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einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht und
hat noch keinen sonstigen Prüfungszwecken gedient.
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Abstract

Graphs are a natural data model in the field of social network analy-
sis. This model can be augmented by the notion of communities which are
subsets of vertices of the graph. Since many graphs that arise from applica-
tions in the field of social networks are large, an important operation before
further analysis is reducing the number of edges. This operation is called
sparsification. In this work, we study the family of Π-Network Sparsifi-
cation problems where Π refers to a graph property. Given an undirected
graph G = (V,E), a set of subsets over V called communities and an integer
`, the question is whether there exists a sparsified graph, that is a span-
ning subgraph of G, with at most ` edges such that each subgraph induced
by a community satisfies the graph property Π. For Π-Network Sparsi-
fication restricted to communities of size at most 3, we give a complex-
ity dichotomy. Then, we analyze Π-Network Sparsification specifically
for three properties: A minimum density requirement, the containment of
a spanning star and the property of being connected. Since Π-Network
Sparsification is NP-hard for these three graph properties, we study them
in the framework of parameterized complexity and their fine-grained com-
plexity. For example we show that Π-Network Sparsification is not
solvable in 2o(n

2) ·poly(n+ |C|)-time for these three specific graph properties
under the Exponential Time Hypothesis.

Zusammenfassung

Graphen sind ein natürliches Datenmodell im Bereich der Analyse von
sozialen Netzwerken. Eine typische Erweiterung diese Modells sind Com-
munities, welche Teilmengen der Knotenmenge des Graphs sind. Da viele
Graphen, die aus Anwendungen im Bereich der sozialen Netzwerke stammen,
sehr groß sind, ist eine wichtige Operation, bevor das Netzwerk analysiert
wird, die Verringerung der Anzahl der Kanten. Dieser Vorgang wird Sparsi-
fication genannt. In dieser Arbeit beschäftigen wir uns mit der Familie von
Π-Network Sparsification Problemen, wobei Π eine Eigenschaft wie
beispielweise Zusammenhang ist. Gegeben seien ein ungerichteter Graph
G = (V,E), eine Menge von Teilmengen über V , welche Communities
genannt werden, und eine natürliche Zahl `. Die Problemstellung ist, ob
ein Teilgraph mit der gleichen Knotenmenge und maximal ` Kanten ex-
istiert, sodass jeder Teilgraph, der von einer Community induziert wird, die
Eigenschaft Π erfüllt. Für Π-Network Sparsification eingeschränkt auf
Instanzen, deren Communities eine maximale Größe von drei haben, geben
wir eine Komplexitäts-Dichotomie an. Dann analysieren wir Π-Network
Sparsification speziell für drei Eigenschaften von Graphen: Eine minimale
Dichte, die Existenz eines zentralen Knotens, der zu allen anderen Knoten
benachbart ist und Zusammenhang. Da Π-Network Sparsification für
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diese drei Eigenschaften NP-schwer ist, analysieren wir deren fine-grained
Komplexität und betrachten das Problem für diese drei Eigenschaften aus
der Sicht der Parametrisierten Komplexität. Zum Beispiel zeigen wir, dass
Π-Network Sparsification für diese drei Eigenschaften unter der Expo-
nential Time Hypothesis nicht in 2o(n

2) · poly(n + |C|)-Zeit gelöst werden
kann.
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1. Introduction

Graphs are a natural data model for a wide range of applications. For ex-
ample in transport planning road networks or rail networks are modelled as
graphs [29]. Other applications where graphs are omnipresent are biological
networks [26] and social networks [28].

In this work, we focus on a family of problems in the context of social
networks. In the field of social network analysis, a common task is to identify
the central actors of a social network and important connections between
these actors. A typical extension to the graph model in the context of social
networks is the notion of communities which are groups of actors having
something in common. These communities can overlap and might not be
disjoint. For example, a community in a social network might represent a
group of people who are interested in the same topic.

Since many graphs that arise in applications are large, it is useful to
reduce their size before further analysis. This leads to the task of network
sparsification which aims to reduce the number of edges of a graph. A typical
requirement on the sparsified network is that it preserves some property
which is of importance in further analysis of that network.

Because communities are a central concept in social network analysis, it
is important for a sparsified social network to preserve some graph property
for each community and not only for the whole network. The combination
of network sparsification and the notion of communities leads to the task of
community-aware network sparsification which aims to reduce the number
of edges of a graph while preserving some graph property for each commu-
nity. This leads to the family of Π-Network Sparsification (Π-NWS)
problems which was introduced by Gionis et al. [16]:

Π-Network Sparsification (Π-NWS)

Input: An undirected graph G = (V,E), a set C = {C1, . . . , Cc} of
communities with C1, . . . , Cc ⊆ V and an integer `.

Question: Is there a sparsified graph G′ = (V,E′) with E′ ⊆ E and at
most ` edges such that each subgraph induced by a com-
munity Ci ∈ C satisfies the graph property Π?

A problem belonging the problem family Π-NWS gets as input an undi-
rected graph G = (V,E), a set of subsets over V called communities and
an integer `. In other words, the input consists of an undirected graph and
a hypergraph over the same set of vertices where the hyperedges are the
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communities and an integer `. It then asks whether there exists a subgraph
G′ of G with the same vertex set V and at most ` edges such that each
subgraph in G′ induced by a community satisfies the graph property Π. In
this work we assume that the graph property Π is computable in polynomial
time.

Gionis et al. [16] studied Π-NWS with respect to three specific graph
properties in their work. The first property is a minimum density require-
ment, the second property is the containment of a spanning star, and third
property is the property of being connected. In this work, we study the com-
plexity of Π-NWS for these graph properties specificall. Since Π-NWS is
NP-hard for these three graph properties, we study Π-NWS for these three
graph properties in the framework of parameterized complexity. In addition
to the parameterized complexity, we study the fine-grained complexity for
these three graph properties. Moreover, we study the complexity of Π-NWS
restricted to communities of size at most 3 in general.

1.1 Problem Definitions

In this section, we introduce the definitions of Π-NWS for the three specific
graph properties we study in this work.

The first variant of Π-NWS is called Density Network Sparsifi-
cation (Density NWS) and demands a minimum density requirement
for each subgraph induced by a community. As an extension to Π-NWS
we allow for each community a different density requirement instead of de-
manding on the same density requirement for all communities. Thus, in
addition to the input of Π-NWS an instance of Density NWS takes a
mapping describing the density requirement of each subgraph induced by a
community. An example of an instance of Density NWS and a sparsified
graph is shown in Figure 1.1.

Density Network Sparsification (Density NWS)

Input: An undirected graph G = (V,E), a set C = {C1, . . . , Cc} of
communities with C1, . . . , Cc ⊆ V , a mapping α : C → [0, 1]
and an integer `.

Question: Is there a sparsified graph G′ = (V,E′) with E′ ⊆ E and at
most ` edges such that each subgraph induced by a com-
munity Ci ∈ C has a density of at least α(Ci)?

The second variant of Π-NWS is called Stars Network Sparsifica-
tion (Stars NWS) and demands that each subgraph induced by commu-
nity contains a spanning star. An example of an instance of Stars NWS
and a sparsified graph is shown in Figure 1.2.
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Figure 1.1: The left side shows the graph and the communities of the input
of an instance of Density NWS. The right side shows a sparsified graph
with two edges such that each subgraph induced by a community has density
of at least 1/3

Figure 1.2: The left side shows the graph and the communities of the input
of an instance of Stars NWS. The right side shows a sparsified graph
with six edges such that each subgraph induced by a community contains a
spanning star.

Stars Network Sparsification (Stars NWS)

Input: An undirected graph G = (V,E), a set C = {C1, . . . , Cc} of
communities with C1, . . . , Cc ⊆ V and an integer `.

Question: Is there a sparsified graph G′ = (V,E′) with E′ ⊆ E and at
most ` edges such that each subgraph induced by a com-
munity Ci ∈ C contains a star with |Ci| − 1 leaves?

The third variant of Π-NWS is called Connectivity Network Spar-
sification (Connectivity NWS) and demands that each subgraph in-
duced by community is connected. An example of an instance of Connec-
tivity NWS and a sparsified graph is shown in Figure 1.3.

Connectivity Network Sparsification (Connectivity NWS)

Input: An undirected graph G = (V,E), a set C = {C1, . . . , Cc} of
communities with C1, . . . , Cc ⊆ V and an integer `.

Question: Is there a sparsified graph G′ = (V,E′) with E′ ⊆ E and at
most ` edges such that each subgraph induced by a com-
munity Ci ∈ C is connected?

In addition, we denote with d-Density NWS, d-Stars NWS, and d-
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Figure 1.3: The left side shows the graph and the communities of the input
of an instance of Connectivity NWS. The right side shows a sparsified
graph with four edges such that each subgraph induced by a community is
connected.

Connectivity NWS the respective problem restricted to communities of
size at most d.

For instances of these three problem variants, we use the following con-
vention. First, we assume that for each vertex v ∈ V there exists a commu-
nity Ci ∈ C with v ∈ Ci, otherwise v can be deleted. Second, we assume
that for each community Ci ∈ C the subgraph induced by Ci satisfies the
respective graph property because otherwise it is a trivial no-instance. This
is the case because the three graph properties are closed under the opera-
tion of adding additional edges to the graph. Finally, we assume that each
community has size at least 2.

1.2 Known Results

Gionis et al. [16] showed NP-hardness for Density NWS by a reduction
from Hitting Set and NP-hardness for Stars NWS by a reduction from
3D Matching. They also provided a factor-O(log |C|) approximation for
Density NWS with a running time of O(

∑
Ci∈C |Ci| ·m · |C|) where m is

the number of edges in the input graph. Moreover, they gave an factor-z
approximation algorithm for Stars NWS and Connectivity NWS with
running time O(|C|·n log n+|C|·

∑
Ci∈C |Ci|) where n is the number of vertices

in the input graph and z is the size of the maximal set of communities such
that these communities are pairwise intersecting.

A special case of Connectivity NWS, where the input graph G is
a clique, was studied under the names Subset Interconnection De-
sign [8], Network Construction [1] and Interconnection Graph
Problem [14]. NP-hardness for instances restricted to communities of size
at most 3 was shown by Fan et al. [14]. Chen et al. [8] proved fixed-parameter
tractability of Subset Interconnection Design with respect to param-
eter |C| by giving a problem kernel with O(8|C|) vertices and gave an FPT-
algorithm for parameter d+t with running time O(d18dt ·d ·n · |C|+n · |C| ·d2)
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where d is the size of the biggest community and t is the size of a minimal
feedback edge set of the sparsified graph. Angulin et al. [1] gave a factor-
O(log |C|) approximation algorithm.

1.3 Further Related Work

First, we present past work closely related to Density NWS, Stars NWS
and Connectivity NWS. Then, we give an overview of past work related
to network sparsification in general.

For the special case of Connectivity NWS, where the graph G is
a clique, various Integer Linear Programming and Mixed Integer Linear
Programming formulations were proposed [10, 4]. For a variant of Stars
NWS, called Complete Optimal Stars Clustering Tree Problem,
Korach and Stern [21] gave a polynomial-time algorithm. In this variant, G
is a complete graph and the sparsified graph G′ must be a tree T and the
closed neighborhood of each center vertex ci of a community Ci in T is the
community itself. This implies that the centers of the stars in the subgraphs
induced by two different communities are different which is not the case for
Stars NWS. An instance of Density NWS can be expressed as variant
of Hitting Set where the hitting set has to hit each set more than once
by setting the universe to the edge set and the collection of subsets to the
communities. This variant has been studied under the names Multiple
Hitting Set [24] and Hitting Set with Quotas [18].

Network sparsification for graphs without the notion of communities was
already studied in the past for different graph properties and different exten-
sions to graphs. Thereby the graph property is either completely preserved
or only approximately preserved in the sparsified graph.

Graph sparsification which aims to preserve the distance except some
constant c between p given pairs of vertices was studied by Bodwin [3]. He
showed that every undirected graph has a subgraph with O(np2/7) edges
which preserves the distance of the given p pairs except the constant c = 4.
Chekuri et al. [5, 6] proposed an approach to sparsify a graph while pre-
serving element connectivity which is a generalization of edge connectivity.
For a graph G = (V,E) and a subset T ⊆ V , element connectivity between
two vertices u, v ∈ V is defined as the maximum number of (u, v)-paths
that are pairwise disjoint in their edges and the vertices V \ T . A sparsi-
fication method for weighted graphs which retains a high connectivity was
provided by Zhou et al. [30]. Parchas et al. [25] extended undirected graphs
by uncertainty which assigns each edge a probability whether it exists in the
graph. Lindner et al. [22] compared different edge scoring methods which
are used to filter the edges to sparsify a social network. For example, they
scored edges by the number of triangles that contain these edges, by the
local similarity of the endpoints of the edge or by the highest degree of the
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endpoints of the edge. Then, they compared how these different scores affect
the preservation of different global graph properties like the diameter or the
clustering coefficient. Mathioudakis et al. [23] proposed an algorithm which
sparsifies a social network with the goal to approximately preserve the infor-
mation flow in the sparsified graph based on past information flows. Given a
social network and a history of information flows, that is for example how a
message propagated through the network, their goal is to preserve the `-most
important edges in the network with respect to the history of information
flow.

1.4 Our Results

In Section 3.1, we give a complexity dichotomy of Π-NWS restricted to
communities of size at most 3. Then, we show in Section 3.2 that neither
Density NWS nor Stars NWS nor Connectivity NWS is solvable in
2o(n

2) · poly(n+ |C|) time under the Exponential Time Hypothesis, where n
is the number of vertices in the input graph.

In Section 4, we study Density NWS, Stars NWS and Connectiv-
ity NWS in the framework of parameterized complexity. A problem is
fixed-parameter tractable if there is an algorithm solving the problem such
that its running time can be divided into a possibly exponential part and a
polynomial part meeting the following requirements. The exponential part
depends only on a parameter which is independent from the size of the input
and the polynomial part depends on the size of the input. If a problem is
W [1]-hard or W [2]-hard, then it is unlikely that the problem is fixed param-
eter tractable. The absence of polynomial kernel for a problem means that
there does not exist an effective preprocessing for a problem to reduce the
size of the input.

For parameter `, the number of edges in the sparsified graph, we show
fixed-parameter tractability for Stars NWS and Connectivity NWS and
W [2]-hardness for Density NWS. Furthermore, we show that there are no
polynomial kernels for Stars NWS and Connectivity NWS with respect
to parameter ` unless NP ⊆ coNP/poly. For parameter k := m− `, we show
W [1]-hardness for Density NWS, Stars NWS and Connectivity NWS.
With respect to parameter t, the size of a minimal feedback edge set of the
sparsified graph, we give a polynomial-time algorithm for Stars NWS for
t = 0 and show W [2]-hardness for Connectivity NWS. For parameter |C|,
we prove fixed-parameter tractability for Density NWS and Stars NWS.
In addition, we show that there are no polynomial kernels for Density NWS
and Stars NWS with respect to parameter |C| unless NP ⊆ coNP/poly.
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2. Preliminaries

In this section, we introduce the notation used throughout this work and give
an overview of the most important concepts of parameterized complexity
theory and complexity theory in general.

2.1 Graph Theory

For an in-depth introduction to the topic of graph theory, we refer to the
book of Diestel [11]. We define an undirected graph as G := (V,E) where V
is a finite set of vertices and E ⊆ {{u, v} | u, v ∈ V, u 6= v} a set of edges.
For brevity, we always refer to an undirected graph when we say graph. For
a graph G, we denote the set of vertices with V (G) and the set of edges with
E(G). The number of vertices is abbreviated by n := |V | and the number
of edges is abbreviated by m := |E|. Two vertices u, v ∈ V (G) are adjacent
in graph G, if {u, v} ∈ E(G). We say that an edge e is incident to a vertex
v, if v is an endpoint of e. For two graphs G1 = (V1, E1) and G2 = (V2, E2)
we define G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2).

The open neighborhood of a vertex v is defined as NG(v) := {u ∈
V | {u, v} ∈ E}. The closed neighborhood of a vertex v is defined as
NG[v] := N(v) ∪ {u}. In general, we omit the subscript G in cases where G
is unanimous. We call G′ := (V ′, E′) a subgraph of an graph G, if V ′ ⊆ V (G)
and E′ ⊆ {{u, v} ∈ E(G) | u, v ∈ V ′}. For a subset S ⊆ V (G), we say that
G[S] := (S, {{u, v} ∈ E | u, v ∈ S}) is the subgraph of G induced by S. A
sequence of distinct vertices (v1, . . . , vk) of a graph G is called (v1, vk)-path,
if {vi, vi+1} ∈ E(G) for each i ∈ [1, k − 1]. If (v1, . . . , vk) is a path in G for
k ≥ 3 and {v1, vk} ∈ E(G), then we call (v1, . . . , vk) a cycle in G. A graph
without a cycle is called acyclic. A feedback edge set of a graph G is defined
as a set of edges that needs to be removed from G such that G is acyclic.
We say two vertices u, v are connected in G, if there exists an (u, v)-path in
G. A graph G is called connected, if each pair of vertices u, v ∈ V (G) is con-
nected. We say S ⊆ V is a connected component of G, if G[S] is connected
and S is inclusion-maximal.

For a graph G, a set S ⊆ V (G) with |E(S)| =
(|S|

2

)
is called a clique.

A size-three clique is also called triangle. A graph G is called a star of size
n− 1 with center z ∈ V (G), if E(G) = {{z, v} | v ∈ V \ {z}}. The density
of a graph G is defined as dens(G) := m/

(
n
2

)
. We say that G contains a

spanning star, if there exist a subgraph G′ of G such that G′ is a star of size
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n − 1. A set X ⊆ V (G) is a vertex cover of graph G, if each edge of G is
incident to at least one vertex in X. A set X ⊆ V (G) is an independent set
of graph G, if the vertices of X are pairwise not adjacent in G.

We define a hypergraph as H := (X, C) where X is a finite set of elements
and C is a collection of subsets of X called hyperedges. The line graph of
a hypergraph H = (X, C) is a graph defined as L(H) := (C, {{Ci, Cj} |
Ci, Cj ∈ C, Ci 6= Cj , Ci∩Cj 6= ∅}). Its vertex set are the hyperedges and the
edges are pairs of hyperedges that are not disjoint in H. A hypergraph H is
connected, if its line graph L(H) is connected. A set S ⊆ X is a connected
component of H, if there exists a connected component S′ in L(H) such that
S =

⋃
Ci∈S′ Ci. For a family of sets S over a universe U , we say that X ⊆ U

is a hitting set if X ∩ Si 6= ∅ for each Si ∈ S.

2.2 Complexity Theory

In this section, we give a brief overview over the most important concepts
in complexity theory. A detailed introduction to complexity theory can be
found in the standard monographs [17, 2]. A decision problem is a language
L ⊆ {0, 1}∗. A decision algorithm for L is some computable function fL :
{0, 1}∗ → {0, 1} such that fL(x) = 1 if and only if x ∈ L. A word x ∈
{0, 1}∗ is called a yes-instance of L if and only if x ∈ L, otherwise it is
called a no-instance. A decision problem A is polynomial-time reducible to
a decision problem B if there exists a function g : {0, 1}∗ → {0, 1}∗ which is
computable in polynomial time in |I| such that I ∈ A if and only if g(I) ∈ B
for all instances I ∈ {0, 1}∗. The algorithm computing the function g is
called polynomial-time reduction. The polynomial-time reducible relation
is denoted by ≤p. Note that ≤p is transitive.

A complexity class C is a set of languages. A language L is in the
complexity class P if fL(I) is computable in time polynomial in |I| for each
instance I of L. A language L is in the complexity class NP if there exists
a polynomial p and a verifier V such that for each x ∈ {0, 1}∗ there exists
a certificate c ∈ {0, 1}p(|x|) such that the verifier V accepts the input (x, c)
in time polynomial in |x| if and only if x ∈ L. Note that P ⊆ NP and
P ⊂ NP is a widely believed hypothesis. A language B is NP-hard if every
language A ∈ NP is polynomial-time reducible to B. A language B is NP-
complete if it is in the complexity class NP and NP-hard. An example for a
NP-complete problem is 3-SAT.

3-SAT

Input: A boolean formula φ in conjunctive normal form with at
most three literals per clause.

Question: Is φ satisfiable, that is does exist a variable assignment
setting at least one literal to true for each clause?

8



The Exponential Time Hypothesis (ETH) is a complexity theoretic hard-
ness assumption about 3-SAT which has been formulated by Impagliazzo
et al. [19]. The ETH basically states that 3-SAT cannot be solved in 2o(n)

time, where n denotes the number of variables. Note that the ETH implies
P 6= NP. In addition with the Sparsification Lemma [20] the ETH implies
that 3-SAT cannot be solved in 2o(n+m) time where n denotes the number
of variables and m denotes the number of clauses. If a polynomial-time re-
duction from 3-SAT to a decision problem A exists which transforms every
instance I of 3-SAT with n variables and m clauses to an instance I ′ of A
with |I ′| ≤ p(n + m) for some polynomial p such that I ∈ 3-SAT if and
only if I ′ ∈ A, then assuming the ETH an algorithm with running time
2o(p

−1(|I′|)) does not exist where p−1 denotes the inverse function of p [12, 9].

2.3 Parameterized Complexity

In this section, we give a brief overview over the most important concepts
in parameterized complexity. For a detailed introduction to the field of
parameterized complexity, we refer to the book of Downey and Fellows [12]
and the book of Cygan et al. [9]. A parameterized problem is a language
L ⊆ {0, 1}∗×N. An element (x, k) ∈ {0, 1}∗×N is called an instance I of a
parameterized problem where x denotes the input of the decision problem
and k the parameter. Two instances I and I ′ are called equivalent if I ∈ L
if and only if I ′ ∈ L. The instance I is called a yes-instance if and only
if I ∈ L and a no-instance if and only if I /∈ L. A decision algorithm for
a parameterized problem L computes some computable function fL : L ⊆
{0, 1}∗ × N→ {0, 1} such that fL(x, k) = 1 if and only if (x, k) ∈ L.

A set C of parameterized problems is a complexity class. A parameter-
ized problem A is fixed-parameter tractable, if there exists a decision algo-
rithm running in f(k) ·poly(|x|) time for every instance (x, k) ∈ {0, 1}∗×N.
The corresponding complexity class is called FPT. If there exists a decision
algorithm running in f(k) · |x|f(k) time for every instance (x, k) ∈ {0, 1}∗×N
of a parameterized problem A, then A is contained in the complexity class
XP. Note that FPT ⊆ XP.

A parameterized problem A is parameterized reducible to a parameter-
ized problem B if there exists a computable function g : {0, 1}∗ × N →
{0, 1}∗ × N and a polynomial h, such that g turns each instance instance
(x, k) of A into an instance (x′, k′) of B in f(k) · poly(|x|) time for some
computable function f such that k′ ≤ h(k) and (x′, k′) ∈ B if and only if
(x, k) ∈ A. The algorithm computing the function g is called parameterized
reduction. The parameterized reducible relation is denoted by ≤FPT. Note
that ≤FPT is transitive. An example for a fixed-parameter tractable problem
is Vertex Cover parameterized by the size of the vertex cover.
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Vertex Cover

Input: An undirected graph G = (V,E) and an integer k.

Question: Does G contain a vertex cover of size most k?

The W-Hierarchy is a collection of the complexity classes W [i] for i ≥
1 with FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [t]. A common assumption is
that FPT 6= W [1]. Based on this assumption a parameterized problem B
is fixed-parameter intractable if a W [i]-hard problem A is parameterized
reducible to B. An example for a W [1]-hard problem is Independent Set
parameterized by the size of the independent set.

Independent Set

Input: An undirected graph G = (V,E) and an integer k.

Question: Does G contain an independent set of size most k?

An example for a W [2]-hard problem is Hitting Set parameterized by the
size of the hitting set.

Hitting Set

Input: A set of elements U , a collection S of subsets of U and an
integer k.

Question: Does S has a hitting set of size most k?

Another concept in parameterized complexity is kernelization. A reduc-
tion rule is an algorithm for a parameterized problem A transforming an
instance (x, k) of A into an equivalent instance (x′, k′) of A with k′ ≤ k. We
also allow reduction rules which state that an instance is a no-instance.
A kernelization algorithm for a parameterized problem A is a function
kA : {0, 1}∗ × N → {0, 1}∗ × N which turns for some computable function
g every instance (x, k) of A in an instance (x′, k′) of A in time polynomial
in |x| such that (x, k) ∈ A if and only if (x′, k′) ∈ A and |x′| + k′ ≤ g(k).
In case a kernelization algorithm exists, we say that A admits a kernel. In
case of g being a polynomial function, we say that A admits a polynomial
kernel. Note that a parameterized problem admits a kernel if and only if it
is fixed-parameter tractable.

For two parameterized problems A and B a polynomial parameter trans-
formation is an algorithm computing a function f : {0, 1}∗×N→ {0, 1}×N
which turns every instance (x, k) of A in an instance (x′, k′) of B in polyno-
mial time in |x| such that (x, k) ∈ A if and only if (x′, k′) ∈ B and k′ ≤ p(k)
for some polynomial p. If there exists a polynomial parameter transfor-
mation from a parameterized problem A without a polynomial kernel to a
parameterized problem B, then B also does not admit a polynomial kernel.
A common assumption under which fixed-parameter tractable problems do
not admit a polynomial kernel is that NP 6⊆ coNP/ poly.

10



3. Fine-grained Complexity

3.1 NP-Hardness

The NP-hardness of Density NWS and Stars NWS was already shown
by Gionis et al. [16]. The gave a reduction from Hitting Set to Density
NWS and a reduction from 3D Matching to Stars NWS. In the following,
we adapt the idea of the reduction from Hitting Set to Density NWS
to reduce from Vertex Cover to Density NWS obtaining NP-hardness
even if the problem instances are restricted to communities of size at most
3.

Theorem 3.1. Density NWS is NP-hard even if restricted to communities
of size at most 3.

Proof. We reduce from Vertex Cover. Let IVC = (G = (V,E), k) be an
instance of Vertex Cover. First, we give some intuition. The vertices of
the Vertex Cover instance are expressed as edges in the the 3-Density
NWS instance. The edges of the Vertex Cover instance are expressed
as communities in the the 3-Density NWS instance. Next, we define the
graph G3DNS = (V3DNS, E3DNS). The set V3DNS contains each vertex of V
and one additional vertex z. The edge set is E3DNS := {{v, z} | v ∈ V }.
Thus, G3DNS is a star with z as center. Each edge of this star represents a
vertex of V . We define the set of communities C := {{u, v, z} | {u, v} ∈ E}.
Hence, the set C contains for each edge in E a community representing it.
Now, we define the density requirement α : C → [0, 1], Ci 7→ 1

3 to encode that
a vertex cover of G contains at least one endpoint of each edge. Finally, we
set the parameter ` := k. Let I3DNS = (G3DNS, C, α, `) denote the resulting
instance of 3-Density NWS. An example of the construction is shown in
Figure 3.1.

Correctness We show that IVC is a yes-instance of Vertex Cover if
and only if I3DNS is a yes-instance of 3-Density NWS.

(⇒) Let X be a vertex cover of size at most k of G. We show how
to obtain a sparsified graph G′3DNS = (V3DNS, E

′
3DNS) with |E′3DNS| ≤ |X|.

We set E′3DNS := {{x, z} | x ∈ X} noting that |E′3DNS| ≤ |X|. For each
community Ci = {u, v, z} ∈ C, we observe that {u, z} ∈ E′3DNS or {v, z} ∈
E′3DNS because X is a vertex cover implying u ∈ X or v ∈ X. Hence, for each
community Ci ∈ C, the density requirement α(Ci) = 1

3 is satisfied because

11
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Figure 3.1: An example of the construction. The left side shows the Vertex
Cover instance, the right side shows the 3-Density NWS instance. The
different line styles show which community of the 3-Density NWS instance
corresponds to which edge of the Vertex Cover instance.

|E(G′3DNS[Ci])| ≥ 1. Therefore, G′3DNS is a sparsified graph implying I3DNS

is a yes-instance of 3-Density NWS.
(⇐) Let I3DNS be a yes-instance of 3-Density NWS and let G′3DNS =

(V3DNS, E
′
3DNS) be a sparsified graph. We show how to obtain a vertex

cover X of G with |X| ≤ |E′3DNS|. We set X := {x | {x, z} ∈ E′3DNS}.
For each edge {u, v} ∈ E, we observe that u ∈ X or v ∈ X because there
exists a community Ci = {u, v, z} ∈ C with a satisfied density requirement
α(Ci) = 1

3 implying {u, z} ∈ E′3DNS or {v, z} ∈ E′3DNS. Therefore, X is
vertex cover of G with |X| ≤ |E′3DNS| implying that IVC a yes-instance of
Vertex Cover.

The NP-hardness proof for 3-Density NWS in Theorem 3.1 constructs
instances with small density requirements. It would be interesting to see
whether any other non-trivial density requirement makes an instance easier.
A trivial density requirement would be 0 or 1 − 1

d + ε for ε > 0 in an
instance of Density NWS restricted to communities of size at most d.
Unfortunately, the problem remains NP-hard regardless of which non-trivial
density requirement is selected as shown in Theorem 3.3. This applies even
if all communities have the same density requirement. Before we present
the proof, we make an observation about a yes-instance of Density NWS
regarding edges which are definitely contained in the sparsified graph.

Lemma 3.2. Let I = (G = (V,E), C, α, `) be an instance of Density
NWS. If I is a yes-instance with the sparsified graph G′ = (V,E′), then
E(G[Ci]) ⊆ E′ for each community Ci ∈ C with |E(G[Ci])| = d

(|Ci|
2

)
·α(Ci)e.

Proof. We assume that I is a yes-instance of Density NWS with the spar-
sified graph G′ = (V,E′). Let Ci ∈ C be a community with |E(G[Ci])| =
d
(|Ci|

2

)
· α(Ci)e. Now, assume that E(G[Ci]) 6⊆ E′. This leads to the contra-

diction that G′ is not a sparsified graph because E(G′[Ci]) < |E(G[Ci])| =

12



d
(|Ci|

2

)
· α(Ci)e implies that the density requirement of community Ci is not

satisfied in G′.

Using Lemma 3.2 we are able to adapt the proof of Theorem 3.1 for any
non-trivial density requirement and a community size of an arbitrary but
fixed d.

Theorem 3.3. d-Density NWS is NP-hard for every constant mapping
α(x) = c with c ∈ (0, 1− 1

d ].

Proof. Again, we give a polynomial reduction from Vertex Cover. Let
IVC = (G = (V,E), k) be an instance of Vertex Cover. Let I3DNS =
(G3DNS = (V3DNS, E3DNS), C, α, `) be the instance of 3-Density NWS ob-
tained from the reduction in Theorem 3.1. Recall that the instance I3DNS

has the following properties:

1. G3DNS is a star with the center vertex z and z /∈ V .

2. Each community Ci ∈ C has size 3.

3. For each community Ci ∈ C the induced subgraph G3DNS[Ci] has two
edges.

We create for each Ci ∈ C a community C ′i = Ci ∪ {wi1, . . . , wid−3} where wij
are d−3 new vertices. Let C′ denote the set of these communities. Next, we
add d

(
d
2

)
·ce−1 arbitrary new edges to each subgraph induced by a community

C ′i ∈ C′. Let E′ denote the set of these new edges. Next, we create for each
edge {u, v} ∈ E′ a new community Ĉi = {u, v} ∪ {yi1, . . . , yid−2} where yij
are d− 2 new vertices. The purpose of these communities is to ensure that
a sparsified graph contains all edges of E′. Let Ĉ denote the set of these
communities. Next, we add d

(
d
2

)
·ce−1 arbitrary new edges to each subgraph

induced by a community Ĉi ∈ Ĉ. Let Ê′ denote the set of these new edges.
Finally, let IdDNS = (GdDNS = (V ′, E3DNS∪E′∪Ê′), C′∪Ĉ, `+ |E′|+ |Ê′|)

denote the instance resulting from the construction. An example of the
adapted construction is shown in Figure 3.2.

Correctness We show that I3DNS is a yes-instance of 3-Density NWS
if and only if IdDNS is a yes-instance of d-Density NWS . Because of the
correctness of the reduction in Theorem 3.1 this implies that IVC is a yes-
instance of Vertex Cover if and only if IdDNS is a yes-instance of d-
Density NWS.

(⇒) Let I3DNS be a yes-instance of 3-Density NWS and let G′3DNS be
a sparsified graph. We show how to obtain a sparsified graph G′dDNS =

(VdDNS, E
′
dDNS) with |E′dDNS| ≤ ` + |E′| + |Ê′| for the instance IdDNS. We

set E′dDNS := E(G′3DNS) ∪ E′ ∪ Ê′. This satisfies |E′dDNS| ≤ ` + |E′| + |Ê′|.
By the definition of E′dDNS, we observe that the density requirement of the
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Figure 3.2: The adaption of the example shown in Figure 3.1 for d = 4 and
c = 1

2 . The left side shows a part of the Vertex Cover instance IVC, the
right side shows the corresponding part of the 4-Density NWS instance
I4DNS (the black vertices, edges, and communities are the added ones).

communities in Ĉ is satisfied. Since I3DNS is a yes-instance of 3-Density
NWS, we have |E(G′3DNS[Ci])| ≥ 1 for each community Ci ∈ C. Because

of E′ ⊆ E′dDNS we have |E(G′dDNS[C ′i])| = d
(
d
2

)
· ce − 1 + |E(G′3DNS[Ci])| ≥

d
(
d
2

)
· ce for each community C ′i ∈ C′. Hence, the density requirement of

each community is satisfied in G′dDNS implying that IdDNS is a yes-instance
of d-Density NWS.

(⇐) Let IdDNS be a yes-instance of d-Density NWS and let G′dDNS be
a sparsified graph. We show how to obtain a sparsified graph G′3DNS =
(V3DNS, E

′
3DNS) with at most ` edges for the instance I3DNS. For each

community Ĉi ∈ Ĉ the induced subgraph GdDNS[Ĉ ′i] contains d
(
d
2

)
· ce

edges allowing us to apply Lemma 3.2. By Lemma 3.2 we conclude that
(E′ ∪ Ê′) ⊆ E(G′dDNS). We set E′3DNS := E(G′dDNS) \ (E′ ∪ Ê′) satisfying

|E′3DNS| = |E(G′dDNS)|−|E′|−|Ê′| ≤ `. Observe that E′3DNS ⊆ E3DNS. Since

IdDNS is a yes-instance of d-Density NWS, we have d
(
d
2

)
·ce ≥ E(G′dDNS[C ′i])

for each community C ′i ∈ C′. Since we added only d
(
d
2

)
· ce− 1 edges to each

community C ′i ∈ C′, there exists an edge e ∈ E3DNS with e ∈ E(G′dDNS[C ′i]).
This implies that there exists for each community Ci ∈ C an edge e′ ∈ E′3DNS

with e′ ∈ E(G′3DNS[Ci]). Hence, the density requirement of each community
is satisfied in G′3DNS implying that I3DNS is a yes-instance of 3-Density
NWS. �

Before we get to the proofs of NP-hardness for Stars NWS and Con-
nectivity NWS, we make an observation about the relation of these prob-
lems. We observe that in subgraphs induced by communities of size at most
3 the property of containing a spanning star is equivalent to the property
of being connected. This means that the problems 3-Stars NWS and 3-
Connectivity NWS are essentially the same in this case. Furthermore, we
observe that each instance of 3-Stars NWS and 3-Connectivity NWS
can be expressed as an instance of 3-Density NWS by assigning each com-
munity a density requirement of 2

3 . These observations are summarized by
Lemma 3.4.
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Lemma 3.4. Let G = (V,E) be an undirected graph, C a set of communities,
α : C → (13 ,

2
3 ] a density requirement and ` ∈ N. Let I3DNS = (G, C, α, `) be

an instance of 3-Density NWS, let I3SNS = (G, C, `) be an instance of 3-
Stars NWS, and let I3CNS = (G, C, `) be an instance of 3-Connectivity
NWS. Then, the instances I3DNS, I3SNS, and I3CNS are equivalent.

Proof. A subgraph induced by a community satisfies the condition in each
problem variant if and only if it has at least two edges:

� A graph on three vertices whose density is contained in the interval
(13 ,

2
3 ] has at least two edges.

� A graph on three vertices contains a size-two star if and only if it has
at least two edges.

� A graph on three vertices is connected if and only if it has at least two
edges.

Fan et al. [14] showed NP-hardness of the Interconnection Graph
Problem which can be seen as a special case of Connectivity NWS
where the graph in the input is a clique. The hardness applies even if
the instances are restricted to communities of size at most 3 [14]. With
Lemma 3.4 in mind, this directly implies NP-hardness of Connectivity
NWS and Stars NWS. In the following proof, we recall their construction
for the sake of completeness.

Theorem 3.5. Stars NWS and Connectivity NWS are NP-hard even
if restricted to communities with size at most 3.

Proof. We reduce from Vertex Cover. Let IVC = (G = (V,E), k) be
an instance of Vertex Cover. We start by defining the graph G3CNS =
(V3CNS, E3CNS) with V3CNS := V ∪ {z} and E3CNS := {{v, x} | v ∈ V } ∪
E. We define the set of communities C := {{u, v, z}, {u, v} | {u, v} ∈ E}.
Observe that we create for each edge a size-three community and a size-
two community and each size-three community induces a triangle. Due to
the size-two communities every valid sparsified graph G′3CNS contains all
edges not adjacent to z. We set the parameter ` := k + |E|. Finally, let
I3CNS = (G3CNS, C, `) denote the resulting instance of 3-Connectivity
NWS. An example of the construction is shown in Figure 3.3.

Correctness We show that IVC is a yes-instance of Vertex Cover if
and only if I3CNS is a yes-instance of 3-Connectivity NWS.

(⇒) Let X be a vertex cover of size at most k of G. We show how to
obtain a sparsified graph G′3CNS = (V3CNS, E

′
3CNS) with |E′3CNS| ≤ |X|+|E|.

We set E′3CNS := {{x, z} | x ∈ X} ∪ E, noting that E′3CNS ≤ |X|+ |E|. For
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Figure 3.3: An example of the construction. The left side shows the Ver-
tex Cover instance IVC, the right side shows the 3-Connectivity NWS
instance I3CNS. The different line styles show which community of the 3-
Connectivity NWS instance corresponds to which edge of the Vertex
Cover instance.

each community Ci = {u, v, z} ∈ C, we observe that {u, v} ∈ E′3CNS and
either {u, z} ∈ E′3CNS or {v, z} ∈ E′3CNS becauseX is a vertex cover implying
u ∈ X or v ∈ X. Hence, for each community Ci ∈ C, the induced subgraph
G′3CNS[Ci] is connected because |E(G′3CNS[Ci])| ≥ 2. Therefore, G′3CNS is a
sparsified graph implying that I3CNS is a yes-instance of 3-Connectivity
NWS..

(⇐) Let I3CNS be a yes-instance of 3-Connectivity NWS and let
G′3CNS = (V3CNS, E

′
3CNS) be a sparsified graph. We show how to obtain

a vertex cover X of G with |X| ≤ |E′3CNS| − |E|. We set X := {x | {x, z} ∈
E′3CNS}. Note that |X| ≤ |E′3CNS \ E| = |E′3CNS| − |E| because E ⊂ E′3CNS

due to the size-two communities in C. For each edge {u, v} ∈ E, we observe
that u ∈ X or v ∈ X: There exists a community Ci = {u, v, z} ∈ C such
that G′3CNS[Ci] is connected. This implies {u, z} ∈ E′3CNS or {v, z} ∈ E′3CNS.
Therefore, X is vertex cover of G with |X| ≤ |E′3DNS| − |E| and IVC a yes-
instance of Vertex Cover.

Next, we analyze the complexity of Π-NWS restricted to communities of
size at most 3 in general. In the following, we characterize a graph property
Π by the maximum set G of graphs with three vertices which fulfill Π. Since
two graphs with three vertices are isomorphic if and only if they have the
same number of edges, it is sufficient to replace the set G with the set of
edge counts of the graphs in G. For a graph property Π, we denote its
characterization with c(Π). For example, the property of being connected
in a graph with three vertices is characterized by the set {2, 3} because a
graph with three vertices is connected if and only if it has at least two edges.
There are 15 different characterizations of graph properties in graphs with
three vertices because there are 15 non-empty subsets of {0, 1, 2, 3}.

Let I = (G = (V,E), C, `) be an instance of Π-NWS where each com-
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munity is of size at most 3. We begin with the characterizations of graph
properties for which Π-NWS is in P.

First, we observe that the instance I is trivially solvable if 0 ∈ c(Π),
that is if the graph property Π is fulfilled in a graph without any edges.
This is the case because the graph G′ = (V, ∅) is a sparsified graph with
at most ` edges for the instance I of Π-NWS. Second, we observe that the
instance I is trivially solvable if c(Π) = {3}, that is if the graph property
Π is only fulfilled by a triangle in graphs with three vertices. This is the
case because it only has to be checked whether |E| ≤ ` and whether each
subgraph induced by a community is a triangle.

We continue with the characterizations of graph properties for which Π-
NWS is NP-hard. The characterization {1, 2, 3} is equal to the characteriza-
tion of a density requirement of 1/3. Hence, the NP-hardness for this charac-
terization is implied by Theorem 3.1, the NP-hardness of 3-Density NWS.
Since the reduction in the proof of Theorem 3.1 constructs only instance such
that each size-three community contains two edges, NP-hardness for graph
properties characterized by {1, 2} is also implied. As mentioned before, the
property of being connected in graphs with three vertices is characterized by
{2, 3}. Therefore, NP-hardness for graph properties characterized by {2, 3}
is implied by Theorem 3.5, the NP-hardness of Connectivity NWS.

For each of the remaining characterizations {1}, {2}, and {1, 3}, we give
reduction from a different variant of 3-SAT. In our constructions below, X
denotes the set of variables of the input formula φ, L := {x, x | x ∈ X}
denotes the set of literals, and C is the set of clauses of φ such that each
clause c ∈ C is a size-three subset of L. Furthermore, EX denotes the
edges of the variable gadget, EC denotes the edges of the clause gadget,
and E+ denotes the edges to connect both gadgets. Analogous, CX denotes
the communities of the variable gadget, CC denotes the communities of the
clause gadget, and C+ denotes the communities to connect both gadgets.

Before we present the reductions, we give some intuition of what all three
constructions have in common. For each variable x ∈ X, there is an edge
ex representing the positive literal and an edge ex representing the negative
literal. The intuition is that only one of the edges ex and ex can be contained
in a sparsified graph. If the edge ex is contained in the sparsified graph,
then the variable x is set to true. Otherwise the edge ex is contained in the
sparsified graph and the variable x is set to false. In other words, these
edges encode the assignment. Moreover, for each clause c = {p, q, r} ∈ C,
there are three edges f cp , f cq and f cr each representing a literal of clause c.
The variable gadget and the clause gadget are connected in a way that the
edge f cp is contained in the sparsified graph if and only if the edge ep is
contained in the sparsified graph. In other words, the construction transfers
the assignment encoded in the variable gadget to the clause gadget.

Theorem 3.6. Π-NWS restricted to communities of size at most 3 is NP-
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Figure 3.4: An example of the construction. The left side shows the variable
gadget and the clause gadget for the formula φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨
x3). The right side shows how the variable gadget and clause gadget are
connected for the literal x1 of the clause (x1 ∨ x2 ∨ x3).

hard for graph properties characterized by {1}.

Proof. We give a reduction from 1-in-3-SAT, a variant of 3-SAT which
is also NP-hard [15] and asks whether there exists an assignment for an
input formula φ setting for each clause exactly one literal to true. In the
following we describe the variable gadget, then we describe the clause gadget
and finally we describe how both gadgets are connected.

Variable Gadget We add a vertex z and for each variable x ∈ X, we add
two vertices ux, ux, the edges ex = {ux, z}, ex = {z, ux}, and a community
Cx = {ux, z, ux}.

Clause Gadget For each clause c = {p, q, r} ∈ C, we add three vertices
vcp, v

c
q, v

c
r, the edges f cp = {vcp, vcq}, f cq = {vcq, vcr}, f cr = {vcr, vcp}, and a commu-

nity Cc = {cp, cq, cr}.

Connecting the Gadgets For each c = {p, q, r} ∈ C, we add the edges
gcp = {vcp, up}, gcq = {vcq, uq}, gcr = {vcr, ur} and the communities {z, up, vcp},
{up, vcp, vcq}, {z, uq, vcq}, {uq, vcq, vcr}, {z, ur, vcr}, {ur, vcr, vcp}.

Finally, let G = (V,E) be the graph and let C be the set of communities
resulting from the above construction. We set ` := |X| + 3|C|. Let I =
(G, C, `) be the final instance of Π-NWS. An example of the construction is
shown in Figure 3.4.
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Correctness We show that there exists an assignment setting exactly one
literal per clause of φ to true if and only if I is a yes-instance of Π-NWS.

(⇒) Let A : X → {0, 1} be an assignment setting exactly one literal
to true for each clause of φ. We describe how to obtain a sparsified graph
G′ = (V,E′) with |E′| ≤ |X| + 3|C| using the assignment A. The edges
in G′ of the variable gadget are E′X := {ex | x ∈ X,A(x) = 1} ∪ {ex |
x ∈ X,A(x) = 0}. Note that |E′X | = |X|. The edges in G′ of the clause
gadget are E′C := {f cp | literal p of clause c is true for assignment A}. Ob-
serve that |E′C | = |C| because for each clause exactly one literal is set to
true. The edges in G′ of the connection of both gadgets are E′+ := {gcp |
literal p of clause c is false for assignment A}. Observe that |E′+| = 2|C|
because for each clause exactly two literals are set to false. Finally, the
edges of the sparsified graph are E′ := E′X ∪E′C∪E′+, thus |E′| = |X|+3|C|.

It remains to show that |E(G′[Ci])| = 1 for each community Ci ∈ C.
For each community Ci ∈ CX of the variable gadget, we have |E(G′[Ci])| =
1 because either ex ∈ E′X or ex ∈ E′X for a variable x ∈ X. For each
community Ci ∈ CC of the clause gadget, we have |E(G′[Ci])| = 1 because
either f cp ∈ E′C or f cq ∈ E′C or f cr ∈ E′C for a clause c = {p, q, r} ∈ C.
For each community Ci ∈ C+ of the connection of both gadgets, we have
|E(G′[Ci])| = 1 because gcp ∈ E+ if and only if f cp /∈ E′C and ep /∈ E′X . Hence,
I is a yes-instance of Π-NWS.

(⇐) Let I be a yes-instance of Π-NWS and let G′ = (V,E′) be a spar-
sified graph. First, we specify the properties of the sparsified graph G′.

Claim 3.7. Let x ∈ X be a variable, let c ∈ C be a clause, and let p ∈ c be
a literal of clause c. The sparsified graph G′ has the following properties:

1. either ex ∈ E′ or ex ∈ E′

2. either f cp ∈ E′ or f cq ∈ E′ or f cr ∈ E′

3. ep ∈ E′ if and only if gcp /∈ E′ if and only if f cp ∈ E′

Proof. For the first property, recall that all communities CX of the variable
gadget are edge-disjoint. Since |E(G′[Ci])| = 1 for each community Ci ∈ CX
of the variable gadget, this implies that either ex ∈ E′ or ex ∈ E′.

For the second property, recall that all communities CC of the clause
gadget are edge-disjoint. Since |E(G′[Ci])| = 1 for each community Ci ∈ CC
of the clause gadget, this implies that either either f cp ∈ E′ or f cq ∈ E′ or
f cr ∈ E′.

For the third property, recall that there is a length-three path consisting
of the edges ep, g

c
p, f

c
p . Furthermore, there exists two communities C ′ and C ′′

with E(G[C ′]) = {gcp, ep} and E(G[C ′′]) = {gcp, f cp}. Since |E(G′[C ′])| = 1,
ep ∈ E′ is equivalent to gcp /∈ E′ which is equivalent to f cp ∈ E′ because
also |E(G′[C ′′])| = 1. Thus, ep ∈ E′ if and only if gcp /∈ E′ if and only if
f cp ∈ E′. ♦
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Next, we define an assignment A based on G′. By Claim 3.7, we know
that either ex ∈ E′ or ex ∈ E′.

We set A : X → {0, 1} with x 7→

{
0 ex ∈ E′

1 ex ∈ E′
.

Note that the assignment A assigns each variable x ∈ X a unique value.
Finally, we show that the assigment A sets exactly one literal to true for
each clause c ∈ C. By Claim 3.7, we know that either f cp ∈ E′ or f cq ∈ E′
or f cr ∈ E′ for each clause c = {p, q, r} ∈ C. Without loss of generality, we
assume f cp ∈ E′ which implies ep ∈ E′ by Claim 3.7. Since A is defined that
the literal p is true, only the literal p of clause c is set to true. Hence, the
assignment A sets for each clause c ∈ C exactly one literal to true. �

Theorem 3.8. Π-NWS restricted to communities of size at most 3 is NP-
hard for graph properties characterized by {2}.

Proof. We give a reduction from 2-in-3-SAT, a variant of 3-SAT which is
also NP-hard [15] and asks whether there exists an assignment such that for
each clause exactly two literals are set to true.

First, we introduce the notion of a permanent edge. An edge e ∈ E is
permanent, if every sparsified graph G′ of a yes-instance of Π-NWS contains
this edge e. In our construction, any edge {u, v} can be made permanent
by adding a new vertex w, the edge {u,w} and the community consisting
of u, v, w. Since a graph property characterized by {2} enforces exactly two
edges in a subgraph induced by a community of size 3, every sparsified graph
G′ of a yes-instance of Π-NWS has to contain the edges {u, v} and {v, w}.
Thus, for a graph property characterized by {2}, Π-NWS with permanent
edges is polynomial time reducible to Π-NWS. Hence, in this case it is
sufficient to show NP-hardness for Π-NWS with permanent edges. In the
following we describe the variable gadget, then we describe the clause gadget
and finally we describe how both gadgets are connected.

Variable Gadget We add a vertex z and for each variable x ∈ X, we
add two vertices ux, ux, the edges ex = {ux, z}, ex = {z, ux}, the permanent
edge {ux, ux}, and a community Cx = {ux, z, ux}.

Clause Gadget For each clause c = {p, q, r} ∈ C, we add three vertices
vcp, v

c
q, v

c
r, the edges f cp = {vcp, vcq}, f cq = {vcq, vcr}, f cr = {vcr, vcp}, and a commu-

nity Cc = {cp, cq, cr}.

Connecting the Gadgets For each c = {p, q, r} ∈ C, we add the edges
gcp = {vcp, up}, gcq = {vcq, uq}, gcr = {vcr, ur}, the permanent edges g′cp =
{z, vcp}, g′′cp = {up, vcq}, g′cq = {z, vcq}, g′′cq = {uq, vcr}, g′cr = {z, vcr}, g′′cr =
{ur, vcp}, and the communities {z, up, vcp}, {up, vcp, vcq}, {z, uq, vcq}, {uq, vcq, vcr},
{z, ur, vcr}, {ur, vcr, vcp}.

20



x1

x3

x2 x1

x3

x2

x1x1
x2x2

x3x3
x1 x1

x1

x3

x2

Figure 3.5: An example of the construction. The left side shows the variable
gadget and the clause gadget for the formula φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨
x3). The right side shows how the variable gadget and clause gadget are
connected for the literal x1 of the clause (x1 ∨ x2 ∨ x3). The bold edges
indicates the permanent edges which are enforced to be contained in each
sparsified graph.

Finally, let G = (V,E) be the graph and let C be the set of communities
resulting from the above construction. We set ` := 2|X| + 9|C|. Let I =
(G, C, `) be the final instance of Π-NWS. An example of the construction is
shown in Figure 3.5.

Correctness We show that there exists an assignment setting exactly two
literals per clause of φ to true if and only if I is a yes-instance of Π-NWS.

(⇒) Let A : X → {0, 1} be an assignment setting exactly two liter-
als to true for each clause of φ. We describe how to obtain a sparsi-
fied graph G′ = (V,E′) with |E′| ≤ 2|X| + 9|C| using the assignment A.
The edges in G′ of the variable gadget are E′X := {ex | x ∈ X,A(x) =
1} ∪ {ex | x ∈ X,A(x) = 0} ∪ {the permanent edges of EX}. Note that
|E′X | = 2|X|. The edges in G′ of the clause gadget are E′C := {f cp |
literal p of clause c is true for assignment A}. Observe that |E′C | = 2|C|
because for each clause exactly two literals are set to true. The edges inG′ of
the connection of both gadgets are E′+ := {gcp | literal p of clause c is false

for assignment A} ∪ {the permanent edges of E+}. Observe that |E′+| =
|C|+ 6|C| because for each clause exactly one literal is set to false and the
connection of both gadgets has 6|C| permanent edges. Finally, the edges of
the sparsified graph are E′ := E′X ∪ E′C ∪ E′+, thus |E′| = 2|X|+ 9|C|.

It remains to show that |E(G′[Ci])| = 2 for each community Ci ∈ C. For
each community Ci ∈ CX of the variable gadget, we have |E(G′[Ci])| = 2
because G′[Ci] contains the permanent edge {ux, ux} and either ex ∈ E′X or
ex ∈ E′X for a variable x ∈ X. For each community Ci ∈ CC of the clause
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gadget, we have |E(G′[Ci])| = 2 because either f cp , f
c
q ∈ E′C or f cq , f

c
r ∈ E′C

or f cr , f
c
p ∈ E′C for a clause c = {p, q, r} ∈ C. For each community Ci ∈ C+

of the connection of both gadgets, we have |E(G′[Ci])| = 2 because G′[Ci]
contains either the permanent edge g′cp or the permanent edge g′′cp and gcp ∈
E+ if and only if f cp /∈ E′C and ep /∈ E′X . Hence, I is a yes-instance of
Π-NWS.

(⇐) Let I be a yes-instance of Π-NWS and let G′ = (V,E′) be the
sparsified graph. First, we specify the properties of the sparsified graph G′.

Claim 3.9. Let x ∈ X be a variable, let c ∈ C be a clause, and let p ∈ c be
a literal of clause c. The sparsified graph G′ has the following properties:

1. either ex ∈ E′ or ex ∈ E′

2. either f cp , f
c
q ∈ E′ or f cq , f

c
r ∈ E′ or f cr , f

c
p ∈ E′

3. ep ∈ E′ if and only if gcp /∈ E′ if and only if f cp ∈ E′

Proof. For the first property, recall that all communities CX of the variable
gadget are edge-disjoint. Since |E(G′[Ci])| = 2 for each community Ci ∈ CX
of the variable gadget, this implies that either ex ∈ E′ or ex ∈ E′ because
the edge {ux, ux} is permanent.

For the second property, recall that all communities CC of the clause
gadget are edge-disjoint. Since |E(G′[Ci])| = 2 for each community Ci ∈ CC
of the clause gadget, this implies that either f cp , f

c
q ∈ E′ or f cq , f

c
r ∈ E′ or

f cr , f
c
p ∈ E′.

For the third property, recall that there is a length-three path consist-
ing of the edges ep, g

c
p, f

c
p . Furthermore, there exists two communities C ′

and C ′′ with E(G[C ′]) = {gcp, ep, g′cp } and E(G[C ′′]) = {gcp, f cp , g′′cp }. Since
|E(G′[C ′])| = 2 and the edge g′cp is permanent, ep ∈ E′ is equivalent to
êcp /∈ E′ which is equivalent to ecp ∈ E′ because also |E(G′[C ′′])| = 2 and the
g′′cp is also permanent. Thus, ep ∈ E′ if and only if gcp /∈ E′ if and only if
f cp ∈ E′. ♦

Next, we define an assignment A based on G′. By Claim 3.9, we know
that either ex ∈ E′ or ex ∈ E′.

We set A : X → {0, 1} with x 7→

{
0 ex ∈ E′

1 ex ∈ E′
.

Note that the assignment A assigns each variable x ∈ X a unique value.
Finally, we show that the assigment A sets exactly two literals to true

for each clause c ∈ C. By Claim 3.9, we know that either f cp , f
c
q ∈ E′ or

f cq , f
c
r ∈ E′ or f cr , f

c
p ∈ E′ for each clause c = {p, q, r} ∈ C. Without loss

of generality, we assume f cp , f
c
q ∈ E′ which implies ep, eq ∈ E′ by Claim 3.9.

Since A is defined that the literal p and q are true, exactly two literals are
set to true for clause c. Hence, the assignment A sets exactly two literals
to true for each clause c ∈ C. �
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Theorem 3.10. Π-NWS restricted to communities of size at most 3 is
NP-hard for graph properties characterized by {1, 3}.

Proof. We give a reduction from NAE3SAT, a variant of 3-SAT which is
also NP-hard [15] and asks whether there exists an assignment such that for
each clause not all literals have the same truth value. In the following we
describe the variable gadget, then we describe the clause gadget and finally
we describe how both gadgets are connected.

Variable Gadget We add a vertex z and for each variable x ∈ X, we add
two vertices ux, ux, the edges ex = {ux, z}, ex = {z, ux}, and a community
Cx = {ux, z, ux}.

Clause Gadget For each clause c = {p, q, r} ∈ C, we add four vertices
vcp, v

c
q, v

c
r, v

c
z, all six possible edges f cp = {vcp, vcz}, f cq = {vcq, vcz}, f cr = {vcr, vcz},

f ′cp = {vcq, vcr}, f ′cq = {vcp, vcr}, f ′cr = {vcp, vcq} and three communities Cc1 =
{vcp, vcq, vcz}, Cc2 = {vcq, vcr, vcz}, and Cc3 = {vcp, vcr, vcz}.

Connecting the Gadgets For each c = {p, q, r} ∈ C, we add the edges
gcp = {vcp, up}, gcq = {vcq, uq}, gcr = {vcr, ur} and the communities {z, up, vcp},
{up, vcp, vcq}, {z, uq, vcq}, {uq, vcq, vcr}, {z, ur, vcr}, {ur, vcr, vcp}.

Finally, let G = (V,E) be the graph and let C be the set of communities
resulting from the above construction. We set ` := |X| + 4|C|. Let I =
(G, C, `) be the final instance of Π-NWS. An example of the construction is
shown in Figure 3.6.

Correctness We show that there is an assignment setting one or two
literals per clause of φ to true if and only if I is a yes-instance of Π-NWS.

(⇒) Let A : X → {0, 1} be an assignment setting exactly one or two
literals to true for each clause of φ. Let a be the number of clauses for which
exactly one literal is set to true and let b be the number of clauses for which
exactly two literals are set to true. We describe how to obtain the sparsi-
fied graph G′ = (V,E′) with |E′| ≤ |X|+ 4|C| using the assignment A. The
edges in G′ of the variable gadget are E′X := {ex | x ∈ X,A(x) = 1} ∪ {ex |
x ∈ X,A(x) = 0}. Note that |E′X | = |X|. Recall that for each clause exactly
two literals are set to true. The edges in G′ of the clause gadget are E′C :=
{f cp , f ′cp | in clause c only literal p is true for assignment A} ∪ {f cp , f cq , f ′cr |
in clause c the literals p, q are true for assignment A}. Note that |E′C | =

2a+3b because for a clauses exactly one literal is set to true and for b clauses
exactly two literals are set to true. The edges in G′ of the connection of both
gadgets are E′+ := {gcp | literal p of clause c is false for assignment A}.
Observe that |E′+| = b + 2a because for b clauses exactly one literal is
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Figure 3.6: An example of the construction. The left side shows the variable
gadget and the clause gadget for the formula φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨
x3). The right side shows how the variable gadget and clause gadget are
connected for the literal x1 of the clause (x1 ∨ x2 ∨ x3).

set to false and for a clauses exactly two literals are set to false. Fi-
nally, the edges of the sparsified graph are E′ := E′X ∪ E′C ∪ E′+, thus
|E′| = |X|+ 4a+ 4b = |X|+ 4|C|.

It remains to show that |E(G′[Ci])| = 1 or |E(G′[Ci])| = 3 for each
community Ci ∈ C. For each community Ci ∈ CX of the variable gadget,
we have |E(G′[Ci])| = 1 because either ex ∈ E′X or ex ∈ E′X for a variable
x ∈ X. For each community Ci ∈ C+ of the connection of both gadgets, we
have |E(G′[Ci])| = 1 because gcp ∈ E+ if and only if f cp /∈ E′C and ep /∈ E′X .
Recall that there are three communities Cc1, Cc2, Cc3 for each clause c ∈ C.
The clause c has either exactly one true literal or exactly two true literals.
In the first case, we observe that |E(G′[Cc1])| = 1, |E(G′[Cc2])| = 1, and
|E(G′[Cc3])| = 1. In the second case, we observe that either |E(G′[Cc1])| = 3
or |E(G′[Cc2])| = 3 or |E(G′[Cc3])| = 3 and that each subgraph induced
by one of the other two communities contains exactly one edge. Thus, for
each community Ci ∈ CX of the clause gadget we have |E(G′[Ci])| = 1 or
|E(G′[Ci])| = 3. Hence, I is a yes-instance of Π-NWS.

(⇐) Let I be a yes-instance of Π-NWS and let G′ = (V,E′) be a spar-
sified graph. First, we specify the properties of the sparsified graph G′.

Claim 3.11. Let x ∈ X be a variable, let c ∈ C be a clause, and let p ∈ c
be a literal of clause c. The sparsified graph G′ has the following properties:

1. either ex ∈ E′ or ex ∈ E′

2. neither f cp , f
c
q , f

c
r ∈ E′ nor f cp , f

c
q , f

c
r /∈ E′

3. ep ∈ E′ if and only if gcp /∈ E′ if and only if f cp ∈ E′
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Figure 3.7: All four variants, how the graph property characterized by {1, 3}
can be satisfied in the communities of the clause gadget. (Note that the
two possibilities which are isomorphic to the second one are omitted) The
grey communities are the communities of the clause gadget. The dotted
communities are a part of connection to the variable gadget. The bold
edges represent the edges of a sparsified graph fulfilled the graph property
characterized by {1, 3} for all shown communities.

Proof. For the first property, recall that all communities CX of the variable
gadget are edge-disjoint. Since |E(G′[Ci])| = 1 for each community Ci ∈ CX
of the variable gadget, this implies that either ex ∈ E′ or ex ∈ E′.

For the second property, recall that there are three communities Cc1, Cc2,
Cc3 for a clause c ∈ C. In Figure 3.7, all variants are shown, how a graph
property characterized by {1, 3} can be fulfilled in these three communities.
Observe that the first and the second variant only need four edges. In
contrast to this, the third and the fourth variant need six edges. Since |X|
edges in the sparsified graph are needed for the variable gadget, there are at
most 4|C| edges of the clause gadget and the connection of both gadgets in
G′. Hence, only the first and the second variant are possible in G′ because
otherwise G′ has more than |X| + 4|C| edges. This implies that neither
f cp , f

c
q , f

c
r ∈ E′ nor f cp , f

c
q , f

c
r /∈ E′.

For the third property, recall that there is a length-three path consisting
of the edges ep, g

c
p, f

c
p . Furthermore, there exists two communities C ′ and C ′′

with E(G[C ′]) = {gcp, ep} and E(G[C ′′]) = {gcp, f cp}. Since |E(G′[C ′])| = 1,
ep ∈ E′ is equivalent to gcp /∈ E′ which is equivalent to f cp ∈ E′ because
also |E(G′[C ′′])| = 1. Thus, ep ∈ E′ if and only if gcp /∈ E′ if and only if
f cp ∈ E′. ♦

Next, We define an assignment A based on G′. By Claim 3.11, we know
that either ex ∈ E′ or ex ∈ E′.

We set A : X → {0, 1} with x 7→

{
0 ex ∈ E′

1 ex ∈ E′
.

Note that the assignment A assigns each variable x ∈ X a unique value.
Finally, we show that the assigment A sets one or two literals to true for each
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clause c ∈ C. By Claim 3.11, we know that either one of edges f cp , f
c
q , f

c
r is

contained in E′ or two of these edges are contained in E′. First, we consider
the case that exactly one of the edges f cp , f

c
q , f

c
r is contained in E′. Without

loss of generality, we assume f cp ∈ E′ which implies ep ∈ E′ by Claim 3.11.
Since A is defined that the literal p is true, the clause c is satisfied by literal
p. Second, we consider the case that exactly two of the edges f cp , f

c
q , f

c
r are

contained in E′. Without loss of generality, we assume f cp , f
c
q ∈ E′ which

implies ep, eq ∈ E′ by Claim 3.11. Since A is defined that the literal p and q
are true, two literals of the clause c are set to true. Hence, the assignment
A sets for each clause exactly one or exactly two literals to true. �

This completes our study of the NP-hardness of Density NWS, Stars
NWS, Connectivity NWS, and Π-NWS restricted to communities of size
at most 3.

3.2 Lower bounds

The naive brute force approach for each Π-NWS problem performs an ex-
haustive search over all subsets of edge set E in the input graph G = (V,E).
This are |P(E)| = 2m sets. With the restriction to graph properties Π which
are verifiable in O(poly(n + m)) time, we are able to obtain the following
general statement for Π-NWS problems.

Theorem 3.12. Every Π-NWS problem is solvable in O(2m · |C| · poly(n+
m)) time.

Proof. Let I = (G = (V,E), C, `) be an instance of a Π-NWS problem. The
algorithm is as follows. Check for each graph G′ := (V,E′) with E′ ⊆ E
and |E′| ≤ ` whether each subgraph induced by a community Ci ∈ C fulfills
the property Π. If such a graph G′ exists, then I is a yes-instance of Π-
NWS. If no such graph G′ exists, then I is a no-instance of Π-NWS. Note
that we assumed that the graph property Π is verifiable in poly(n + m)
time for each subgraph induced by a community. Since there are at most
2m different subsets of E, the described algorithm has a running time of
O(2m · |C| · poly(n+m))).

In undirected graphs the number of edges m is at most
(
n
2

)
. Therefore,

the exponential factor in the running time O(2m · |C| ·poly(n+m)) stated in
Theorem 3.12 is also expressible by parameter n as O(2n

2 · |C| ·poly(n+m)).
Since many real-world graphs in the field of social network analysis are
sparse, it would be tempting to find an algorithm with a running time such
that the exponent is for example only linear in the parameter n instead of
quadratic. This is not possible for Density NWS, Stars NWS, and Con-
nectivity NWS assuming the Exponential Time Hypothesis. Even if the
community size is restricted to at most 4, an algorithm with such a running
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time does not exist for Density NWS, Stars NWS, and Connectivity
NWS when the ETH is true as shown in the following theorem.

Theorem 3.13. If the ETH is true, then Density NWS, Stars NWS,
and Connectivity NWS cannot be solved in 2o(n

2) ·poly(n+|C|) time even
if restricted to instances with community size at most 4.

Proof. We start with a reduction from 3-SAT to 4-Density NWS such
that the resulting graph has O(

√
|φ|) vertices and O(poly(|φ|)) communities,

where φ denotes the input formula and |φ| the sum of the number of variables
and clauses. Then, the existence of an 2o(n

2) · poly(n + |C|)-time algorithm
for 4-Density NWS implies the existence of an 2o(|φ|)-time algorithm for 3-
SAT defeating the ETH [19, 20]. Then, we adapt the reduction to 4-Stars
NWS and 4-Connectivity NWS. Without loss of generality we assume
that each clause consists of exactly three literals. In the construction below
X denotes the set of variables, L := {x, x | x ∈ X} the set of literals
containing a positive and negative literal for each variable and C ⊆ {Ci ⊆
L | |Ci| = 3} the set of clauses. For ` ∈ L we say that ` denotes the
complement literal of the same variable.

Variable Gadget We start by describing the construction of the variable
gadget GX = (VX , EX). The idea is to create for each variable a community
containing a P3 with a density requirement of 1

3 . The first edge in such a P3

represents the positive literal, and the second one the negative literal. The
density requirement of 1

3 is used to model that one literal must be set to
true. These P3s are arranged compactly, to achieve a variable gadget with

|VX | ∈ O
(√
|φ|
)

. Let θ : L → EX be the mapping of the literals to the

edges in the variable gadget. This mapping will be populated throughout
the following construction.

Let GX be a complete balanced bipartite graph where both disjoint
independent sets U = {u1, . . . , unx} and V = {v1, . . . , vnx} consist of nx =
2d
√
|X|e vertices each. Observe that nx is dividable by 2. Then, we define

a partition V ′ := {{vi·2−1, vi·2} | i ∈ {1, . . . , nx
2 }} of V into sets of size 2.

The induced subgraph used for representing each variable is a P3. Such a
P3 consists of one vertex u ∈ U being its center and two vertices vi, vj ∈ V .

Claim 3.14. There exists an injection between X and U × V ′.

Proof. There exists an injection because |U × V ′| = |U | · |V ′| = nx · nx
2 =

2d
√
|X|e · 2d

√
|X|e
2 ≥ 2

√
|X| ·

√
|X| = 2|X| ≥ |X|. ♦

By Claim 3.14 let η : X → U × V ′ be such an injection. We use this
injection to assign each variable a P3. Then, we add for each x ∈ X with
η(x) = (ui, {vi, vj}) a community Cx = {ui, vi, vj} with α(Cx) = 1

3 . We
denote these communities with CX . Finally, we set θ(x) := {ui, vi} and
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Figure 3.8: An example of the construction showing how the variables are
represented and how the P3s are arranged

θ(x) := {ui, vj} to assign the positive and negative literal of x an edge of the
variable gadget. An example of a variable gadget is shown in Figure 3.8.

Claim 3.15. Each edge of EX is contained in only one subgraph induced by
a community in CX .

Proof. Each community Cx consists of one vertex u ∈ U and two vertices
vi, vj ∈ V forming a P3 with u as center. Suppose there are two different
communities Cx1 and Cx2 such that they have one edge in common. This
implies that Cx1 and Cx2 contain the same vertex of U and have one vertex
of V in common. This leads to a contradiction because V ′ is a partition. ♦

Clause Gadget We continue by describing the construction of the clause
gadget GC = (VC , EC). The idea is to create a size-three star for each clause
in the formula. Each edge represents one literal of the clause. For each such
star, we create three communities each consisting of a different P3 in the
star with a density requirement of 1

3 . Again, these induced subgraphs are

arranged compactly, to achieve a clause gadget with |VC | ∈ O
(√
|C|
)

. Let

ν : {(c, `1), (c, `2), (c, `3) | c = {`1, `2, `3} ∈ C} → EC be the mapping of
the literal occurrences in clauses to the edges of the clause gadget. This
mapping will be populated throughout the following construction.

Let GC be also a complete balanced bipartite graph where both disjoint
independent sets Y = {y1, . . . , ync} and Z = {z1, . . . , znc} consists of nc =
3d
√
|C|e vertices each. Note that nc is dividable by 3. Then, we define a

partition Z ′ := {zi·3−2, zi·3−1, zi·3 | i ∈ {1, . . . , nc
3 }} of Z into sets of size 3.

Claim 3.16. There exists an injection between C and Y × Z ′.

Proof. There exists an injection because |Y × Z ′| = |Y | · |Z ′| = nc · nc
3 =

3d
√
|C|e · 3d

√
|C|e
3 ≥ 3

√
|C| ·

√
|C| = 3|C| ≥ |C|. ♦
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Figure 3.9: An example of the construction showing how the stars repre-
senting the clauses are arranged.

x1 x3

x2

Figure 3.10: An example of the clause construction showing how the clause
x1 ∨ x2 ∨ x3 is represented.

By Claim 3.16, let µ : C → Y × Z ′ be an injection. We use this in-
jection to assign each clause a star of size three. Then, we create for
each clause c = {`1, `2, `3} ∈ C with µ(c) = (yi, {zi, zj , zk}) three com-
munities C1

c = {yi, zi, zj}, C2
c = {yi, zi, zk} and C3

c = {yi, zj , zk} with
α(C1

c ) = α(C2
c ) = α(C3

c ) = 1
3 . We denote these communities with CC .

Finally, we set ν(c, `1) := {yi, zi}, ν(c, `2) := {yi, zj}, and ν(c, `3) := {yi, zk}
to assign each literal in clause c an edge of the clause gadget. An example of
a clause gadget is shown in Figure 3.9. In Figure 3.10 an example is shown
how a clause is represented.

Claim 3.17. All subgraphs induced by the vertex sets in W = {C1
c ∪C2

c ∪C3
c |

c ∈ C} are pairwise edge-disjoint.

Proof. Each vertex set Wi ∈ W consists of one vertex y ∈ Y and three
vertices zi, zj , zk ∈ Z forming a star with y as center. Suppose there are two
different vertex sets W1,W2 ∈ W such that they have at least one edge in
common. This implies that W1 and W2 contain the same vertex of Y and
have one vertex of Z in common. This leads to a contradiction because Z ′

is a partition. ♦
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Figure 3.11: An example of the construction showing how a literal in a
clause is connected with the variable gadget

Connecting the Gadgets We complete the construction by describing
how the variable and clause gadget are connected using communities. The
idea is to put the endpoints of an edge describing a literal in the clause
together with the endpoints of the edge describing the opposite literal in the
variable gadget in a community. These communities are used to model
occurrences of variables in the clauses. We create for each clause c =
{`1, `2, `3} ∈ C three communities C`1c = ν(c, `1)∪θ(`1), C`2c = ν(c, l2)∪θ(`2)
and C`3c = ν(c, `3) ∪ θ(`3) with α(C`1c ) = α(C`2c ) = α(C`3c ) = 1

6 . We denote
these communities with CXC . An example of the connection for one literal is
shown in Figure 3.11.

Finally, let G4DNS = GX∪GC be the graph, let C4DNS = CX∪CC∪CXC be
the set of communities and let α be the mapping resulting from the above
construction.

Correctness We show that the formula φ is satisfiable if and only if
I4DNS = (G4DNS, C4DNS, α, |X|+2|C|) is a yes-instance of 4-Density NWS.

Before we proof this statement, we make an observation about the pa-
rameter l.

Claim 3.18. For l < |X|+ 2|C|, the instance I = (G4DNS, C4DNS, α, l) is a
no-instance of 4-Density NWS.

Proof. At least one edge of each community in the variable gadget is con-
tained in the sparsified graph to fulfill their density requirement. Conclud-
ing from Claim 3.15, these are at least |X| edges. At least two edges of
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each triple of communities forming a star of size four in the clause gad-
get are contained in the sparsified graph to fulfill their density require-
ment. Concluding from Claim 3.17, these are at least 2|C| edges. This
implies that I = (G4DNS, C4DNS, α, l) is a no-instance of 4-Density NWS
for l < |X|+ 2|C|. ♦

(⇒) Let A : X → {0, 1} be an assignment satisfying φ. First, we describe
how to obtain the sparsified graph G′ = (V,E′) with |E′| = |X|+ 2|C| using
A. For each variable, we select the edge of the variable gadget representing
the literal that is not fulfilled by A, formally described by E′X := {θ(x) |
x ∈ X,A(x) = 0} ∪ {θ(x) | x ∈ X,A(x) = 1}. The set E′X fulfills the
density requirement of the communities in the variable gadget. Let E′C
denote a set of edges. For each clause c = {`1, `2, `t}, there is at least
one literal that is fulfilled by A which is denoted by lt. We add the edges
ν(c, l1) and ν(c, l2) to E′C . In the construction of the clause gadget, we
created three communities C1

c = ν(c, `1) ∪ ν(c, `2) , C2
c = ν(c, `1) ∪ ν(c, `t),

and C3
c = ν(c, `2) ∪ ν(c, `t). Each of them having a density requirement

of 1
3 which is fulfilled by the edges ν(c, l1) and ν(c, l2). While connecting

both gadgets, we also created three communities C`1c = ν(c, `1) ∪ θ(`1),
C`2c = ν(c, `2) ∪ θ(`2), and C`3c = ν(c, `t) ∪ θ(`t), each of them having a
density requirement of 1

3 . This density requirement is fulfilled for C`1c and
C`2c by the edges ν(c, `1) and ν(c, `2). For C`tc the density requirement is
also fulfilled but this time by an edge in E′X . Finally, we set E′ := E′X ∪E′C
and observe that |E′| = |X| + 2|C|. Therefore, I4DNS is a yes-instance of
4-Density NWS.

(⇐) First, we define an assignment A based on the sparsified graph
G = (V,E′) where E′X denotes the edges in G′ of the variable gadget and
E′C the edges in G′ of the clause gadget. Then, we show that the assignment
A satisfies φ.

We set A : X → {0, 1} with x 7→

{
0 θ(x) /∈ E′X
1 θ(x) /∈ E′X

.

By the proof of Claim 3.18, we conclude that |E′X | = k and not both edges
θ(x) and θ(x) of a variable x are contained in E′X . Therefore, the assignment
A does assign each variable x a unique value. Recall that we created for each
clause c = {`1, `2, `t} three communities C`1c , C`2c , and C`tc connecting the
variable and the clause gadget. Due to the solution size of |X| + 2|C|, we
have E′ ∩ {ν(c, `1), ν(c, `2), ν(c, `t)} = 2. Hence, the density requirement
of one of the communities C`1c , C`2c and C`tc has to be fulfilled by an edge
contained in E′X . Without loss of generality we assume that this is the case
for C`tc . This implies that θ(`t) ∈ E′X and therefore A(`t) = 1 which satisfies
the clause c. This applies to all clauses, wherefore φ is satisfied by A.

Adapting the construction for Stars NWS Now, we modify the con-
struction to be able to replace the density requirement for each community
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with the star requirement. The idea is to add edges to each community
such that these edges form together with the sparsified graph G′4DNS of the
4-Density NWS instance a sparsified graph G′4SNS for 4-Stars NWS.

Variable Gadget We make the set V a clique instead of an independent
set. This transforms every P3 in the variable gadget to a triangle. Then, we
create for each edge {vi, vj} in the clique V a community consisting only of
vi and vj .

Clause Gadget We make the set Z a clique instead of an independent
set. This transforms every P3 in the clause gadget to a triangle. Then, we
create for each edge {zi, zj} in the clique Z a community consisting only of
zi and zj .

Connecting the Gadgets For each community {u, v, y, z} ∈ CXC with
u ∈ U , v ∈ V , y ∈ Y and z ∈ Z that has been created to connect both
gadgets, we add the edges {u, z}, {v, y} and {v, z}. Then, we create for
each added edge a community consisting of the endpoints of the edge.

Finally, let G4SNS denote the adapted graph and let C4SNS denote the
adapted set of communities resulting from the modified construction. Fur-
thermore, let I4SNS = (G4SNS, C4SNS, |X|+2|C|+3|C|+

(|V |
2

)
+
(|Z|

2

)
) denote

the instance of Stars NWS resulting from the modified construction.

Claim 3.19. I4SNS is a yes-instance of 4-Stars NWS if and only if I4DNS

is a yes-instance of 4-Density NWS.

Proof. Throughout the proof we call an edge e ∈ E(G4SNS) old if e ∈
E(G4DNS) and new if e /∈ E(G4DNS).

(⇒) Let I4SNS be a yes-instance of 4-Stars NWS and let G′4SNS be
a sparsified graph. We show how to construct a sparsified graph for the
instance I4DNS of 4-Density NWS with |X|+ 2|C| edges. Observe that all
new edges are contained in G′4SNS due to the size-two communities. These

are
(|V |

2

)
edges for the variable gadget,

(|Z|
2

)
edges for the clause gadget, and

3|C| edges for the connection between both gadgets. Next, observe that
the new edges almost form a complete star in each subgraphs induced by
the size-three and size-four communities. To form a complete star at least
one old edge in each subgraphs induced by these communities is contained
in G′4SNS. These are |X| + 2|C| old edges. We remove the new edges from
G′4SNS. The remaining graph contains |X|+2|C| old edges and each subgraph
induced by a size-three or size-four community contains at least one edge. It
satisfies the density requirement of each community in the instance I4DNS.
Therefore, the resulting graph is a sparsified graph for the instance I4DNS.
Thus, I4DNS is a yes-instance of 4-Density NWS.
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(⇐) Let I4DNS be a yes-instance of 4-Density NWS and let G′4DNS

be a sparsified graph. We show how to construct a sparsified graph for
the instance I4SNS of 4-Stars NWS with |X| + 2|C| + 3|C| +

(|V |
2

)
+
(|Z|

2

)
edges. Observe that each subgraph induced by a size-three or size-four
community contains at least one old edge. We add all new edges to G′4DNS

which are 3|C| +
(|V |

2

)
+
(|Z|

2

)
) edges. By the definition of the modified

construction we know that these new edges form together with the old edges
in each subgraph induced by a size-three and size-four community a star.
The star requirement of the subgraphs induced by the additional size-two
communities in G′4SNS is also satisfied by the new edges. Therefore, the
extended graph is a sparsified graph for the instance I4SNS of 4-Stars NWS
and has |X|+ 2|C|+ 3|C|+

(|V |
2

)
+
(|Z|

2

)
edges. Thus, I4SNS is a yes-instance

of 4-Stars NWS. ♦

Correctness By the correctness of the reduction to 4-Density NWS and
Claim 3.19, we conclude that the formula φ is satisfiable if and only if I4SNS

is a yes-instance of 4-Stars NWS.

Adapting the construction for Connectivity NWS Now, we mod-
ify the construction to be able to replace the density requirement for each
community with the requirement of being connected. Again, the idea is to
add edges to each community such that these edges form together with the
sparsified graph G′4DNS of the 4-Density NWS instance a sparsified graph
G′4CNS for 4-Connectivity NWS.

Variable Gadget We make the set V a clique instead of an independent
set. This transforms every P3 in the variable gadget to a triangle. Then, we
create for each edge {vi, vj} in the clique V a community consisting only of
vi and vj .

Clause Gadget We make the set Z a clique instead of an independent
set. This transforms every P3 in the clause gadget to a triangle. Then, we
create for each edge {zi, zj} in the clique Z a community consisting only of
zi and zj .

Connecting the Gadgets For each community {u, v, y, z} ∈ CXC with
u ∈ U , v ∈ V , y ∈ Y and z ∈ Z that has been created to connect both
gadgets, we add the edges {u, z} and {v, y}. Then, we create for each added
edge a community consisting of the endpoints of the edge.

Finally, let G4CNS denote the adapted graph and let C4CNS denote the
adapted set of communities resulting from the modified construction. Fur-
thermore, let I4CNS = (G4CNS, C4CNS, |X|+2|C|+2|C|+

(|V |
2

)
+
(|Z|

2

)
) denote
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the instance of Connectivity NWS resulting from the modified construc-
tion.

Claim 3.20. I4CNS is a yes-instance if and only if I4DNS is a yes-instance.

Proof. The proof is analogous to the proof of Claim 3.19. Again, we call an
edge e ∈ E(G4CNS) old if e ∈ E(G4−SD) and new if e /∈ E(G4−SD).

(⇒) Let I4CNS be a yes-instance of 4-Connectivity NWS and let
G′4CNS be a sparsified graph. We show how to construct a sparsified graph
for the instance I4DNS of 4-Density NWS with |X|+ 2|C| edges. Observe
that all new edges are contained in G′4CNS due to the size-two communities.

These are
(|V |

2

)
edges for the variable gadget,

(|Z|
2

)
edges for the clause gadget

and 3|C| edges for the connection between both gadgets. Next, observe that
each subgraph induced by a size-three or size-four community is almost con-
nected by the new edges. At least one old edge in each subgraphs induced
by these communities is contained in G′4CNS to connect them completely.
These are |X|+ 2|C| old edges. We remove the new edges from G′4CNS. The
remaining graph contains |X| + 2|C| old edges and each subgraph induced
by a size-three or size-four community contains at least one edge. It satisfies
the density requirement of each community the instance I4DNS. Therefore,
the resulting graph is a sparsified graph for the instance I4DNS. Thus, I4DNS

is a yes-instance of 4-Density NWS.
(⇐) Let I4DNS be a yes-instance and let G′4DNS be a sparsified graph.

We show how to construct a sparsified graph for the instance I4CNS with
|X| + 2|C| + 2|C| +

(|V |
2

)
+
(|Z|

2

)
edges implying I4CNS is a yes-instance.

Observe that each subgraph induced by a size-three or size-four community
contains at least one old edge. We add all new edges to G′4DNS which are

2|C| +
(|V |

2

)
+
(|Z|

2

)
) edges. By the definition of the modified construction

we know that these new edges connects together with the old edges each
subgraph induced by a size-three or size-four community. The subgraphs
induced by the additional size-two communities in G′4CNS are also connected.
Therefore, the extended graph is a sparsified graph for the instance I4CNS

of 4-Connectivity NWS and has |X| + 2|C| + 2|C| +
(|V |

2

)
+
(|Z|

2

)
edges.

Thus, I4CNS is a yes-instance of 4-Connectivity NWS. ♦

Correctness By the correctness of the reduction to 4-Density NWS and
Claim 3.19, we conclude that the formula φ is satisfiable if and only if I4CNS

is a yes-instance of 4-Connectivity NWS. �

This bound also answers the question, whether it is possible to improve
the exponent to be only sub-linear in parameter m to get an algorithm with
a running time of 2o(m) · |C| · poly(n + m). Under the Exponential Time
Hypothesis such an algorithm does not exist for Density NWS, Stars
NWS, and Connectivity NWS which directly follows from Theorem 3.13.
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Corollary 3.21. If the ETH is true, then Density NWS, Stars NWS
and Connectivity NWS cannot be solved in 2o(m) · |C| ·poly(n+m) time.

Proof. Since m ≤ n2, the existence of an algorithm with a running time of
2o(m) · |C| ·poly(n+m) implies the existence of an algorithm with a running
time of 2o(n

2) · |C| · poly(n + m). By Theorem 3.13 we conclude that this
would defeat the ETH.
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4. Parameterized
Complexity

In the following, we study Density NWS, Stars NWS, and Connectiv-
ity NWS using the framework of parameterized complexity.

4.1 The Parameter `

In this section, we analyze Density NWS, Stars NWS and Connec-
tivity NWS parameterized by `, the number of edges of the sparsified
graph. In Section 3.1, we saw that Density NWS, Stars NWS, and
Connectivity NWS are NP-hard even if the instances are restricted to
those with having communities of size at most 3. Because of this, we start
our analysis for parameter ` with instances having communities of size at
most 3. We start with 3-Density NWS followed by 3-Stars NWS and
3-Connectivity NWS. Then, we study the more general case, where the
community size is bounded by an arbitrary integer d. Finally, we analyze
the problems with unbounded community size parameterized by `.

A maximum community size of at most 3 implies that each subgraph
induced by a community has at most three edges. This restricts the search
tree size of an exhaustive search on the edge set to at most O(3`). This allows
us to obtain fixed-parameter tractability for 3-Density NWS as shown in
Theorem 4.1.

Theorem 4.1. 3-Density NWS is solvable in O(3` · |C| · (n+m)) time.

Proof. We start by giving an algorithm. Let I = (G, C, α, `) be an instance
of 3-Density NWS. The call Solve3DNWS (G , C, α, `, ∅) of Algorithm 1
solves the instance I by performing an exhaustive search on the edge set
E to find the edge set E′ of a sparsified graph. In each recursive call, a
community Ci is selected whose density requirement is not already satisfied
by the edges in E′. If no such community exists, then I is a yes-instance.
If such a community exists, but ` = 0, then I is a no-instance. Then, the
algorithm branches on the edges in the subgraph induced by Ci that are not
already contained in E′. For each branch, such an edge is added to E′ and
the parameter ` is decreased by one accordingly.

36



Algorithm 1: Algorithm for 3-Density NWS: Solve3DNWS

Input : G = (V,E), C, α, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 C ← {Ci ∈ C | 13 · |E
′ ∩ E(G[Ci])| < α(Ci)}

2 if C = ∅ then
3 return G′ = (V,E′)
4 if ` = 0 then
5 return no
6 Ci ← pick element from C
7 forall e ∈ E(G[Ci]) \ E′ do
8 if Solve3DNWS (G, C, α, `− 1, E′ ∪ {e}) returns a graph G′ then
9 return G′

10 return no

Running time We continue by analyzing the running time of the de-
scribed algorithm. The loop in Lines 7–9 iterates over the edges in a sub-
graph induced by a community which are at most 3 due to the community
size of 3. Therefore, the recursive call in Line 8 is made at most three times,
each call decreasing the parameter ` by one. This leads to a branching
vector of [1, 1, 1] resulting in a search tree size of at most O(3`). Checking
the termination condition and selecting the next community Ci in Lines 1-6
takes at most O(|C|·(n+m)) time. Hence, the algorithm has a total running
time of O(3` · |C| · (n+m)).

Theorem 2 introduces an algorithm for solving 3-Density NWS. In
Lemma 3.4, we saw that 3-Stars NWS and 3-Connectivity NWS are
essentially special cases of 3-Density NWS. This allows us to transfer the
fixed-parameter tractability of 3-Density NWS to the other two problems.

Corollary 4.2. 3-Stars NWS and 3-Connectivity NWS are solvable
in O(3` · |C| · (n+m)) time.

Proof. Let I = (G, C, `) be an instance of 3-Stars NWS or an instance of 3-
Connectivity NWS. Let α : C → {23} be the constant mapping of C to 2

3 .
According to Lemma 3.4, the instance I3DNS = (G, C, α, `) is an equivalent
instance of 3-Density NWS which is solvable in O(3` · |C| · (n + m)) time
according to Theorem 4.1.

Algorithm 2 performs a naive branching without considering the struc-
ture of an instance like different density requirements of different communi-
ties. Next, we introduce two reduction rules and one branching rule leading
to a better algorithm. We define the reduction rules based on the branching
algorithm. We omit the straightforward correctness proofs. The observa-
tion made by Lemma 3.2 leads directly to Reduction Rule 1. Lemma 3.2
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describes edges which have definitely to be kept in a sparsified graph in
order to satisfy the density requirement of a community. This are edges of
the subgraphs induced by a community which have already at least edges
as possible to still satisfy its density requirement.

Reduction Rule 1. Let G, C, α, `, and E′ be the current parameters of
a recursive step of Algorithm 1. If there exists a community Ci ∈ C with
|E(G[Ci])| = d

(|Ci|
2

)
· α(Ci)e, then add the edges in E(G[Ci]) to E′, remove

Ci from C and decrease ` accordingly.

Next, we consider communities not sharing an edge with any other com-
munity. Let G = (V,E) be a graph and let C be a set of communities over
V . We say a community Ci ∈ C is independent, if there does not exist a
community Cj ∈ C \ {Ci} with E(G[Ci]) ∩ E(G[Cj ]) 6= ∅. An indepen-
dent community does not affect any other communities and therefore can
be solved independently. This leads to the following reduction rule.

Reduction Rule 2. Let G, C, α, `, and E′ be the current parameters of a
recursive step of the branching algorithm. If there exists an independent
community Ci ∈ C, then add the minimum number of edges in E(G[Ci]) to
E′ such that |E(G[Ci])∩E′| ≥ α(Ci) ·

(|Ci|
2

)
, remove Ci from C, and decrease

` accordingly.

The following branching rule exploits the existence of a size-three com-
munity Ci with a density requirement α(Ci) ∈ (13 ,

2
3 ].

Branching Rule 1. Let G, C, α, ` and E′ be the current parameters of a
recursive step of the branching algorithm. If there exists a community Ci =
{u, v, w} ∈ C with |E(G[Ci])| = 3, E(G[Ci]) ∩ E′ = ∅ and α(Ci) ∈ (13 ,

2
3 ],

then branch into the following cases:

1. Add {u, v} and {v, w} to E′ and decrease ` by 2.

2. Add {v, w} and {u,w} to E′ and decrease ` by 2.

3. Add {u, v} and {u,w} to E′ and decrease ` by 2.

Branching Rule 1 has a branching vector of [2, 2, 2] which results a
branching number of approximately 1.733. Using Reduction Rules 1–2 and
Branching Rule 1, we are able to improve the algorithm for 3-Density
NWS.

Theorem 4.3. 3-Density NWS is solvable in O(2.076` · |C| ·(n+m)) time.

Proof. We adapt the branching of Algorithm 1. The resulting algorithm is
shown in Algorithm 2. First, we apply Reduction Rules 1–2 exhaustively.
In the branching, we apply the Branching Rule 1 exhaustively.
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Claim 4.4. If neither the Reduction Rules 1–2 nor the Branching Rule 1 ap-
ply anymore, then one of the following statements applies for each remaining
community Ci ∈ C:

1. If α(Ci) ∈ (0, 13 ] then |E(G[Ci]) ∩ E′| = 0

2. If α(Ci) ∈ (13 ,
2
3 ] then |E(G[Ci]) ∩ E′| = 1

Proof. Let Ci ∈ C be a community and neither Reduction Rules 1 and 2
nor Branching Rule 1 are applicable.. In case of α(Ci) ∈ (23 , 1] Reduction
Rule 1 applies. In case of α(Ci) = 0 the community Ci has been removed
from C in Line 2. Hence, we observe that α(Ci) ∈ (0, 23 ]. First, we consider
the case when α(Ci) ∈ (0, 13 ]. Then, we observe that |E(G[Ci]) ∩ E′| = 0
because otherwise the density requirement α(Ci) is already satisfied by the
edges in E′. Next, we consider the case when α(Ci) ∈ (13 ,

2
3 ]. In case of

|E(G[Ci]) ∩ E′| ≥ 2 the density requirement α(Ci) is already satisfied by
the edges in E′ and the community Ci is removed from C in Line 2. In
case of |E(G[Ci]) ∩ E′| = 0, we observe that |E(G[Ci])| = 3 because in case
of |E(G[Ci])| = 2 Reduction Rule 1 applies and in case of |E(G[Ci])| < 2
the density requirement a(Ci) is not even satisfied in G. Therefore, in case
of |E(G[Ci]) ∩ E′| = 0 Branching Rule 1 is applicable. Thus, we have
|E(G[Ci]) ∩ E′| = 1. ♦

By Claim 4.4 we know that for each remaining community Ci ∈ C the
density requirement α(Ci) is satisfied by E′ except one edge. Thus, the
remaining task is to select a subset of E+ ⊆ E \ E′ such that E+ ∩ Ci 6= ∅
for each community Ci ∈ C. Since each community has at most three edges,
the remaining task can be expressed as an instance of 3-Hitting Set. We
define the equivalent 3-Hitting Set instance I3−HS = (U,S, `), where the
universe is defined as U := E \E′ and the family of subset over U is defined
as S := {E(G[Ci]) \E′ | Ci ∈ C}. If S has a hitting set X of size at most `,
then G′ = (V,E′∪X) is a sparsified graph with at most ` edges. Otherwise,
I is a no-instance.

Running time The branching number of Branching Rule 1 is 1.733. Let
`′ be the number of edges in E′ that originated from Branching Rule 1.
Hence, the search tree created by this rule has a size of at most O(1.733`

′
).

The Hitting Set instance created in Line 10 is solvable in O(2.076`−`
′ ·

|C|)time [27]. This leads to an overall running time of O(2.076` · |C| ·(n+m))
for solving an instance of 3-Density NWS. �

We could apply Algorithm 2 also to 3-Stars NWS and 3-Connectivity
NWS as we did in Corollary 4.2 with Algorithm 1. But this algorithm does
not exploit that in the sparsified graph each subgraph induced by a com-
munity has at least two edges. Using this property we are able to obtain
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Algorithm 2: Refined Algorithm for 3-Density NWS

Input : G = (V,E), C, α, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 Apply Reduction Rules 1-2 exhaustively
2 C ← {Ci ∈ C | 13 · |E

′ ∩ E(G[Ci])| < α(Ci)}
3 if C = ∅ then
4 return G′ = (V,E′)
5 if ` = 0 then
6 return no
7 if Branching Rule 1 is applicable then
8 Apply Branching Rule 1
9 else

10 I3−HS ← (E \ E′, {Ci \ E′ | Ci ∈ C}, `)
11 if I3−HS is a yes-instance with hitting set X then
12 return G′ = (V,E′ ∪X)

13 return no

an even better algorithm. We start by refining the branching by taking
advantage of intersections between communities.

Branching Rule 2. Let G, C, `, and E′ be the current parameters of a
recursive step. If there exist two communities Ci = {u, v, x}, Cj = {u, v, y} ∈
C with |E(G[Ci])| = 3, |E(G[Cj ])| = 3, E(G[Ci]) ∩ E′ = ∅ and E(G[Cj ]) ∩
E′ = ∅, then branch into the following cases:

1. Add {u, v} to E′ and decrease ` by 1.

2. Add {u, x}, {v, x}, {u, y} and {v, y} to E′ and decrease ` by 4.

Branching Rule 2 has a branching vector of [1, 4] which results in a
branching number of approximately 1.381. An example where the rule is
applicable is shown in Figure 4.1.

Branching Rule 3. Let G, C, `, and E′ be the current parameters of a
recursive step. If there exist two different communities Ci = {u, v, x}, Cj =
{u, v, y} ∈ C with |E(G[Ci])| = 3, |E(G[Cj ])| = 3, E(G[Ci]) ∩ E′ = ∅ and
E(G[Cj ]) ∩ E′ = {{v, y}}, then branch into the following cases:

1. Add {u, v} to E′ and decrease ` by 1.

2. Add {u, x}, {v, x}, and {u, y} to E′ and decrease ` by 3.

Branching Rule 3 has a branching vector of [1, 3] which results in a
branching number of approximately 1.466. An example where the rule is
applicable is shown in Figure 4.2. Before we use these rules to improve the
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Figure 4.1: An example where Branching Rule 2 is applicable.
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Figure 4.2: An example where Branching Rule 3 is applicable.

search tree size, we reformulate Reduction Rules 1–2 so that they also apply
to instances of Stars NWS and Connectivity NWS. Again, we omit the
straightforward correctness proofs.

Reduction Rule 3. Let G, C, `, and E′ be the current parameters of a
recursive step. If there exists a community Ci ∈ C with |E(G[Ci])| = |Ci|−1,
then add the edges of E(G[Ci]) to E′, remove Ci from C, and decrease ` by
the number of new edges in E′.

Reduction Rule 4. Let G, C, `, and E′ be the current parameters of a
recursive step. If there exists an independent community Ci ∈ C, then add
the minimum number of edges in E(G[Ci]) to E′ such that |E(G[Ci])∩E′| =
|Ci| − 1, remove Ci from C and decrease ` accordingly.

Theorem 4.5. 3-Stars NWS and 3-Connectivity NWS are solvable in
O(1.466` · |C| · (n+m)) time.
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Proof. Again, we adapt the branching of Algorithm 1. The resulting al-
gorithm is shown in Algorithm 3. Frist, we apply Reduction Rules 3–4
exhaustively. In the branching we apply the Branching Rules 2–3 exhaus-
tively.

Claim 4.6. If neither the Reduction Rules 3–4 nor the Branching Rules 2–
3 apply anymore, then |E(G[Ci])| = 3 and |E(G[Ci]) ∩ E′| = 1 for each
community Ci ∈ C.

Proof. Let Ci ∈ C a community and neither Reduction Rules 3 and 4 nor the
Branching Rules 2 and 3 are applicable. In case of |E(G[Ci])| = 2 Reduction
Rule 3 applies. In case of |E(G[Ci])| < 2 even the induced subgraph G[Ci]
is not connected. Therefore, we observe that |E(G[Ci])| = 3. Now, assume
that E(G[Ci]) ∩ E′ 6= 1 First, we observe, that E(G[Ci]) ∩ E′ 6= ∅ and Ci
cannot be independent. Thus, there exists a community Cj ∈ C \ {Ci} with
|Ci∩Cj | = 2 and |E(G[Cj ])∩E′| < 2. Then, the following cases are possible:

1. |E(G[Cj ]) ∩ E′| = 0

2. |E(G[Cj ]) ∩ E′| = 1

The first case allows the application of Branching Rule 2 and the second
case the application of Branching Rule 3. This contradicts the assumption
that Branching Rules 2 and 3 are not applicable. ♦

By Claim 4.6 we know that |E(G[Ci]) ∩ E′| = 1 for each community
CiC, but we need |E(G[Ci]) ∩ E′| ≥ 2 such that each community is con-
nected. Thus, the remaining task is to select a subset of E+ ⊆ E \ E′
such that E+ ∩ Ci 6= ∅ for each community Ci ∈ C. Since for each com-
munity Ci ∈ C the subgraph induced by Ci has exactly two edges not be-
ing contained in E′, the remaining task can be expressed as an instance
of Vertex Cover. We define the equivalent Vertex Cover instance
IVC = (GVC = (VVC, EVC), `) where the vertices are defined as VVC := E\E′
and the edge set is defined as EVC := {Ci \E′ | Ci ∈ C}. If GVC has a vertex
cover X of size at most `, then G′ = (V,E′ ∪X) is a sparsified graph with
at most ` edges. Otherwise, I is a no-instance.

Running time The branching numbers of the Branching Rules 2–3 are
1.381 and 1.466. Let `′ be the number of edges in E′ that originated from
the Branching Rules 2–3. Hence, the search tree created by these rules has a
size of at most O(1.466`

′
). The Vertex Cover instance created in Line 12

is solvable in O(1.286`−`
′ · (` − `′) · m) time [7]. This leads to an overall

running time of O(1.466` · |C| · (n+m)) for solving an instance of 3-Stars
NWS or 3-Connectivity NWS. �
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Algorithm 3: Refined Algorithm for 3-Stars NWS and 3-
Connectivity NWS

Input : G = (V,E), C, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 Apply Reduction Rules 3–4 exhaustively
2 C ← {Ci ∈ C | |E′ ∩ E(G[Ci])| < 2}
3 if C = ∅ then
4 return G′ = (V,E′)
5 if ` = 0 then
6 return no
7 if Branching Rule 2 is applicable then
8 apply Branching Rule 2
9 if Branching Rule 3 is applicable then

10 apply Branching Rule 3
11 else
12 IVC ← (E \ E′, {Ci \ E′ | Ci ∈ C}, `)
13 if IVC is a yes-instance with a vertex cover X of size at most `

then
14 return G′ = (V,E′ ∪X)

15 return no

Now we take a closer look at instances where the community size is
bounded by an arbitrary integer d. This implies that the number of edges
in a subgraph induced by a community does not exceed d2. This allows us
to adapt Algorithm 1 leading to fixed-parameter tractability for d-Density
NWS.

Theorem 4.7. d-Density NWS is solvable in O(d2` · |C| · (n+m)).

Proof. We use a branching strategy trying out all possible subsets of edges
that would satisfy the density requirement in the sparsified graph. The algo-
rithm is shown in Algorithm 4. In each recursive step, we select a community
Ci ∈ C such that E(G[Ci]) ∩ E′| < dα(Ci) ·

(|Ci|
2

)
e|. If no such community

is left and |E′| ≤ `, then the instance is a yes-instance of d-Density NWS.
Let xi = dα(Ci) ·

(|Ci|
2

)
e| −E(G[Ci])∩E′| be the minimum number of edges

which needs to be added to E′ such that the density requirement of Ci is
satisfied by E′. Then, we make a recursive call for each size-xi subset of
E(G[Ci]) \ E′ and decrease ` by xi.

Running Time Let Ci ∈ C be the community selected for branching
in Line 6. The branching vector of the branching in the loop in Lines 8-
10 has

(|E(G[Ci])\E′|
x

)
entries of value xi. The branching number of this

vector is bounded by
x

√((d2)
x

)
≤ x

√(
d2

x

)
≤ x
√
d2x ≤ d2. This leads to a
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Algorithm 4: Algorithm for d-Density NWS: SolveDNWS

Input : G = (V,E), C, α, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 C ← {Ci ∈ C | 13 · |E
′ ∩ E(G[Ci])| < α(Ci)}

2 if C = ∅ then
3 return G′ = (V,E′)
4 if ` = 0 then
5 return no
6 Ci ← pick element from C
7 xi ← dα(Ci) ·

(|Ci|
2

)
e| − E(G[Ci]) ∩ E′|

8 forall E′i ⊆ (E(G[Ci]) \ E′) with |Ei| = xi do
9 if SolveDNWS (G, C, α, `− xi, E′ ∪ E′i) returns a graph G′ then

10 return G′

11 return no

search tree size of at most O(d2`). This results in an overall running time
of O(d2` · |C| · (n+m)).

Next, we state the fixed-parameter tractability of d-Stars NWS by
giving an algorithm running in O(d` · |C| · (n + m)) time. The algorithm
exploits that a community size of at most d restricts the number of different
possible spanning stars in each subgraph induced by a community to d.

Theorem 4.8. d-Stars NWS is solvable in O(d` · |C| · (n+m)) time.

Proof. We use a branching strategy trying out all potential centers of each
community in the sparsified graph. The algorithm is shown in Algorithm 5.
In each recursive step, we select a community Ci ∈ C for which the require-
ment of containing a spanning star is not satisfied by the current edge set E′.
If no such community is left and |E′| ≤ `, then the instance is a yes-instance
of d-Stars NWS. If there exists such a community and ` is already 0, then
I is a no-instance of d-Stars NWS. If none of the conditions mentioned
above applies, we branch on each potential center vertex ci of community
Ci, add the necessary edges to E′ and decrease ` accordingly.

Running time Let Ci ∈ C be the community selected for branching in
Line 6. The branching vector of the branching in the loop in Lines 7–10
has at most d entries of value at least 1 because a community has at most
d and ` is decreased each time at least by 1. The branching number of this
branching vector is d. This leads to a search tree size of at most O(d`). This
results in a overall running time of O(d` · |C| · (n+m)).

Finally, we give an algorithm solving d-Connectivity NWS which has
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Algorithm 5: Algorithm for d-Stars NWS: SolveSNWS

Input : G = (V,E), C, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 C ← {Ci ∈ C | G∗[Ci] does not contain a star for G∗ = (V,E′)}
2 if C = ∅ then
3 return G′ = (V,E′)
4 if ` = 0 then
5 return no
6 Ci ← pick element from C
7 forall ci ∈ Ci with Ci ⊆ N [ci] do
8 E′i ← {{ci, v | v ∈ C \ {ci}} \ E′|
9 if SolveSNWS (G, C, `− |E′i|, E′ ∪ E′i) returns a graph G′ then

10 return G′

11 return no

a running time of O(d2` · |C| · (n + m)). Thus, d-Connectivity NWS is
also fixed-parameter tractable with respect to parameter `.

Theorem 4.9. d-Connectivity NWS is solvable in O(d2` · |C| · (n+m))
time.

Proof. The algorithm is shown in Algorithm 5. In each recursive step, we
select a community Ci ∈ C for which the induced subgraph G∗[Ci] is not
already connected in G∗ = (V,E′). If no such community is left and |E′| ≤ `,
then the instance is a yes-instance of d-Connectivity NWS. If there exists
such a community and ` = 0, then I is a no-instance of d-Connectivity
NWS. If none of the conditions mentioned above applies, we branch on the
edges in the subgraph induced by Ci that are not already contained in E′

and decrease ` by 1.

Running Time Let Ci ∈ C be the community selected for branching in
Line 6. The branching vector of the branching in the loop in Lines 7-9 has
at most |E(G[Ci])| entries of value 1. Thus, the branching number of this
vector is bounded by |E(G[Ci])| ≤

(
d
2

)
≤ d2. This leads to a search tree size

of at most O(d2`). This results in an overall running time of O(d2` · |C| · (n+
m)).

In the previous part, we saw FPT-algorithms for d-Density NWS, d-
Stars NWS, and d-Connectivity NWS parameterized by `. Therefore,
the next question that arises is whether polynomial kernels exists. Let F
be a family of sets of equal size over a universe U . A set S ⊆ F is called
a sunflower with |S| petals and a core Y , if Si ∩ Sj = Y for each different
Si, Sj ∈ S. First, we state the Sunflower Lemma by Erdős and Rado [13]
helping us to develop polynomial kernels for all three problems.
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Algorithm 6: Algorithm for d-Connectivity NWS: SolveCNWS

Input : G = (V,E), C, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 C ← {Ci ∈ C | G∗[Ci] is not connected for G∗ = (V,E′)}
2 if C = ∅ then
3 return G′ = (V,E′)
4 if ` = 0 then
5 return no
6 Ci ← pick element from C
7 forall e ∈ E(G[Ci]) \ E′ do
8 if SolveCNWS (G, C, `− 1, E′ ∪ {e}) returns a graph G′ then
9 return G′

10 return no

Lemma 4.10 (Sunflower Lemma [13][9]). Let U be a set of elements and
F a family of subsets of U each having size exactly d. If |A| > d!(k − 1)d,
then F contains a sunflower with k petals which can be computed in time
polynomial in |F|+ |U |+ d.

Next, we formulate a reduction rule for Density NWS based on the
existence of a sunflower in the set of communities of an instance.

Reduction Rule 5. Let I = (G = (V,E), C, `) be an instance of d-Density
NWS such that C contains a sunflower S with ` + 1 petals. Let Y denote
the core of the sunflower. Let x be the smallest number such that x ≥
dα(Ci) ·

(
d
2

)
e and x ≥ dα(Cj) ·

(
d
2

)
e for two different communities Ci, Cj ∈ S.

If |E(G[Y ])| < x, then I is a no-instance. Otherwise, add a new community
Cy = Y ∪Z where Z contains d−|Y | new vertices to C and set α(Cy) = x/

(
d
2

)
.

Remove all communities Ci ∈ S with dα(Cj) ·
(
d
2

)
e ≤ x from C and add the

vertices in Z to V . This are at least two communities because x has been
picked such that x edges are sufficient to satisfy the density requirement
of at least two communities. Since only one new community is added, the
described rule reduces the number of communities by at least 1.

Lemma 4.11. Rule 5 is correct.

Proof. Let I = (G = (V,E), C, α, `) be an instance of d-Density NWS
such that C contains a sunflower S with `+ 1 petals. Let Y denote the core
of the sunflower. Without loss of generality we assume α(Ci) > 0 for each
community Ci ∈ C. Let x be the smallest number such that x ≥ dα(Ci) ·

(
d
2

)
e

and x ≥ dα(Cj) ·
(
d
2

)
e for Ci, Cj ∈ S with Ci 6= Cj . We begin with the case

when |E(G[Y ])| < x. If |E(G[Y ])| = 0, then there are at least ` + 1 edges
necessary to satisfy the density requirement α(Ci) of each community Ci ∈
S. This implies that I is a no-instance of d-Density NWS. If |E(G[Y ])| > 0,

46



then there are at least ` communities whose density requirement cannot be
satisfied by edges in E(G[Y ]) solely. Recall that x is the smallest number of
edges necessary to satisfy the density requirement of at least two different
communities. Hence, there are at least ` communities which need at least
x edges to satisfy their density requirement. Since |E(G[Y ])| < x, it is not
sufficient to only select edges of E(G[Y ]) to satisfy the density requirement
of these ` communities. Therefore, at least an additional edge has to be
contained in the sparsified for each of these ` communities. Note that this
additional edge is different for each of the ` communities because the petals
of a sunflower are pairwise disjoint. To satisfy the density requirement of
the remaining community, at least one edge in E(G[Y ]) is needed. This are
at least ` + 1 edges which again implies that I is a no-instance. We now
consider the case when |E(G[Y ])| ≥ x. First, we observe that in case of I
being a yes-instance d-Density NWS a sparsified graph G′ has to contain x
edges of E(G[Y ]) because otherwise the same argumentation as in the case
|E(G[Y ])| < x applies. This is ensured by adding the community Cy and

setting its density requirement to α(Cy) = x/
(
d
2

)
. Observe that satisfying

the density requirement α(Cy) implies satisfying the density requirement of

all petals Pi ∈ S with x ≥ dα(Pi) ·
(
d
2

)
e. Therefore, the removal of these

petals from C is correct.

With Reduction Rule 5 and the Sunflower Lemma we are able to obtain
a kernel for d-Density NWS.

Theorem 4.12. d-Density NWS has a kernel consisting of at most d!·`d ·d
communities and at most d! · `d · d2 vertices.

Proof. Let I = (G, C, α, `) be an instance of d-Density NWS with |C| >
d! · `d · d. The assumption |C| > d! · `d · d implies the existence of a d′ ≤ d
such that the number of communities of size exactly d′ is greater than d! ·`d.
This allows us to apply the Sunflower Lemma to obtain a sunflower with
` + 1 petals. Therefore Reduction Rule 5 is applicable. The application
of Reduction Rule 5 is done exhaustively. This is possible in polynomial
time because according to the Sunflower Lemma finding such a sunflower
takes only polynomial time. The rule can be applied at most |C| times
because each application reduces the number of communities at least by
1. Let I ′ = (G′, C′, α, `) denote the reduced instance. We observe that
|C′| ≤ d! · `d · d and therefore |V (G′)| ≤ d! · `d · d2.

The existence of a sunflower in the set of communities leads also to
reduction rules for Stars NWS and Connectivity NWS. In the following,
these reduction rules are presented.

Reduction Rule 6. Let I = (G = (V,E), C, `) be an instance of d-Stars
NWS. If C contains a sunflower with ` + 1 petals, then I is a no-instance
of d-Stars NWS.
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Lemma 4.13. Rule 6 is correct.

Proof. Let I = (G = (V,E), C, `) be an instance of d-Stars NWS such
that C contains a sunflower S with ` + 1 petals. Let Y denote the core of
the sunflower. For each community Ci ∈ S, there exists at least one vertex
ui ∈ Ci with ui /∈ Y and ui /∈ Cj for any other petal Cj ∈ S \ {Ci}. Let
G′ = (V,E′) be an arbitrary sparsified graph of G. Let cG′ : C → V denote
the mapping of communities to their center vertex in G′. We distinguish
two cases cG′(Ci) = ui and cG′(Ci) 6= ui for each community Ci ∈ S. If
cG′(Ci) = ui, then there exists another vertex vi ∈ Ci with v 6= u. This
implies {ui, vi} ∈ E′. If cG′(Ci) 6= ui, then we have {ui, cG′(Ci)} ∈ E′. This
implies |E′| ≥ `+ 1. Thus, I is a no-instance of d-Stars NWS.

Reduction Rule 7. Let I = (G = (V,E), C, `) be an instance of d-Connec-
tivity NWS. If C contains a sunflower with ` + 1 petals, then I is a no-
instance of d-Connectivity NWS.

Lemma 4.14. Rule 7 is correct.

Proof. Let I = (G = (V,E), C, `) be an instance of d-Connectivity NWS
such that C contains a sunflower S with `+ 1 petals. Let Y denote the core
of the sunflower. For each community Ci ∈ S there exists at least one vertex
ui ∈ Ci with ui /∈ Y and ui /∈ Cj for any other community Cj ∈ X\{Ci}. The
vertex ui has to be connected to the core of the sunflower. This requires at
least |X| = `+1 edges, implying that I is a no-instance of d-Connectivity
NWS.

Together with the Sunflower Lemma, both rules state an upper bound
for the number of communities in yes-instances of Stars NWS and Con-
nectivity NWS. This leads to the following problem kernels.

Theorem 4.15. d-Stars NWS and d-Connectivity NWS have a kernel
consisting of at most d! · `d · d communities and at most d! · `d · d2 vertices.

Proof. Let I = (G, C, `) be an instance of d-Stars NWS or an instance of
d-Connectivity NWS with |C| > d! · `d. The assumption |C| > d! · `d · d
implies the existence of a d′ ≤ d such that the number of communities of
size exactly d′ is greater than d! · `d. This allows us to apply the Sunflower
Lemma to obtain a sunflower with ` + 1 petals and a core Y . In case of d-
Stars NWS, Reduction Rule 6 is applicable stating that I is a no-instance
of d-Stars NWS. In case of d-Connectivity NWS, Reduction Rule 6 is
applicable also stating that I is a no-instance d-Connectivity NWS. This
implies that a yes-instance of d-Stars NWS or d-Connectivity NWS
consists of at most d! · `d · d communities and at most d! · `d · d2 vertices.

The next step in the analysis of parameter ` is to investigate the fixed-
parameter tractability of instance where the community size is unbounded.
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Unfortunately, Density NWS is W [2]-hard with respect to parameter `
and therefore not fixed-parameter tractable assuming FPT 6= W [2]. The
W [2]-hardness is directly implied by the reduction from Hitting Set by
Gionis et al. [16] which was used there to prove NP-hardness. For the sake
of completeness, we recall their construction in the proof of Theorem 4.16
to reduce from Hitting Set parameterized by the size of the hitting set
which is known to be W [2]-complete [9].

Theorem 4.16. Density NWS is W[2]-hard with respect to parameter `.

Proof. We give a simplified version of the reduction from Hitting Set
given by Gionis et al. [16]. Let IHS = (U,S, k) be an instance of Hitting
Set where U is the universum, S a collection of subsets over U and k the
maximum size of the hitting set. We start by defining the graph G = (V,E).
The set V contains each vertex of V and one additional vertex z. The edge
set is E := {{z, u} | u ∈ U}. Thus, G is a star with center z. We define the
set of communities C := {Si∪{z} | Si ∈ S}. For each community Ci ∈ C, we
set the density requirement α(Ci) := 1/

(|U |
2

)
. Finally, we set the parameter

` := k. Let IDNS = (G, C, α, `) denote the resulting instance of Density
NWS.

Correctness We show that IHS is a yes-instance of Hitting Set if and
only if IDNS is a yes-instance of Density NWS.

(⇒) Let X be a hitting set of size at most k. We show how to obtain a
sparsified graph G′ = (V,E′) with |E′| ≤ ` = k. We set E′ := {{z, x} | x ∈
X} observing that |E′| ≤ k = `. Since X is a hitting set, there exists for
each community Ci = {Si} ∪ {z} an element xi ∈ X with xi ∈ Si implying
{xi, z} ∈ E′. Therefore, for each community Ci ∈ C, the density requirement
of 1/

(|V |−1
2

)
is satisfied. Therefore, G′ is a sparsified graph which implies

that IDNS is a yes-instance of Density NWS.
(⇐) Let IDNS be a yes-instance of Density NWS and letG′ = (V,E′) be

a sparsified graph. We show how to obtain a hitting set X with |X| ≤ ` = k.
We set X := {x | {x, z} ∈ E′} observing that |X| ≤ ` = k. For each Si ∈ S,
there exists a community Ci such that E(G′[Ci]) ∩ E′ 6= ∅. This is the case
because for every community Ci ∈ C, there exists an edge {xi, z} ∈ E(G′[Ci])
due to the density requirement of α(Ci) > 0. This implies that there exists
for each Si ∈ S an element xi ∈ X with xi ∈ Si. Therefore, X is a hitting
set with |X| ≤ k and IHS is a yes-instance of Hitting Set.

Next, we transfer the fixed-parameter tractability of d-Stars NWS and
d-Connectivity NWS to instances with communities of unbounded size
by making an observation about the relation between parameter ` and the
maximum size d of a community in yes-instances of Stars NWS and Con-
nectivity NWS.
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Lemma 4.17. Let I = (G, C, `) be an instance of Stars NWS or Con-
nectivity NWS. If maxCi∈C |Ci| > `+ 1, then I is a no-instance.

Proof. Let Ci ∈ C be a community with |Ci| > `+ 1. Then, Ci contains at
least `+ 2 vertices. A connected graph with `+ 2 vertices has at least `+ 1
edges. The same holds for a graph which is a star of size `+ 1. Therefore, a
sparsified graph contains at least `+1 edges, implying that I is a no-instance
Stars NWS and Connectivity NWS.

Lemma 4.17 limits the maximum size d of a community in yes-instances
of Stars NWS or Connectivity NWS to ` + 1. Hence, we can express
the running times in Theorem 4.8 and Theorem 4.9 depending on parameter
` solely. This leads us to the two following corollaries.

Corollary 4.18. Stars NWS is solvable in O((`+ 1)` · |C| · (n+m)) time.

Proof. Let I be an instance of Stars NWS. If Lemma 4.17 applies, then
I is a no-instance. Otherwise we know that d ≤ ` + 1 allowing us to use
Algorithm 5 presented in the proof of Theorem 4.8.

Corollary 4.19. Connectivity NWS is solvable in O((`+1)2`·|C|·(n+m))
time.

Proof. Let I be an instance of Connectivity NWS. If Lemma 4.17 applies,
then I is a no-instance. Otherwise we know that d ≤ ` + 1 allowing us to
use Algorithm 6 presented in the proof of Theorem 4.9.

After knowing that Stars NWS and Connectivity NWS parameter-
ized by ` are fixed-parameter tractable, the next question that arises is the
existence of polynomial kernels. Under the assumption NP 6⊆ coNP/poly
this question can be answered negatively, as shown in the following theorem.

Theorem 4.20. Stars NWS and Connectivity NWS do not admit a
polynomial kernel with respect to parameter ` unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from Hitting Set
parameterized by the size of the universe and the solution size which is
known to not admit a polynomial kernel unless NP ⊆ coNP/poly [9]. Let
IHS = (U,S, k) be an instance of Hitting Set. The following construction
works for both Stars NWS and Connectivity NWS. We start by defining
the graph G = (V,E). The set V contains each element of U and one
additional vertex z. G is a clique. We define the set of communities C :=
{Si∪{z} | Si ∈ S}∪{{u, v} | u, v ∈ U, u 6= v}. Finally, we set the parameter
` :=

(|U |
2

)
+k. Let I = (G, C, `) denote the resulting instance of Stars NWS

or Connectivity NWS.
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Correctness We show that IHS is a yes-instance of Hitting Set if and
only if I is a yes-instance of Stars NWS and Connectivity NWS.

(⇒) Let X be a hitting set of size at most k. We show how to obtain a
sparsified graph G′ = (V,E′) with |E′| ≤

(|U |
2

)
+`. We set E′ = {{z, x} | x ∈

X} ∪ {{u, v} | u, v ∈ U, u 6= v} observing that E′ ≤
(|U |

2

)
+ k = `. Since X

is a hitting set, there exists for each community Ci = {Si}∪ {z} an element
xi ∈ X with xi ∈ Si implying {xi, z} ∈ E′. Therefore, for each community
Ci ∈ C, the element xi is a center of a spanning star in G′[Ci] because xi is
connected to z and to all other vertices in U . Hence, for each community
Ci ∈ C the induced subgraph G′[Ci] contains a spanning star and is therefore
also connected. This implies that I is a yes-instance of Stars NWS and
Connectivity NWS.

(⇐) Let I be a yes-instance of Stars NWS or Connectivity NWS
and let G′ = (V,E′) be a sparsified graph. We show how to obtain a hitting
set X with |X| ≤ ` −

(|U |
2

)
. First, we observe, that {{u, v} | u, v ∈ U, u 6=

v} ⊆ E′ due to the size-two communities in C. We set X := {u | {u, z} ∈ E′}
observing that |X| ≤ `−

(|U |
2

)
= k. For each Si ∈ S, there exists a community

Ci and a vertex ui ∈ U such that Ci \ {z} = Si and {ui, z} ∈ E′. For Stars
NWS this is the case because for every community Ci ∈ C the induced
subgraph G′[Ci] contains a spanning star. For Connectivity NWS this is
the case because for every community Ci ∈ C the induced subgraph G′[Ci]
is connected. This implies that there exists for each Si ∈ S an element
ui ∈ X with ui ∈ Si. Therefore, X is a hitting set with |X| ≤ ` and IHS is
a yes-instance of Hitting Setz.

This completes our analysis of the parameterized complexity of Density
NWS, Stars NWS and Connectivity NWS parameterized by `.

4.2 The Parameter k

In the previous section we considered the natural parameter ` defined as
the number of edges kept in a sparsified graph. We now analyze the dual
parameter k := m−`. Informally, k is the number of edges that are removed
from the initial graph. Recall that we reduced in Theorem 3.1 from Ver-
tex Cover to show NP-hardness. Since an undirected graph G = (V,E)
contains a vertex cover of size at most k if and only if G contains an inde-
pendent set of size at least |V | − k, we are able to reuse the construction
to reduce from Independent Set which is known to be W [1]-complete [9].
This reduction preserves the parameter |V | − k and therefore allowing us to
obtain W [1]-hardness for Density NWS, Stars NWS, and Connectiv-
ity NWS.

Theorem 4.21. Density NWS, Stars NWS, and Connectivity NWS
are W [1]-hard for parameter k even if restricted to communities of size at
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most 3.

Proof. We give a parameterized reduction from Independent Set. Let
IIS = (G = (V,E), k) be an instance of Independent Set.

Density NWS We start with the proof for 3-Density NWS. We use the
same construction as in the reduction from Vertex Cover in Theorem 3.1.
Let G3DNS = (V3DNS, E3DNS) be the graph, let C be the set of communities
and let α be the density requirement resulting from the construction in
Theorem 3.1. Recall that the vertex set is defined as V3DNS := V ∪{z}. The
edge set is defined as E3DNS := {{v, z} | v ∈ V }. The set of communities
is defined as C := {{u, v, z} | {u, v} ∈ E} and the density requirement is
defined as α : C → [0, 1], Ci 7→ 1

3 . Hence, we have |E3DNS| = |V | and
|C| = |E|. We set ` := |E3DNS| − k = |V | − k. Let I3DNS = (G3DNS, C, `, α)
denote the resulting instance of 3-Density NWS.

Correctness We show that IIS is a yes-instance of Independent Set if
and only if I3DNS is a yes-instance of 3-Density NWS.

(⇒) Let IIS be a yes-instance of Independent Set and S the indepen-
dent set of size at least k. Then, G contains a vertex cover X of size at most
|V | − k implying that I3DNS is a yes-instance of 3-Density NWS.

(⇐) Recall that if I3DNS is a yes-instance of 3-Density NWS,G contains
a vertex cover X of size at most ` = |V | − k. This implies that G contains
an independent set S of size at least |V |−` = k. Hence, IIS is a yes-instance
of Independent Set.

Stars NWS and Connectivity NWS According to Lemma 3.4, 3-
Stars NWS and 3-Connectivity NWS are essentially the same. There-
fore, we only give the proof for 3-Connectivity NWS.

Let G3CNS = (V3CNS, E3CNS) be the graph and let C be the set of com-
munities resulting from the construction in Theorem 3.5. Recall that the
vertex set is defined as V3CNS := V ∪ {z}. The edge set is defined as
E3CNS := {{v, z} | v ∈ V } ∪ E. The set of communities is defined as
C := {{u, v, z}, {u, v} | {u, v} ∈ E} Next, recall that |E3CNS| = |V |+ |E| and
|C| = 2·|E|. We set ` := |E3CNS|−k = |V |−k+|E|. Let I3CNS = (G3CNS, C, `)
denote the resulting instance of 3-Connectivity NWS.

Correctness We show that IIS is a yes-instance of Independent Set if
and only if I3CNS is a yes-instance of Connectivity NWS.

(⇒) Let IIS be a yes-instance of Independent Set and let S the inde-
pendent set of size at least k. Then, G contains a vertex cover X of size at
most |V |−k implying that I3CNS is a yes-instance of Connectivity NWS.

(⇐) Recall that if I3CNS is a yes-instance Connectivity NWS, G con-
tains a vertex cover X of size at most ` − |E| = |V | − k. This implies that
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G contains an independent set S of size at least |V | − (`− |E|) = k. Hence,
IIS is a yes-instance of Independent Set.

To complete the study of parameter k, it is left to mention that all
three problems are in XP for k. This can be seen by a brute force algorithm
performing an exhaustive search over all subsets E∗ of the edges in the input
graph G = (V,E) with a size of k. If for any such set E∗ the resulting graph
G′ = (V,E \E∗) satisfies the respective graph property for each community,
then I is a yes-instance. The number of such edge sets is bounded by mk

leading to a overall running time of O(mk · |C| · poly(n+m)).

4.3 The Parameter t

Even though parameter `, the number of edges in the sparsified graph, de-
pends only on the size of the sparsified graph, it is not completely indepen-
dent from the size of the corresponding Π-NWS instance. Since in sparsified
graphs of yes-instances of Stars NWS and Connectivity NWS each sub-
graph induced by a community is connected, a graph G with more vertices
leads to a greater parameter `. This is the case because each subgraph in-
duced by a community Ci has at least |Ci| − 1 edges. Hence, a sparsified
graph G′ has at least n− 1 edges assuming G′ is connected and each vertex
is contained in at least one community. In other words, n − 1 is a lower
bound for parameter ` in this case. Next, we study Stars NWS and Con-
nectivity NWS parameterized above this lower bound. The parameter
t is defined as the size of a minimum feedback edge set of the sparsified
graph of an instance of Stars NWS and Connectivity NWS. Thus, the
parameter t measures how close the sparsified graph is to a tree. Formally,
the definition is t := ` − n + x where x denotes the number of connected
components of G′.

For Stars NWS in the case of t = 0, we give a polynomial-time al-
gorithm. This answers an open question of Korach and Stern [21]. It is
open whether Stars NWS parameterized by t is fixed-parameter tractable.
Moreover, it is open whether Stars NWS parameterized by t is in XP.

Theorem 4.22. Let I = (G = (V,E), C, `) where ` := n− 1 be an instance
of Stars NWS where the hypergraph H = (V, C) is connected. Such an
instance I is solvable in O(|C|2 · n2) time.

Proof. Before we present our algorithm, we start by making several obser-
vations about a yes-instance of Stars NWS for t = 0. Next, we observe
that a sparsified graph of a yes-instance of Stars NWS for t = 0 is acyclic
and therefore a tree.

Claim 4.23. If I is a yes-instance of Stars NWS, then every sparsified
graph G′ = (V,E′) is a tree.
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Proof. The star requirement implies that for each community Ci ∈ C the
induced subgraph G′[Ci] is connected. Since H is connected, G′ is also
connected. The graph G′ is a tree because |E′| = n − 1 and therefore
acyclic. ♦

Next, we make two observations about the relation of the center vertices
of two communities whose intersection is of size at least 2 or 3.

Claim 4.24. Let I be a yes-instance of Stars NWS for t = 0 with a
sparsified graph G′. Let cG′ : C → V denotes the mapping of communities
to their center vertex in G′ and let Ci, Cj ∈ C be two communities.

1. If |Ci ∩ Cj | ≥ 2, then cG′(Ci) ∈ Ci ∩ Cj and cG′(Cj) ∈ Ci ∩ Cj.

2. If |Ci ∩ Cj | ≥ 3, then cG′(Ci) = cG′(Cj) and cG′(Ci) ∈ Ci ∩ Cj and
cG′(Cj) ∈ Ci ∩ Cj.

Proof. Let Si denote the spanning star contained in G′[Ci] and let Sj de-
note the spanning star contained in G′[Cj ]. We start with the proof of
the first part. Without loss of generality we assume cG′(Ci) /∈ Cj to-
wards a contradiction. First, we observe that Si and Sj do not have an
edge in common because each edge in Si has at most one endpoint in
Ci∩Cj . This implies that |E(G′[Ci∪Cj ])| ≥ |Ci|+ |Cj |− 2. By Claim 4.23,
we know |E(G′[Ci ∪ Cj ])| = |Ci ∪ Cj | − 1 which leads to a contradic-
tion: |E(G′[Ci ∪ Cj ])| > |E(G′[Ci ∪ Cj ])| − 1 ≥ |Ci| + |Cj | − 2 − 1 ≥
|Ci|+ |Cj | − |Ci ∩ Cj | − 1 = |Ci ∪ Cj | − 1 = |E(G′[Ci ∪ Cj ])|.

Now, we prove the second part. We assume cG′(Ci) 6= cG′(Cj) towards
a contradiction. Due to the first part, we have cG′(Ci) ∈ Ci ∩ Cj and
cG′(Cj) ∈ Ci ∩ Cj because |Ci ∩ Cj | ≥ 3. Observe that Si and Sj have
exactly the edge {cG′(Ci), cG′(Cj)} in common. Since |Ci ∩ Cj | ≥ 3, there
exists u ∈ Ci ∩Cj with u 6= cG′(Ci) and u 6= cG′(Cj). Because Si and Sj are
stars, the edges {u, cG′(Ci)} and {u, cG′(Cj)} are contained in G′. Hence,
there is a triangle in G′[Ci ∩Cj ] which is a contradiction to Claim 4.23 that
G′ is a tree. ♦

Algorithm We begin by giving an intuition how the algorithm works.
For each community, the set of vertices which could be potential centers of
a spanning star in the induced subgraph G′[Ci] are computed with respect
to Claim 4.24. Then, for each group of communities, having the same center
vertex according to Claim 4.24, a candidate is selected from the previously
computed sets. If no such vertex exists, then I is a no-instance of Stars
NWS. Next, for each community in such a group the edges are computed
which form a spanning star with the already selected center vertex. If at
most n − 1 edges are selected, then a sparsified graph with at most n − 1
edges is found and I is a yes-instance of Stars NWS. Otherwise, I is a
no-instance of Stars NWS.
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We continue by defining the relation R based on the second statement of
Claim 4.24 which states when two communities have the same center vertex.

R ⊆ C × C, R(Ci, Cj) :⇔ |Ci ∩ Cj | ≥ 3 ∀Ci, Cj ∈ C

To obtain an equivalence relation, we define R̃ as the reflexive, symmetric
and transitive closure of R. The equivalence classes C/R̃ of the equivalence
relation R̃ are the groups of communities which have the same center vertex
in G′ according to the second statement of Claim 4.24. Node that does not
mean that two communities contained in different equivalence classes cannot
have the same center vertex.

Next, we define several mappings helping us to describe which vertices
are candidates for being the center of a spanning star in a subgraph induced
by a community. The mapping ν describes which vertices of a community
Ci could be potential centers of a spanning star in G′[Ci].

ν : C → P(V ), Ci 7→ {v ∈ Ci | Ci ⊆ N [v]}

The mapping µ describes which vertices of a community Ci can be the
center of a spanning star in G′[Ci] with respected to the first statement of
Claim 4.24. The first statement of Claim 4.24 states that the set of potential
centers of the stars of two communities is their intersection if it has a size
of at least two.

µ : C → P(V ), Ci 7→ {v ∈ Ci | ∀Cj ∈ C : |Cj ∩ Ci| ≥ 2⇒ v ∈ Cj}

The relation R̃ and the mappings ν and µ describe restrictions which vertices
are potential centers. The mapping ϕ combines these three restrictions.

ϕ : C/R̃ → P(V ), [Ci]R̃ 7→
⋂

Ck∈[Ci]R̃

(ν(Ck) ∩ µ(Ck))

The decision algorithm is shown in Algorithm 7. The idea is to select
for each equivalence class [Ci]R̃ a vertex forming the center of the spanning
stars of the communities belonging to [Ci]R̃. If this is not possible, that is
if there is an equivalence class [Ci]R̃ with ϕ([Ci]R̃) = ∅, then the instance I
is a no-instance of Stars NWS. Finally, it is checked whether |E| = n− 1
to ensure that the sparsified graph G′ is a tree as observed in Claim 4.23.

Correctness We show that I is a yes-instance of Stars NWS for t = 0
if and only if the algorithm returns a sparsified graph with n− 1 edges.

(⇐) By the definition of ϕ, the vertex u selected in Line 6 is a poten-
tial center of a spanning star for each community Cj ∈ [Ci]R̃. In addition
with the edge selection in Lines 7–9, this implies that the graph returned
in Line 13 satisfies the star condition for each subgraph induced by a com-
munity Ci ∈ C. Because of the conditional statement in Lines 11–12, the
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Algorithm 7: Algorithm for Stars NWS with ` := n− 1 (t = 0)

Input : I = (G = (V,E), C, n− 1)
Output: A sparsified graph G′ with at most n− 1 edges or no

1 E′ ← ∅
2 forall [Ci]R̃ ∈ C/R̃ do
3 if |ϕ([Ci]R̃)| = 0 then
4 // no center candidate available for [Ci]R̃
5 return no

6 u← pick element of ϕ([Ci]R̃)
7 forall Cj ∈ [Ci]R̃ do
8 // select the edges for the star with u as center for Cj
9 E′ ← E′ ∪ {{u, v} | v ∈ Cj , v 6= u}

10 G′ ← (V,E′)
11 if |E′| > n− 1 then
12 return no

13 return G′

sparsified graph returned in Line 13 has at most n− 1 edges. Hence, I is a
yes-instance of Stars NWS for t = 0.

(⇒) Let I be a yes-instance and let G′′ be a sparsified graph with n− 1
edges. Let cG′′ : C → V denotes the mapping of communities to their center
vertex in G′′.

By the definition of a spanning star, that the center vertex is adjacent
to each other vertex in the community, we know that cG′′(Ci) ∈ ν(Ci) for
each community Ci ∈ C. By the first statement of Claim 4.24, we know
that cG′′(Ci) ∈ µ(Ci) for each community Ci ∈ C. Due to the second
statement of Claim 4.24, we know that cG′′(Ci) = cG′′(Cj) if R̃(Ci, Cj) for
two communities Ci, Cj ∈ C. Hence, we have cG′′(Ci) ∈ ϕ([Ci]R̃) for each
community Ci ∈ C. This implies that ϕ([Ci]R̃) 6= ∅ for each equivalence class

[Ci]R̃ ∈ C/R̃. Therefore, the return statement in Line 5 is never reached.
By the definition of ϕ, the vertex u selected in Line 6 is a potential center

of a spanning star for each community Cj ∈ [Ci]R̃. In addition with the edge
selection in Lines 7–9, this implies that the graph G′ in Line 10 satisfies the
star condition for each subgraph induced by a community Ci ∈ C.

Next, we make two observations about the graph G′ = (V,E′) in Line 10
regarding cycles. We differentiate two kinds of cycles in a sparsified graph
G′ of a yes-instance I = (G, C, `) of Stars NWS. Let cG′ : C → V denotes
the mapping of communities to their center vertex in G′. Since there might
be multiple center vertices in G′, the mapping may not be unique. Let Si
denote for a community Ci ∈ C the spanning star of G′[Ci] having the center
vertex cG′(Ci). We say a cycle c in G′ is local if there exists two communities
Ci, Cj ∈ C such that c is contained in Si ∪ Sj . Otherwise, we say a cycle c
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Figure 4.3: Examples for the different kinds of cycles in a sparsified graph.
The bold edges mark the edges which form the cycles. On the left side a
global cycle is shown. In the middle and on the right side a local cycle is
shown.

in G′ is global, that is if c is splittable into at least three paths p1, . . . , pr for
r ≥ 3 such that for each path pi there exist a community Ci ∈ C such that
pi is contained in Si. Note that each path pi has length one or length two
because each path in a star has only length one or length-two. An example
of both cycle kinds is shown in Figure 4.3.

Claim 4.25. Let G′ = (V,E′) be the graph in Line 10 and let cG′ : C → V
be the mapping of communities to their center vertex in G′. The graph G′

does not contain a local cycle.

Proof. We assume towards a contradiction that c is a local cycle in G′. By
definition, there exist two communities Ci, Cj ∈ C such that the local cycle
c is contained in Si ∪Sj . Since Si and Sj are acyclic because they are stars,
we have |Ci ∩ Cj | ≥ 2. Next, we distinct the two cases |Ci ∩ Cj | = 2 and
|Ci∩Cj | ≥ 3 each leading to a contradiction that c is a local cycle in Si∪Sj .

Case 1: We assume |Ci∩Cj | = 2. Then, there exist exactly two vertices
u, v ∈ Ci∩Cj . Since ϕ is defined with respect to Claim 4.24, this implies that
cG′(Ci) ∈ Ci∩Cj and cG′(Cj) ∈ Ci∩Cj . This implies that the edge {u, v} is
contained in Si and Sj . Hence, we have E(Si∪Sj) = |E(Si)|+ |E(Sj)|−1 =
|Ci|+ |Cj |−3 = |Ci∪Cj |−1. Because Si and Sj are stars, the graph Si∪Sj
is connected and a tree. This is a contradiction to the assumption that c is
a local cycle in Si ∪ Sj .

Case 2: We assume |Ci ∩ Cj | ≥ 3. Since ϕ is defined with respect to
Claim 4.24, we have cG′(Ci) = cG′(Cj). This implies that Si and Sj have
|Ci∩Cj |−1 edges in common. Hence, we have E(Si∪Sj) = |E(Si)|+|E(Sj)|−
(|Ci∩Cj |−1) = |Ci|−1+|Cj |−1−(|Ci∩Cj |−1) = |Ci|+|Cj |−|Ci∩Cj |−1 =
|Ci ∪Cj | − 1. Since Si and Sj are stars and have the same center, the graph
Si ∪ Sj is connected and a star. This is a contradiction to the assumption
that c is a local cycle in Si ∪ Sj . ♦

Claim 4.26. Let G′ = (V,E′) be the graph in Line 10. The graph G′ does
not contain a global cycle.
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Figure 4.4: An example of two sparsified graphs of the same instance with
different star centers. The left graph contains the cycle (v1, v3, v4, v5) which
can be decomposed into the paths p1 = (v1, v3), p2 = (v3, v4, v5), p3 =
(v5, v1). The right graph contains the cycle (v1, v2, v3, v5, v6) which can be
decomposed into the paths p′1 = (v1, v2, v3), p

′
2 = (v3, v5), p

′
3 = (v5, v6, v1).

Observe that the endpoints of the paths pi and p′i are the same.

Proof. We assume towards a contradiction that c is a global cycle in G′. By
definition, the global cycle is splittable into at least three paths p1, . . . , pr of
length one or two such that each path pi is contained in Si for a community
Ci ∈ C. Let si denote the start and ti the end of the path pi. Thus, we
have si = ti−1 for 1 < i ≤ r and s1 = tr. Due to the star requirement,
the vertices si and ti of each path pi are connected in every sparsified graph
for instance I of Stars NWS. An example of such a situation is shown in
Figure 4.4. This implies that the subgraph consisting of the (si, ti)-paths
of every sparsified graph for instance I of Stars NWS contains a cycle.
Because of this every sparsified graph for I contains a cycle. This implies
that the graph G′′ also contains a cycle. This is a contradiction to the
assumption that I is a yes-instance. ♦

By Claim 4.25 and Claim 4.26 the graph G′ in Line 10 contains neither
local cycles nor global cycles. Moreover, G′[Ci] contains a spanning star
for each community Ci ∈ C. Hence, the graph G′ is acyclic and connected.
Therefore, Algorithm 7 finds a sparsified graph G′ with n− 1 edges for the
yes-instance I of Stars NWS.

Running Time The equivalence classes C/R̃ are computable in O(|C|2 ·n)
time. The mapping ν is computable in O(|C| · n) time. The mapping µ is
computable in O(|C|2 ·n2) time. The mapping ϕ is computable in O(|C| ·n)
time. The statement in Line 9 is executed at most

∑
[Ci]R̃∈C/R̃

|[Ci]R̃| = |C|
times. This leads to a running time of O(|C| ·n) for the nested loops. Hence,
Algorithm 7 has a running time of O(|C|2 · n2). �
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Figure 4.5: An example of the construction. The left side shows the Hitting
Set instance IHS, the right side shows the Connectivity NWS instance
ICNS.

In Theorem 4.22 the instances of Stars NWS are restricted to connected
hypergraphs. Next, we generalize the algorithm to hypergraphs with any
number of connected components.

Corollary 4.27. Let I = (G = (V,E), C, |V | − x) be an instance of Stars
NWS where x is the number of connected components of the hypergraph
H = (V, C). Such an instance I is solvable in O(poly(n+ |C|)) time.

Proof. We split the hypergraph H = (V, C) into its connected components
H1 = (V1, C1), . . . ,Hx = (Vx, Cx). The instance I is a yes-instance of Stars
NWS if and only if the instances I1 = (G1 = (V1, E(G[V1])), C1, |V1| −
1), . . . , Ix = (Gx = (Vx, E(G[Vx])), Cx, |Vx|−1) are all yes-instances of Stars
NWS. Each instance Ii is solvable in O(poly(ni + |Ci|)) time using the al-
gorithm presented in Theorem 4.22. Overall the instance I of Stars NWS
is solvable in O(poly(n+ |C|)) time.

For Connectivity NWS parameterized by t, we get W [2]-hardness by
a parameterized reduction from Hitting Set parameterized by the size of
the hitting set.

Theorem 4.28. Connectivity NWS is W[2]-hard for parameter t.

Proof. We reduce from Hitting Set. Let IHS = (U,S, k) be an instance of
Hitting Set. We start by defining the graph G = (V,E). The vertex set
V contains every vertex of U and two additional vertices y and z. The edge
set is E := {{y, u}, {z, u} | u ∈ U} such that G[U ∪{y}] is a star with center
y and G[U ∪{z}] is a star with center z. Let Cz = U ∪{z} be a community.
We define the set of communities C := {Si∪{y, z} | Si ∈ S}∪{Cz}. Finally,
we set the parameter t := k − 1. Let ICNS = (G, C, t) denote the resulting
instance of Connectivity NWS. An example of the construction is shown
in Figure 4.5.
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Correctness We show that IHS is a yes-instance of Hitting Set if and
only if ICNS is a yes-instance of Connectivity NWS.

(⇒) Let X be the hitting set of size at most k. We show how to obtain
a sparsified graph G′ = (V,E′) with |E′| = n− 1 + t. We set E′ := {{z, u} |
u ∈ U} ∪ {{y, x} | x ∈ X} and observe that E′ = |U | + k = n − 2 + k =
n − 2 + t + 1 = n − 1 + t. For each community Ci = {Si} ∪ {y, z} ∈ C,
we observe that G[Si ∪ {z}] is connected. Since X is a hitting set, for each
community Ci = {Si} ∪ {y, z} there exists an element xi ∈ X with xi ∈ Si
which implies {xi, y} ∈ E′. Hence, for each community Ci ∈ C, the induced
subgraph G′[Ci] is connected. Therefore, G′ is a sparsified graph implying
ICNS is a yes-instance of Connectivity NWS.

(⇐) Let ICNS be a yes-instance and let G′ = (V,E′) be the sparsified
graph. Let E′z := {{z, u} | u ∈ U} and E′y := E′ \ E′z. We observe that
E′z ⊆ E′ because the subgraph induced by the community Cz is connected.
Now, we show how to obtain a hitting set X with |X| = t + 1. We set
X := {x | {x, y} ∈ E′y} and observe that |X| = |E′y| = |E′| − |E′z| =
|V | − 1 + t − |U | = t + 1. For each Si ∈ S, there exists a community Ci
such that E(G′[Ci])∩E′y 6= ∅. This is the case because for every community
Ci ∈ C, the induced subgraph G′[Ci] is connected, y ∈ Ci and Ci contains
at least one element of U . This implies that there exists for each Si ∈ S an
element xi ∈ X with xi ∈ Si. Therefore, X is a hitting set with |X| = t+ 1
and IHS is a yes-instance of Hitting Set.

4.4 The Parameter |C|
In this section, we study parameter |C|, the number of communities. For
Density NWS parameterized by |C|, we formulate an ILP with 2|C| vari-
ables. An integer linear program with a fixed number of variables implies
fixed-parameter tractability [9, 12] for the number of variables. Thus, Den-
sity NWS is fixed-parameter tractable with respect to parameter |C|.

Theorem 4.29. Density NWS parameterized by |C| is fixed-parameter
tractable.

Proof. We formulate an ILP with 2|C| variables for Density NWS. This
implies fixed-parameter tractability for parameter |C| [9, 12]. For a better
understanding what the variables of the ILP represent, we introduce the
notion of edge twins.

Let I = (G = (V,E), C, α, `) be an instance of Density NWS. We say
two edges e1, e2 ∈ E are edge twins, if they are contained in the subgraphs
of the same communities which is formally expressed by ∀Ci ∈ C : e1 ∈
E(G[Ci])⇔ e2 ∈ E(G[Ci]). Let R̃ denote the relation built upon the defini-
tion of edge twins. Note that R̃ is an equivalence relation. Let E/R̃ denote
the equivalence classes of R̃. Since the power set of C has the cardinality 2|C|,
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there are at most 2|C| different edge twin classes in the instance I. Hence,
each edge twin class [e]R̃ ∈ E/R̃ is characterized by the maximal set of
communities X ⊆ C such that [e]R̃ ⊆ E(G[Ci]) for each Ci ∈ X .

For each edge twin class, a variable denoted by eX is created where X
is the characterization of the edge twin classes mentioned above. In other
words, the subscript X denotes for which communities Ci ∈ C the induced
subgraph G[Ci] contains the edges of the edge twin class eX . These variables
describe how many edges of each edge twin class are retained in the sparsified
graphG′. The goal is to minimize the sum of these variables which minimizes
the number of edges in the sparsified graph.

Next, we describe the two groups of constraints. The first group of
constraints enforces that the density requirement α(Ci) is satisfied for each
community Ci ∈ C. Note that dα(Ci) ·

(|Ci|
2

)
e is a constant for each commu-

nity Ci ∈ C and denotes the number of edges which are needed to satisfy
the density requirement α(Ci). Also note that for a community Ci all edge
twin classes characterized by a subset X of C with Ci ∈ C contribute to the
number of edges in a subgraph induced by Ci. This is expressed by the sum
of the variables representing these edge twin classes.

The second group of constraints restricts the possible values for each
variable eX . Recall that a variable eX describes how many edges of the
edge twin class characterized by X are retained in the sparsified graph G′.
Thus, the value of a variable cannot be negative and also cannot exceed the
number of edges in the associated edge twin class. In the following, the final
ILP formulation is presented:

min
∑
X⊆C

eX

such that
∑

X⊆C,Ci∈X
eX ≥ dα(Ci) ·

(
|Ci|
2

)
e ∀Ci ∈ C

0 ≤ eX ≤ |E(G[
⋂
Ci∈X

Ci])| ∀X ⊆ C

For Stars NWS parameterized by |C|, we are also able to obtain fixed-
parameter tractability. This time we achieve fixed-parameter tractability by
giving a direct algorithm instead of an integer linear program.

Theorem 4.30. Stars NWS is solvable in O(4|C|
2 · (n+m)+n2 · |C|) time.

Proof. Before we give an algorithm, we define center twins of vertices in an
instance of Stars NWS. Let I = (G = (V,E), C, `) be an instance of Stars
NWS. We define several mappings helping us to describe when two vertices
u, v ∈ V are center twins. The mapping ν describes which vertices of a
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community Ci could be potential centers of a star in the sparsified graph.

ν : C → P(V ), Ci 7→ {v ∈ Ci | Ci ⊆ N [v]}

The mapping σ describes in which communities a vertex is contained in.

σ : V → P(C), v 7→ {Ci ∈ C | v ∈ Ci}

The mapping µ describes for which communities a vertex is a potential
center.

µ : V → P(C), v 7→ {Ci ∈ C | v ∈ ν(Ci)}

Next, we define the center twin relation T̃ based on the mappings σ and µ.

T̃ ⊆ V × V, T̃ (u, v) :⇔ σ(u) = σ(v) ∧ µ(u) = µ(v)

Two vertices u, v ∈ V are center twins if they are contained in the same
communities and are also potential centers of the same communities. Note
that T̃ is an equivalence relation. Let V/T̃ denote the equivalence classes.
Next, we make an observation about yes-instances of Stars NWS regarding
center twins.

Claim 4.31. Let I be an yes-instance of Stars NWS with the sparsified
graph G′ = (V,E′) where cG′ : C → V denotes the mapping of communities
to their center vertex in G′. Let u ∈ V be a vertex, let [u]T̃ be its equivalence

class of T̃ and let Cu
T̃
⊆ C be the set of communities such that cG′(Cz) ∈ [u]T̃

for each Cz ∈ CuT̃ . There exists a sparsified graph G′′ = (V,E′′) with |E′′| ≤
|E′| such that u is the center of all communities Cz ∈ CuT̃ and the centers of
the other communities Ci ∈ C \ CuT̃ are the same as in G′.

Proof. An example of the statement is shown in Figure 4.6. We define cG′′

as the mapping of communities to their center vertex where cG′′(Cz) = u for
Cz ∈ CuT̃ .

cG′′ : C → V, Cx 7→

{
u Cx ∈ CuT̃
cG′(Cx) otherwise

Then, we define based on this mapping the graph G′′ = (V,E′′) with E′′ =
{{cG′′(Cz), u} ∈ E(G[Cz]) | Cz ∈ C}. Observe that the induced subgraph
G′′[Cz] contains a spanning star because u is a center candidate of each
Cz ∈ CuT̃ .

It remains to show that |E′′| ≤ |E′|. Recall that the spanning stars of two
communities Ci, Cj ∈ CuT̃ with cG′(Ci) 6= cG′(Cj) have exactly one edge eij in
common due to the twin property of the centers. This edge eij exists also in
G′′ where cG′(Ci) = cG′(Cj). Therefore, we conclude |

⋃
Cz∈Cu

T̃
E(G′′[Cz])| ≤

|
⋃
Cz∈Cu

T̃
E(G′[Cz])|.
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Figure 4.6: An example of the statement made by Claim 4.31. On the left
side, the input graph G is shown. In the middle a sparsified graph is shown,
where the centers of the communities Ci and Cj are different while being
twins. On the right side, a sparsified graph is shown, where the centers of
the communities Ci and Cj are the same. The bold marked edges are the
ones being involved in the spanning stars of more than one community.

Next, we consider the other communities affected by the new center map-
ping cG′′ . Let Cu = {Ci ∈ C | cG′(Ci) = u} and Cû = Cu

T̃
\ Cu. Changing the

centers of the communities in Cû also affects the relation of the communities
Cû and the communities Cx ∈ C \ CuT̃ with cG′(Cx) ∈ Cz and cG′(Cz) ∈ Cx
for a community Cz ∈ Cû because cG′(Cx) and cG′(Cz) are adjacent in G′.
This implies that the edge e′xz = {cG′(Cx), cG′(Cz)} is involved in both span-
ning stars in G′[Cx] and G′[Cz]. Let E′XZ denote these edges. In G′′ the
center of Cz is changed to u, meaning e′xz is no longer involved in the span-
ning star of G′′[Cz]. We observe that u ∈ Cx because u and cG′(Cz) are
center twins. Therefore, cG′′(Cx) and u are adjacent in G′′ meaning the
edge e′′xz = {u, cG′′(Cx)} is involved in both spanning stars in G′′[Cx] and
G′′[Cz]. Let E′′XZ denote these edges. We observe |E′′XZ | = |E′XZ |. Hence,
we conclude |E′′| ≤ |E′|. ♦

Algorithm The idea is to branch for each community Ci ∈ C into each
center twin class [u]T̃ ∈ V/T̃ with u ∈ µ(Ci). To get the actual center for the
community, an arbitrary element of the center twin class is selected. Note
that this element is selected such that it is always the same for the same
center twin class. After a center has been selected for all communities, it is
checked whether the resulting sparsified graph has at most ` edges. If this
is the case, then I is a yes-instance of Stars NWS. Otherwise the other
branches are considered. If no branch leads to a sparsified graph with at
most ` edges, then I is a no-instance of Stars NWS. The decision algorithm
is shown in Algorithm 8.
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Algorithm 8: Algorithm for Stars NWS: SolveSNWS

Input : G = (V,E), C, `, E′
Output: A sparsified graph G′ with at most ` edges or no

1 if C = ∅ then
2 if ` < |E′| then
3 return no

4 return G′ = (V,E′)

5 Ci ← pick element from C
6 forall [u]T̃ ∈ V/T̃ and [u]T̃ ⊆ ν(Ci) do
7 E′′ ← E′ ∪ {{u, v} | v ∈ Ci \ {u})
8 if SolveSNWS (G, C \ {Ci}, `, E′′) returns a graph G′ then
9 return G′

10 return no

Correctness We show that I is a yes-instance of Stars NWS if and only
if the algorithm returns a sparsified graph.

(⇒) Let I be a yes-instance of Stars NWS and let G′ = (V,E′) be a
sparsified graph. By applying Claim 4.31, we are able to obtain a graph
G′′ = (V,E′′) such that cG′′(Ci) = cG′′(Cj) for all pairs of communities
Ci, Cj ∈ C where cG′(Ci) and cG′(Ci) are center twins. Such a graph G′′ is
definitely found by traversing the search tree built by Algorithm 8.

(⇐) Let G′ be the sparsified graph returned by the algorithm in Line 4.
The conditional statement in Line 2 ensures that G′ has at most ` edges.
The termination condition in Line 1 ensures together with the statement in
Line 7 that for each community Ci ∈ C the induced subgraph G′[Ci] contains
a spanning star. Hence, a sparsified graph has been found by the algorithm
which implies that I is a yes-instance of Stars NWS.

Running time Let Ci ∈ C be the community selected for branching in
Line 5. The branching vector of the branching in the loop in Lines 6-
9 has at most |V/T̃ | entries of value 1, each decreasing the number of
communities by 1. The branching number of this vector is bounded by
|V/T̃ | ≤ |P(C)| · |P(C)| = 2|C| · 2|C| = 4|C|. Since the maximum depth of the
recursion is bounded by |C|, the search tree has a size of at most O(4|C|

2
).

The equivalence classes V/T̃ are computable in O(n2 ·|C|) time. The edge set
in Line 7 is computable in O(n+m) time. This leads to an overall running
time of O(4|C|

2 · (n+m) + n2 · |C|). �

For Connectivity NWS parameterized by |C|, we are neither able to
prove fixed-parameter tractability nor able to prove W [i]-hardness for any
i ≥ 1. Next, we study problem kernels for Density NWS and Stars NWS.
Under the assumption that NP 6⊆ coNP/poly, no polynomial kernels exist for
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Density NWS and Stars NWS when parameterized by |C|. This is shown
in the following two theorems by a polynomial parameter transformation
from Hitting Set parameterized by the number of sets.

Theorem 4.32. Density NWS parameterized by |C| does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof. The parameterized reduction from Hitting Set parameterized by
the size of the hitting set to Density NWS parameterized by ` in the proof
of 4.16 is also a polynomial parameter transformation from Hitting Set
parameterized by the number of sets to Density NWS parameterized by
|C|. Hitting Set parameterized by the number of sets is known to not
admit a polynomial kernel unless NP ⊆ coNP/poly [9]. In the following, we
recall the construction briefly. Let IHS = (U,S, k) be an instance of Hitting
Set. We define the graph G = (V,E). The set V contains each vertex of
V and one additional vertex z. The edge set is E := {{z, u} | u ∈ U}. We
define the set of communities C := {Si ∪ {z} | Si ∈ S} and set α(Ci) :=
1/
(|U |

2

)
for each community Ci ∈ C. Finally, we set the parameter ` := k.

Let IDNS = (G, C, α, `) denote the resulting instance of Density NWS.
Observe that |S| = |C|. The correctness proof of the polynomial parameter
transformation is omitted, since it is already proved in Theorem 4.16.

Theorem 4.33. Stars NWS parameterized by |C| does not admit a poly-
nomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from Hitting Set
parameterized by the number of sets which is known to not admit a poly-
nomial kernel unless NP ⊆ coNP/poly [9]. Let IHS = (U,S, k) be an
instance of Hitting Set. We assume that |U | > 1. Let Z be a set
of |U |3 new vertices such that U ∩ Z = ∅. We start by defining the
graph G = (V,E). The vertex set is V := U ∪ Z and the edge set is
E := {{u, v} | u, v ∈ U, u 6= v} ∪ {{u, z} | u ∈ U, z ∈ Z}. In other words,
G[U ] is a clique and G[G ∪ {z}] is a star of size |U | for each new vertex
z ∈ Z. Next, we define the set of communities C := {Si ∪ Z | Si ∈ S}.
Finally, we set the parameter ` := k · |U |3 + |U |2. Let ISNS = (G, C, `) denote
the resulting instance of Stars NWS. Note that |C| = |S|, |E| =

(|U |
2

)
+|U |4

and |V | = |U |+ |U |3. An example of the construction is shown in Figure 4.7.

Correctness We show that IHS is a yes-instance of Hitting Set if and
only if ISNS is a yes-instance of Stars NWS.

(⇒) Let X be a hitting set of size at most k. We show how to obtain a
sparsified graph G′ = (V,E′) with |E′| ≤ `. We set E′ = {{z, x} | x ∈ X, z ∈
Z}∪{{u, x} | x ∈ X,u ∈ U \ {x}} observing that |E′| ≤ k · (|Z|+ |U |− 1) =
k · |Z| + k · |U | ≤ k · |U |3 + |U |2. Recall that for each community Ci ∈ C a
set Si ∈ C exists, such that Ci = Si ∪ Z. Since X is a hitting set, for each
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Figure 4.7: An example of the construction. The left side shows the Hitting
Set instance IHS, the right side shows the Stars NWS instance ISNS. The
grey vertices are the new vertices, the elements of the set Z. The different
line styles show the mapping between the sets in the Hitting Set instance
and the communities in the Stars NWS instance.

community Ci, there exists an element xi ∈ X with xi ∈ Ci. Such an element
xi is the center of a spanning star in G′[Ci] because {{z, xi} | z ∈ Z} ⊆ E′

and {{z, u} | u ∈ Ci \ Z} ⊆ {{u, xi} | u ∈ U} ⊆ E′. Therefore, G′ is a
sparsified graph which implies that ISNS is a yes-instance of Stars NWS.

(⇐) Let ISNS be a yes-instance of Stars NWS and let G′ = (V,E′) be
the sparsified graph where cG′ : C → V denotes the mapping of communities
to their center vertex in G′. We show how to obtain a hitting set X with
|X| ≤ k. We set X = {cG′(Ci) | Ci ∈ C}. Since Z ⊆ Ci and Z is an
independent set in G, cG′(Ci) /∈ Z holds for each community Ci ∈ C. This
implies that X ⊆ U . Since |E′| ≤ ` = k · |U |3 + |U |2, we conclude that
|X| ≤ k because |U | > 1. For each Si ∈ S, there exists a community Ci
such that Si = Ci \ Z. This implies that for each set Si ∈ S, there exists
the element u = cG′(Ci) with u ∈ X and u ∈ Si. Therefore, X is a hitting
set with |X| ≤ k and IHS is a yes-instance of Hitting Set.
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5. Conclusion

In this work, we studied the complexity of Π-NWS and its three variants
Density NWS, Stars NWS and Connectivity NWS. In the following,
we first summarize our results and then we pose our open questions and
point into directions for further work.

5.1 Summary

In Section 3.1, we studied NP-hardness for Density NWS, Stars NWS,
Connectivity NWS, and Π-NWS restricted to communities of size at
most 3. First, we recalled reductions from the literature which implies the
NP-hardness of Density NWS, Stars NWS, and Connectivity NWS
even if restricted to communities of size at most 3. Then, we gave a com-
plexity dichotomy of Π-NWS restricted to communities of size at most 3
which implies that Π-NWS restricted to communities of size at most 3 is
NP-hard for all graph properties Π which neither are fulfilled by an edgeless
graph nor are only fulfilled by cliques.

In Section 3.2, we showed lower bounds based on the Exponential Time
Hypothesis (ETH). First, we observed that the running time of a trivial brute
force algorithm trying each possible spanning subgraph is O(2m · poly(n +
|C|)). Since m ≤ n2, the running time of this brute force algorithm is
also expressible as O(2n

2 · poly(n + |C|)). Then, we showed that neither
Density NWS, nor Stars NWS, nor Connectivity NWS is solvable in
2o(n

2) · poly(n+ |C|) time or 2o(m) · poly(n+ |C|) time unless the ETH fails.
These lower bounds even apply if the instances are restricted to communities
of size at most 4.

In Section 4, we studied Density NWS, Stars NWS, and Connec-
tivity NWS in the context of parameterized complexity. An overview of
the results is shown in Table 5.1. With respect to parameter `, the number
of edges of the sparsified graph, we obtained W [2]-hardness for Density
NWS and fixed-parameter tractability for Stars NWS and Connectiv-
ity NWS. Furthermore, we showed that Stars NWS and Connectiv-
ity NWS do not admit a polynomial kernel for parameter ` unless NP
⊆ coNP/poly. For parameter k, which is defined as the difference of m
and `, we obtained W [1]-hardness for Density NWS, Stars NWS, and
Connectivity NWS. The W [1]-hardness even applies if these problems
are restricted to instances with communities of size at most 3. For Stars
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Table 5.1: An overview over the results regarding parameterized complex-
ity. The entry for Density NWS parameterized by t expresses that this
parameterization was not studied for Density NWS.

Parameter Density NWS Stars NWS Connectivity NWS

` W [2]-hard FPT / no polynomial kernel

k W [1]-hard

t - ? W [2]-hard

|C| FPT / no polynomial kernel ?

NWS and Connectivity NWS, we studied the parameter t, the size of a
minimal feedback edge set of the sparsified graph. We gave an polynomial-
time algorithm for Stars NWS when t = 0 and showed W [2]-hardness for
Connectivity NWS parameterized by t. For parameter |C|, the number of
communities, we obtained fixed-parameter tractability for Density NWS
and Stars NWS. Moreover, we showed that no polynomial kernels exist for
Density NWS and Stars NWS unless NP ⊆ coNP/poly. For Connec-
tivity NWS we were not able to show either fixed-parameter tractability
or W [1]-hardness.

5.2 Future Work

Our study of Density NWS, Stars NWS and Connectivity NWS in
the context of parameterized complexity leaves mainly two questions open.
The first open question is whether Connectivity NWS parameterized by
|C| is fixed-parameter tractable. The second open question is whether Stars
NWS parameterized by t is fixed-parameter tractable.

Since ` can be quadratic in n, the absence of a 2o(n
2) · poly(n+ |C|)-time

algorithm only implies the absence of a 2o(`) · poly(n + |C|)-time algorithm
for Stars NWS and Connectivity NWS. Thus, there is a discrepancy
between the lower bound and the running time of the given FPT-algorithms.
Hence, another open question is whether there exist single-exponential time
FPT-algorithms for Stars NWS and Connectivity NWS parameterized
by `.

Another direction for further work might be studying additional param-
eters or combinations of the parameters. For example the parameter d + t
for Connectivity NWS might be interesting, since Connectivity NWS
parameterized by t solely is W [2]-hard.

A new parameter that might be interesting is the difference between
an upper bound of parameter ` and the actual parameter `, the number of
edges in the sparsified graph. The upper bound, we suggest, is the minimum
number of edges a sparsified graph contains assuming that all communities
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are pairwise disjoint. For an instance I = (G, C, α, `) of Density NWS this
upperbound is

∑
Ci∈C(dα(Ci)·

(|Ci|
2

)
e). For an instance I = (G, C, `) of Stars

NWS or Connectivity NWS this upper bound is
∑

Ci∈C(|Ci| − 1). The

final parameter is then defined as s :=
∑

Ci∈C(dα(Ci)·
(|Ci|

2

)
e)−` for Density

NWS and as s :=
∑

Ci∈C(|Ci| − 1)− ` for Stars NWS and Connectivity
NWS.

There are two kinds of edges in a subgraph induced by a community in a
sparsified graph. First, there are edges which are essential in the sense that
the subgraph without these edges does not fulfill the required graph prop-
erty. Second, there are edges which can be removed such that the subgraph
still satisfies the required graph property. Informally, the parameter s is a
measure how many edges are essential for more than one community. Since
one edge can be essential for more than two communities, the parameter s
is an upper bound for the number of essential edges.

Moreover, it might also be interesting to study Π-NWS for other graph
properties or to use the characterization of graph properties in Section 3.1
to obtain more general results for Π-NWS in the context of parameterized
complexity.
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