A| Number of vulnerable vertices
|V \A| Number of non-vulnerable vertices
nd Neighborhood-diversity
vc Vertex cover number
n Size of the neighborhood of A
p Number of vulnerable connections
k Maximum size of the vertex cover
x Maximal number of vulnerable connections

that can remain in the graph
y Number of vulnerable connections to be deleted
∆ Maximum vertex degree
diam Diameter of the graph

number vc (Corollary 3.14). CNP-V and CNP-NDV admit a kernelization
with O(nd · (k + x)) vertices (Theorem 5.14). CNP-V admits a kernelization
with less than (|A|+2 ·vc) · (k+x+3) vertices (Corollary 5.21) and CNP-NDV
admits a kernelization with less than 2 · vc ·(k+x+3) vertices (Corollary 5.22).

The parameter k + x and the parameter y. We prove that CNP-V
and CNP-NDV are fixed-parameter tractable with respect to the parame-
ters k+x and y. We put special focus on the parameter k+x by presenting one
algorithm for CNP-NDV (Theorem 3.3) and two algorithms for CNP-V (The-
orem 3.5 and 3.8), as k and x are explicitly given with the input and k + x is
therefore a natural parametrization. Because CNP is a special case of CNP-V,
it is somewhat surprising that the fixed-parameter algorithms for CNP-V with
respect to k + x and y with running-time O(3k+x · (n + m)) or respectively
with running-time O(2y · y2 · n) (Theorem 3.15) are as fast as the (to the best
of our knowledge) best currently known fixed-parameter algorithms for CNP
with the same paramtrization; the fixed-parameter algorithm with running-
time O(2k+x · (n+m)) for CNP-NDV is even faster.

Results on specific graph classes. We show that CNP-V and CNP-NDV
are solvable within polynomial time on forests (Corollary 2.17). Furthermore, in
Theorem 2.28, we show that CNP-V can be solved in linear time, if the biggest
non-trivial connected component of the input graph contains at most four ver-
tices. We also present a linear-time algorithm (without correctness proof) for
solving CNP-NDV on the same instances as well. CNP-NDV is NP-hard
on planar graphs, even if the maximum vertex degree is four (Theorem 2.11)
and CNP-NDV is W[1]-hard with respect to the parameter k + y on split
graphs, even if there is only one vulnerable vertex (Corollary 4.3). Further-
more, CNP-V is W[1]-hard with respect to the parameter k, even on bipartite
graphs (Corollary 4.4).
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Table 1.2: This table shows with respect to which parameters CNP-V
or CNP-NDV are fixed-parameter tractable.

Parameter CNP-V CNP-NDV

|A| XP (Cor 3.19)
W[1]-hard (Thm 4.5)|A|+ x

FPT (Cor 3.9)|A|+ x+ ∆ FPT (Thm 4.7)

|V \A|
para-NP-hard (Thm 2.12)

FPT (Thm 3.16)
|V \A|+ x

poly kernel (Thm 5.6)|V \A|+ n+ x+ ∆

nd FPT (Cor 3.13) FPT (Cor 3.13)
nd + k + x poly kernel (Thm 5.14) poly kernel (Thm 5.14)

vc
FPT (Cor 3.14)

FPT (Cor 3.14)
vc + k + x poly kernel (Cor 5.22)
|A|+ vc + x poly kernel (Cor 5.21) FPT

n para-NP-hard (Thm 2.12)
XP (Cor 3.17)

W[1]-hard (Thm 4.1)
n+ k + y FPT (Cor 3.15)
n+ x+ ∆ FPT (Cor 4.6) FPT (Thm 4.7)

k
W[1]-hard (Cor 4.4) W[1]-hard (Thm 4.1)
XP (Lem 3.18) XP (Cor 3.17)

k + x FPT (Cor 3.6, 3.8) FPT (Cor 3.4)
k + y FPT (Cor 3.15) W[1]-hard (Cor 4.3)

x para-NP-hard (Thm 2.12)
W[1]-hard (Thm 4.5)
XP (Cor 4.8)

y
FPT (Cor 3.15) W[1]-hard
No poly kernel [HKKN16] XP (Cor 3.17)

p FPT (Cor 3.10) FPT (Cor 3.10)

∆ para-NP-hard (Thm 2.12) para-NP-hard (Thm 2.11)

diam para-NP-hard (Lem 2.13) para-NP-hard (Lem 2.13)
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1.5 Some Relevant Graph Problems

In this section, we give an overview over decision problems that we refer to in
the rest of the work.

Clique
Input: A graph G = (V,E), an integer ` ∈ N.
Question: Is there a vertex set C ⊆ V of size ` such

that G[C] is a clique?

Independent Set
Input: A graph G = (V,E) , an integer ` ∈ N.
Question: Is there a vertex set I ⊆ V of size ` such

that G[I] is an independent set?

Vertex Cover
Input: A graph G = (V,E), an integer ` ∈ N.
Question: Is there a vertex set I ⊆ V of size ` such that

the graph G− I does not contain an edge?

These three graph-decision problems are classic problems and were shown to be
NP-hard by Richard Karp [Kar72]. The problems Clique and Independent
Set are W[1]-hard with respect to the solution size ` [CFK+15].

Except for these classic graph decision problems, we will also refer to the
following problem several times:

Cutting at Most k Vertices with Terminal
Input: A graph G = (V,E), a terminal s ∈ V and inte-

gers k ≥ 1, t ≥ 0.
Question: Is there a non-empty set X ⊆ V of size at

most X such that s ∈ X such that the neigh-
borhood of X contains at most t vertices?

Fomin et al. [FGK13] showed, that Cutting at Most k Vertices with
Terminal is NP-hard and W[1]-hard with respect to the parameters k and t.



Chapter 2

Basic Observations

In the first section of this chapter we introduce parameters that we study in the
rest of this work. Furthermore, we show dependencies between the parameters.
Because CNP is NP-hard [ACEP09] and CNP is the special case of CNP-V
with A = V we already know that CNP-V is NP-hard. A priori, this is not clear
for CNP-NDV. In the second section of this chapter we show that CNP-NDV
is NP-hard, even if the maximum vertex degree is 4 and the input graph is a
planar graph. In the last section of this chapter, we provide some polynomial-
time algorithms to solve CNP-V and CNP-NDV in special cases, for example
forests.

2.1 Interesting Parameters

In this section we present the parameters that we study in this work. These
parameters can be categorized in parameters that are based on the structure
of the input graph and parameters that are given by the problem definition.
In the second subsection, we show that the parameters we consider are not
redundant by showing that the parameters are independent or whether there
are dependencies.

2.1.1 Overview of Parameters

We start to give an overview over parameters that are given by the problem defi-
nition. A natural parameter arising from the problem definition is the size of the
set of vulnerable vertices |A|. We also consider the dual parameter |V \A| that
is the number of non-vulnerable vertices. Another parameter that comes with
the vulnerable nodes is n := |N(A)| which is the size of the neighborhood of A.
Additionally, three parameters that we consider have already been presented
by Hermelin et al. [HKKN16] in their paper about parameterized complexity
of CNP: the maximum size of a critical node cut k, the number of remaining
vulnerable connections x, the number of vulnerable connections to delete y.

Observe, that in CNP-V and CNP-NDV we define the parameters x and y
with regard to vulnerable connections, while in CNP both parameters were only
dependent on vertices and edges of the graph, as all vertices are vulnerable.
Especially, if a connected graph contains n vertices then unlike in CNP the

13
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equation y =

(
n
2

)
−x does not hold in CNP-V and CNP-NDV, unless A = V

and x ≤ n(n − 1). Thus, we define the number p of vulnerable connections of
an input graph G, p := |{{u, v} | u ∈ A and v ∈ A are connected}|. Then we
have y := max{0, p− x}.

We also consider structural parameters. These parameters include the vertex
cover number vc, the diameter diam of the graph and the maximum vertex
degree ∆. For the relation ∼ on vertices of V with u ∼ v : ⇐⇒ N [u] = N [v]
or N(u) = N(v) we define the neighborhood-diversity nd of a graph G as the
number of equivalence-classes nd := |{[u]∼ | u ∈ V }|. An equivalence-class given
by ∼ is called a neighborhood-class. A neighborhood-class that is an independent
set is called a critical independent set and a neighborhood-class that is a clique is
called a critical clique. The parameter neighborhood-diversity nd is a structural
parameter, which was introduced by Michael Lampis [Lam12].

Summarizing, all parameters that we consider in this work are the parame-
ters that arise from the problem definition |A|, |V \ A|, n, p, k, x, and y and the
problems that are defined by the structure of the input graph alone nd, vc,∆,
and diam. All parameters are listed in Table 1.1.

2.1.2 Dependencies of Parameters

In this subsection we show whether two parameters bounded by each other, or
whether they are independent. A similar work has been done by Sorge and
Weller [SW13]. For sake of completeness we prove the dependencies between all
pairwise combinations of the parameters considered in this work. Let λ1 and λ2
be two parameters. We call λ1 bounded in λ2, if a computable function f exists
such that λ1 ≤ f(λ2) in every instance. We call λ1 independent from λ2, if λ1
is not bounded in λ2 and λ2 is not bounded in λ1.

In order to show the parameters used in this work are not redundant, we
show for every pair of parameters λ1 and λ2 studied in this work, that if λ1 is
bounded in λ2, then λ2 is not bounded in λ1. Observe, that every structural
parameter λ1 is independent from every parameter λ2 that is specific from the
problem definition, as we can adjust the input graph such that one parameter
can be held on the same size while the other is not. However, at the end of
the subsection we also consider some instances that are trivially solvable, if
parameters have a certain size in comparison to another.

We observe that the parameters k and x can be chosen independently from
the input graph. Hence, they are independent from all other parameters. Later,
we show that some instances are trivial, if k is bigger than specific parameters.

Recall that we defined y = max{0, p − x} ≤ p. It follows, that x + y ≥ p
because x+ y = max{x, p} ≥ p. Furthermore, because every neighbor of A is in
a vulnerable connection, n ≤ p.

Observation 2.1 1. The parameters k and x are independent from all other
parameters presented in Table 1.1.

2. The parameters n and y are bounded in p.

As we have categorized k and x, the remaining parameters that are from the
problem definitions are |A|, |V \A|, n, p and y.

Observation 2.2 1. The parameter p is not bounded in y.
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2. The parameter p is not bounded in n.

3. The parameter y is independent from |A|, |V \A| and n.

4. The parameter |V \ A| is bounded in n, but the parameter n is bounded
in |V \A|.

Proof 1. and 2. In order to show that the parameter p is not bounded
in y or n, we give a sequence of instances In∈N = (G,A, k, x)n∈N such that an
integer c exists such that y and n are at most c in Ii for all i ∈ N, but p is
divergent in the sequence.

Let G` be a clique with ` vertices and let A` = V (G`) and define the in-
tegers k` := 5, x` := `(`−1)/2. Then, in the instance (G`, A`, k`, x`) the value
of n = y = 0 and the value of p is `(`−1)/2 and therefore divergent.

3. to 4. Let G` be a path of length ` and let A` contain exactly one vertex.
When k` = x` = 0. Then, in the instance I` the value of |A| = 1, n ∈ {1, 2}
and p = y = |V \A| = `− 1.

Let G` be a given graph with vulnerable vertices A`. Set x` to a number
that is greater than the number of vulnerable connections p. In this instance
it is y = 0. Thereby, |A|, |V \ A| and n are not bounded by y, which shows
independence of y from the parameters n and |A|.

Consider a connected graph G` with ` vertices and the sequence of in-
stances I` = (G`, V (G`), 0, 0). In I` we have |V \ A| = 0 and y = `·(`−1)/2,
which shows independence of y and |V \A|.

Because n = |N(A)| and N(A) ⊆ V \A, we follow n ≤ |V \A|. �

For the parameters that arise from the problem definition, we have to show
the following two combinations: |A| with the dual parameter |V \A| and the size
of the neighborhood n. Furthermore, we have not yet analyzed the dependencies
between p and |A| respectively |V \ A|. We leave that case for the end of the
section, because we can find instances in which |A| or |V \A| are not dependent
on p, but these can be reduced to instances in which |A| ≤ p and |V \A| ≤ p.

Observation 2.3 The parameter |A| is independent from |V \A| and from n.

Proof Let G` be a graph with ` vertices. We consider the two sequences of
instances I` = (G`, V (G`), k, x) and J` = (G`, ∅, k, x) for fixed k, x ∈ N. In I`
we have |A| = ` but |V \ A| = 0 and in J` we have |A| = 0 but |V \ A| = `.
Thus, |A| and |V \A| are independent from each other.

To proof the independence of n from |A| consider the graph Gq which is
a q-star with center u. According to this, we consider the two sequences of
instances Iq = (Gq, {u}, k, x) and J` = (Gq, V (Gq)\{u}, k, x) for fixed k, x ∈ N.
Then, in Iq we have |A| = 1, n = q and in Jq we have |A| = q, n = 1. Thus, n is
independent from |A|. �

Next, we consider dependencies between structural parameters.

Observation 2.4 1. The parameter ∆ is independent from the parameters
neighborhood-diversity nd, vertex cover number vc and diameter of the
input graph diam.

2. The parameter nd is not bounded in diam, but diam ≤ nd.
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3. The parameter vc is not bounded in nd, but nd ∈ O(2vc).

4. The parameter vc is not bounded in diam, but diam ≤ 2 · vc + 1.

Proof In this proof we only give a sequence of graphs as example that are
defined by giving the instance G` for an integer ` ∈ N. This is sufficient, as a se-
quence of graphs G` can be considered as sequence of instances (G`, V (G`), k, x)
for a fixed k, x ∈ N.

The parameters nd, vc and diam are not bounded in ∆: Considering with T`
a tree of depth ` in which every vertex of height smaller than ` has exactly two
children and vertices with height ` are leaves. Then, in T` the maximum node
degree is ∆ = 3, however diam = 2 · ` and vc ≥ 2`−2. Every vertex in T` is in
its own neighborhood-class, only the leaves are together with the sibling-leaf. It
follows that nd = |V | − 1

2 · 2
` = (2`+1 − 1)− 2`−1 = 3 · 2`−1 − 1.

The parameters nd, vc and ∆ are not bounded in diam: Consider the split
graph G` that contains 2 · ` vertices that are a clique of size ` for which every
vertex has a personal one-degree neighbor. Then in G` the diameter is diam = 3,
but ∆ = `, nd = 2 · ` and vc = `.

The parameters vc and ∆ are not bounded in nd: In a clique of size ` the
neighborhood-diversity is nd = 1, but vc = ∆ = `− 1.

The parameter ∆ is not bounded in vc: In a q-star the vertex cover number
is vc = 1, but ∆ = q.

diam is bounded in nd: Let a graph G be a connected graph with neighbor-
hood-diversity nd. Without loss of generality, the vertices w1, w2 ∈ V have
the maximum distance within the graph. Let P be a shortest path from w1

to w2 in G that also contains the vertices v1, . . . , vt. Recall that we defined the
neighborhood-diversity over a relation ∼ on vertices which on vertices u and v
is defined by u ∼ v ⇐⇒ N(u) = N(v) or N [u] = N [v]. It is v` 6∈ [w1]∼,
because otherwise v`+1 = w1 or v`+1 is neighbor of w1 and w1, v`+1, . . . , vt, w2

or w1, v`+2, . . . , vt, w2 is a path from w1 to w2 in G. This is a contradiction
to the fact that P is a shortest path. With the same argument we follow

that v` 6∈ [w1]∼ ∪
`−1⋃
i=1

[vi]∼. Hence, the vertices w1, v1, . . . , vt, w2 are all in

unique neighborhood-classes and diam ≤ nd.
nd is bounded in vc: Let G be a graph and vc the vertex cover number

of G. Let u1, . . . , und be representative vertices of all unique neighborhood-
classes of G. For the induced subgraph G′ := G[{u1, . . . , und}] let v be the vertex
cover number. Obviously, v ≤ vc. Without loss of generality, let {u1, . . . , uv}
be a vertex cover of G′ and thus removing u1, . . . , uv from G′ removes all
edges of G′. This implicates that there are no edges in the induced sub-
graph G[{uv+1, . . . , und}]. The nodes uv+1, . . . , und are from different neighbor-
hood-classes in G. Thus, up and uq for p, q ∈ {v+1, . . . ,nd} are not neighbors of
the same vertices of u1, . . . , uv and because G[{uv+1, . . . , und}] does not contain
edges, up and uq are not neighbors in G. Thus, as there are 2v options to be
adjacent to a vertex of u1, . . . , uv. Thus, nd ≤ v + 2v ≤ vc + 2vc ∈ O(2vc).

diam is bounded in vc: Let G = (V,E) be a graph and vc the vertex cover
number of G. Let Z be a vertex cover of G and let v1, . . . , vdiam be a shortest
path in G. Because Z is a vertex cover, G−Z does not contain edges. It follows,
that for every i ∈ [1,diam−1] at most one vertex of vi and vi+1 is in V \ Z. It
follows, that diam ≤ 2 · vc +1. �
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Figure 2.1: The hierarchy of dependencies of the parameters, where the higher
listed parameters are greater. Dotted lines only in CNP-V. Dashed lines only
in CNP-NDV.

As we have mentioned before, structural parameters and problem parameters
are independent from each other. Nevertheless, some instances are trivial if two
parameters have a certain size in relation to each other. In the rest of the
subsection we focus on these cases. In Figure 2.1 we can see the hierarchies
that account on both problems in solid lines, while the dotted lines are only for
instances of CNP-V and dashed lines only for instances of CNP-NDV.

The first example is that, if in an instance of CNP-V or CNP-NDV the
parameter k is greater than y, we add y arbitrary non-vulnerable vertices of
non-trivial connected components to a critical node cut.

Reduction Rule 2.5 Return yes, if the parameter y is at most k in an in-
stance (G,A, k, x) of CNP-V or CNP-NDV.

Notice, that in the explanation before, we left a case out. If an instance
of CNP-NDV contains less than y < k non-vulnerable vertices in non-trivial
components, we can not add y non-vulnerable vertices to a critical node cut.
Instead, we add all non-vulnerable vertices to a potential critical node cut and
then all vulnerable connections are within G[A]. The same is already true
if |V \A| ≤ k and does not need |V \A| < y < k. As an instance of CNP-NDV
can be a no-instance when |V \ A| < y < k, it is important to execute the
following before Reduction Rule 2.5.

Reduction Rule 2.6 If in an instance (G,A, k, x) of CNP-NDV the param-
eter |V \A| is at most k, then return yes if and only if the connectivity of G[A]
is at most x.

Reduction Rule 2.6 can be specified even more, as it is sufficient to add the
neighborhood of A to a critical node cut. Thus, we can follow the following.

Reduction Rule 2.7 If in an instance (G,A, k, x) of CNP-NDV the param-
eter n is at most k, then return yes if and only if the connectivity of G[A] is at
most x.
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It is easy to observe that an instance (G,A, k, x) is equivalent to an in-
stance (G′, A′, k, x) in which G′ is the graph G after all trivial components are
removed from G. Thus, every vulnerable vertex is in at least one vulnerable
connection and because every non-vulnerable is in a connected component with
at least one vulnerable vertex.

Reduction Rule 2.8 Remove all trivial connected components from an in-
stance (G,A, k, x) of CNP-V or CNP-NDV. Afterwards the parameter p is
greater than |A| or |V \A|.

An instance of CNP-V is a trivial yes-instance, if |A| ≤ k, as we can add all
vulnerable vertices to a critical node cut and have no more vulnerable connec-
tions.

Reduction Rule 2.9 Return yes, if in instance (G,A, k, x) of CNP-V the pa-
rameter |A| is at most k.

If an instance of CNP-V has a vertex cover number that is at most k, the vertex
cover is a critical node cut. We can directly return yes, even though we maybe
do not find the vertex cover in polynomial time.

Reduction Rule 2.10 Return yes, if in an instance (G,A, k, x) of CNP-V
the parameter vc is at most k.

2.2 NP-hardness

In this section we show that both problems CNP-V and CNP-NDV
are NP-hard. We give even stronger results by showing that CNP-NDV is
NP-hard on planar graphs, even if the maximum degree is 4. Because CNP-V
generalizes Vertex Cover, CNP-V is NP-hard, even if |V \ A| = n = x = 0
and ∆ = 3.

To show, that CNP-NDV is NP-hard, even if the maximum degree is 4, we
reduce from Independent Set. Recall that in Independent Set, a graph and
an integer ` are given as input and the question is whether there exists a subsetX
of ` vertices, which are pairwise non adjacent. Garey et al. [GJS76] showed
that Independent Set is NP-hard on planar graphs, even if the maximum
degree is 3.

Theorem 2.11 CNP-NDV is NP-hard on planar graphs, even if ∆ = 4.

Proof Construction: Let (G, `) be an instance of Independent Set where G
is a planar graph with maximum degree 3. We construct an instance (G′, A, k, x)
of CNP-NDV as follows: We set V ′ := V ∪ A, where A := {av | v ∈ V }
and E′ := E ∪ {{v, av} | v ∈ V }. Furthermore, we set k := nG − ` and x := `.
Clearly, (G′ = (V ′, E′), A, k, x) can be computed in polynomial time. Note that
every vertex in G′, that is not in G has degree 1 and G′[V ] is isomorphic to G.
Thus, G′ is planar and has maximum vertex degree 4. It remains to show that
the two instances are equivalent.

Correctess: Let (G, `) be a yes-instance of Independent Set. Then, there
exists an independent set I ⊆ V (G) of size `. We show that the vertex set V \ I
is a critical node cut: The size of V \I is nG− ` and V ′ \ (V \I) = A∪I. As I is
an independent set in G, I is an independent set in G′ as well. Thus, there are
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exactly ` edges in the graph G′ − (V \ I). More precisely the edges remaining
in G′− (V \ I) are {{u, au} | u ∈ I}. Thus, the connectivity of G′− (V \ I) is `.
Hence, (G′ = (V ′, E′), A, k, x) is a yes-instance of CNP-NDV.

Conversely, let (G′ = (V ′, E′), A, k, x) be a yes-instance of CNP-NDV.
Thus, there exists a critical node cut C of size nG − `. The graph G′ − C
contains ` vertices that are not vulnerable and by the definition, each of them
is adjacent to a vulnerable vertex. Thus, these are all vulnerable connections
in G′ − C. Therefore, V (G) \ C is an independent set in G′. Thus, (G, `) is a
yes-instance of independent set. �

It has been shown by Arulselvan et al. [ACEP09] that the CNP is NP-
complete. Since CNP is the special case of CNP-V with A = V , we already
know, that CNP-V is NP-hard. However, we observe an even stronger result
by reducing from Vertex Cover.

Recall, that in Vertex Cover, a graph G and an integer k are given as
input and the question is, whether by deleting k vertices of G there remains
no edge in G. Vertex Cover is one of Richard Karp’s famous 21 combinato-
rial NP-complete problems and Karp [Kar72] showed, that Vertex Cover is
NP-hard, even if ∆ = 3. Since Vertex Cover is a special case of CNP-V
with A = V and x = 0, we can directly follow that CNP-NDV is NP-hard,
even if |V \A|+ x+ n+ ∆ is constant.

Theorem 2.12 CNP-V is NP-hard, even if |V \A| = x = n = 0 and ∆ = 3.

So far we saw that CNP-V and CNP-NDV are NP-hard problems. Consider
the following: An instance (G,A, k, x) of CNP-V or CNP-NDV is equivalent
to an instance (G′, A, k + 1, x) where G′ is the graph G where a universal ver-
tex. Then, G′ has a diameter of two. Thus, both problems are NP-hard, even
if diam = 2.

Lemma 2.13 CNP-V and CNP-NDV are NP-hard, even if diam = 2.

2.3 Polynomial-time Algorithms

In this section we present some algorithms that run in polynomial time. First,
we show that we can compute the connectivity of a graph in O(n + m) time.
This information will be used in the rest of the work because the computation
of the connectivity is a subroutine of almost every other algorithm.

Furthermore, we show that we can solve CNP-V and CNP-NDV in poly-
nomial time on forests and that we can solve CNP-V in linear time on graphs,
where the maximum size of a connected component is 4.

Lemma 2.14 The connectivity of a graph G can be computed in O(n+m) time.

Proof In O(n + m) time all connected components can be computed with
breadth-first search. Then, for every connected component K by iterating over
all vertices of the connected component, the number of vulnerable vertices d
and the size c := |K| of the connected component K can be computed in linear
time. The connectivity of the connected component K is(

d
2

)
+ d · (c− d).
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The connectivity of G is the sum of the connectivity of the connected com-
ponents. Altogether, we can compute the connectivity of for any given graph
in O(n+m) time. �

Trees and Forests In the following, we prove that CNP-V and CNP-NDV
can be solved in polynomial time on trees and later we generalize this result
to forests. This algorithm shows us that at least some non-trivial algorithms
exist that run in polynomial time. With the help of dynamic programming,
Di Summa et al. [DSGL11] proved that CNP can be solved in polynomial time
on trees. Our algorithm uses a similar technique but we need to remember the
number of vulnerable and non-vulnerable vertices as well.

Theorem 2.15 CNP-V and CNP-NDV can be solved in O(k · n2) on trees.

Proof Definition of the table: We provide a dynamic programming algorithm.
Let T := (V,E) be a tree with root w, which can be an arbitrary vertex w ∈ V .
Furthermore, let (T,A, k, x) be an instance of CNP-V or CNP-NDV. In this
algorithm, we define two four-dimensional tables, F and Hi where i is an integer.
A table entry F [v, k, d, b] stores the smallest number of vulnerable connections
in the subtree st(T, v) after exactly k vertices are removed under the condition
that b vertices (including v) are connected to v of which d are vulnerable. That
means that if b = 0, the vertex v is removed. Recall, that st(T, v) = T if v = w
and otherwise st(T, v) is the connected component of v after the parent of v is
removed from T . Let v be a child with children u1, . . . , u`. For i ∈ [1, `] we
define with Tv,i the subtree of T that contains the vertex v and the vertices of the
subtrees st(T, ui), . . . , st(T, u`). A table entry Hi[v, k, d, b] stores the smallest
number of vulnerable connections in Tv,i after exactly k vertices are removed
under the condition that b vertices (including v) are connected to v of which d are
vulnerable. If it is impossible that with the deletion of k vertices from st(T, v) or
respectively Tv,i exactly b vertices are connected to v of which d are vulnerable,
then we define F [v, k, d, b] = ∞ or respectively Hi[v, k, d, b] = ∞. At the end
the algorithm returns yes if and only if there exist d ∈ [0, |A|] , b ∈ [0, |V |] such
that F [w, k, d, b] ≤ x.

Algorithm: Let T = (V,E) be a tree with root w and let (T,A, k, x) be an
instance of CNP-V or CNP-NDV. Let v be a vertex with children u1, . . . , u`.
For the cases d > b and d < 0 and b < 0 and k < 0, we do not define F [v, k, d, b]
or Hi[v, k, d, b]. For a leaf v, we define F if no vertex can be removed as k = 0

F [v, 0, 0, 0] = ∞ (2.1)

F [v, 0, 0, 1] =

{
0 v 6∈ A
∞ v ∈ A (2.2)

F [v, 0, 1, 1] =

{
∞ v 6∈ A
0 v ∈ A (2.3)
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For a leaf v, we define F if one vertex can be removed as k = 1

F [v, 1, 0, 0]
CNP-V

= 0 (2.4)

F [v, 1, 0, 0]
CNP-NDV

=

{
0 v 6∈ A
∞ v ∈ A (2.5)

F [v, 1, 0, 1] = ∞ (2.6)

F [v, 1, 1, 1] = ∞ (2.7)

F [v, k, d, b] = ∞ if k > 1 or d > 1 or b > 1 (2.8)

Let v be a vertex of T with children u1, . . . , u`. We define the abbreviation

F [v, k, ∗, ∗] := min{F [v, k, d, b] | 0 ≤ d < b ≤ nst(T,v)}.

First, we define Hi for the case that b = 0, which means that v is removed.
Observe that v has exactly ` children. For the entire algorithm we define for
every integer z ∈ N that ∞+ z = z +∞ =∞. For all k ∈ [0, k] we define:

H`[v, k, 0, 0]
CNP-V

=

{
F [u`, k − 1, ∗, ∗] k > 0

∞ k = 0
(2.9)

H`[v, k, 0, 0]
CNP-NDV

=

 F [u`, k − 1, ∗, ∗] v 6∈ A, k > 0

∞ v 6∈ A, k = 0
∞ v ∈ A

(2.10)

Now we define Hi, where i ∈ [1, ` − 1]. Thus, we have already regarded the
subtree Tv,i+1 and we have to combine the solution to have a solution for Tv,i.

Hi[v, k, 0, 0]
CNP-V

=

{
min

k′∈[0,k]
( Hi+1[v, k′, 0, 0]

+F [ui, k − k′, ∗, ∗] )
(2.11)

Hi[v, k, 0, 0]
CNP-NDV

=


min

k′∈[0,k]
( Hi+1[v, k′, 0, 0]

+F [ui, k − k′, ∗, ∗] ) v 6∈ A
∞ v ∈ A

(2.12)

Once we define H1, we can migrate the information to F . So we set the value
of F [v, k, 0, 0] = H1[v, k, 0, 0]. So now we define the case in which v is not
removed, that means b > 0.

H`[v, k, d, b] =

 F [u`, k, d, b− 1] + d v 6∈ A
F [u`, k, d− 1, b− 1] + b− 1 v ∈ A, d 6= 0
∞ v ∈ A, d = 0

(2.13)

Hi[v, k, d, b] =


min k′ ∈ [0, k]

d′ ∈ [0, d]

b′ ∈ [0, b]

( Hi+1[v, k′, d′, b′]

+ F [ui, k − k′, d− d′, b− b′]
+ d′ · (b− b′) + (d− d′) · (b′ − d′) )

(2.14)

Jut like in the other case, we define F [v, k, d, b] = H1[v, k, d, b].
If d and b exist such that F [w, k, d, b] ≤ x, then we return yes. Otherwise

return no.
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Correctness: The correctness of the algorithm follows by easy observation
of all cases. We only observe the correctness of Equation 2.13 and 2.14.

We start with Equation 2.13. So if b > 0, then the vertex v is not removed
from Tv,`. Thus, we have the vertex v that is connected to v. It follows, that in
the table entry H`[v, k, d, b] we can copy the best solution in the subtree st(T, v),
where b − 1 vertices are connected to v, of which d are vulnerable, if v is non-
vulnerable and d−1 otherwise. But then v is in new vulnerable connections with
all d vulnerable vertices, if v is non-vulnerable. Otherwise, if v is vulnerable, the
vertex v is in vulnerable connections with all b − 1 vertices. These vulnerable
connections have to be added to the vulnerable connections within st(T, v).
If b > 0 and v is vulnerable at least one vulnerable vertex is connected to v.
Hence, if v is vulnerable it is H`[v, k, 0, b] =∞.

Now we consider Equation 2.14. Because b > 0, the vertex v is not re-
moved from Tv,`. Thus, for every selection of k′ ∈ [0, k], d′ ∈ [0, d], b′ ∈ [0, b] the
subtree Tv,i+1 contains b′ vertices that are connected to v, of which d′ are vul-
nerable and the subtree st(T, ui) contains b−b′ vertices that are connected to ui
the child of v, of which d − d′ are vulnerable. It follows, that new vulnerable
connections are d′ · (d− d′) vulnerable connections between two vulnerable ver-
tices, d′ · ((b− b′)− (d− d′)) vulnerable connections between vulnerable vertices
of Tv,i+1 and non-vulnerable vertices of st(T, ui) and (b′ − d′) · (d − d′) vul-
nerable connections between non-vulnerable vertices of Tv,i+1 and vulnerable
vertices of st(T, ui). Altogether the number of new vulnerable connections adds
up to d′ · (b− b′) + (b′ − d′) · (d− d′) new vulnerable connections, that have to
be added.

Running time: The table F and Hi contains (n + 1)3 · (k + 1) entries
and i ∈ [1,∆]. Every entry is computed in O(k · n2) time, when the look-
up of a table cell is considered to take constant time. Hence, the algorithm has
polynomial running time. �

In the next lemma, we prove that if we have optimal solutions for connected
components of a graph as input, we can find a solution for the entire graph
within polynomial time.

Lemma 2.16 Let (G,A, k, x) be an instance of CNP-V or CNP-NDV and we
consider with let C1, . . . , C` be the connected components of G. If a solution for
the instances (Ci, A∩Ci, k

′, x′) for all 0 ≤ k′ ≤ k, 0 ≤ x′ ≤ x and i ∈ {1, . . . , `}
are given, we can compute a solution for (G,A, k, x) in polynomial time.

Proof Algorithm: We define a direct programming algorithm. We define values
of the table entries F [i, k′] and H[i, k′] by

F [i, k′] = min{x ∈ N | (Ci, A ∩ Ci, k
′, x) is a yes-instance} (2.15)

H[1, k′] = F [1, k′] (2.16)

H[i+ 1, k′] = min
0≤k′′≤k′

( G[i, k′′] + F [i+ 1, k′′ − k′] ) (2.17)

We return yes, if and only if H[`, k] ≤ x.
Correctness: The correctness follows by observation of the three cases.
Running time: By the assumption, for all i ∈ [1, `], and k′ ∈ [0, k] we can

compute F [i, k′] in polynomial time. The table F has ` · (k + 1) entries. Thus,
all entries of F can be computed in polynomial time.
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We can compute H[i, k′] for i > 1 and k′ ∈ [1, k] by picking 2 · (k′+ 1) table-
entries and adding two. Thus, we can compute H[i, k′] in O(k′) time.

Thus, for every i ∈ [1, `], we can compute all H[i, k′] with k′ ∈ [0, k]

in O
((

k
2

))
= O(k2) time. Altogether, we can compute all entries of H

in O(` · k2) time. �

We proved in Theorem 2.15 that we can solve CNP-V and CNP-NDV in
polynomial time on trees. Lemma 2.16 thus now implies the following.

Corollary 2.17 CNP-V and CNP-NDV can be solved in polynomial time on
forests.

Small connected components Let c be a constant. Observe, that we can
solve CNP-V and CNP-NDV on a connected component K with c vertices
within constant time, by checking whether one of the 2c subsets of vertices
of K is a critical node cut for (G[K], A∩K, k, x) for any integers k, x. Observe
that 2c is a constant as c is a constant. With Lemma 2.16 the following is a
direct result.

Corollary 2.18 Let c be a constant integer. CNP-V and CNP-NDV can be
solved in polynomial time on graphs in which the biggest connected component
contains at most c vertices.

The rest of the section we improve the result of Corollary 2.18 by provid-
ing a linear-time algorithm that computes a critical node cut for an instance
of CNP-V, if the biggest non-trivial connected component of the input graph
has size at most 4. We can use this algorithm later in the thesis whenever we
have a set of vertices C such that G − C contains only connected components
with at most four vertices. After the correctness proof of this algorithm, we
shortly present an adjustment for instances of CNP-NDV without a proof.

For the rest of the section, we only consider graphs, in which every connected
component contains at most four vertices and at least one vulnerable vertex.
Notice, that we can generalize the algorithm easily to graphs in which the largest
non-trivial connected component contains at most four vertices by removing all
connected components with more than four vertices.

For this algorithm, we first observe which structure a connected component
of size at most four can have. That includes how the underlying graph looks
like and we also need to specify, which vertices are vulnerable. There are nine
options for connected underlying graphs with at most four vertices {v1, . . . , v4}.
Furthermore, there are 15 options such that the connected component contains
at least one vulnerable vertex. Let b ∈ [1, 15] be a number with binary represen-
tation b = b4b3b2b1. We define Ab := {vbi | i ∈ [1, 4], bi = 1}. Notice, that Ab is
a subset of {v1, . . . , v4}.

In the following we define the structures Sa,b where a ∈ [1, 9] defines to
which underlying graph a connected component is isomorphic to and b ∈ [1, 15]
implicates that the vertices of the set Ab are vulnerable.

1. A P4 with edges E(P4) := {{vi, vi+1} | i ∈ [1, 3]}. We call this struc-
ture S1,b.
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2. The connected component with four vertices {v1, . . . , v4} and with the
set of edges {{v1, v2}, {v1, v3}, {v1, v4}}. We call this structure S2,b. The
underlying graph is called claw.

3. The connected component with four vertices {v1, . . . , v4} and with the set
of edges {{v1, v3}} ∪ E(P4). We call this structure S3,b. The underlying
graph is called paw.

4. A K4. We call this structure S4,b.

5. The connected component with four vertices {v1, . . . , v4} and with the
set of edges {{v1, v3}, {v1, v4}} ∪ E(P4). We call this structure S5,b. The
underlying graph is called diamond.

6. A C4. We call this structure S6,b.

7. An isolated P3. We call this structure S7,b, where b ∈ [1, 7].

8. An isolated C3. We call this structure S8,b, where b ∈ [1, 7]. The underly-
ing graph is called triangle.

9. An isolated P2. We call this structure S9,b, where b ∈ [1, 3].

In the rest of the section, we say that a connected component K of an input-
graph G of an instance of CNP-V or CNP-NDV is isomorphic to a struc-
ture Sa,b, if a bijection f : {v1, . . . , v4} → {v1, . . . , v4} exists such that {u, v} is
an edge of G[K], if and only if {f(u), f(v)} is an edge of Sa,b and a vertex v
of K is vulnerable if and only if f(v) is vulnerable in Sa,b.

Observe that some structures, for example S1,1 and S1,8, are equal up to
isomorphism since in both cases exactly one vertex is vulnerable and this vertex
has degree one.

Also, we define removal vectors for every structure. A removal vector is a
tuple of integers. For a connected component K, the value on position i of
the removal vector of K implicates how many vulnerable connections can be
removed from K, when i vertices are removed from K and the i vertices that
are removed are or respectively can be extended to the best option for removing
two vertices from K. We only define removal vectors as tuples of size two and
consider two removes from K. The reason is that the only connected component
of size in which we can not remove all vulnerable connections by removing two
vertices is an isolated K4 with at least three vulnerable vertices.

To give an example for a removal vector: A connected component that is
isomorphic to S3,12 is a paw in which the vertex with degree 1 and the vertex
with degree 3 are vulnerable. S3,12 has a removal vector of (5, 5). This is because
with the first vertex that can be removed we remove the degree three vertex
which removes five vulnerable connections and the remaining vertices are in
trivial components. Tables 2.1 and 2.2 depicts all structures with their removal
vector.

Now we explain why it is important that we define removal vectors in the
matter that two vertices are removed from a connected component. In that
definition for a connected component K the first entry of the removal vec-
tor is not automatically |K| − 1. For example consider complete bipartite
graph K2,3 with vertex bipartition (P,Q) and |Q| = 3 and we consider an
instance I := (K2,3, A := Q, k := 2, x := 0) of CNP-V. I is a yes-instance,
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as P is a critical node cut. However, if we ask how many vulnerable connections
can be removed, if one vertex is added to a critical node cut, the answer is four.
This creates a set that can not be extended to the best option for removing
two vertices, which would be P . Notice, that we had to consider a connected
component with five vertices to give an example. Thus, if we compute all re-
moval vectors of connected components of size at most four we can observe the
following.

Observation 2.19 In an instance of CNP-V every connected component K
has a removal vector (i, j) with j ≥ i and i = |K| − 1.

We continue with a small Lemma to prove that for a given removal vector,
we can compute all connected components of a graph with that removal vector
in linear time.

Lemma 2.20 Let i, j ∈ [1, 6] be two integers. In a graph G in which the biggest
connected component has at most four vertices, we can find all connected com-
ponents of G with removal vector (i, j) in O(n) time.

Proof We iterate over all vertices to check whether a connected component
has removal vector of (i, j). For every vertex we can compute its connected
component in constant time, as every connected component has at most four
vertices. As there are less than 9 · 15 (which is a constant amount) possibilities
for the structure of connected components, we can find the removal vector of
an instance in constant time. �

Now, we come to the first reduction rule that includes removal vectors. We
first consider the case that all vulnerable connections are removed by removing
one vertex of the connected component, such as it is the case in S3,12 that we
gave as example above. Observe that then the second integer in the removal
vector is the same as the first.

Reduction Rule 2.21 Let i ∈ [1, 6] be an integer. If k ≥ 1 and G contains
a connected component K that has a removal vector of (i, i) but G does not
contain a connected component that has a removal vector of (j, t) with j > i
or t− j ≥ i, then remove K from G and decrease k by one.

Lemma 2.22 Reduction Rule 2.21 is safe and for a fixed i ∈ [1, 6] can be applied
exhaustively in O(n) time.

Proof Safeness: Let (G,A, k, x) be an instance of CNP-V for which C is
a critical node cut and let G′ be the graph after Reduction Rule 2.21 is ap-
plied. Let K be the connected component described in Reduction Rule 2.21
and let v be a vertex which, when removed, removes all vulnerable connections
from K. We show that (G,A, k, x) is a yes-instance of CNP-V if and only if
the instance (G′, A \ {v}, k − 1, x) is a yes-instance of CNP-V.

If v ∈ C we are done. Assume that v 6∈ C. By the requirements to G,
we know that G does not contains a connected component in which the first
or second vertex that can be removed, removes at most i vulnerable connec-
tions from G. Let w be a vertex of C. We define C ′ := (C \ {w}) ∪ {v}. It
follows, that the connectivity of G − C ′ is as most as high as the connectivity
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Table 2.1: Removal vectors of Structures Sa,b with a < 4. Black vertices are
vulnerable.

Component Name removal vector
CNP-V CNP-NDV

S1,1
∼= S1,8 (3, 3) (3, 3)

S1,2
∼= S1,4 (3, 3) (2, 3)

S1,3
∼= S1,12 (5, 5) (4, 4)

S1,5
∼= S1,10 (3, 4) (3, 4)

S1,6 (4, 5) (2, 4)
S1,7
∼= S1,14 (5, 6) (3,−)

S1,11
∼= S1,14 (5, 6) (5,−)

S1,15 (5, 6) (−,−)

S2,1 (3, 3) (1, 2)

S2,2
∼= S2,4

∼= S2,8 (3, 3) (3, 3)

S2,3
∼= S2,5

∼= S2,9 (5, 5) (2, 4)

S2,6
∼= S2,10

∼= S2,12 (5, 5) (5, 5)

S2,7
∼= S2,11

∼= S2,13 (6, 6) (3,−)

S2,14 (6, 6) (3,−)

S2,15 (6, 6) (−,−)

S3,1
∼= S3,2 (3, 3) (2, 3)

S3,4 (3, 3) (1, 2)

S3,8 (3, 3) (3, 3)

S3,3 (4, 5) (4, 4)

S3,5
∼= S3,6 (4, 5) (2, 4)

S3,9
∼= S3,10 (4, 5) (4, 5)

S3,12 (5, 5) (2, 4)

S3,7 (5, 6) (3,−)

S3,11 (5, 6) (5, 5)

S3,13
∼= S3,14 (5, 6) (3,−)

S3,15 (5, 6) (−,−)
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Table 2.2: Removal vectors of Structures Sa,b with a ≥ 4. Black vertices are
vulnerable.

Component Name removal vector
CNP-V CNP-NDV

S4,1
∼= S4,2

∼= S4,4
∼= S4,8 (3, 3) (1, 3)

S4,3
∼= S4,6

∼= S4,9
∼= S4,12 (3, 5) (2, 4)

S4,5
∼= S4,10 (3, 5) (2, 5)

S4,7
∼= S4,11

∼= S4,13
∼= S4,14 (3, 6) (3,−)

S4,15 (3, 6) (−,−)

S5,1
∼= S5,4 (3, 3) (1, 2)

S5,2
∼= S5,8 (3, 3) (1, 3)

S5,3
∼= S5,6

∼= S5,9
∼= S5,12 (3, 5) (2, 4)

S5,5 (3, 5) (2, 4)

S5,10 (3, 5) (2, 5)

S5,7
∼= S5,13 (3, 6) (3,−)

S5,11
∼= S5,14 (3, 6) (3,−)

S5,15 (3, 6) (−,−)

S6,1
∼= S6,2

∼= S6,4
∼= S6,8 (3, 3) (1, 2)

S6,3
∼= S6,5

∼= S6,6
∼= S6,9

∼= S6,10
∼= S6,12

(3, 5) (2, 4)

S6,7
∼= S6,11

∼= S6,13
∼= S6,14 (3, 5) (3,−)

S6,15 (3, 5) (−,−)
S7,1
∼= S7,4 (2, 2) (2, 2)

S7,2 (2, 2) (1, 2)
S7,3
∼= S7,6 (3, 3) (2,−)

S7,5 (3, 3) (3,−)
S7,7 (3, 3) (−,−)

S8,1
∼= S8,2

∼= S8,4 (2, 2) (1, 2)

S8,3
∼= S8,5

∼= S8,6 (2, 3) (2,−)

S8,7 (2, 3) (−,−)
S9,1
∼= S9,2 (1, 1) (1,−)

S9,3 (1, 1) (−,−)
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of G − C. Thus, C ′ is a critical node cut for (G,A, k, x). Hence, C ′ \ {v} is a
critical node cut for (G− {v}, A \ {v}, k − 1, x).

Let C be a critical node cut for (G′, A\{v}, k−1, x). It follows that C ∪{v}
is a critical node cut for (G,A, k, x).

The running time follows directly from Lemma 2.20. �

Before we continue with the next reduction rule, we observe that in an in-
stance of CNP-V there is no connected component with at most four vertices
with a removal vector (i, j) with j > 2 · i. Furthermore, all connected compo-
nents with a removal vector (i, j) with j = 2 · i have a removal vector of (3, 6).
This observation can be proven by computing all removal vectors for possible
connected components as it has been done in Tables 2.1 and 2.2. In conse-
quence, the first deletion in a connected component removes at least as many
vulnerable connections as the second. This leads to the following observation.

Observation 2.23 In an instance of CNP-V there is no connected component
with at most four vertices with a removal vector (i, j) where j > 2 · i and if the
equation j = 2 · i is fulfilled, then i = 3.

At first of connected components in which not all vulnerable connections are
removed by removing one vertex, we consider the connected components with
removal vector (3, 6). One example of a connected component with removal
vector (3, 6) is a cycle with four vertices in which are at least three vulnerable.

Reduction Rule 2.24 If G contains a connected component K that has a re-
moval vector of (3, 6) but G does not contain a connected component that has a
removal vector of (p, q) with p > 3, then:

� If k ≥ 2 decrease k by two and remove K from G.

� If k = 1 return yes if and only if the connectivity of G is at most x+ 3

Lemma 2.25 For instances of CNP-V, Reduction Rule 2.24 is safe and can
be applied exhaustively in O(n) time.

Proof Safeness: By the requirements of Reduction Rule 2.24 the graph G
does not contain a connected component with removal vector (p, q) with p > 3.
Let G contain a connected component K with removal vector (3, 6). We observe
the two cases for k separately.

Case k = 1: If k = 1 then at most one vertex of G can be added to
a critical node cut. It follows from Observation 2.19 that we can add any
vulnerable vertex v from K to a critical node cut by which we reduce the
connectivity of G by three. So, with {v} a critical node cut for the instance
exists if and only if the connectivity of G − {v} is at most x if and only if the
connectivity of G is at most x+ 3.

Case k ≥ 2: Just like in the first case we observe that if we remove a single
vertex we can remove at most three vulnerable connections. It follows from
Observation 2.23 that with two vertices, at most six vulnerable connections
can be removed. As K has removal vector (3, 6), K does not have removal
vector (3, 5) and we follow that K is not a clique. Thus, if we remove two vertices
from K, the other two vertices are not connected anymore and because K has a
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removal vector of (3, 6) six vulnerable connections are removed by that. Thus,
it is the best option to remove K and decrease k by two.

The running time follows directly from Lemma 2.20. �

Now, we consider the other case, that we can not remove all vulnerable
connections of K by removing one vertex like it is the case with S1,15.

Reduction Rule 2.26 Let i ∈ [1, 6] be an integer. If k ≥ 1 and G contains a
connected component K that has a removal vector of (i, j) where j ∈ [i+1, 2·i−1]
but G does not contain a connected component that has a removal vector of (p, q)
with p > i or q = 2·i, then decrease k by one and remove v from G where v is the
vertex from K which has to be removed first such that with second removal j vul-
nerable connections are removed.

Notice, that if q = 2 · i, we can follow from Observation 2.23 that i = 3 and
there exists no connected component with removal vector (3, 6).

Lemma 2.27 Reduction Rule 2.26 is safe and for every fixed i ∈ [1, 6] can be
applied exhaustively in O(n) time.

Proof Safeness: We show that (G,A, k, x) is a yes-instance of CNP-V if and
only if (G− {v}, A \ {v}, k − 1, x) is a yes-instance of CNP-V.

Let C be a critical node cut for (G,A, k, x). Nothing is to show if v ∈ C.
So we assume that v 6∈ C. Because of the requirements of Reduction Rule 2.26
the graph G does not contain a connected component with removal vector (p, q)
where p > i or q ≥ 2 · i. It follows from Observation 2.19 that by remov-
ing t vertices from G, we can remove at most t · i vulnerable connections. Thus,
for every w ∈ C also C ′ := (C ∪{v}) \ {w} is a critical node cut for (G,A, k, x).
Hence, C ′ \ {v} is a critical node cut for (G− {v}, A \ {v}, k − 1, x).

Let C be a critical node cut for (G − {v}, A \ {v}, k − 1, x). It follows
that C ∪ {v} is a critical node cut for (G,A, k, x).

The running time follows directly from Lemma 2.20. �

Now, we can show that we can solve CNP-V on graphs in which every
non-trivial connected component contains at most four vertices in linear time:
For this, we only need to exhaustively apply the Reduction Rules 2.21, 2.24
and 2.26 until k = 0 or no more vulnerable vertices are left. Then, return yes
if and only if the connectivity of the remaining graph is at most x. Observe,
that for every i ∈ [1, 6] the Reduction Rules 2.21 and 2.26 as well as Reduction
Rule 2.24 can only be applied exhaustively once. Thus, as applying all these
reduction rules exhaustively takes only linear time, the overall running time is
linear. It directly follows that:

Theorem 2.28 CNP-V can be solved in O (n) time on graphs, in which every
connected component contains at most four vertices.

Adaption to CNP-NDV We provided this algorithm only for instances
of CNP-V. We only prove this version, as we do not need a similar algo-
rithm for CNP-NDV in the rest of the thesis. Nevertheless, the algorithm
behind Theorem 2.28 can easily be adjusted to CNP-NDV. Therefore, the
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removal vectors of all components have to be recomputed. Observe, that Ob-
servation 2.19 is not true on instances of CNP-NDV in general, as it is the case
for a P4, where one of the vertices with degree two is vulnerable.

Removal vectors for instances of CNP-NDV have to be adjusted a bit, as it is
not possible to remove two vertices in every connected component K, as K could
have less than two non-vulnerable vertices. In that case we define the removal
vector (i,−) if K contains exactly one non-vulnerable vertex and i = |K| − 1
and we define the removal vector (−,−) if K only consists of vulnerable vertices.
Tables 2.1 and 2.2 depicts also all removal vectors for components when given
as input for CNP-NDV.

Observe, that some observations we made for CNP-V in this subsection are
not correct for CNP-NDV. Observation 2.19 is incorrect for every connected
component that does not contain exactly one non-vulnerable vertex. Observe,
that Observation 2.23 is not correct: The connected component which has a
paw as underlying graph in which the vertex with degree 1 and the vertex with
degree 3 are vulnerable has removal vector (2, 4) and a connected component
that has a cycle of length 4 with one vulnerable vertex has removal vector (1, 3).
Thus, we adjust Observation 2.19 to the following.

Observation 2.29 In an instance of CNP-V there is no connected component
with at most four vertices with a removal vector (i, j) where j > 2 · i+ 1 and:

� if the equation j = 2 · i is fulfilled, then i ∈ {1, 2}.

� if the equation j = 2 · i+ 1 is fulfilled, then i ∈ {1, 2}.

Observe that with this observation we can still focus on the first number of
the removal vector in the decision which connected component we we want to
treat next: Let K be a connected component with removal vector (i + 1, j)
where j ≥ i + 1 and K ′ be a component with removal vector (i, 2 · i + 1).
Removing one vertex from K and one vertex from K ′ removes 2 ·i+1 vulnerable
connections and is thereby as good as removing two vertices from K ′.

We will now provide an algorithm for solving CNP-NDV in linear time on
graphs in which the biggest non-trivial connected component contains at most
four vertices. We will not prove the correctness of this algorithm however.

Step 0. Let (G,A, k, x) be an instance of CNP-NDV. Set i = 5. Until k = 0
perform Steps 1 to 3. Once k = 0 at any point of the algorithm, then return
yes if and only if the connectivity of G is at most x.

Step 1. For every connected component K with removal vector (i, 2 · i+ 1)
execute:

� If k ≥ 2, remove K from G and reduce k by two.

� If k = 1, return yes if and only if the connectivity of G is at most x+ i.

Step 2. For every connected component K with removal vector (i, 2 · i)
execute:

� If k ≥ 2, remove K from G and reduce k by two.

� If k = 1, return yes if and only if the connectivity of G is at most x+ i.
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C1 C2

Figure 2.2: A counter example that with connected components of size 5, we
can not find a greedy algorithm, that only considers the removal vector and k.
Vulnerable vertices are pictured in black.

Step 3. For every connected componentK with removal vector (i, i) or (i,−)
remove K from G and reduce k by one. For every connected component K with
removal vector (i, j) for some j > i remove one vertex v in K such that together
with the second removal of K exactly j vulnerable connections are removed and
decrease k by one. If both cases are not possible anymore, decrease i by one
and continue with Step 1.

Theorem 2.30 CNP-NDV can be solved in O (n) time on graphs, in which
every non-trivial connected component contains at most four vertices.

Limits of our algorithm We can wonder, if the connected component
size 4 is somehow magic, or whether we also can also solve the
instance (G,A, k, x) of CNP-V or CNP-NDV in linear time, if the size of
the biggest component is bounded by any integer c. In fact, the greedy al-
gorithm that we provided can not be used to compute a solution for an in-
stance (G,A, k, x) of CNP-V or CNP-NDV, if G contains connected compo-
nents with five vertices. Consider the following example:

We define a connected component K that as underlying graph has the com-
plete bipartite graph K2,3 with vertex bipartition (P,Q) with |Q| = 3. The only
vulnerable vertices in K are the vertices of P .

Let G1 contain K, and furthermore G1 contains connected components that
are isomorphic to S2,6, S8,3, S9,1 and S9,3. Let G2 contain K, as well as two
connected components that are isomorphic to S2,6 and S9,3. Figure 2.2 depicts
the graphs G1 and G2.

The only critical node cut C1 for the instance (G1, A1, k := 2, x := 15)
is P , while the only critical node cut for the instance (G2, A2, k := 2, x := 15)
consists of the two centers of the stars in G2 that are isomorphic to S2,6. It
follows, that for a graph with connected components with at most five vertices
it is not sufficient to consider the removal vector and the size of k. We need
more information to do a correct greedy-step. One idea could be to check how
many connected components with the same removal vector are in the graph.
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Chapter 3

Fixed-Parameter
Algorithms

In the previous chapter we have proven that CNP-V and CNP-NDV are
NP-hard. In this chapter we present parameters for which the problems are
“fast” to solve, if the parameters are small. In Section 3.1 we provide fixed-
paramter algorithms to solve the problems CNP-V and CNP-NDV with re-
spect to the parameter k+x and in Section 3.2, with respect to the neighborhood-
diversity nd of the input graph. Also, in Section 3.3 we prove that CNP-V is
fixed-parameter tractable with respect to y, the number of vulnerable connec-
tions that need to be deleted, and in Section 3.4 we prove that CNP-NDV is
fixed-parameter tractable with respect to the parameter |V \A|, the number of
non-vulnerable vertices.

For Sections 3.1 and 3.2 we consider a problem that generalizes CNP-V
and CNP-NDV.

Critical Node Problem with Vulnerable and Non-
Deletable Vertices (CNP-VNDV)
Input: Simple graph G = (V,E), two vertex

sets A,N ⊆ V , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \N of size at most k

such that the connectivity of G−C is at most x?

We call the set C in the question a critical node cut of the instance (G,A,N, k, x)
of CNP-VNDV and a vertex v ∈ N is called non-deletable while a vertex w 6∈ N
is called a deletable. Observe that CNP-V and CNP-NDV are special cases
of CNP-VNDV with either N = ∅ or N = A respectively. Thus, if we prove
that CNP-VNDV is fixed-parameter tractable with respect to a parameter λ,
then also CNP-V and CNP-NDV are fixed-parameter tractable with respect
to the parameter λ.

3.1 Parametrization by k+ x

In this section we show that CNP-V and CNP-NDV are fixed-parameter
tractable with respect to the parameter k + x. Hermelin et al. [HKKN16]

33
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showed that a solution for CNP can be found in O(3k+x · (xk+2 + n)) time
and thus, CNP is fixed-parameter tractable with regard to the parameter k+x.
The algorithm that we provide has a shorter running time than their algorithm.
We start by proving a fact about vertices of CNP-VNDV, that we use later as
branching rule.

Lemma 3.1 Let G = (V,E) be a graph and let v ∈ V \ N be an arbitrary
vertex. An instance (G,A,N, k, x) of CNP-VNDV is a yes-instance, if and
only if (G − {v}, A \ {v}, N, k − 1, x) or (G,A,N ∪ {v}, k, x) is a yes-instance
of CNP-VNDV.

Proof Let (G,A,N, k, x) be a yes-instance of CNP-VNDV. Then, there is a
set C ⊆ V \ N such that |C| ≤ k and G − C has a connectivity of at most x.
If v ∈ C, then the instance (G− {v}, A \ {v}, N, k− 1, x) is also a yes-instance,
because the set C ′ = C \ {v} is a critical node cut. Otherwise, if v /∈ C,
then (G,A,N ∪ {v}, k, x) is a yes-instance, as C is also a critical node cut
for (G,A,N ∪ {v}, k, x).

Conversely, let (G−{v}, A\{v}, N, k−1, x) or (G,A,N ∪{v}, k, x) be a yes-
instance of CNP-VNDV. First, suppose there exists a critical node cut C for
the instance (G − {v}, A \ {v}, N, k − 1, x). The set C ′ := C ∪ {v} is a criti-
cal node cut for (G,A,N, k, x), for these three reasons: the size of C ′

is |C|+1 ≤ (k−1)+1 = k, since G−C ′ = (G−{v})−C every vulnerable connec-
tion in G−C ′ is also a vulnerable connection in (G−{v})−C, and since v 6∈ N
we conclude that C ′ ⊂ V \N . For the other case let (G,A,N ∪ {v}, k, x) be a
yes-instance of CNP-VNDV and let C be the corresponding critical node cut.
It directly follows that C is also a critical node cut for (G,A,N, k, x). �

We want to point out that we required A ⊆ V as input for CNP-VNDV.
Thus, if v ∈ A, the input (G− {v}, A,N, k − 1, x) would not fulfill the require-
ment A ⊂ V (G− {v}). So we write (G− {v}, A \ {v}, N, k − 1, x).

We can also show a similar observation for every pair of vertices. However,
for the branching we do later we only need edges. So we will restrict the next
observation to edges.

Lemma 3.2 Let G = (V,E) be a graph and {u, v} ∈ E an arbitrary edge of G.
An instance (G,A,N, k, x) of CNP-VNDV is a yes-instance, if and only if

1. u ∈ V \N and (G−{u}, A\{u}, N, k−1, x) is yes-instance of CNP-VNDV,

2. v ∈ V \N and (G−{v}, A\{v}, N, k−1, x) is yes-instance of CNP-VNDV
or

3. (G,A,N ∪ {u, v}, k, x) is yes-instance of CNP-VNDV.

Proof Let (G,A,N, k, x) be a yes-instance of CNP-VNDV and let C be
a critical node cut. In the case that w ∈ C for w ∈ {u, v}, we conclude
that w 6∈ N and the vertex set C \ {w} is a critical node cut for the in-
stance (G− {w}, A \ {w}, N, k − 1, x) and thus C \ {w} is a yes-instance. Oth-
erwise, if u, v /∈ C, then (G,A,N ∪ {u, v}, k, x) is a yes-instance, as C is also a
critical node cut for (G,A,N ∪ {u, v}, k, x).

Conversely, let (G−{u}, A\{u}, N, k−1, x) or (G−{v}, A\{v}, N, k−1, x)
or (G,A,N ∪ {u, v}, k, x) be a yes-instance of CNP-VNDV. If one of the two
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first instances is a yes-instance, we know from Lemma 3.1 that (G,A,N, k, x)
of CNP-VNDV is a yes-instance. Suppose, (G,A,N ∪ {u, v}, k, x) is a yes-
instance of CNP-VNDV and let C be the corresponding critical node cut.
Then, C is also a critical node cut for (G,A,N, k, x). �

Now we show that CNP-NDV is fixed-parameter tractable with respect
to the parameter k + x. For this, we provide an even stronger result
and show that an instance (G,A,N, k, x) of CNP-VNDV can be solved
in O(2k+x · (n + m)) time, if A ⊆ N . We closely relate to the algorithm Her-
melin et al. [HKKN16] provided to show that CNP is fixed-parameter tractable
with respect to the parameter k + x. For a graph G, the algorithm of Her-
melin et al. picked an arbitrary edge {u, v} from G and branched into the op-
tions of removing u or v from the graph G, or keeping {u, v} in the graph G.
In an instance of CNP-VNDV we cannot add non-deletable vertices to a criti-
cal node cut. Thus, if we pick an edge {d, v} that is incident with a vulnerable
vertex d, we only have two options: adding v to a critical node cut or keep-
ing {d, v} in the graph.

Theorem 3.3 An instance (G,A,N, k, x) of CNP-VNDV with A ⊆ N can be
solved in O

(
2k+x · (n+m)

)
time.

Proof Intuition: In the algorithm we pick neighbors v of N and branch into
removing v from the graph or make v non-deletable and therefore increase the
number of vulnerable connections in G[N ].

Algorithm: Let (G,A,N, k, x) be an instance of CNP-VNDV with A ⊆ N .
Step 0. If k < 0 or the connectivity of G[N ] is greater than x, return no

in this branch of the decision-tree. If the connectivity of G is at most x, return
yes.

Step 1. Compute the set N ′ ⊆ N such that N ′ contains all vertices that are
connected to a vulnerable vertex in G[N ] and the vertices that are vulnerable.

Step 2. Pick a neighbor v of N ′ and branch into the following instan-
ces: (G− {v}, A \ {v}, N, k− 1, x) and (G,A,N ∪ {v}, k, x) of CNP-VNDV. If
the neighborhood of N ′ is empty, return yes.

Correctness: The returns in Step 0 are correct by easy observations. If in
Step 2 the neighborhood of N ′ is empty, then observe:

1. The connectivity of G[N ] is at most x, because we did not return no in
Step 0.

2. In G[N ] every vertex that is connected to a vulnerable vertex is contained
in N ′ and A ⊆ N ′.

Because of the second point and because the neighborhood of N ′ is empty, every
vertex that is connected to a vulnerable vertex in G is contained in N ′. Thus,
the connectivity of G is the connectivity of G[N ]. Therefore, this return is
correct.

Let v be a neighbor of the set N ′ computed in Step 1. The vertex v is not
in N : Assume towards a contradiction v ∈ N . Because, v is a neighbor of N ′,
we can assume {u, v} with u ∈ N ′. Because u ∈ N ′ we follow u ∈ A or u is
connected to a vulnerable vertex. In both cases v is connected to a vulnerable
vertex. Thus, v ∈ N ′ contradicting v being a neighbor of N ′.
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It follows that the vertex v in Step 2, which is a neighbor of N ′, is in V \N .
We can apply Lemma 3.1 to prove that the branching in Step 2 is correct.

Running time: If a vertex v with {u, v} ∈ E(G), u ∈ N ′ is added to N ,
the connectivity of G[N ] increases: The vulnerable vertex that is connected
to u is then also connected to v, or u ∈ A and v is adjacent to a vulnerable
vertex. It follows that the algorithm can choose the instance (G,A,N∪{v}, k, x)
at most x times and the instance (G−{v}, A \ {v}, N, k− 1, x) at most k times.
Afterwards, the algorithm returns in Step 0 or Step 2. It follows that the decision
tree has size of 2k+x.

In every step of the decision tree, we have to compute the connectivity for
several graphs, which can be done in O(n+m) time, due to Lemma 2.14. With
breadth-first search, we can compute the set N ′ in Step 1 within O(n+m) time.
Hence, the algorithm is done in O(2k+x · (n+m)) time. �

Because CNP-NDV is the special case of CNP-VNDVwith A = N we con-
clude:

Corollary 3.4 CNP-NDV can be solved in O
(
2k+x · (n+m)

)
time.

The algorithm that we provided in the proof of Theorem 3.3 cannot be ap-
plied to an instance of CNP-V, because the condition A ⊆ N is not satisfied
with N = ∅. Informally, the reason is that we do not know what to do with a
vulnerable vertex, other than in CNP-NDV where we cannot remove vulnera-
ble vertices It is obvious that we have to search for another strategy when we
consider CNP, which is the special case of CNP-V with A = V . Therefore,
we provide another algorithm that shows us that CNP-V is fixed-parameter
tractable with respect to the parameter k + x. Like the algorithm of Theo-
rem 3.3, the algorithm we provide next follows the pattern of the algorithm by
Hermelin et al. [HKKN16] that solves CNP in O(3k+x · (xk+2 + n)) time.

Theorem 3.5 CNP-VNDV can be solved in O
(
3k+x · (n+m)

)
time.

Proof Algorithm: Let (G,A,N, k, x) be an instance of CNP-VNDV.
Step 0. If k = 0, then return yes if and only if the connectivity of G is at

most x. If the connectivity of G[N ] is greater than x, then return no.
Step 1. Compute the set N ′ ⊆ N such that N ′ contains all vertices that

are connected to a vulnerable vertex in G[N ].
Step 2. Let {u, v} ∈ E(G) be an edge in G that fulfills

� u ∈ A ∪N ′ and v 6∈ N or

� u ∈ N \N ′ and v ∈ A.

If such an edge does not exist in G, then return yes. Otherwise, pick such an
edge {u, v} ∈ E(G) arbitrarily and branch into one of the following three cases:

1. (G− {v}, A \ {v}, N, k − 1, x).

2. (G,A,N ∪ {u, v}, k, x).

3. If u ∈ A \N , then (G − {u}, A \ {u}, N, k − 1, x) is an option. If u ∈ N ,
then this option is not available.
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Correctness: If k = 0, the only potential critical node cut is C = ∅, and we
can return yes if and only if the connectivity ofG is at most x. If the connectivity
of G[N ] is greater than x, we cannot find a critical node cut C ⊆ V \N . Thus,
the returns in Step 0 is correct.

Claim 3.5a: The return in Step 2 is correct.
Proof; If in Step 2 no edge {u, v} exists with u ∈ A ∪N ′ and v 6∈ N , then we
observe:

� The neighborhood of N ′ is empty, because if a vertex v of N is a neighbor
of N ′, v ∈ N ′.

� The neighborhood of A \N ′ is a subset of N \N ′.

Thus, if additionally no edge {u, v} with u ∈ N \ N ′ and v ∈ A exists, all
vulnerable vertices are included in the set N ′, and the neighborhood of N ′ is
empty. Thus, the connectivity of G is the connectivity of G[N ], which after
Step 0 is at most x. It follows, that the return in Step 2 is correct. �

We want to use Lemma 3.2 to show the correctness of the branching in
Step 2. Let v be a neighbor of A ∪ N ′. It is required for v to not be in N
in the first option for {u, v} that is u ∈ A ∪ N ′ and v 6∈ N . In the second
option, which is u ∈ N \ N ′ and v ∈ A, observe: if u ∈ N \ N ′ and v ∈ A,
we conclude v 6∈ N , because otherwise u ∈ N ′. In option 3, we require u ∈ N .
Thus, all requirements of Lemma 3.2 are correct.

Running time: In order to find a suitable edge, we iterate over all edges. For
every edge e that we have to check if the vertices are deletable or vulnerable
that e is incident with, in order to to check in which option we branch to.
Because we saved that in a Boolean flag, for every edge this can be done in
constant time. Therefore, finding a suitable edge can be done in O(m) time.
Notice that when in the branching step we pick the first or the third option, we
decrease k by one. It follows that we can chose these options at most k times.
Next we show that whenever we chose option two, we increase the connectivity
of G[N ] and thus we can chose this option at most x times.

Claim 3.5b: Every time we return the result of this algorithm with in-
put (G,A,N ∪ {u, v}, k, x), the connectivity of G[N ] is increased.
Proof; Case 1: We took the decision concerning an edge {u, v} with u ∈ A∪N ′
and v 6∈ N . If u ∈ A\N ′, then {u, v} is a vulnerable connection in G[N∪{u, v}].
If u ∈ N ′, then by the definition of N ′, a vulnerable vertex d exists such that d
and u are connected in G[N ]. It follows that over u, the vertices d and v are
connected in G[N ∪ {u, v}].

Case 2: We took the decision concerning an edge {u, v} with u ∈ N \ N ′
and v ∈ A. It follows, that {u, v} is a vulnerable connection in G[N ∪ {u, v}]. �

This bounds the height of the search-tree to k+ x. In every step we have at
most three options, such that the size of the search tree is at most 3k+x.

We can compute the Steps 0 and 1 in O(n + m) time with breadth-first
search. We can find a suitable edge in Step 2 within O(m) time by iterat-
ing over E(G) and having the information v ∈ A, v ∈ N ′ and v ∈ N saved in
flags for every vertex v. Thus, the algorithm is done in O(3k+x ·(n+m)) time. �
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Corollary 3.6 CNP-V can be solved in O
(
3k+x · (n+m)

)
time.

The result of the previous theorem improves the fixed-parameter algorithm
provided by Hermelin et al. [HKKN16], which ran in O(3k+x · (xk+2 +n)) time.
The algorithm by Hermelin et al. [HKKN16] performs a brute-force on minimal
solutions of an auxiliary problem, which increases the running time for every
leaf. Recall, that CNP is the special case of CNP-V with A = V .

Corollary 3.7 CNP can be solved in O
(
3k+x · (n+m)

)
time.

In the following, we provide another algorithm to show that CNP-V can

be solved in O
((

4
3x+ 2

)k ·m · x) time. If k < x·ln(3)/ln( 4
9 ·x

2), then an algo-

rithm with running time O
((

4
3x
)k)

is faster than an algorithm with running

time O(3k+x). This formula marks the bound but notice that the formula is
already true if k < 1

10 ·x
0.9. In the algorithm that we provide in the next prove,

we make connected components of size at least 4 smaller by adding vertices
to a critical node cut. Recall that due to Theorem 2.28 CNP-V can be solved
in O(n) time on a graph, in which every connected component has at most three
vertices. We use this algorithm in the end of the following algorithm:

Theorem 3.8 CNP-V can be solved in O
((

4
3x+ 2

)k ·m · x) time.

Proof Intuition: The idea of the algorithm is that we search a subset of
vertices B, which consists of at most 4

3x+ 2 vertices such that the connectivity
of G[B] already exceeds x. Thus, if there exists a critical node cut C, at least
one vertex of B is in C. We only consider connected components of size at
least 4. If at the end of the algorithm there are only connected components of
size at most 3, then return the result of the algorithm of Theorem 2.28.

Algorithm: Let (G,A, k, x) be an instance of CNP-V.
Step 0. If k < 0, then return no in this branch of the tree. Otherwise, if

the connectivity of G is at most x, then return yes. If all remaining connected
components have size of at most 3, return the result of the algorithm presented
in Theorem 2.28.

Step 1. Pick an arbitrary vulnerable vertex v that is in a connected com-
ponent of size at least 4. Set B = {v} and go to Step 2.

Step 1b. Pick an arbitrary vulnerable vertex v that is not in B and that
is in a connected component of size at least 5. Add v to B and go to Step 2.
If there are no more non-trivial connected components of size at least 4, go to
Step 3.

Step 2. If the connectivity of G[B] is greater than x, go to Step 3. If the
connected components of B are connected components in G, go to Step 1b.
Until the connectivity of G[B] is greater than x, or B is isolated in G, add an
arbitrary neighbor of B to B.

Step 3. For every vertex v of B, branch and return the result of this
algorithm with input (G− {v}, A \ {v}, k − 1, x).

Correctness: Step 0 is correct by the definition of the problem. It remains
to show that the branching in Step 3 is correct. In this case this means that we
want to show the following:

Claim 3.8a: Let B be a vertex set computed according to Step 1 and Step 2.
An instance (G,A, k, x) of CNP-V is a yes-instance if and only if there exists a
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vertex v ∈ B such that (G− {v}, A \ {v}, k− 1, x) is a yes-instance of CNP-V.
Proof; Suppose that (G,A, k, x) is a yes-instance with a corresponding criti-
cal node cut C. It is sufficient to show that C contains at least one vertex of B.
For this, we consider these two different options: One option is that B is com-
puted in Step 1 and Step 2 such that the connectivity of G[B] is greater than x.
The other option is that the connectivity of G[B] is at most x even after all
connected components of G that contain at least four vertices are added to B.

Case 1: We start with the case, that B is computed in Step 1 and Step 2
such that the connectivity of G[B] is greater than x. Suppose B ∩ C = ∅. The
connectivity of G−C is at least as large as the connectivity of G[B]. However,
because the connectivity of G − C is at most x, this is a contradiction and we
conclude B ∩ C 6= ∅.

Case 2: The other case is that the connectivity of G[B] is at most x when
all non-trivial connected components of size at least 4 are added to B. We
observe that, because we continued after Step 0, the connectivity of G is greater
than x. Thus, C is not empty. Assume that C contains no vertex of B. It
follows that all the vertices that are in C are in connected components of size
at most 3. We observe that cutting any amount of vertex from a connected
component of size at most 3 removes at most three vulnerable connections from
the graph, while cutting a vulnerable vertex from a connected component of size
at least 4 removes at least three vulnerable connections. Thus, we can replace
at least one vertex of C with a vertex of B to have a vertex set C ′ that is still
a critical node cut. It follows that there exists a critical node cut that contains
at least one vertex of B.

Conversely, assume that I := (G − {v}, A \ {v}, k − 1, x) is a yes-instance
of CNP-V for some vertex v ∈ B. Let C ⊆ V (G − {v}) be a critical node cut
of I. We define C ′ = C ∪ {v}. The instance (G,A, k, x) is a yes instance, be-
cause C ′ is a critical node cut for (G,A, k, x). �

We proved, that the branching that we perform in Step 3 is correct and thus
the algorithm returns yes, if and only if a yes-instance of CNP-V is given as
input.

Running time: In Step 0 we compute the connectivity of G, which can be
done in O(n + m) time, according to Lemma 2.14. In Step 1 we search a
vulnerable vertex that is in a connected component of size at least 4. For that
we can iterate over E and find all edges that are incident with a vulnerable
vertex v and compute whether v is in a connected component of size at least 4
by iterating at most 4 times over E. Thus, Step 1 is done in O(m) time.

Finding a neighbor of B in Step 2 can be done in O(m) time. Because we
increase the connectivity of B every time Step 2 is called, we start Step 2 at
most x times. Altogether, Step 2 is done in O(m·x) time, which is called in every
branch. In order to compute the size of B, consider the following: Generally, a
non-trivial connected component C of size c, has a connectivity of at least c−1.
Thus, B contains at most 1

c−1x components of size c which are altogether c
c−1x

vertices, when the connectivity of B is at most x. The number c
c−1x is decreas-

ing, if c is increasing. Thus, c
c−1x is the highest for c = 4. If x is divisible by 4

and x
3 connected components of size four are in B, the connectivity of G[B] is

exactly x. Thus, we need to add another two vertices such that the connectivity
of B exceeds x. Altogether, the size of B is at most 4

3x + 2. In Step 3 we
branch into |B| options, which are at most 4

3x + 2, as proven above. This can
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be done at most k times, as k is decreased every time by exactly one. Hence,

the size of the search tree is at most O
((

4
3x+ 2

)k)
. The steps at every vertex

of the search tree can be done in O(m · x) time. Altogether, the algorithm runs

in O
((

4
3x+ 2

)k ·m · x) time. �

We proved that CNP-V and CNP-NDV are fixed-parameter tractable with re-
spect to the parameter k + x. It directly follows that CNP-V and CNP-NDV
are fixed-parameter tractable for some other parameters as well. After Reduc-
tion Rule 2.9 is applied, we can assume |A| > k for instances of CNP-V.

Corollary 3.9 CNP-V is fixed-parameter tractable with respect to the param-
eter |A|+ x.

Recall that, after Reduction Rule 2.5 is applied, we can assume y > k. Recall
that the parameter p is the number of vulnerable connections. By the definition
of p, which is number of vulnerable connections, we know that p ≥ x+ y if x is
chosen to be at most p. We have the following result:

Corollary 3.10 CNP-V and CNP-NDV are fixed-parameter tractable with re-
spect to the parameter p.

3.2 Parametrization by the Neighborhood-
Diversity

In the following we show that both problems CNP-V and CNP-NDV are fixed-
parameter tractable when parameterized by the parameter nd. Recall, that nd
is the number of neighborhood-classes of the input graph. A neighborhood-
class is defined as a subset of vertices that all have the the same open or closed
neighborhood.

We start by an observation that we can refer to in the next algorithm.

Observation 3.11 Let G be a graph that can not be separated by removing one
vertex and let C1, . . . , C` be the connected components in G.

� If for i ∈ [1, `] there are two vertices u and v in the set A ∩ Ci, then the
graphs G− {u} and G− {v} have the same connectivity.

� If for i ∈ [1, `] there are two vertices u and v in the set (V \A)∩Ci, then
the graphs G− {u} and G− {v} have the same connectivity.

� If for i ∈ [1, `] there are two vertices u ∈ A ∩ Ci, v ∈ (V \ A) ∩ Ci, then
the connectivity of the graph G−{v} is higher than the connectivity of the
graph G− {v}.

In the following algorithm we show that CNP-VNDV is fixed-parameter
tractable with respect to the parameter nd. As CNP-V and CNP-NDV are spe-
cial cases of CNP-VNDV, we can directly follow that CNP-V and CNP-NDV
are fixed-parameter tractable with respect to the parameter nd.

Theorem 3.12 CNP-VNDV can be solved in O(2nd · k · n · (n+m)) time.



3.2. PARAMETRIZATION BY THE NEIGHBORHOOD-DIVERSITY 41

Proof Intuition: In this algorithm we consider every subset Z of neighborhood-
classes that do not contain a non-deletable vertex. For a given subset Z, every
neighborhood-class K ∈ Z shall be a subset of a critical node cut C. Each other
neighborhood-class K ′ is not a subset of the critical node cut C. Hence, at least
one vertex of K ′ remains in the graph G − C. In consequence, a vulnerable
connection {u, v} is only removed from G− C, if u or v is added to C.

Algorithm: Let (G,A,N, k, x) be an instance of CNP-VNDV. We de-
fine C := {C1, . . . , Cnd} to be the set of all different neighborhood-classes of G.
We define

C′ := {K ∈ C | K ∩N = ∅}.

Do Steps 0 to 3 for every subset Z ⊆ C′. Return yes, if and only if for any
subset Z the algorithm returns yes.

Step 0. If the union of the neighborhood-classes of Z contains more than k
vertices, do not consider Z and continue with the next set. Otherwise, initialize
the set C := ∅.

Step 1. Add all vertices in the classes Z = {Ci1 , . . . , Cit} to a potential
critical node cut C.

Step 2. Compute the number of vulnerable vertices of every connected
component L of the remaining graph G−C and assign that number to the non-
vulnerable vertices of L. For every connected component L in the remaining
graph G−C assign the number |L|−1 to every vulnerable vertex v ∈ L. Assign
the value −1 to every non-deletable vertex v ∈ N , even if another value was
assigned before.

Step 3. Until the size of C is k or there is no vertex that is deletable and
not the last vertex of its neighborhood-class do the following: Add the vertex
with the highest assigned number to C, when only vertices are considered that
are deletable and not the last vertex of its neighborhood-class. If a vulnerable
vertex v is added to C, then decrease the assigned number to w by one for every
vertex w that is in the same connected component with v. If a non-vulnerable
vertex v is added to C, then decrease the assigned number to w by one for every
vulnerable vertex w that is in the same connected component with v. Once C
has k vertices or there are no more vertices that are deletable and not the last
one of their neighborhood-class, or there are only vertices left with a negative
assigned number, return yes if the connectivity of G−C is at most x. Otherwise,
continue with the next subset of neighborhood-classes.

Correctness: Let (G,A,N, k, x) be a yes-instance of CNP-VNDV with a
critical node cut K for (G,A,N, k, x). We show that the algorithm returns
yes. We show that the set C that the algorithm computes is also a criti-
cal node cut and the algorithm returns yes. Without loss of generality, the
neighborhood-classes Z = {C1, . . . , Ct} are a subset of K and the neighborhood-
classes Ct+1, . . . , Cnd have at least one vertex which is in G − K. It follows
that Ci ∈ C′ for i ∈ [1, t]. Recall what we observed in the intuition: Adding a ver-
tex v of Ct+i with i ∈ [1,nd−t] to a critical node cut F does not separate G−F ,
because another vertex of the neighborhood-class remains inG−F . Observe that
a vulnerable vertex in a connected component of size c is in c−1 vulnerable con-
nections and a non-vulnerable vertex in a connected component with d vulner-
able vertices is in d vulnerable connections. By definition, a critical node cut C
does not contain any vertex v ∈ N . Thus, we assigned to every vertex the
number of vulnerable connections that are removed from the graph G − C,
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when a vertex is added to C. Let C be the set that the algorithm computes,
when Z is considered. We can make this assumption, as the algorithm tries
every subset Z of C′. We assume, that |C| = |K| = k, as otherwise we can add
any non-deletable vertices to K or C. Let v1, . . . , vk be the order in which the
vertices v1, . . . , vk are added to C. Assume towards a contradiction that C is
not a critical node cut of (G,A,N, k, x), especially C 6= K ′ for every critical
node cut K ′ for (G,A,N, k, x). For the rest of the proof, fix such a critical
node cut K ′. It follows, that an i ∈ [1, k] exists such that {v1, . . . , vi−1} ⊆ K ′

and vi 6∈ K ′. We bring this proof to a contradiction by showing that a critical
node cut exists which contains all vertices {v1, . . . , vi} and especially all vertices
of vertex sets in Z. Let L be the connected component of vi.

Case 1: K ′ \ {v1, . . . , vi−1} does not contain any vertex from the connected
component of vi in G− {v1, . . . , vi−1}. Because the algorithm always picks the
vertex which results in the highest number of removed vulnerable connections,
adding vi to a critical node cut removes at least as many vulnerable connections
as any other vertex. Because adding another vertex to a critical node cut does
not remove more vulnerable connections and even adding several vertices to
a critical node cut does not separate the graph, the set (K ′ ∪ {vi}) \ {w} for
any w ∈ K ′ \ {v1, . . . , vi−1} is a critical node cut.

Case 2: K ′\{v1, . . . , vi−1} contains exactly one vertex w from the connected
component L of vi in G− {v1, . . . , vi−1}. It follows from Observation 3.11 that
the vertex vi is vulnerable if and only if L contains vulnerable deletable vertices
that are not the last vertex of their neighborhood-class. So, if w is vulnerable,
then vi is vulnerable as well. Furthermore, in K ′ we can exchange w for vi
in any case, because all vulnerable vertices in a connected component have the
same assigned value and non-vulnerable vertices in a connected component have
the same assigned value and the value is always less than the assigned value to
a vulnerable vertex.

Case 3: K ′ \ {v1, . . . , vi−1} contains j vertices from the connected compo-
nent L of vi in G− {v1, . . . , vi−1} with j > 1.

Case 3.1: By Observation 3.11 we know that if vi is non-vulnerable, all j ver-
tices are non-vulnerable as well. Thus, in K ′ we can exchange any of these j ver-
tices with vi, because all non-vulnerable vertices of a connected component have
the same assigned value.

Case 3.2: If at least one of these j vertices w is vulnerable, vi is vulnerable
as well and we can exchange w with vi in K ′, because all vulnerable vertices of
a connected component have the same assigned value.

Case 3.3: It remains the case that all j vertices are non-vulnerable, except
for vi which is vulnerable. Let w be any of these j vertices. Let AL be the set
of all d vulnerable vertices in L and set q := |L|. It follows q > d, because w
is non-vulnerable. We define K ′′ := (K ′ ∪ {vi}) \ {w}. The graph G − K ′

in comparison to G − K ′′ does not contain the vulnerable connections {u,w}
for all u ∈ AL \ {vi}, but contains the vulnerable connections {vi, u} for all
vertices u ∈ L \ {w}. Thus, G −K ′ contains (q − 1) − (d − 1) > 0 vulnerable
connections more than G−K ′′ and K ′′ is also a critical node cut.

It follows, that for every i ∈ [1, k] we can find a critical node cut that
contains {v1, . . . , vk} and thus C is a critical node cut.

Conversely, let the algorithm return yes when the instance (G,A,N, k, x)
of CNP-VNDV is given as input. The algorithm only returns yes, if a set C is
defined with at most k vertices and the connectivity of G− C is at most x. It
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follows that C is a critical node cut of (G,A,N, k, x), which then is a yes-instance
of CNP-VNDV.

Running time: Computing all neighborhood-classes can be done in linear
time [HM91]. For each of the at most 2nd subsets of C′, we have to do the
following: In the Steps 0 to Step 2, we have to compute the number of vulnerable
vertices of the connected component or the size of the connected component
which takes O(n + m) time by breadth-first search. Then, we have to add
vertices to C greedily, at most k times.

Finding the vertex with the highest assigned number is done in O(n) time
by iterating over all vertices. Remark that when we add a vertex v to C, we
have to decrease the assigned number for all or some vertices that are in the
same connected component as v by one. For that, we have to find all vertices
that are in the same connected component which is done in O(n + m) time
by breadth-first search. Altogether, this leads us to an algorithm running
in O(2nd · k · n · (n+m)) time. �

Because CNP-V and CNP-NDV are special cases of CNP-VNDV, we conclude
the following:

Corollary 3.13 CNP-V and CNP-NDV are fixed-parameter tractable with re-
spect to the neighborhood-diversity of the input graph.

By Observation 2.4 we know that the parameter nd can be bounded byO(2vc),
where vc is the vertex cover number. It follows, that:

Corollary 3.14 CNP-V and CNP-NDV are fixed-parameter tractable with re-
spect to the vertex cover number of the input graph.

3.3 Parametrization by the Number of Connec-
tions to be removed

In this section, we consider a parametrization of the problem CNP-NDV with
the parameter y which is the number of vulnerable connections that have to
be removed from the graph G. Hermelin et al. [HKKN16] showed that CNP is
fixed-parameter tractable with respect to the parameter y. Their algorithm finds
a solution for every connected component with brute-force and then computes
the solution for the entire graph. We can use a similar algorithm for CNP-V,
but need to alter the algorithm in two points. First, their argument for y > k
is not sufficient for our problem. However, after Reduction Rule 2.5 is applied,
we can assume y > k. Also, we can assume that a connected component in G
has at most y vertices. For that, we remove all connected components in the
graph that do not have vulnerable vertices. Then, if a non-trivial connected
component has more than y vertices, we are dealing with a trivial yes-instance,
as we can just cut a vulnerable vertex from the connected component that has
at most y vertices.

Theorem 3.15 A solution for CNP-V can be computed in O(2y · y2 · n) time.

Proof Algorithm: Let (G,A, k, x) be a given instance and let C1, . . . , Ct be
the connected components of G. We proceed as follows:
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Step 1. For every i ∈ {1, . . . , t}, check if Ci contains at least a vulnerable
vertex. If Ci does not contain a vulnerable vertex, then remove Ci from the
graph G.

Step 2. Return yes, if a connected component Ci of size at least y exists.
Return yes, if k ≥ y.

Step 3. For each connected component Ci of G and each k′ ∈ [1, k], compute
by brute-force the maximum number of vulnerable connections in Ci that can
be removed by deleting exactly k′ vertices in Ci. Let T [i, k′] denote this number.

Step 4. For increasing i, compute the maximum number of vulnerable
connections that can be removed by deleting exactly k′ vertices in the connected
components C1, . . . , Ci. Let Q[i, k′] denote this number. For the value i = 1,
we set Q[1, k′] := T [1, k′]. For i > 1, we set

Q[i, k′] := max
k′′<k′

Q[i− 1, k′′] + T [i, k′ − k′′].

Step 5. If Q[t, k] < y return no. Otherwise, return yes.

As noted by Hermelin et al. [HKKN16], the correctness of the algorithm is
obvious: optimal solutions for different connected components can be combined
since the connected pairs are only contained within connected components.

Running time: All connected components can be computed by breadth-first
search. In Step 1 and Step 2 we iterate over all vertices of the connected com-
ponents and thus the steps are performed in linear time. Afterwards, the size
of a connected component is at most y and k < y. It follows that for every con-
nected component there are O(2y) possibilities to check in Step 3. The dynamic
programming in Step 4 of the algorithm is then performed for t ≤ n different
values of i. For each value of i, k2 ≤ y2 possible combinations of k′ and k′′ are
considered. Altogether, the algorithm has a running time of O(2y · y2 · n). �

3.4 Parametrization by the Number of Non-
Vulnerable Vertices

In this section we show that CNP-NDV is fixed-parameter tractable with re-
spect to the parameter |V \ A|. This is a difference in comparison to CNP-V,
which by Theorem 2.12 is NP-hard, even if |V \A| = 0.

Theorem 3.16 CNP-NDV can be solved in O
((
|V \A|
k

)
· (n+m)

)
time.

Proof Algorithm: If |V \ A| < k, return yes, if and only if the connectivity
of G[A] is at most x. Otherwise, iterate over all subsets K of V \ A of size k.
If for such a subset K the graph G−K has a connectivity of at most x, return
yes. If no such subset exists, return yes.

Correctness: The correctness of the first condition is obvious.
Let (G,A, k, x) be a yes-instance of CNP-NDV. Thus, there exists a criti-

cal node cut C. If |C| = k, the algorithm generates C at one point and returns
yes. Otherwise, let C ′ be a subset of V \ A of size k and C ⊂ C ′. The connec-
tivity of G−C ′ is at most the connectivity of G−C. Thus, C ′ is generated by
the algorithm and yes is returned.



3.4. PARAMETRIZATION BY |V \A| 45

If the algorithm returns yes, a critical node cut is generated by the algorithm
and (G,A, k, x) is a yes-instance.

Running time: There are exactly

(
|V \A|
k

)
subsets of V \ A with ex-

actly k vertices. For every such set K, we have to compute the connectivity of
the graph G−K. By Lemma 2.14, the connectivity of a graph can be computed
in O(n+m) time. �

For k 6= 0, we remark at this point that

(
|V \A|
k

)
< 2|V \A|. Thus, Theo-

rem 3.16 shows us that CNP-NDV is fixed-parameter tractable with respect to
the parameter |V \A|.

Because V \ A ⊆ V , in Theorem 3.16 we have an algorithm that is done in
at most O(nk · n ·m) time. After Reduction Rules 2.7 and 2.5 are applied, we
can assume that n > k and y > k. We have the following results.

Corollary 3.17 CNP-NDV is slice-wise polynomial with respect to the param-
eters k, n and y.

In the algorithm in the proof of Theorem 3.16, we iterate over all subsets
of V \ A of size k to find a solution. This is enough for CNP-NDV, because a
critical node cut must be disjoint from the vulnerable vertices. This is not cor-
rect for CNP-V. However, iterating over all vertex sets of size k in an instance
of CNP-V and performing the rest of the algorithm just like in Theorem 3.16
solves an instance of CNP-V in O(nk) time. It follows:

Lemma 3.18 CNP-V is slice-wise polynomial with respect to the parameter k.

Because in non-trivial instances of CNP-V the number of vulnerable vertices
is greater than k, we also have the following result:

Corollary 3.19 CNP-V is slice-wise polynomial with respect to the parame-
ter |A|.
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Chapter 4

Hardness for One
Non-Deletable Vulnerable
Vertex

In this chapter, we show that CNP-NDV is NP-hard, even if the input graph G
contains only one vulnerable vertex. In contrast it is apparent that CNP-V
cannot be NP-hard with only one vulnerable vertex: If k = 0, we return yes if
and only if the connectivity of G is at most x and if k ≥ 1, we can return yes,
because A is a critical node cut.

To give a stronger result than the NP-hardness we show that CNP-NDV
is W[1]-hard with respect to the parameters n + k + y and with respect to x,
even if there is only one vulnerable vertex. This is in fact a stronger result, as
in this chapter we only present reductions that can be computed in polynomial
time. Recall, that n is the size of the open neighborhood of A and, that y is the
number of vulnerable connections that need to be removed from an instance.

We also show that, even if the input graph contains only one vulnerable
vertex, CNP-NDV is both W[1]-hard with respect to the parameter n+ k + y
on bipartite graphs and W[1]-hard with respect to k + y on split graphs. Also,
we prove that even on split graphs CNP-V is W[1]-hard with respect to the
parameter k.

4.1 Parameterized Hardness for k+ y

Now we show that CNP-NDV is W[1]-hard with respect to the para-
meter n + k + y, even if the input graph only contains one vulnerable vertex
and diam = 2. We reduce from Clique. Recall that in Clique, a graph and an
integer ` are given as input, and the question is whether there exists a subset X
of ` vertices that are pairwise adjacent. Clique is well-known W[1]-hard with
respect to the parameter ` which is the size of the clique [CFK+15]. The reduc-
tion that we provide follows the spirit of the reduction that Fomin et al. [FGK13]
provided to show that Cutting at most k Vertices with Terminal is
W[1]-hard with respect to the parameter t, which is the size of the cut. Thus,
we can directly follow that CNP-NDV is W[1]-hard with respect to the param-
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Figure 4.1: Construction of G′ in the proof of Theorem 4.1.

eter k, even if |A| = 1. We write an own reduction, because we want to show
the stronger result that CNP-NDV is W[1]-hard with respect to the parame-
ter n+k+y, even if |A| = 1 and diam = 2. Recall that in Cutting at Most k
Vertices with Terminal a graph G, a vertex s ∈ V (G) and two integers k
and t are given as input and the question is, whether a vertex set X ⊆ V (G)
exists such that s ∈ X, |X| ≤ k and |N(X)| ≤ t.

Theorem 4.1 CNP-NDV is W[1]-hard with respect to the parameter n+k+y,
even if |A| = 1 and diam = 2.

Proof Construction: Let (G, `) be an instance of Clique. We assume with-
out loss of generality that ` ≤ nG. We construct an instance (G′, A, k, x)
of CNP-NDV as follows: We start with a single vulnerable vertex d and
set A := {d}. Then, we add ` + 1 neighbor-vertices to d and call this set N .
We add a set HV of nG vertices to G′ that correspond to the vertex set V (G).
We add an edge between every vertex of HV and every vertex of N . Further-
more, we add for every edge in G a vertex to G′ and name that vertex set HE .
For every edge {u, v} of G, connect the corresponding vertex of HE to the two
vertices of HV that correspond to u and v. Finally, we add a universal ver-
tex ū that is connected to every vertex of G′. The construction of G′ is shown

in Figure 4.1. We set k := ` + 1 and x := |N | + nG + mG + 1 −
(
`
2

)
. Ob-

serve, n = ` + 2 = |N ∪ {ū}|. Then, y =

(
`
2

)
+ ` + 1, as we are dealing with

exactly one vulnerable vertex. Thus, n, k and y are polynomial bounded by `.
It is |A| = |{d}| = 1 and because of the universal vertex ū the diameter of the
graph G′ is 2. The construction is computed in polynomial time.

Intuition: We constructed G′ so that there exists a vertex in G′ for every
vertex and for every edge in G. The vertices of HV correspond to the nG
vertices of G and the vertices of HE to the mG edges of G. As we can add at
most k vertices to a critical node cut, we cannot add all vertices of N ∪ {ū}
to a critical node cut. In consequence, the only vertices that can be separated
from d without being in the critical node cut are in the vertex set HE . We want
to exploit the structure of a clique to prove the equivalence of the instances.

Correctness: Let (G, `) be a yes-instance of Clique. Thus, there is a set
of vertices X ⊆ V (G) such that G[X] is a clique of size `. Thus, G[X] con-
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tains

(
`
2

)
edges. Let Y be the set of these edges. We define the vertex set C

that contains the ` vertices in HV that correspond to the vertices of X and the

universal vertex ū of G′. The size of the set C is `+ 1. Then, the

(
`
2

)
vertices

in HE that correspond to Y are isolated and thus no longer connected to d. It
follows that C is a critical node cut, because |Y |+|C| = y vulnerable connections
are deleted from G′ by cutting C. Thus, (G′, A, k, x) is a yes-instance.

Conversely, let (G′, A, k, x) be a yes-instance of CNP-NDV. Let C be a
corresponding critical node cut. It follows |C| ≤ ` + 1 and cutting C from G′

deletes y vulnerable connections. Because |A| = 1, y vertices are no longer
connected to the vertex d. Let Q ⊆ V (G′) \ C be the set of vertices that are
separated from d in G′ − C. We observe that Q ⊆ HE , because vertices of N
are adjacent to d and every vertex of HV has more than k vertex-distinct-paths
from d. Furthermore, a vertex of HE corresponding to {u, v} is in Q, if and

only if {u, v, ū} ⊆ C. Since |C| + |Q| ≥ y = ` + 1 +

(
`
2

)
and |C| ≤ ` + 1,

we have |Q| ≥
(
`
2

)
. Thus, the critical node cut C consists of ū and ` vertices

of HV that are pairwise adjacent in G. Hence, in G exists a clique of size `. �

Observe, that, by the construction of G′ in the previous proof, the graph G′

does not contain edges within N , within HV , or within HE . It follows that,
if we remove the vertex ū, the constructed graph G′ is bipartite with vertex
bipartition ({a} ∪HV , N ∪HE). Because ū is in every critical node cut, we can
remove ū and decrease k by one to have an equivalent instance. Then, every
vertex in G has a path of length at most 2 to every vertex in N . It follows:

Corollary 4.2 CNP-NDV is W[1]-hard with respect to n + k + y, even on
bipartite graphs and if |A| = 1 and diam = 4.

We can also alter the construction of G′ in Theorem 4.1 by making the
vertices of N, HV , and the vertices d and ū a clique. By this, the neighborhood
of A increases by |HV | and thus is not bounded in `. The rest of the proof
however is analogue. Observe, that the graph G′ that we obtained consists of a
clique that we just constructed and an independent set HE . Thus, G′ is a split
graph.

Corollary 4.3 CNP-NDV is W[1]-hard with respect to k + y, even on split
graphs and if |A| = 1 and diam = 2

We emphasize that the only vulnerable vertex is in the clique of the split
graph. We can use the knowledge of Corollary 4.3 to prove that also CNP-V
is W[1]-hard with respect to parameter k even on split graphs. However, after
Reduction Rule 2.9 is applied, we can assume that |A| > k and thus in contrast
to CNP-NDV, the hardness is not correct if the input graph only contains one
vulnerable vertex.

Corollary 4.4 CNP-V is W[1]-hard with respect to the parameter k, even on
split graphs.
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Proof Construction: Let (G,A := {a}, k, x) be an instance of CNP-NDV
with G being a split graph with clique K and independent set I. Further-
more, N [d] = K. All these requirements are given by the construction for
Corollary 4.3. We construct an instance (G,A′, k, x′) by setting A′ := K

and x′ := (|K| − k) · x −
(
k
2

)
. This transformation can be computed in poly-

nomial time.

Correctness: Assume that (G,A, k, x) is a yes-instance of CNP-NDV.
If |K| ≤ k then K is a critical node cut for (G,A′, k, x′). Otherwise, there
exists a critical node cut C for (G,A, k, x). If C ∩ I 6= ∅, we define a vertex
set C ′ in which every vertex of C that is in the independent set is replaced
with an arbitrary vertex of the clique. Because the removal of a vertex of the
independent set deletes at most |A| vulnerable connections and it is impossible
to separate the graph by removing vertices from the independent set, C ′ is also
a critical node cut of (G,A, k, x). If |C ′| < k, add arbitrary vertices of the clique
until |C ′| = k. This is possible, because |K| > k.

Because C ′ is a critical node cut of (G,A, k, x), there are at most x vulnerable
connections in G − C ′. Because the vulnerable vertices A are the clique of G,

there are (|K|−k) ·x−
(
k
2

)
vulnerable connections in G−C ′. The term −

(
k
2

)
is because we may count the connections within C − C ′ only once.

Conversely, assume that there is a critical node cut C for (G,A′, k, x′). We
can assume that |C| = k and that C only consists of vulnerable vertices. Be-
cause N [d] = K, we can also assume d 6∈ C (the vulnerable vertex in G).
Otherwise, replace C or add vulnerable vertices to C. If {u, v} is a vulnerable
connection in G−C with u ∈ A, then all vulnerable vertices w ∈ A\{v} in G−C
are connected to v. Because the |K|−k vulnerable vertices in G−C are all con-
nected to the same vertices and the connections within C are not counted twice,

there are at most 1
|K|−k ·

(
x′ +

(
k
2

))
= x vulnerable connections in G − C.

Thus, C is a critical node cut for (G,A, k, x). �

4.2 Parameterized Hardness for x

In this section, we consider the parameter |A|+x for the problem CNP-NDV. In
Corollary 3.9, we proved that CNP-V is fixed-parameter tractable with respect
to the parameter |A|+ x. In contrast, we show in this section that CNP-NDV
is W[1]-hard with respect to the parameter x, even if there exists only one
vulnerable vertex.

Recall that in Cutting at Most k Vertices with Terminal a graph G,
a vertex s ∈ V (G) and two integers k and t are given as input. The question is,
whether there exists a vertex set X ⊆ V (G) of size at most k such that s ∈ X
and |N(X)| ≤ t. Fomin et al. [FGK13] showed that Cutting at Most k Ver-
tices with Terminal is W[1]-hard with respect to k, the maximal number
of vertices that can remain in the connected component of the terminal in the
graph G−N(X). We reduce from Cutting at Most k Vertices with Ter-
minal to prove that CNP-NDV is W[1]-hard with respect to the parameter x,
even if |A| = 1. In our construction, the terminal is the only vulnerable vertex
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in our construction.

Theorem 4.5 CNP-NDV is W[1]-hard with respect to the parameter x, even
if |A| = 1 and diam = 2.

Proof Construction: Let (G, s, k, t) be an instance of Cutting at Most k
Vertices with Terminal. We construct a graph G′ by adding a vertex ū
to G that is connected to every vertex of G. In polynomial time we compute the
instance (G′, A := {s}, k′ := t+ 1, x := k − 1) of CNP-NDV in which |A| = 1.
Because of the universal vertex ū, every pair of vertices is connected with a path
with length of at most 2 and so diam = 2.

Correctness: Let (G, s, k, t) be a yes-instance of Cutting at Most k Ver-
tices with Terminal. Let S be the vertex set such that s ∈ S and |N(S)| ≤ t.
We define a set C ⊆ V (G′) by C := N(S) ∪ {ū}. Thus, |C| ≤ t + 1. Further-
more, the connected component of s in G′ − C contains at most |S| − 1 = x
other vertices. Hence, there are at most x vulnerable connections in G′ − C
and C is a critical node cut. We conclude that (G′, A, k′, x) is a yes-instance
of CNP-NDV.

Conversely, let (G′, A, k′, x) be a yes-instance of CNP-NDV. Therefore,
there exists a vertex set C of size at most k′ = t+ 1 such that in G′ − C there
are at most x vulnerable connections. Thus, there are at most x other vertices
in the connected component of s in G′ − C. Now, we distinguish between the
cases that ū is in C or not.

Case 1: ū ∈ C. Define S as the connected component of s in G′ − C. It
follows that S has size at most x+1 and is a subset of V (G). The neighborhood
of S in G is a subset of C\{ū} of size at most t. Thus, S is a solution of Cutting
at Most k Vertices with Terminal.

Case 2: ū 6∈ C. There are at most k′ + x + 1 vertices in G′, because every
vertex that has not been cut is then in a vulnerable connection with x. Thus, G
has at most k + t vertices and any set S of size k is a solution of Cutting at
Most k Vertices with Terminal, as long as s ∈ S.

In both cases we proved that (G, s, k, t) is a yes-instance of Cutting at
Most k Vertices with Terminal. �

In Theorem 4.5 we reduce from Cutting at Most k Vertices with
Terminal. When we have a look in the reduction of Fomin et al. [FGK13],
we observe that the vertex s has a high degree. Thus, a natural question is
what happens, if we also consider the parameter ∆. Observe that, if we prove
that CNP-NDV is fixed-parameter tractable with respect to |A|+ ∆, we know
the same with respect to n + ∆ where n is the size of the neighborhood of A
since n ≤ |A| ·∆ and |A| ≤ n ·∆.

To compare this with CNP-V we remember that CNP-V is fixed-parameter
tractable with respect to |A|+ x, due to Corollary 3.9. Thus, CNP-V is fixed-
parameter tractable with respect to |A|+ x+ ∆ and with respect to n̄+ x+ ∆.

Corollary 4.6 CNP-V is fixed-parameter tractable with respect to the param-
eter n+ x+ ∆.

To show that CNP-NDV is fixed-parameter tractable with respect to the
parameter, we observe that a vertex v that in the input graph is not in Nx[A]
should be separated from every vulnerable vertex. Thus, the set of vertices that
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are in a vulnerable connection is a subset of Nx[A]. We use these observations
in the proof of the algorithm.

Theorem 4.7 CNP-NDV is fixed-parameter tractable with respect to the pa-
rameter |A|+ x+ ∆ and with respect to the parameter n+ x+ ∆.

Proof Algorithm: Let (G,A, k, x) be an instance of CNP-NDV. Iterate over
all subsets X of Nx

G[A] that have a size of at most 2 ·x. For every vertex set X,
define a vertex set K := NG(A∪X). Return yes if K contains at most k vertices
and the connectivity of G−K is at most x. Return no, if we have not found a
critical node cut at the end of the iteration.

Recall, that Nx
G[A] contains all vertices that in G can be reached in at most x

steps from a vulnerable vertex. Also, NG(A∪X) contains no vertices of A∪X.
Correctness: Consider an instance I = (G,A, k, x) of CNP-NDV. We show

that I is a yes-instance of CNP-NDV if and only if the algorithm returns yes.
Suppose I is a yes-instance and C a critical node cut. Define

S := {u, v ∈ V (G) | {u, v} is a vulnerable connection in G− C}.

Because G − C has at most x vulnerable connections, S contains at most 2 · x
vertices. Assume towards a contradiction that there is a vertex v ∈ S \Nx

G[A]
and there exists a vulnerable connection {d, v} in G − C. Because v 6∈ Nx

G[A],
there exists a path d, u1, . . . , ut, v in G−C with t ≥ x. Consequently, there exist
at least t+ 1 > x vulnerable connections in G− C. To be more precisely these
are {d, v} and {d, u`} for ` ∈ [1, t]. This however contradicts the assumption
that C is a critical node cut and it follows that S ⊆ Nx

G[A]. Thus, S is considered
by the above algorithm.

Now we want to show that A ∪ S is isolated in G − C, which is the case
if N(A ∪ S) ⊆ C. Let w be a neighbor of v ∈ A ∪ S and w 6∈ S. If v ∈ A,
then {v, w} is a vulnerable connection in G and because w 6∈ S, {v, w} is not a
vulnerable connection in G− C. We conclude w ∈ C. If v ∈ S \A, there exists
a vulnerable connection {d, v} in G− C by the definition of S. Because w is a
neighbor of v, {d,w} is a vulnerable connection inG and because w 6∈ S, {v, w} is
not a vulnerable connection in G− C. We conclude w ∈ C. It follows that the
neighborhood of A∪ S is a subset of C. Thus, because C is a critical node cut,
the algorithm returns yes when regarding S.

Conversely, suppose the algorithm returns yes. The defined set K is a criti-
cal node cut and thus (G,A, k, x) is a yes-instance of CNP-NDV.

Running time: A contains |A| or at most n · ∆ vertices, while the neigh-
borhood of A contains n or at most |A| · ∆ vertices. If for i ≥ 1 N i

G(A) con-
tains c vertices, then N i+1

G [A] contains at most c · (∆ − 1) vertices. It follows
that Nx

G[A] contains at most

|A|+
x−1∑
i=0

|A| ·∆ · (∆− 1)i respectively n ·∆ +

x−1∑
i=0

n · (∆− 1)i

vertices. We define z := |Nx
G[A]| and remember that z is bounded by a function

depending on |A|+ x+ ∆ or a function depending on n+ x+ ∆.

The algorithm iterates over all
∑2·x

i=0

(
z
i

)
subsets of Nx

G[A] that have at

most 2 · x vertices. Because

(
z
i

)
∈ O(zi), we conclude

∑2·x
i=0

(
z
i

)
∈ O(z2·x).
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For every considered setX, we check whether the setK is a critical node cut. For
that we have to compute the connectivity of the graph G−K. By Lemma 2.14,
this can be computed in O(n + m) time. Altogether, the algorithm has a run-
ning time of O(z2·x · (n+m)). �

We showed that CNP-NDV can be solved in O(|Nx
G[A]|2·x · (n+m)). The

set Nx
G[A] is a subset of V , and so by the previous algorithm we have also proven

the following.

Corollary 4.8 CNP-NDV is slice-wise polynomial with respect to the param-
eter x
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Chapter 5

Polynomial Kernelizations

In this chapter, we present some kernelizations of polynomial size. Recall that a
problem P admits a kernelization for a parameter λ, if and only if the problem P
is fixed-parameter tractable with respect to λ [CFK+15]. By that, we already
know that CNP-V and CNP-NDV admit a kernelization for parameters k+ x
and the neighborhood-diversity nd. In the following, we want to improve this
positive result for some parameters.

First, we show that for every instance of CNP-NDV we can find an equiva-
lent instance in which all vulnerable vertices are neighbors of non-vulnerable
vertices. Using this fact, we show that CNP-NDV admits a kernelization
with O(|V \ A| · x) vertices. However, it is unlikely that CNP-V admits a
kernelization for the parameter |V \ A|+ x, because by Theorem 2.12 CNP-V
is NP-hard, even if x = |V \A| = 0.

In another approach, we bound the size of all neighborhood-classes. By that,
we show that both problems CNP-V and CNP-NDV admit a kernelization
with O(nd · (k+ x)) vertices with is the neighborhood-diversity nd. At last, we
show that CNP-V admits a kernelization with O((|A| + vc) · (k + x)) vertices
and CNP-NDV admits a kernelization with O(vc · (k + x)) vertices.

5.1 Kernelization based on Non-Vulnerable Ver-
tices

We know by Theorem 3.16 that CNP-NDV is fixed-parameter tractable with re-
spect to |V \ A| and thus also with respect to the bigger para-
meter |V \ A| + x. In this section, we strengthen this positive result and show
that CNP-NDV admits a kernelization with O(|V \ A| ·

√
x) vertices. Unless

W[1] = FPT (which we do not expect), CNP-V does not admit a kernelization
with regard to the combined parameter |V \ A| + x, because due to Theo-
rem 2.12 CNP-V is NP-hard, even if |V \A| = x = 0.

The idea is that for a given instance (G,A, k, x) of CNP-NDV we com-
pute an equivalent instance of CNP-NDV, in which every vulnerable vertex
is a neighbor of a non-vulnerable vertex. If C is a critical node cut for an
instance (G,A, k, x) of CNP-NDV, then in G − C a non-vulnerable vertex is
adjacent to less than x vulnerable vertices. Thus, we can limit the number of

55
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Figure 5.1: An application of Reduction Rule 5.2. The dotted lines are inserted
by Reduction Rule 5.2, when this instance is given as input. The black vertices
are vulnerable.

vulnerable vertices and therefore the number of vertices in the graph. To this
end, we present three rules.

We start with a rule that removes connected components that are a subset
of A from the graph. This ensures that every vulnerable vertex is connected to
a non-vulnerable vertex afterwards.

Reduction Rule 5.1 If there exists a connected component K that is a subset

of A, then decrease x by

(
|K|
2

)
and remove K from the graph.

With breadth-first search, we can compute all connected components of a graph
within O(n+m) time. If we save in a Boolean constant which vertex is vulner-
able, we can check directly in the breadth-first search, if a component contains
only vulnerable vertices. Thus, Reduction Rule 5.1 can be applied exhaustively
in O(n+m) time.

It is easy to prove that Reduction Rule 5.1 is safe. As we cannot add a
vulnerable vertex to a critical node cut, we cannot add a single vertex from
a connected component K that consists only of vulnerable vertices to a criti-
cal node cut. Thus, we can remove K from the graph, but have to decrease x by

the number of vulnerable connections that exist in K. This number is

(
|K|
2

)
.

Next, we present a rule that connects every vulnerable vertex v to the non-
vulnerable vertices which are reachable from v over a path that consists of
vulnerable vertices. In consequence, every vulnerable vertex is a neighbor of a
non-vulnerable vertex and we only have to bound the neighborhood of every
non-vulnerable vertex.

Reduction Rule 5.2 For every connected component K in G[A], connect ev-
ery vertex of K with every vertex of NG(K).

Observe that, because K is isolated in G[A], the neighborhood of K in G is a
subset of V \A. Figure 5.1 depicts an application of Reduction Rule 5.2.

Lemma 5.3 For every instance of CNP-NDV, Reduction Rule 5.2 is safe and
can be applied exhaustively in O(|A| · n2) time.

Proof Safeness: Let (G,A, k, x) be an instance of CNP-NDV for which C is
a critical node cut. Let G′ be the graph after Reduction Rule 5.2 is applied
exhaustively on G. We show that a vulnerable connection exists in G − C,
if and only if it exists in G′ − C. Then, we conclude that the connectivity
of G − C is at most x, if and only if the connectivity of G′ − C is at most x.
The safeness of Reduction Rule 5.2 follows.
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Let d be a vulnerable vertex in G and G′ and let {d, v} be a vulnerable
connection in G′ − C. Thus, in G′ − C, we can find a path d, u1, . . . , ut, v.
In the following, we refer to d as u0 and to v as ut+1. Let i be the inte-
ger such that {ui, ui+1} ∈ E(G′), but {ui, ui+1} 6∈ E(G). Without loss of
generality, the vertex ui ∈ K and ui+1 ∈ NG(K). It follows that there is a
path ui, w1, . . . , w`, ui+1 through K and {w`, ui+1} ∈ E(G). Then, there is a
path in G − C that connects d and v, and {d, v} is a vulnerable connection
in G− C.

Let {d, v} be a vulnerable connection in G − C. Because G is a subgraph
of G′, {d, v} is also a vulnerable connection in G′ − C.

Running time: Because we have at most |A| connected components in G[A],
Reduction Rule 5.2 can be applied at most |A| times. We then have to compute
the neighbors of any subset of V in O(m) time to add at most |A| · |V \A| edges.
Notice that, in Reduction Rule 5.1, some edges could have been added to G.
Thus, the number of edges in G could be a lot higher than in the original in-
stance, but the number of edges is less than n2. Thus, Reduction Rule 5.2 can
be applied exhaustively in O(|A| · n2) time. �

In the following, we provide a reduction rule that bounds the number of
vulnerable vertices that a non-vulnerable vertex can have as neighbors. This is
the last reduction rule we provide to show the kernelization.

Reduction Rule 5.4 For every non-vulnerable vertex v that has at least
⌈√

2x
⌉

vulnerable neighbors, remove v from G and decrease k by one.

Lemma 5.5 For every instance of CNP-NDV, Reduction Rule 5.4 is safe and
can be applied exhaustively in O(|V \A| · n2) time.

Proof Safeness: The safeness of Reduction Rule 5.4 follows from the observa-
tion that, if a vertex v has

⌈√
2x
⌉

vulnerable vertices as neighbors, then there

are d
√

2xe vulnerable connections {v, w} with w ∈ N(v) and

(⌈√
2x
⌉

2

)
vulner-

able connections {w1, w2} with w1, w2 ∈ N(v). Altogether there are

⌈√
2x
⌉

+

(⌈√
2x
⌉

2

)
=

2
⌈√

2x
⌉

+
⌈√

2x
⌉
· (
⌈√

2x
⌉
− 1)

2
≥

2x+
⌈√

2x
⌉

2
> x

vulnerable connections in G. Thus, every critical node cut contains v.
Running time: Reduction Rule 5.4 can be applied at most |V \ A| times,

once for every non-vulnerable vertex. Every time this rule is applied, we need
to find the neighborhood and count the number of vulnerable vertices in the
neighborhood. This can be computed in O(m) time. Notice that, in Reduc-
tion Rule 5.1, some edges could have been added to G. Thus, the number of
edges in G could be a lot higher than in the original instance, but the number
of edges is at most n2. Thus, Reduction Rule 5.4 can be applied exhaustively
in O(|V \A| · n2) time. �

Now that we have all reduction rules, we can prove that CNP-NDV admits
a kernelization with regard to the parameter |V \ A| + x. For that, we bound
the number of vulnerable vertices by |V \A| · d

√
2xe.
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Theorem 5.6 CNP-NDV admits a kernelization with O(|V \A| ·
√
x) vertices

which can be computed in O(n3) time.

Proof Let (G,A, k, x) be an exhaustively reduced instance regarding Reduction
Rules 5.1, 5.2, and 5.4. We want to bound the number of vulnerable vertices.
Because the instance is exhaustively reduced, it follows that in G every vulner-
able vertex has a neighbor in |V \ A|, because of Reduction Rules 5.1 and 5.2.
Also, every non-vulnerable vertex has at most

⌈√
2x
⌉

vulnerable neighbors af-
ter Reduction Rule 5.4 has been applied exhaustively. Thus, the number of
vulnerable vertices is at most |V \A| · (

⌈√
2x
⌉
). Therefore, we have the desired

kernel that consists of at most |V \A| · (
⌈√

2x
⌉

+ 1) ∈ O(|V \A| ·
√
x) vertices.

We have proven that the Reduction Rules 5.1, 5.2, and 5.4 can be ap-
plied exhaustively in O(n3) time. Thus, the kernelization can be computed
in O(n3) time. �

5.2 Kernelization based on the Neighborhood-
Diversity

In this section we consider the neighborhood-diversity. Recall that the neighbor-
hood-diversity nd is the number of neighborhood-classes and that a neighbor-
hood-class contains all vertices that have the same open or closed neighbor-
hood. Further, recall that, due to Corollary 3.13, both problems CNP-V
and CNP-NDV are fixed-parameter tractable with respect to the parameter
neighborhood-diver-sity nd. Also, due to Corollaries 3.6 and 3.4 both prob-
lems CNP-V and CNP-NDV are fixed-parameter tractable with respect to the
parameter k+x. In the following, we show that CNP-V and CNP-NDV admit
a kernelization of polynomial size in nd + k + x.

In this entire section, we separate the neighborhood-classes into vulnerable
vertices and vertices that are non-vulnerable. Afterwards, we have at most 2 ·nd
neighborhood-classes. We start with a lemma to prove that this division can be
computed in linear time. Then, in three reduction rules, we decrease the size of
every neighborhood-class that contains more than k+x+1 vertices and thus we
can bound the number of vertices in a reduced instance by O(nd · (k + x+ 1)).

Lemma 5.7 In O(n+m) time, we can compute all neighborhood-classes, divide
them into vulnerable and non-vulnerable classes, and compute the size of the
separated classes.

Proof Hsu and Ma [HM91] showed that all neighborhood-classes can be com-
puted in O(n + m) time. Recall that all vertices have a Boolean flag to check
whether a vertex is vulnerable. Then, by iterating over the vertices of all
neighborhood-classes, we can separate vulnerable from non-vulnerable vertices
and we can compute the number of vulnerable or non-vulnerable vertices. �

In this first reduction rule, we bound the number of vertices of a neighborhood-
class that consists only of non-vulnerable vertices.

Reduction Rule 5.8 If there is a neighborhood-class K that is a subset of V \A
and K has more than k+x+1 vertices, then delete an arbitrary vertex from K.
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Lemma 5.9 For an instance of CNP-V or CNP-NDV, Reduction Rule 5.8 is
safe and can be applied exhaustively in O(n+m) time.

Proof Safeness: Let (G,A, k, x) be an instance of CNP-V or CNP-NDV
and suppose that there is a neighborhood-class K, which is a subset of V \ A
and |K| > k+x+1. Let v be an arbitrary vertex of K. We show that (G,A, k, x)
is a yes instance of CNP-V or CNP-NDV, if and only if (G− {v}, A, k, x) is a
yes-instance of the same problem.

Let (G − {v}, A, k, x) be a yes-instance of CNP-V or CNP-NDV. We de-
fine K ′ = K \ {v}. Then, there is a critical node cut C for (G − {v}, A, k, x).
Assume towards a contradiction that G′ := (G − {v}) − C contains a vul-
nerable connection {d, u} with d ∈ A and u ∈ K ′. It follows that there is
a path d,w1, . . . , wt, u in G′. Because {wt, u} ∈ E(G′), by the definition of
neighborhood-classes, it is {wt, u

′} ∈ E(G′) for all u′ ∈ K ′ \ C. Thus, for
all u′ ∈ K ′ \ C, there exists the vulnerable connection {d, u′} in G. These
are |K ′ \ C| ≥ x + k + 1 − k > x. This is a contradiction to C being a crit-
ical node cut. Thus, in G − {v} the set C separates A and K ′. It follows
that G−C has the same as the connectivity as (G− {v})− C, and (G,A, k, x)
is a yes-instance of CNP-V or CNP-NDV.

Let (G,A, k, x) be a yes-instance of CNP-V or CNP-NDV. Since the
graph G− {v} is an induced subgraph of G, a critical node cut for (G,A, k, x)
is also a critical node cut for (G − {v}, A, k, x). Thus, (G − {v}, A, k, x) is a
yes-instance of CNP-V or CNP-NDV as well.

Running time: By Lemma 5.7, we compute the size of a neighborhood-class
that is a subset of non-vulnerable vertices in O(n + m) time. Doing this, once
we counted k+x+ 1 non-vulnerable vertices in a neighborhood-class K, we can
remove all non-vulnerable vertices that we find in K from the graph. By this,
we count every vertex at most once. Thus, Reduction Rule 5.8 can be applied
exhaustively in linear time. �

So far, we bounded the size of neighborhood-classes that consist of non-
vulnerable vertices. In the remaining reduction rules, we bound the size of
neighborhood-classes that consist of vulnerable vertices. For that, we need
to distinguish between instances of CNP-V and instances of CNP-NDV and
furthermore between neighborhood-classes that are critical cliques and neighbor-
hood-classes that are critical independent sets. Observe that a neighborhood-
class is either a critical clique or a critical independent set. Recall that a critical
clique is a neighborhood-class in which all vertices are pairwise adjacent and a
critical independent set is a neighborhood-class in which all vertices are pairwise
not adjacent.

Reduction Rule 5.10 1. Let (G,A, k, x) be an instance of CNP-NDV.
If G contains a critical clique K ⊆ A with at least

⌈√
2x
⌉

+ 2 vertices,
then return no.

2. Let (G,A, k, x) be an instance of CNP-V. If G contains a critical
clique K ⊆ A with at least

⌈√
2x
⌉

+ k + 2 vertices, then return no.

Lemma 5.11 For an instance of CNP-V or CNP-NDV, Reduction Rule 5.10
is safe and can be applied exhaustively in O(n+m) time.
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Proof Safeness: In CNP-NDV, a clique K (in fact even a connected compo-

nent) of vulnerable vertices causes

(
|K|
2

)
vulnerable connections that cannot

be removed. Thus, if |K| ≥
⌈√

2x
⌉

+ 2, we can return no, since

(
|K|
2

)
> x.

In CNP-V, we can add vulnerable vertices to a critical node cut C. Sup-
pose, G contains a critical clique K ⊆ A of size at least

⌈√
2x
⌉

+k+1. Because

the size of C is at most k, even G[K \ C] contains at least

(
|K| − |C|

2

)
> x

vulnerable connections. Thus, we can return no.

Running time: By Lemma 5.7 we can compute the size of all neighborhood-
classes in O(n+m) time. We can apply Reduction Rule 5.10 at most once per
instance. Thus, Reduction Rule 5.10 can be applied exhaustively in linear time.
�

The last reduction rule that we need bounds the size of critical independent
sets that consist of vulnerable vertices. Analogous to Reduction Rule 5.10, we
need to distinguish between instances of CNP-V and instances of CNP-NDV.
We proved that the size of a critical clique C can be bounded, because otherwise
the number of vulnerable connections within C would be more than x. In
contrast, an independent set I does not contain edges. However, it is useful
that we know that all neighbors of a neighborhood-class are common. Thus, if
only a single neighbor v of I is not in a critical node cut, all vertices of I are
pairwise connected over v. We use this observation for the next reduction rule.
Recall that with N [S] we denote the closed neighborhood of a vertex set S,
which is N(S) ∪ S.

Reduction Rule 5.12 1. Let (G,A, k, x) be an instance of CNP-NDV.
If a critical independent set I ⊆ A with |I| ≥

⌈√
2x
⌉

+ 2 exists such
that N(I) ∩ A 6= ∅, then return no. If a critical independent set I ⊆ A
with |I| ≥

⌈√
2x
⌉

+ 2 exists such that N(I) ∩ A = ∅, then decrease k
by |N(I)| and remove N [I] from the graph G.

2. Let (G,A, k, x) be an instance of CNP-V. If a critical independent
set I ⊆ A with |I| ≥

⌈√
2x
⌉

+ k + 2 exists, then decrease k by |N(I)|
and remove N [I] from the graph G.

Lemma 5.13 For an instance of CNP-V or CNP-NDV, Reduction Rule 5.12
is safe and can be applied exhaustively in O(n+m) time.

Proof Safeness: Let (G,A, k, x) be an instance of CNP-NDV or CNP-V.
Suppose I ⊆ A is a critical independent set. If a vertex v ∈ N(I) is not in a

critical node cut C, then there are at least

(
|I \ C|

2

)
vulnerable connections

in the graph G − C: for every u,w ∈ I \ C with u 6= w form a vulnerable
connection {u,w} over the path u, v, w. For an instance of CNP-NDV we
know C ∩ A = ∅ and thus C \ I = ∅. It follows that, if |I| ≥

⌈√
2x
⌉

+ 2
and v 6∈ C, we can return no. Thus, if v ∈ A, we can return no. If v 6∈ A, we
can assume v ∈ C. If all neighbors of I are in C, then I consists of isolated
vertices in G − C. Thus, we can also remove I. The reduction rule is correct.
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For an instance of CNP-V we know

(
|I \ C|

2

)
> x if |I| ≥

⌈√
2x
⌉

+k+ 2. The

rest of the argument can be proven analogous.
Running time: With help of Lemma 5.7 we can compute the size of all

neighborhood-classes in O(n+m) time. We can apply Reduction Rule 5.10 at
most once per neighborhood-class and at most k times in total. After an appli-
cation, we do not have to compute the size of the neighborhood-classes again,
because they are either removed or still the same. Thus, Reduction Rule 5.10
can be applied exhaustively in linear time. �

Now that we are familiar with these three reduction rules, we can prove that
both of the problems CNP-V and CNP-NDV admit a kernelization
with O(nd · (k + x)) vertices. We would like to emphasize that we can ap-
ply every reduction rule exhaustively in linear time. Thus, we can compute the
kernelization in linear time.

Theorem 5.14 CNP-V and CNP-NDV both admit a kernelization
with O(nd · (k + x)) vertices that can be computed within O(n+m) time.

Proof With Reduction Rule 5.8, we can decrease the size of a neighborhood-
class in V \A to contain at most k + x+ 1 vertices. With Reduction Rule 5.10
and 5.12, we can bound the size of a neighborhood-class in A to be at
most

⌈√
2x
⌉

+ k+ 2 < k+ x+ 1. As nd ·(k+ x+ 1) ∈ O(nd ·(k+ x)) we follow
that CNP-V and CNP-NDV admit a kernelization with at most O(nd ·(k+x))
vertices.

Observe that all three reduction rules can be performed in linear time. After
we use the algorithm provided by Hsu and Ma [HM91], we can iterate over all
vertices of all neighborhood-classes to execute all three reduction rules. Thus,
we compute the kernelization in linear time. �

5.3 Kernelization based on the vertex cover num-
ber

In this section, we show that CNP-V has a kernelization of polynomial size
for the parameter |A| + vc + x and that CNP-NDV has a kernelization of
polynomial size for the parameter vc+k+x. By Corollary 3.9, CNP-V is fixed-
parameter tractable with respect to |A| + x. Due to Corollary 3.14, CNP-V
and CNP-NDV are fixed-parameter tractable with respect to the parameter vc.
It follows that CNP-V is fixed-parameter tractable for the bigger parame-
ter |A|+vc+x and CNP-NDV is fixed-parameter tractable with respect to the
bigger parameter vc + k + x. We strengthen this positive result in this section
and show that CNP-V admits a polynomial kernel with respect to the parame-
ter |A|+ vc + x and CNP-NDV admits a polynomial kernel with regard to the
parameter vc + k + x.

Recall that a vertex cover C of G is a set of vertices C ⊆ V (G), such
that the induced subgraph G − C does not contain an edge. Finding a vertex
cover C is NP-hard [Kar72]. However, we can compute a maximal matching
and add all the incident vertices to a set Z in polynomial time. Then, the size
of Z is at most 2 · |C| vertices and Z contains a vertex cover. Even though it is
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possible to find a better approximation than by factor 2 [Kar09, DLP13], it is
unlikely that a much better approximation can be found [KR08].

For the rest of the section, we fix an instance I := (G = (V,E), A, k, x)
of CNP-V or CNP-NDV. Let Z be a 2-approximation of vertex cover of G.
Next, we define a subset B of the vertices depending on the problem, which
is either CNP-V or CNP-NDV. If we are dealing with CNP-V, we define a
set B := A ∪ Z. In case of CNP-NDV, we define B := Z. We name B the
base. By definition, |B| ≤ 2 · vc when we deal with an instance of CNP-NDV
and |B| ≤ |A|+ 2 ·vc when we deal with an instance of CNP-V. All remaining
vertices Y := V \ B are then an independent set, because B contains a vertex
cover.

For the kernelization, we bound the size of Y . For this, we first remove
isolated vertices from Y . Then, we can use the Expansion Lemma, which was
introduced by Elena Prieto Rodŕıguez [Rod05], to bound the size of Y .

To show the claimed kernelizations, we start with a simple rule.

Reduction Rule 5.15 Remove isolated vertices from G.

The correctness of the rule is obvious and it can be applied at most |V | times.
We can compute in linear time whether a vertex has a neighbor. Afterwards, we
can iterate over all vertices and remove all vertices which do not have a neighbor.
Thus, Reduction Rule 5.15 can be applied exhaustively in O(n+m) time.

In the following, we provide a reduction rule that in instances of CNP-NDV
helps us to handle vulnerable vertices in the set Y . After the reduction rule
has been applied exhaustively, if a vertex v has a neighborhood of size at
least k + x + 1, all neighbors of v are non-vulnerable. This rule should only
be applied on instances of CNP-NDV.

Reduction Rule 5.16 Let (G,A, k, x) be an instance of CNP-NDV with
base B. If a vertex v ∈ B has more than k + x neighbors of which one is
vulnerable, then do the following

1. If v 6∈ A, then remove v from the graph and decrease k by one.

2. If v ∈ A, then return no.

Lemma 5.17 For an instance of CNP-NDV, Reduction Rule 5.16 is safe and
can be applied exhaustively in O(n2) time.

Proof Safeness: Case 1: We show that, if there is a critical node cut C
for (G,A, k, x), then v ∈ C. Let d be a vulnerable neighbor of v. Assume
towards a contradiction that v 6∈ C. Consequently, {d,w} is a vulnerable con-
nection in G−C for every w ∈ N(v) \ C with d 6= w. Also, {d, v} is a vulnerable
connection in G−C. By the requirements of the reduction rule, |N(v)| > k+x.
It follows that |(N(v) \ {d}) \C| ≥ x. Together with {d, v} in G−C, there are
more than x vulnerable connections. We follow that v ∈ C.

Case 2: It directly follows from Case 1 that, if v ∈ A, there exists no
critical node cut for (G,A, k, x) that is disjoint from A. Hence, there is no
critical node cut for (G,A, k, x) for the instance of CNP-NDV. Thus, we can
return no.

Running time: Since each application of Reduction Rule 5.16 removes a
vertex, the reduction rule can be applied at most n times. For every vertex,
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we compute the size of the neighborhood and check whether one vertex is vul-
nerable in O(n) time. Thus, this reduction rule can be applied exhaustively
in O(n2) time. �

This reduction rule can only be applied in instances of CNP-NDV, because,
if v 6∈ A, we know that we have to add v to a critical node cut. However,
in CNP-V there remain three options: we can add the vulnerable vertex d,
or the vertex v, or both to a critical node cut. Thus, in order to avoid such a
decision for instances of CNP-V, we added all vulnerable vertices to the base B.

In the last reduction rule, we use the Expansion Lemma. The Expansion
Lemma was introduced by Elena Prieto Rodŕıguez [Rod05]. We use the formu-
lation by Cygan et al. [CFK+15]:

Let H be a bipartite graph with vertex bipartition (C,D). For a positive inte-
ger q, a set of edges M ⊆ E(H) is called a q-expansion of C into D, if every
vertex of C is incident with exactly q edges of M and the edges in M are incident
with exactly q · |C| vertices in D.

Let q ≥ 1 be a positive integer and H be a bipartite graph with ver-
tex bipartition (C,D) such that |D| ≥ q · |C| and there are no isolated ver-
tices in D. Then, there exist nonempty vertex sets X ⊆ C and Y ⊆ D
such that there is a q-expansion of X into Y and NH(Y ) ⊆ X. Further-
more, the sets X and Y can be found in time polynomial in the size of H.

Because the Expansion Lemma can only be applied to bipartite graphs, in
the next reduction rule we define a bipartite graph that is an induced subgraph
of G. We apply the Expansion Lemma to the graph G′ which contains the ver-
tices V ′ := V (G) and the set of edges E′ := E(G)\E(G[B]). This is a bipartite
graph, because we do not consider the edges within B and, by definition, Y is an
independent set. Thus, G′ is a bipartite graph with vertex bipartition (B, Y ).

In the following, we assume that Reduction Rules 5.15 and 5.16 are exhaus-
tively applied.

Reduction Rule 5.18 If the set Y contains at least (k + x+ 2) · |B| vertices,
then, in the graph G′ that we defined before this reduction rule, compute non-
empty vertex sets P ⊆ B and Q ⊆ Y such that there is a k + x + 2-expansion
of P into Q. Remove an arbitrary vertex v ∈ Q from G.

Lemma 5.19 For an instance of CNP-V or CNP-NDV, Reduction Rule 5.18
is safe and can be applied exhaustively in polynomial time.

Proof Safeness: Let (G,A, k, x) be an instance of CNP-V or CNP-NDV with
base B for which the inequality |Y | ≥ (k+ x+ 2) · |B| is correct. Let G′ be the
graph defined before this reduction rule.

We start by showing that we can apply the Expansion Lemma. After Re-
duction Rule 5.15 has been applied exhaustively, all vertices in Y are adjacent
to at least one vertex in B. Thus, all conditions for the Expansion Lemma are
fulfilled. From the Expansion Lemma, we know that we can then find nonempty
vertex sets P ⊆ B and Q ⊆ Y such that there is a k + x+ 2-expansion of P
into Q in polynomial time. Also, the sets fulfill NG(Q) ⊆ P .

For the rest of the proof, let v be an arbitrary but fixed vertex of Q. We
show that (G,A, k, x) is a yes-instance of CNP-V or CNP-NDV, if and only
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if (G−{v}, A, k, x) is a yes-instance of the same problem. Observe that v is non-
vulnerable: In an instance of CNP-V we defined A ⊆ B and thus A∩Y = ∅ and
especially A ∩Q = ∅. In an instance of CNP-NDV, after Reduction Rule 5.16
has been applied exhaustively, a vertex of B with a neighbor in A ∩ Y has at
most k+x neighbors. Thus, a described k + x+ 2-expansion of P into Q cannot
exist if A ∩Q 6= ∅.

Because G − {v} is an induced subgraph of G, every critical node cut C
for (G,A, k, x) is also a critical node cut C \ {v} for (G− {v}, A, k, x).

Conversely, let (G−{v}, A, k, x) be a yes-instance of CNP-V or CNP-NDV
and let C be a corresponding critical node cut. From the Expansion Lemma
we know N(Q) ⊆ P . In (G− {v})−C there is no vulnerable connection {d, u}
with d ∈ A and u ∈ P : Otherwise, for all w ∈ (NG(u)∩Q)\({v}∪C) also {d,w}
is a vulnerable connection in (G−{v})−C. By the definition of P and Q, the size
of (NG(u)∩Q) is at least k+x+1 and thus {u}∪((NG(u)∩Q)\({v}∪C)) contains
more than x vertices. This is a contradiction to C being a critical node cut. By
the same argument, the sets A and P \ C are not connected in (G− {v})− C.
It follows that in (G − {v}) − C the sets P \ C and Q \ C are in connected
components that do not contain a vulnerable vertex. Since NG(v) ⊆ P , the
connectivity of (G − {v}) − C is the connectivity of G − C and C is also a
critical node cut for (G,A, k, x).

Running time: Every time Reduction Rule 5.16 is applied, a vertex is deleted.
Thus, the reduction rule can be applied at most |Y | ≤ n times. From the Expan-
sion Lemma, we know that we can find nonempty vertex sets P ⊆ B and Q ⊆ Y
such that there is a k+ x+ 2-expansion of P into Q in polynomial time. As we
can remove an arbitrary vertex of Q, this step can be done in linear time. Thus,
we can apply Reduction Rule 5.18 exhaustively in polynomial time. In this
computation, the bottle neck is the time to compute the vertex sets P and Q
from the Expansion Lemma. �

Now that we have presented our reduction rules, we can bound the size of
the kernelization.

Theorem 5.20 An instance (G,A, k, x) of CNP-V or CNP-NDV contains
less than |B| · (k + x + 3) vertices after Reduction Rules 5.15, 5.16, and 5.18
have been applied exhaustively.

Proof Let (G,A, k, x) be an instance that is reduced exhaustively by the
Reduction Rules 5.15, 5.16, and 5.18.

Because Reduction Rule 5.18 has been applied exhaustively, the set Y con-
tains less than |B| · (k+x+2) vertices. As V (G) = B∪Y , the graph G contains
less than |B|+ |B| · (k + x+ 2) = |B| · (k + x+ 3) vertices. �

Since |B| ≤ |A| + 2 · vc for CNP-V and |B| ≤ 2 · vc for CNP-NDV, we
conclude that:

Corollary 5.21 For an instance (G,A, k, x) of CNP-V, we can compute a
kernelization with less than (|A|+2 · vc) ·(k+x+3) vertices in polynomial time.

Corollary 5.22 For an instance (G,A, k, x) of CNP-NDV, we can compute a
kernelization with less than 2 · vc · (k + x+ 3) vertices in polynomial time.



Chapter 6

Discussion

In this work, with Critical Node Problem with Vulnerable Nodes
(CNP-V) we presented a problem for which the well-studied Critical Node
Problem (CNP) is a special case. With Critical Node Problem with
Non-Deletable Vulnerable Nodes (CNP-NDV) we also presented a re-
lated problem. We analyzed both problems within the framework of parame-
terized complexity.

6.1 Summary

We showed that CNP-V is fixed-parameter tractable with respect to the param-
eters k+x, the neighborhood-diversity nd, and y which is the number of vulner-
able connections to be removed. We showed that CNP-NDV is fixed-parameter
tractable with respect to the parameters k + x, the neighborhood-diversity nd,
and the number of non-vulnerable vertices. To the best of our knowledge, the
fixed-parameter algorithms for the problem CNP-V with parametrization k+x
or y are as fast as the previously best known fixed-parameter algorithms for
the problem CNP with the same parametrization. CNP-NDV parameterized
with k+x can be solved even faster, than CNP with the same parametrization.
If anyone wants to implement one of our algorithms, we advise to implement
the fixed-parameter algorithms with parametrization k + x.

Furthermore, we showed that it is unrealistic that CNP-NDV is fixed-
parameter tractable with respect to the parametrization k+y, even if the input
graph is bipartite or a split graph and contains only one vulnerable vertex.

6.2 Outlook

As we have not covered all possible parametizations, the task remains to iden-
tify further parameters for which CNP-V or CNP-NDV are fixed-parameter
tractable with respect to not yet considered parametrizations. Especially, the
question whether CNP-V is fixed-parameter tractable with respect to the pa-
rameter |A| remains open; at the moment we only know that CNP-V with
respect to the parameter |A| is in the class slice-wise polynomial.

Also, natural questions that remain open are whether CNP-V or CNP-NDV
admit a polynomial size kernelization for specific parameters. As we have not
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shown if CNP-V or CNP-NDV admit a kernel of polynomial size in k+x, this
is an important question to consider. Remark, that all kernelizations that we
provided were for parameters that are greater than k+x. We know that, unless
coNP ⊆ NP/poly, CNP-NDV does not admit a kernelization of polynomial size
with respect to the parameter k + y + ω, where ω is the treewidth of the input
graph. However, it remains an open question whether CNP-NDV is W[1]-hard
with respect to k + y + ω, as we expect.

In the versions we presented, a connected pair caused one vulnerable con-
nection, if and only if one of the vertices was vulnerable. It is thinkable to
generalize the cost for connected pairs. Further problems that can be examined
are more general weighted problems of CNP where the deletion of vertices is
also weighted. It follows directly from results of Guo et al. [GHK+08] that the
single weighted version is para-NP-hard for the parameters p + x and ω + x.
Di Summa et al. [DSGL11] proved that the single weighted version is NP-hard,
even on trees.

Furthermore, these two new problems can also be analyzed within the frame-
works of Integer Linear Programming. Also, heuristics and approximations
for CNP-V or CNP-NDV can be researched.
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