
On Critical Node Problems with
Vulnerable Vertices⋆

Jannik Schestag, Niels Grüttemeier, Christian
Komusiewicz[0000−0003−0829−7032], and Frank Sommer ⋆⋆[0000−0003−4034−525X]

Fachbereich für Mathematik und Informatik, Philipps-Universität Marburg, Germany
{jschestag,niegru,komusiewicz,fsommer}@informatik.uni-marburg.de

Abstract. A vertex pair in an undirected graph is called connected if
the two vertices are in the same connected component. In the NP-hard
Critical Node Problem (CNP), the input is an undirected graph G
with integers k and x, and the question is whether we can transformG via
at most k vertex deletions into a graph whose total number of connected
vertex pairs is at most x. In this work, we introduce and study two
NP-hard variants of CNP where a subset of the vertices is marked as
vulnerable and we aim to obtain a graph with at most x connected vertex
pairs where at least one vertex is vulnerable. In the first variant, which
generalizes CNP, we may delete vulnerable and non-vulnerable vertices.
In the second variant, we may only delete non-vulnerable vertices.
We perform a parameterized complexity study of both problems. For
example, we show that both problems are FPT with respect to k + x.
Furthermore, in case of deletable vulnerable vertices we provide a polyno-
mial kernel for the parameter vc+k, where vc is the vertex cover number.
In case of non-deletable vulnerable vertices, we prove NP-hardness even
when there is only one vulnerable vertex.

1 Introduction

Detecting important vertices in graphs is a central task in network analysis.
There is an abundance of different formalizations of this natural task, many
of which adopt the view that a vertex set is important if its removal severely
affects the connectivity of the remaining graph [10]. One concrete formulation,
known as the Critical Node Problem, measures connectivity by the number
of connected pairs of vertices, that is, the number of pairs of vertices that are in
the same connected component. The aim is to look for a set of vertices whose
deletion decreases this number as much as possible.

Critical Node Problem (CNP)
Input: A graph G = (V,E), and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such that G−C
has at most x connected pairs of vertices?

⋆ Most of the results of this work are also contained in the first author’s Master’s
thesis [12].

⋆⋆ Supported by the DFG, project EAGR KO 3669/6-1.

One application of this formulation is to model the influence of vertices in
the spreading of viruses in computer networks or social networks [10]. Taking
the latter view, the entities represented by a set C that minimizes the number
of connected pairs in G − C would be good candidates for being vaccinated or
removed from the network via other interventions. The number x of connected
pairs would be a rough measure for the amount of virus spreading in the re-
maining network, as vertices that are connected to many other vertices are more
likely to contract the virus. For some vertices in the network, however, it may
be irrelevant whether they contract the virus, for example because they are not
prone to develop a severe disease in case of infection. Conversely, it may be criti-
cal that some vertices in the network are protected from the virus, because they
belong to a high risk group. This aspect is missing from the CNP problem. One
way to model this aspect is to label some vertices as vulnerable and to consider
only the number of connected pairs for the vulnerable vertices. In other words,
we only count those vertex pairs that contain at least one vulnerable vertex.

Definition 1. Let G = (V,E) be a graph and let A be a set of vulnerable
vertices. A vertex pair {u, v} is a vulnerable connection (with respect to A)
in G if {u, v} ∩ A ̸= ∅ and u and v are in the same connected component of G.
The A-vulnerability of G is the number of vulnerable connections of G.

Note that it is not required that the set A of vulnerable vertices is a sub-
set of the vertex set V . Thus, given a graph G = (V,E) with A ⊆ V and a
subgraph G′ = (V ′, E′) of G, we may refer to the A-vulnerability of G′ even
if A ̸⊆ V ′. Replacing the number of connected pairs by A-vulnerability leads to
the following problem definition.

Critical Node Problem with Vulnerable Nodes (CNP-V)
Input: A graph G = (V,E), A ⊆ V , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such that the
A-vulnerability of G− C is at most x?

A further complication may be that, for several reasons, vulnerable vertices
may not be removed. This is modelled by the following problem.

Critical Node Problem with Non-Deletable Vulnerable
Nodes (CNP-NDV)
Input:A graph G = (V,E), A ⊆ V , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \ A of size at most k such that
the A-vulnerability of G− C is at most x?

The set C is called a critical node cut. We study the parameterized complexity
of these two problems.

Related Work. Arulselvan et al. [3] showed that CNP is NP-complete; the NP-
hardness follows also directly from the fact that CNP is a generalization of
Vertex Cover (x = 0). As a consequence, CNP is NP-hard even on subcubic
graphs. CNP is also NP-hard on split and bipartite graphs [1] and on power
law graphs [13]. In contrast, CNP can be solved in polynomial time on trees [5]

2

Table 1. Overview of our results.

Parameter CNP-V CNP-NDV

x NP-hard for x = 0 [9]
W[1]-hard (Thm. 2)
XP (Prop. 2)

y
FPT (Thm. 6) W[1]-hard (Thm. 7)
No poly kernel [9] XP (Prop. 3)

k
W[1]-hard [9] W[1]-hard (Thm. 7)
XP (Prop. 1) XP (Prop. 1)

k + x FPT (Cor. 2, Thm. 5) FPT (Cor. 1)

k + y FPT (Thm. 6) W[1]-hard (Thm. 7)

|A| XP (Prop. 3)
NP-hard for |A| = 1 (Thm. 2)|A|+ x FPT (Cor. 3)

vc FPT (Thm. 8) FPT (Thm. 8)

vc+x
poly kernel (Cor. 5)

FPT (Thm. 8)
vc + k + x poly kernel (Cor. 6)

and, more generally, on graphs with constant treewidth [1]. The parameterized
complexity of CNP has been studied with respect to the parameters k, x, and
the treewidth tw of G [9]: On the negative side, CNP is W[1]-hard with respect
to k [9] or tw [9], and even with respect to k + tw [2]. On the positive side,
the problem is FPT with respect to k + x and with respect to the parameter y
which is defined as ℓ−x, where ℓ is the number of connected pairs in G. In other
words, y is the number of connected pairs that we want to remove at least by
deleting the k vertices.

Other formulations of graph modifications for limiting disease spreading con-
sider for example edge deletions and limiting the size of the largest remaining
connected component [7]. For an overview of different formulations of critical
vertex detection, refer to the survey of Lalou et al. [10].

Our Results. We study the parameterized complexity of the problems CNP-V
and CNP-NDV with respect to a number of natural parameters. Our main
findings are as follows (an overview is given in Table 1). We transfer the FPT
algorithm for k + x from CNP to the two new problems. We then show that,
while being solvable in polynomial time for constant values of x, CNP-NDV is
W[1]-hard with respect to x even when |A| = 1. In contrast, CNP-V is solvable
in polynomial time for constant |A| and NP-hard already for x = 0. Thus, the
complexity of the two problems differs quite drastically with respect to very
natural parameters. This can be also observed for the parameter y for which
CNP-V has a subexponential FPT algorithm while CNP-NDV is W[1]-hard
even with respect to k + y. We remark that the algorithm for CNP-V with
subexponential running time for parameter y improves on a previous algorithm
for CNP with exponential running time in y [9].

3

Finally, we consider parameterizations using the vertex cover number vc
of G. This is motivated by the fact that CNP is W[1]-hard with respect to
the treewidth tw [2, 9] and thus larger structural parameters need to be con-
sidered. We show that both problems are FPT with respect to vc, and provide
polynomial kernels for both problems parameterized by vc+x and vc+k + x,
respectively.

Further FPT results for parameters such as the neighborhood diversity of G
or |V \ A| have been obtained in the first author’s Master thesis [12]. Due to
lack of space, the proofs of several results (marked with (⋆)) are deferred to a
full version.

Preliminaries. For two integers p and q, p ≤ q, we denote [p, q] := {p, . . . , q}.
We consider undirected simple graphs G and let V (G) denote the vertex set
and E(G) the edge set of a graph G. We use n to denote the number of vertices
of G and m to denote the number of edges. For a vertex set S, we let N(S) =
{u | {u, v} ∈ E(G), v ∈ S}\S and N [S] := S∪N(S) denote the open and closed
neighborhood of S, respectively. For a vertex v, we denote N(v) := N({v})
and N [v] := N [{v}]. For a vertex set S, we let G[S] := (S, {{u, v} ∈ E(G) |
u, v ∈ S}) denote the subgraph induced by S, and G−S := G[V (G) \S] denote
the subgraph of G obtained by deleting S and its incident edges. For the relevant
definitions of parameterized complexity refer to the standard monographs [4,6].

2 Basic Observations

Vulnerability. First, observe that the A-vulnerability of a graph can be computed
in linear time via depth-first search.

Lemma 1 (⋆). Let G = (V,E) and let A ⊆ V . The A-vulnerability of G can
be computed in O(n+m) time.

For constant k, CNP-V and CNP-NDV can thus be solved in polynomial time
by trying all O(nk) possibilities of deleting k vertices (in the case of CNP-NDV
only deletions in V \A are considered).

Proposition 1. CNP-V and CNP-NDV can be solved in O(nk ·(n+m)) time.

Moreover, for CNP-NDV at most x non-vulnerable vertices can be connected to
vulnerable vertices inG−C. Thus, one may find a critical node cut by considering
all O(nx) possible sets B for these vertices, deleting all neighbors of A∪B, and
checking whether the number of deletions is at most k and the A-vulnerability
of the resulting graph is at most x.

Proposition 2. CNP-NDV can be solved in O(nx · (n+m)) time.

Reduction Rules. We provide a collection of simple reduction rules for CNP-V
and CNP-NDV. The first rule removes trivial components from the input.

4

Rule 1 Let I := (G,A, k, x) be an instance of CNP-V or CNP-NDV and let C
be a connected component of G. If C contains no vulnerable vertex or C is an
isolated vulnerable vertex, then delete C from G.

Rule 1 is correct since no vertex of C is part of a vulnerable connection. For
the rest of this work, we assume that all instances of CNP-V and CNP-NDV
are reduced with respect to Rule 1. The next rule identifies instances of CNP-V
and CNP-NDV that are trivial because k is sufficiently large.

Rule 2 a) Let (G,A, k, x) be an instance of CNP-V. If y ≤ k, then return yes.
b) Let (G,A, k, x) be an instance of CNP-NDV such that y ≤ k. If |V \A| ≥ y,

then return yes. If |V \A| < y, check if the number of vulnerable connections
in G−(V \A) is at most x. If this is the case, return yes. Otherwise, return no.

The correctness of Rule 2 can be seen as follows: Since the instance is reduced
with respect to Rule 1, every vertex of the graph is in at least one vulnerable
connection. If we remove y vertices, we remove at least y vulnerable connections
and therefore, the instance is a yes-instance. In case of CNP-NDV, we might not
be able to remove y vertices if |V \ A| is too small. In this case we can trivially
solve the instance by checking if G − (V \ A) contains at most x vulnerable
connections. Hence, we may assume y > k throughout the rest of this work.

In case of CNP-V, we can identify a further class of yes-instances. An in-
stance of CNP-V with |A| ≤ k is a trivial yes-instance, since adding all vulner-
able vertices to a critical node cut destroys all vulnerable connections.

Rule 3 Let (G,A, k, x) be an instance of CNP-V. If |A| ≤ k, then return yes.

The final rule deals with the case where one vertex has too many vulnera-
ble neighbors. The idea behind the rule is that a vertex that causes too many
vulnerable connections in his neighborhood belongs to every possible solution.

Rule 4 a) If in an instance (G,A, k, x) of CNP-V a vertex v ∈ V exists
with |N(v) ∩A| > k +

√
2x, then remove v from G and decrease k by 1.

b) If in an instance (G,A, k, x) of CNP-NDV a vertex v ∈ V \ A exists with
|N(v) ∩A| >

√
2x, then remove v from G and decrease k by one.

Recall that CNP-V and CNP-NDV can be solved in O(nk · (n+m)) time
due to Proposition 1. Since we can assume y > k due to Rule 2 and, for CNP-
V, |A| > k due to Rule 3, we obtain the following.

Proposition 3. CNP-V and CNP-NDV can be solved in O(ny ·(n+m)) time;
CNP-V can be solved in O(n|A| · (n+m)) time.

Component Information. We next show that CNP-V is solvable in polynomial
time if we have additional information about the connected components of the in-
put graph. We apply this fact to obtain efficient algorithms for CNP-V when the
connected components are small. Let I := (G,A, k, x) be an instance of CNP-V,
and let C1, . . . , Ct ⊆ V be the connected components of the input graph G. The

5

component information T [i, k′] of some integers i ∈ [1, t] and k′ ∈ [0,min(k, |Ci|)]
is defined as the minimal number of vulnerable connections in G[Ci]− S among
all subsets S ⊆ Ci of size exactly k′. A table T containing all component infor-
mation T [i, k′] is called a component table of the instance I. We now show that
CNP-V can be solved in polynomial time if we have a component table of the
input instance, the algorithm was also described by Hermelin et al. [9] for CNP.

Lemma 2 (⋆). Given an instance I := (G,A, k, x) of CNP-V and a compo-
nent table T of I, we can compute in O(n · k2) time, whether I is a yes-instance
of CNP-V.

Observe that, for an instance where the input graph has maximum compo-
nent size c for some constant c, a component table can be computed in O(2c ·(n+
m)) = O(n) time by iterating over every subset of each connected component.

Proposition 4. CNP-V can be solved in O(n · k2) time if the input graph has
maximum component size c for some constant c.

NP-Hardness of CNP-NDV. In contrast to CNP-V, the problem CNP-NDV is
not an obvious generalization of Vertex Cover. We show the following by a
simple reduction.

Theorem 1 (⋆). CNP-NDV is NP-hard on planar graphs, even if the input
graph has maximum degree 4.

3 Parameterization by the Targeted Vulnerability

First, we consider parameterization by x alone. CNP-V is NP-hard for x = 0
since it is a generalization of CNP. We now show that, in contrast, CNP-NDV
is W[1]-hard with respect to x, even if G contains only one vulnerable vertex.

Theorem 2 (⋆). CNP-NDV is W[1]-hard with respect to the parameter x, even
if |A| = 1 and diam = 2.

We now show an FPT algorithm for CNP-V and CNP-NDV parameterized
by k + x. To this end, we consider the following more general problem.

CNP-VNDV
Input: A graph G = (V,E), two sets A,N , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \N of size at most k such that
the A-vulnerability of G− C is at most x?

Hermelin et al. [9] showed that CNP can be solved in O(3k+x · (xk+2 +
n)) time. The idea of this algorithm is to branch for each edge {u, v} whether
one of u and v is deleted or whether this is one of the x remaining connections. In
the following, we use similar ideas to provide two search tree algorithms for the
more general CNP-VNDV. The first algorithm solves instances of CNP-VNDV
with A ⊆ N in O(2k+x · (n + m)) time. This implies that CNP-NDV can be

6

solved within the same running time. The second algorithm solves arbitrary
instances of CNP-VNDV in O(3k+x ·(n+m)) time, which implies that CNP-V
can be solved in O(3k+x · (n+m)) time. Moreover, since CNP is a special case
of CNP-V this improves over the algorithm for CNP by Hermelin et al. [9]. The
next lemma describes the mechanism of the branching rule.

Lemma 3 (⋆). Let I = (G = (V,E), A,N, k, x) be an instance of CNP-VNDV
and let v ∈ V \N . I is a yes-instance of CNP-VNDV if and only if I1 = (G−
{v}, A,N, k−1, x) or I2 = (G,A,N∪{v}, k, x) is a yes-instance of CNP-VNDV.

Theorem 3. An instance I := (G,A,N, k, x) of CNP-VNDV with A ⊆ N can
be solved in O(2k+x · (n+m)) time.

Proof. Intuition: In the algorithm we pick a neighbor v of N and branch into
removing v from the graph or making v non-deletable.

Algorithm: Step 0. If k < 0 or the A-vulnerability of G[N] is greater than x,
return no. If the A-vulnerability of G is at most x, return yes.

Step 1. Compute the set N ′ ⊆ N such that N ′ contains all vulnerable
vertices A and also all vertices that are connected to a vulnerable vertex in G[N].

Step 2. If the neighborhood of N ′ is empty, return yes. Otherwise, pick a
neighbor v ofN ′ and branch into the following instances: I1 := (G−{v}, A,N, k−
1, x) and I2 := (G,A,N ∪ {v}, k, x) of CNP-VNDV.

The correctness of the algorithm follows rather directly from Lemma 3. The
running time can be seen as follows: The depth of the search tree is bounded
by k+ x since in each branch, we either add a vertex to N (which increases the
A-vulnerability of G[N] by at least one) or delete a vertex (which decreases k).
Thus, the search tree has size O(2k+x); the steps at each search tree node can
be clearly performed in linear time. ⊓⊔

Corollary 1. CNP-NDV can be solved in O(2k+x · (n+m)) time.

Theorem 4 (⋆). CNP-VNDV can be solved in O(3k+x · (n+m)) time.

Corollary 2. CNP-V can be solved in O
(
3k+x · (n+m)

)
time.

In the following, we provide an algorithm that solves CNP-V in O((43x +
2)k ·m · x) time. This running time is preferable, when x is much larger than k.
The idea of the algorithm is that we search a set B of at most 4

3x + 2 vertices
of G such that the A-vulnerability of G[B] is larger than x. Then, if there exists
a critical node cut C, at least one vertex of B is in C.

Theorem 5 (⋆). An instance I := (G,A, k, x) of CNP-V can be solved in
O((43x+ 2)k ·m · x) time.

After Rule 3 is applied, we can assume |A| > k for instances of CNP-V.
Hence, we also obtain the following.

Corollary 3. CNP-V has an FPT-algorithm for the parameter |A|+ x.

7

4 Parameterization by the Decrease in Vulnerability

In this section, we consider the parametrization by y := ℓ− x, where ℓ is the A-
vulnerability of the input graph. In other words, y counts how many vulnerable
connections shall be removed.

An FPT Algorithm for Deletable Vulnerable Vertices. CNP is fixed-parameter
tractable with respect to y [9], based on the following observations: If some
connected component has at least y vertices, then we have a yes-instance. After-
wards, we may compute the component information in O(2y · y2 · (n+m)) time
and combine it using the dynamic programming algorithm presented also in Sec-
tion 2. We now extend the FPT result to the more general CNP-V problem.
Moreover, we improve the running time to a subexponential running time in y.

Theorem 6. CNP-V can be solved in 2O(
√
y log y) · nO(1) time.

Proof. Let I := (G,A, k, x) be an instance of CNP-V and let C1, . . . , Ct be the
connected components of G. Recall that we assume that I is reduced regarding
Rule 1 and therefore each connected component has a non-empty intersection
with A. Moreover, we assume that k ≥ 1 since otherwise we can solve I in
polynomial-time by computing the number of vulnerable connections of G.

We first assume that there exists a connected component Ci of size at least y.
Since we assume that every connected component of G contains some vertices
from A, let v ∈ Ci ∩ A. Since |Ci| ≥ y, we can remove at least y vulnerable
connections by deleting v. Together with the fact that k ≥ 1 we conclude that
the instance I is a yes-instance. Throughout the rest of the proof, we assume
that |Ci| < y for every connected component of G.

In the remainder of the proof, we show that a component table T of I can be
computed in 2O(

√
y log y) · nO(1) time. With a component table at hand, we can

then solve CNP-V in polynomial time due to Lemma 2. Recall that a component
table T of I has entries of type T [i, k′] with i ∈ [1, t] and k′ ∈ [0, k] such
that T [i, k′] is the minimum number of vulnerable connections in G[Ci] that
remain after deleting exactly k′ vertices in Ci.

Let Ci be a connected component. We now describe how to compute all
component information T [i, k′] with k′ ∈ [0, k] in 2O(

√
y log y) · nO(1) time. Then,

since there are at most n connected components, the statement follows. We first
consider the case where k <

√
y. Note that for each k′ ∈ [0, k], there are at

most
(|Ci|

k′

)
≤ |Ci|k

′
subsets S ⊆ Ci of size k′. Since |Ci| ≤ y and k′ ≤ k <

√
y,

we can compute all component information T [i, k′] in y
√
y · nO(1) = 2O(

√
y log y) ·

nO(1) time. Next, let k ≥ √
y. For this, we first identify a further case, where I

is a yes-instance.

Claim. If k ≥ √
y and there exists a connected component Ci such that |Ci| ≥

3
√
y+1

2 and |Ci ∩A| ≥ √
y, then I is a yes-instance.

8

Proof. Since |Ci ∩ A| ≥ √
y and k ≥ √

y, we may delete
√
y vulnerable vertices

from Ci. This decreases the number of vulnerable connections by at least(√
y

2

)
︸ ︷︷ ︸
=:c1

+
√
y · (|Ci| −

√
y)︸ ︷︷ ︸

=:c2

,

where c1 corresponds to the vulnerable connections between the deleted vertices
and c2 corresponds to vulnerable connections between the deleted vertices and

the remaining vertices in Ci. Then, since |Ci| ≥
3
√
y+1

2 , the number of vulnerable

connections is decreased by at least
(√

y
2

)
+
√
y ·

(
3
√
y+1

2 −√
y
)
= y. Therefore, I

is a yes-instance. ⋄

Due to the previous case distinction, we may immediately return yes if Ci

satisfies the two constraints stated in the claim. For the rest of the proof we

may assume that this is not the case. Consequently, we have |Ci| <
3
√
y+1

2
or |Ci ∩A| < √

y. Consider the following cases.

Case 1: |Ci| <
3
√
y+1

2 . We can then compute the component information
of the connected component Ci by iterating over all subsets S ⊆ Ci and com-

puting the number of vulnerable connections in G[Ci]− S. Since |Ci| <
3
√
y+1

2 ,

there are at most 2
1
2 ·(3

√
y+1) ∈ 2O(

√
y) subsets. Therefore, all component infor-

mation T [i, k′] can be computed in 2O(
√
y log y) · nO(1) time.

Case 2: |Ci ∩ A| <
√
y. Then, since k ≥ √

y, we have T [i, k′] = 0 for
all k′ ≥ |Ci∩A| since one may remove all vulnerable vertices in Ci and afterwards,
no vertex of Ci is part of a vulnerable connection anymore. It remains to compute
component information T [i, k′] with k′ <

√
y by iterating over every S ⊆ Ci of

size k′. Since there are at most |Ci|k
′
such subsets, this can be done in y

√
y ·

nO(1) = 2
√
y log y · nO(1) time.

By the above argumentation, we can compute the component table T of I
in 2

√
y log y · nO(1). Together with Lemma 2, we conclude that CNP-V can be

solved within the claimed running time. ⊓⊔

Hardness for Non-Deletable Vulnerable Vertices. Now, we show that, in contrast
to CNP-V, the CNP-NDV problem is W[1]-hard with respect to the parame-
ter k+y, even if the input graph only contains one vulnerable vertex. We reduce
from Clique which has as input graph G and an integer ℓ, and asks whether G
contains a set of ℓ vertices that are pairwise adjacent. It is well-known that
Clique is W[1]-hard with respect to ℓ [4, 6].

The reduction follows the spirit of a reduction of Fomin et al. [8] that shows
W[1]-hardness of the Cutting at most k Vertices with Terminal problem.
The reduction of Fomin et al. [8] already shows W[1]-hardness of CNP-NDV
with respect to the parameter k, even if |A| = 1. We adapt the reduction to
show hardness with respect to the larger parameter k + y.

Theorem 7 (⋆). CNP-NDV is W[1]-hard with respect to the parameter k+y,
even if |A| = 1 and the input graph has diameter 2.

9

5 Parameters Related to the Vertex Cover Number

First, we obtain an FPT algorithm for the vertex cover number vc for the gen-
eralization CNP-VNDV of both problems via a combination of branching and
dynamic programming.

Theorem 8. CNP-VNDV can be solved in 4vc · nO(1) time.

Proof. Let (G,A,N, k, x) be an instance of CNP-VNDV. The first step of the
algorithm is to compute a minimum vertex cover S of G. Then, we branch into
all possible cases for D := C ∩ (S \N). In other words, we consider all possible
cases for vertex deletions in the vertex cover S. Consider one such possibility.
Let G′ := G − D and let k′ := k − |D|. Observe that S′ := S \ D is a vertex
cover of G′. The question is now whether there is a set C ′ of at most k′ vertices
such that G′ − C ′ has A-vulnerability at most x and such that C ′ contains
no vertices of N . To answer this question, we use dynamic programming over
subsets of S′. More precisely, we fill a dynamic programming table T with entries
of the type T [S∗, k∗] where S∗ is a subset of S′ and k∗ ∈ {1, . . . , k′}. To define
the meaning of a table entry, let Np(S

∗), for S∗ ⊆ S′ denote the neighbors of S∗

that are not neighbors of S′ \ S∗. That is, Np(S
∗) := N(S∗) \N(S′ \ S∗).

A table entry T [S∗, k∗] contains the minimum A-vulnerability of any graph
that is obtained from G′[S∗∪Np(S

∗)] by deleting at most k∗ vertices of Np(S
∗)\

N . The value of T [S′, k′] then is the minimum A-vulnerability of any graph
that can be obtained from G′ by deleting at most k′ vertices from N(S′) \ N .
If this number is smaller than x, then we have a yes-instance; otherwise, the
CNP-VNDV instance has no critical node cut that contains D.

Informally, the recurrence to compute the value of T [S∗, k∗] is to consider
the possibilities of how one connected component created by the critical node
cut may intersect with S∗. To simplify the description somewhat, we will de-
fine T [S∗, k∗] = +∞ for all k∗ < 0. The base cases of the recurrence are the
A-vulnerability values that we get when S∗ ∪ Np(S

∗) remains connected after
the deletion of k∗ vertices. More precisely, let Q[S∗, k∗] contain the minimum
A-vulnerability of any connected graph that is obtained from G′[S∗∪Np(S

∗)] by
deleting at most k∗ vertices of Np(S

∗) \N . This value can be computed greedily
by first deleting as many vertices of (Np(S

∗)\N)∩A as possible and then delet-
ing up to k∗ − |(Np(S

∗) \N) ∩ A| vertices of (Np(S
∗) \N) \ A. Assuming that

the values of Q[S∗, k∗] have been precomputed, we may now compute T [S∗, k∗]
by the recurrence

T [S∗, k∗] = min
S̃⊆S∗

min
k̃≤k∗

Q[S̃, k̃] + T [S∗ \ S̃, k∗ − k̃ − δ(S̃, S∗ \ S̃)]

where δ(S̃, S∗ \ S̃) = |N(S̃) ∩N(S∗ \ S̃) ∩Np(S
∗)| if

– |N(S̃) ∩N(S∗ \ S̃) ∩Np(S
∗)| contains no vertices of N , and

– there are no edges with one endpoint in S̃ and one endpoint in S∗ \ S̃,

10

and δ(S̃, S∗ \ S̃) = k + 1, otherwise. That is, δ counts the number of vertex
deletions that are necessary to disconnect S̃∗ and S∗ \ S̃ in G[S∗ ∪ Np(S

∗)]
if it is possible to disconnect the two sets without deleting vertices in N ∪
S∗. Otherwise, the value of δ is sufficiently large to ensure that the equation
evaluates to ∞. . We omit a formal proof of the correctness and now bound
the running time of the algorithm. A minimum vertex cover S can be computed
in O(2vc(n+m)) time using the standard search tree algorithm. Afterwards, we
consider every subset D of S and fill the table T for the possibility where we
delete exactly the vertex set D from S. Filling the table needs 3vc−|D| ·nO(1) time
since each evaluated term corresponds to a 3-partition of S \D. Thus, the overall
running time is

∑vc
i=0

(
vc
i

)
·3vc−i ·nO(1). Using the binomial theorem, the overall

running time for all possibilites of D is thus 4vc · nO(1) time. ⊓⊔

Next, we show that CNP-V has a polynomial-size kernel for the param-
eter vc + x and that CNP-NDV has a polynomial-size kernel for the parame-
ter vc+k+x. To this end, we first make a simple observation on k and the vertex
cover number of the input graph. Let (G,A, k, x) be an instance of CNP-V or
CNP-NDV. For the rest of the section, we fix a vertex set Z which is a 2-
approximation of the minimum vertex cover of G, that is, |Z| ≤ 2 · vc. Note
that Z can be computed in linear time.

Consider CNP-V. Removing S from G results in an edgeless graph and there-
fore, there are no vulnerable connections in G − S. Thus, we may immediately
return yes if k is at least as big as the size of Z.

Rule 5 Let (G,A, k, x) be an instance of CNP-V. Return yes, if k ≥ 2 · vc.

Recall that we assume that the input instance of CNP-V is reduced with
respect to Rules 1 and 4 and therefore we might assume that there are no isolated
vertices and that |N(v) ∩A| ≤ k +

√
2x for every vertex v. In the following, we

show that we can use these assumptions to bound the size of A in vc+x.

Lemma 4 (⋆). After Rules 1, 4, and 5 have been applied exhaustively, in an
instance (G,A, k, x) of CNP-V, the set A contains less than (2 vc) · ((2 vc) +√
2x+ 1) vertices.

Next, we define a subset B of the vertices. We provide two different definitions
for CNP-V or CNP-NDV: For CNP-V, we define B := A∪Z. For CNP-NDV,
we define B := Z. We call B the base. We then have |B| ≤ 2 · vc when we deal
with an instance of CNP-NDV and by Lemma 4 we have |B| ≤ (2 vc) · ((2 vc)+√
2x + 2) when we deal with an instance of CNP-V. It remains to bound the

size of the set Y := V \B. Note that Y is an independent set because B contains
a vertex cover. Moreover, Y does not contain isolated vertices since the instance
is reduced with respect to Rule 1. In the following, we provide a reduction rule
that in instances of CNP-NDV helps us to handle vulnerable vertices in the
set Y . After the reduction rule has been applied exhaustively, if a vertex v has
a neighborhood of size at least k + x+ 1, all neighbors of v are non-vulnerable.
This rule should only be applied on instances of CNP-NDV.

11

Rule 6 Let (G,A, k, x) be an instance of CNP-NDV with base B. If a vertex v ∈
B has more than k+x neighbors of which one is vulnerable, then do the following

1. If v ̸∈ A, then remove v from the graph and decrease k by one.
2. If v ∈ A, then return no.

Lemma 5 (⋆). For an instance of CNP-NDV, Rule 6 is safe and can be
applied exhaustively in O(n2) time.

This reduction rule can only be applied on instances of CNP-NDV, because,
if v ̸∈ A, we know that we have to add v to a critical node cut. However,
in CNP-V there remain three options: we can add the vulnerable vertex d, or
the vertex v, or both to a critical node cut. Thus, in order to avoid such a decision
for instances of CNP-V, we added all vulnerable vertices to the base B.

In the last reduction rule, we use the Expansion Lemma. The Expansion
Lemma was introduced by Prieto-Rodŕıguez [11]. We use the formulation by
Cygan et al. [4].

Lemma 6 (Expansion Lemma [4]). Let H be a bipartite graph with vertex
bipartition (R, T). For a positive integer q, a set of edges M ⊆ E(H) is called
a q-expansion of C into T , if every vertex of R is incident with exactly q edges
of M and the edges in M are incident with exactly q · |R| vertices in T .

Let q ≥ 1 be a positive integer and H be a bipartite graph with vertex bi-
partition (R, T) such that |T | ≥ q · |R| and there are no isolated vertices in T .
Then, there exist nonempty vertex sets P ⊆ R and Q ⊆ T such that there is
a q-expansion of P into Q and NH(Q) ⊆ P . Furthermore, the sets P and Q can
be found in time polynomial in the size of H.

Since the Expansion Lemma can only be applied to bipartite graphs, in the
next reduction rule we define a bipartite graph that is an induced subgraph
of G. We apply the Expansion Lemma on the graph G′ which contains the
vertices V ′ := V (G) and the set of edges E′ := E(G)\E(G[B]). This is a bipartite
graph, because we do not consider the edges within B and, by definition, Y is
an independent set. Thus, G′ is a bipartite graph with vertex bipartition (B, Y).

Now, we assume that Rules 1 and 6 are exhaustively applied.

Rule 7 If the set Y contains at least (k + x+ 2) · |B| vertices, then, in the
graph G′ that we defined before this reduction rule, compute non-empty vertex
sets P ⊆ B and Q ⊆ Y such that there is a k + x + 2-expansion of P into Q.
Remove an arbitrary vertex v ∈ Q from G.

Lemma 7. For an instance of CNP-V or CNP-NDV, Rule 7 is safe and can
be applied exhaustively in polynomial time.

Proof. Safeness: Let (G,A, k, x) be an instance of CNP-V or CNP-NDV with
base B for which the inequality |Y | ≥ (k + x+ 2) · |B| is correct. Let G′ be the
graph defined before this reduction rule.

We start by showing that we can apply the Expansion Lemma. After Rule 1
has been applied exhaustively, all vertices in Y are adjacent to at least one

12

vertex in B. Thus, all conditions for the Expansion Lemma are fulfilled. From the
Expansion Lemma, we know that we can then find non-empty vertex sets P ⊆ B
and Q ⊆ Y such that there is a k + x+ 2-expansion of P into Q in polynomial
time. Also, the sets fulfill NG(Q) ⊆ P .

For the rest of the proof, let v be an arbitrary but fixed vertex of Q. We
show that (G,A, k, x) is a yes-instance of CNP-V or CNP-NDV, if and only
if (G−{v}, A, k, x) is a yes-instance of the same problem. Observe that v is non-
vulnerable: In an instance ofCNP-V we definedA ⊆ B and thusA∩Y = ∅ and in
particular A∩Q = ∅. In an instance of CNP-NDV, after Rule 6 has been applied
exhaustively, a vertex of B with a neighbor in A∩Y has at most k+x neighbors.
Thus, a described k + x+ 2-expansion of P into Q cannot exist if A ∩Q ̸= ∅.

Because G− {v} is an induced subgraph of G, C \ {v} is a critical node cut
for (G− {v}, A, k, x) if C is a critical node cut for (G,A, k, x).

Conversely, let (G−{v}, A, k, x) be a yes-instance of CNP-V or CNP-NDV
and let C be a corresponding critical node cut. From the Expansion Lemma we
know N(Q) ⊆ P . In (G − {v}) − C there is no vulnerable connection {d, u}
with d ∈ A and u ∈ P : Otherwise, for all w ∈ (NG(u)∩Q)\ ({v}∪C) also {d,w}
is a vulnerable connection in (G−{v})−C. By the definition of P and Q, the size
of (NG(u)∩Q) is at least k+x+1 and thus {u}∪((NG(u)∩Q)\({v}∪C)) contains
more than x vertices. This is a contradiction to C being a critical node cut. By
the same argument, the sets A and P \ C are not connected in (G − {v}) − C.
It follows that in (G − {v}) − C the sets P \ C and Q \ C are in connected
components that do not contain a vulnerable vertex. Since NG(v) ⊆ P , the A-
vulnerability of (G − {v}) − C is the A-vulnerability of G − C and C is also a
critical node cut for (G,A, k, x).

Clearly, the rule can be performed in polynomial time. ⊓⊔

It remains to give a bound on the size of the computed kernel.

Theorem 9 (⋆). An instance (G,A, k, x) of CNP-V or CNP-NDV contains
less than |B| · (k + x + 3) vertices after Rules 1, 6, and 7 have been applied
exhaustively.

Since |B| ≤ |A| + 2 · vc for CNP-V and due to Lemma 4, we obtain the
following.

Corollary 4. For an instance (G,A, k, x) of CNP-V, we can compute a ker-
nelization with less than ((2 vc)((2 vc) +

√
2x+ 1) · (k + x+ 3) vertices in poly-

nomial time.

Since the instance is reduced regarding Rule 5, we obtain the following.

Corollary 5. For an instance (G,A, k, x) of CNP-V, we can compute a ker-
nelization with less than ((2 vc)((2 vc)+

√
2x+1) · (2 vc+x+3) vertices in poly-

nomial time.

Since |B| ≤ 2 · vc for CNP-NDV, we obtain the following.

Corollary 6. For an instance (G,A, k, x) of CNP-NDV, we can compute a
kernelization with less than 2 · vc · (k + x+ 3) vertices in polynomial time.

13

6 Conclusion

We introduced two new critical node detection problems problems Critical
Node Problem with Vulnerable Nodes (CNP-V) and Critical Node
Problem with Non-Deletable Vulnerable Nodes (CNP-NDV), that
take into accout that we are only interested in the number of connected pairs for
a specified set of vulnerable vertices. We performed a parameterized complexity
analysis for some of the most natural parameters and their combinations. We
left open, however, the complexity of a number of natural parameterizations.
For example, is CNP-V FPT with respect to |A|? At the moment we only have
an XP-algorithm for A and an FPT algorithm for |A|+x. Moreover, does either
problem admit a polynomial kernel for the vertex cover number vc?

References

1. Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected
graphs: Complexity results and polynomial algorithms for the case of bounded
treewidth. Discrete Applied Mathematics 161(16-17), 2349–2360 (2013)

2. Agrawal, A., Lokshtanov, D., Mouawad, A.E.: Critical node cut parameterized by
treewidth and solution size is W[1]-hard. In: Proceedings of the 43rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’17). Lecture
Notes in Computer Science, vol. 10520, pp. 32–44. Springer (2017)

3. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting
critical nodes in sparse graphs. Computers & Operations Research 36(7), 2193–
2200 (2009)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

5. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem
over trees. Computers & Operations Research 38(12), 1766–1774 (2011)

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer (2013)

7. Enright, J.A., Meeks, K.: Deleting edges to restrict the size of an epidemic: A new
application for treewidth. Algorithmica 80(6), 1857–1889 (2018)

8. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity
of cutting a few vertices from a graph. In: Proceedings of the 38th International
Symposium on Mathematical Foundations of Computer Science, (MFCS ’13). pp.
421–432. Springer (2013)

9. Hermelin, D., Kaspi, M., Komusiewicz, C., Navon, B.: Parameterized complexity
of critical node cuts. Theoretical Computer Science 651, 62–75 (2016)

10. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in
networks: A survey. Computer Science Review 28, 92–117 (2018)

11. Prieto-Rodŕıguez, E.: Systematic kernelization in FPT algorithm design. Ph.D.
thesis, The University of Newcastle (2005)

12. Schestag, J.: Critical Node Problem with Vulnerable Vertices. Master’s thesis,
Philipps-Universität Marburg (2021)

13. Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links and
nodes for assessing network vulnerability. IEEE/ACM Transactions on Networking
21(3), 963–973 (2013)

14

	On Critical Node Problems with Vulnerable Vertices

