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Abstract
Edge-colored graphs can be used to model various network structures in net-
work security analysis. One of the decision problems which is important in
the analysis of edge-colored graphs in this scenario is the Colored (s, t)-
Cut problem, de�ned as follows. Given an edge-colored graph, two vertices s
and t, and an integer k, we ask if there is a size-k set of colors S, such that
the removal of all edges colored with a color of S disconnects s from t. Such
a set S is called a colored (s, t)-cut. In this work, we further investigate the
parameterized complexity of Colored (s, t)-Cut for some structural graph
parameters. Afterwards, we generalize Colored (s, t)-Cut to defender-
attacker games where a defender and an attacker alternatively choose un-
chosen colors. The edges colored in the colors chosen by the attacker, are
removed from the graph, whereas, the colors chosen by the defender cannot
be chosen by the attacker anymore. The attacker wins if he can complete
a colored (s, t)-cut. We show that for a constant number of alternations
between the agents, these games are complete for complexity classes of dif-
ferent levels of the polynomial-time hierarchy, whereas, the games become
PSPACE-complete if the number of alternations is unbounded. We then in-
vestigate these games from a parameterized complexity point of view. For
example we show that all these games admit polynomial kernel when pa-
rameterized by both the number of colors in the instance and the vertex
cover number. Finally, we study the classic complexity of these games on
restricted instances. For example, we show that on some restricted instances
on which Colored (s, t)-Cut is polynomial-time-solvable, none of the in-
troduced games can be solved in polynomial time, unless P = NP.

Zusammenfassung
Kantengefärbte Graphen eignen sich zur Modellierung verschiedenster Netz-
werkstrukturen im Rahmen von Netzwerksicherheitsanalysen. Ein wichtiges
Entscheidungsproblem im auf kantengefärbter Graphen in diesem Kontext ist
Colored (s, t)-Cut de�niert wie folgt. Gegeben sind ein kantengefärbter
Graph, zwei Knoten s und t und eine natürliche Zahl k und wir wollen
wissen, ob es eine k-elementige Farbmenge gibt, sodass das Entfernen aller
Kanten, die in einer Farbe aus S gefärbt sind, s von t trennt. Eine solche
Menge S wird colored (s, t)-cut genannt. In dieser Arbeit führen wir die
parametrisierte Analyse von Colored (s, t)-Cut für strukturelle Graph-
parameter fort. Anschlieÿend verallgemeinern wir Colored (s, t)-Cut zu
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Verteidiger-Angreifer-Spielen, bei denen ein Verteidiger und ein Angreifer
abwechselnd bisher noch ungewählte Farben wählen. Kanten, die in den
Farben gefärbt sind, die der Angreifer wählt, werden aus dem Graphen ent-
fernt, wohingegen die Farben, die der Verteidiger wählt, nicht mehr vom
Angreifer gewählt werden können. Der Angreifer gewinnt das Spiel, wenn
er einen colored (s, t)-cut wählt. Wir zeigen, dass für eine konstante An-
zahl an Wechseln zwischen den beiden Agenten, die de�nierten Spiele für
Komplexitätsklassen unterschiedlicher Stufen der Polynomialzeit-Hierarchie
vollständig sind. Wenn die Anzahl der Wechsel nicht konstant ist, sind die
de�nerten Spiele hingegen PSPACE-vollständig. Anschlieÿend analysieren
wir diese Spiele aus Sicht der parametrisierten Komplexitätstheorie. Zum
Beispiel zeigen wir, dass all diese Probleme einen polynomiellen Kern haben,
wenn man sie sowohl mit der Anzahl der Farben als auch der Vertex-Cover-
Zahl parametrisiert. Abschlieÿend untersuchen wir die klassische Komplex-
ität aller Spiele auf eingeschränkten Instanzen. Zum Beispiel zeigen wir,
dass auf einigen eingeschränkten Instanzen auf denen Colored (s, t)-Cut
polynomialzeitlösbar ist, keines der Spiele polynomialzeitlösbar ist, es sei
denn P = NP.

IV



Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 6

2.1 Set and Graph Notation . . . . . . . . . . . . . . . . . . . . . 6
2.2 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Graph Properties and Colored Graphs . . . . . . . . . . . . . 7
2.4 Colored Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Clauses and Satis�ability . . . . . . . . . . . . . . . . . . . . . 9
2.6 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Parameterized Complexity Theory . . . . . . . . . . . . . . . . 11
2.8 The Standard Reduction from Hitting Set . . . . . . . . . . 13

3 Structural Graph Parameters 14

3.1 Hardness for Degree-Based Parameterizations . . . . . . . . . 15
3.2 FPT-Algorithms for Bounded Number of (s, t)-Paths . . . . . 17

4 Competitive Colored Cut Games 21

4.1 Polynomial-time Hierarchy Versions . . . . . . . . . . . . . . . 21
4.2 PSPACE Version . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Parameterizations for Colored Cut Games 40

5.1 Parameterization by the Full Budget B(I) . . . . . . . . . . . 40
5.2 Parameterization by All Budgets Except One . . . . . . . . . 43
5.3 Parameterization by the Number of Unchosen Colors . . . . . 46
5.4 Polynomial Kernels for Parameters Larger than the Number

of Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Restricted Instances of Colored Cut Games 52

6.1 Computational Complexity on Graphs with Restricted Degree 52
6.2 Restricted Colored Graphs . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion 67

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



1 Introduction

Due to the ever-growing impact of computer and communication networks,
analyzing their robustness becomes inevitable [33, 34]. Edge-colored graphs
are a useful tool to model di�erent kinds of network structures for network-
security analysis. For example in the context of measuring the robustness of
communication, transportation, and computer networks, edge-colored graphs
where studied extensively over the last decades [5, 6, 8, 10, 11, 19, 25�27, 29,
38�40]. One of the decision problems which can be used to measure the
robustness of such networks is Colored (s, t)-Cut, de�ned as follows.

Colored (s, t)-Cut [10]
Input: An undirected graph G = (V,E), two vertices s, t ∈ V ,
a set of colors C, an edge coloring ` : E → C, and a positive
integer k.
Question: Is there a subset of colors S ⊆ C with |S| ≤ k such
that s and t are not in the same connected component in G′ =
(V,E \ ES), where ES := {e ∈ E | `(e) ∈ S}?

In other words, we ask if there is a size-k set of colors S such that the removal
of all edges colored in a color of S disconnects s from t. Such a set S is called
a colored (s, t)-cut.

As far as we are aware, Colored (s, t)-Cut was �rst introduced by
Jha et. al. in the context of directed attack graphs [26, 35]. In such an
attack graph, an attacker starts in a state s of the network and aims to
reach a speci�c state t for example by using di�erent security holes. These
security holes are modeled by the colors of the graph and the attacker is
able to traverse an edge from u to v in color α by using the security hole α.
The state s can be seen as the default state, where the network operates
as intended and the state t can be seen as a state where, for example, the
attacker gained administrative rights for the network. Hence, to prevent
an attacker from reaching t, we have to �x at least one security hole for
every (s, t)-path in the attack graph.

Later, Colored (s, t)-Cut was independently rediscovered on undi-
rected graphs by Coudert et. al. [10] and Wang et. al. [39]. In these works,
Colored (s, t)-Cut was used to model failures of speci�c edges in a net-
work. In contrast to the work on attack graphs of Jha et. al. [26,35]. Coudert
et. al. [10] and Wang et. al. [39] do not use an abstract graph model but the
real communication network itself. In this scenario, one can understand the
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color of an edge as a condition under which this link of the network fails. For
example, all modems of the same brand may be attacked simultaneously by
a computer virus spreading the network. To analyze the robustness against
multiple simultaneous faults of the communication between two speci�c com-
puter endpoints s and t in the network, one aims to solve Colored (s, t)-
Cut. Now, a colored (s, t)-cut S can be interpreted a set of attacks S, such
that the communication between s and t is impossible if all attacks in S
are applied simultaneously. Throughout this work, we follow this interpreta-
tion and interpret Colored (s, t)-Cut as the goal of an attacker aiming to
destroy a network.

Another important problem for network security analysis, which is closely
related to Colored (s, t)-Cut, is the Colored Path problem.

Colored Path [40]
Input: An undirected graph G = (V,E), two vertices s, t ∈ V ,
a set of colors C, an edge coloring ` : E → C, and a positive
integer k.
Question: Is there a subset of colors S ⊆ C with |S| ≤ k such
that there is an (s, t)-path P in G with `(E(P )) ⊆ S?

In other words, we ask if there is a size-k set of colors S such that s and t
are connected in the graph consisting of the edges colored in S and their
endpoints. Hence, Colored Path can be seen as the perspective of a
network security analyst who tries to secure communication in his network
against multiple simultaneous failures or attacks.

1.1 Related Work

Both Colored (s, t)-Cut and Colored Path are NP-complete [10, 40].
Thus, it is unlikely that these problems can be solved in polynomial time.
Hence, Colored (s, t)-Cut and Colored Path where investigated ex-
tensively from a classic complexity theory and from a parameterized com-
plexity theory point of view to obtain e�cient algorithm for restricted in-
stances [10, 11,19,26,27,35,38�40,42].

The NP-hardness of Colored (s, t)-Cut was independently shown via
a polynomial-time reduction from the Hitting Set problem [10, 26, 35].
This reduction will be recalled in Section 2.8, since many other hardness
results for Colored (s, t)-Cut can also be obtained from this reduction.
Furthermore, it was shown that Colored (s, t)-Cut is NP-complete even
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on bipartite planar graphs with a vertex cover number of two, that is, on
graphs where every edge is incident with either s or t, and on complete
graphs [38,39]. Hence, most graph structures alone do not give helpful insight
on how to solve Colored (s, t)-Cut e�ciently. A notable exception is that
Colored (s, t)-Cut can be solved in polynomial time on graphs with a
constant degree ∆ [10].

When analyzing the structure of the colors of the instance, one can obtain
more positive results. Colored (s, t)-Cut can be solved in polynomial time
if the span of each color is at most one, that is, if for every color α ∈ C,
the subgraph consisting of the edges colored in α and their endpoint, is
connected [10]. Clearly, this is a generalization of uncolored graphs, on which
Colored (s, t)-Cut corresponds to the polynomial-time-solvableMin (s, t)-
Cut problem [17,22]. In contrast, Colored (s, t)-Cut is already NP-hard
if every color is only assigned to two edges each [10] and can be solved in
polynomial time if every color appears on at most two (s, t)-paths [38].

A trivialFPT-algorithm which runs in time 2|C|nO(1) for Colored (s, t)-
Cut can be obtained by checking if S is a colored (s, t)-cut, for every subset
of colors S ⊆ C [10]. This algorithm is called an FPT-algorithms for the
parameter |C| because the exponential part of the running time depends
only on |C|. This algorithm was improved to even smaller parameters like
the number of colors cspan with span at least two [11, 30, 38] or the number
of colors cpath which appear on at least three (s, t)-paths [30].

Moreover, Colored (s, t)-Cut admits an FPT-algorithm when param-
eterized by the number p of (s, t)-paths of the instance [27] or both the
size of the solution k and the length of the longest (s, t)-path [42]. For all
those parameterizations, Colored (s, t)-Cut does not admit polynomial
kernels [27, 38, 42]. In other words, one is not able to �nd polynomial-time
data reduction rules whose application yields an equivalent instance which
has a size that is upper-bounded by a polyonmial of the previous parameters.
Furthermore, Colored (s, t)-Cut is W[2]-hard when parameterized by the
size of the solution k even on graphs with pathwidth three [19]. Thus, Col-
ored (s, t)-Cutparameterized by k presumably admits no FPT-algorithm.

1.2 Our Results

In Section 2, we give the basic notation and de�nitions we use throughout
this work as well as the standard reduction from Hitting Set to Col-
ored (s, t)-Cut.
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In Section 3, we further analyze the parameterized complexity of Col-
ored (s, t)-Cut parameterized by structural graph parameters. We show
W[2]-hardness when parameterized by both the maximum degree ∆ and
the edge deletion distance to a maximum degree of three ξ3. Thus, Col-
ored (s, t)-Cut parameterized by both ∆ and ξ3 presumably admits no
FPT-algorithm. In contrast, we show that parameterization by either the
edge deletion distance to a maximum degree of two ξ2 or the feedback edge
set number fes lead to FPT-algorithms.

In Section 4.1, we introduce competitive defender-attacker games by gen-
eralizing Colored (s, t)-Cut. These games have the following rules: a de-
fender and an attacker alternating choose sets of unchosen colors each turn.
Both players are assigned a budget each turn and the size of the set of colors
they choose must equal this budget. The attacker wins if the union of all sets
of colors he chose is a colored (s, t)-cut, whereas, the defender wins if he can
prevent this by choosing sets of colors since the attacker may not choose these
colors in subsequent turns. These games can be analyzed to �nd strategies
to protect important layers in multi-layer networks before an attacker is able
to destroy them. We assume that the game where every agent has exactly
one turn and where the defender starts, might be particularly interesting in
practice.

We show that for a constant number of alternations between the agents,
these games are complete for complexity classes of di�erent levels of the
polynomial-time hierarchy. Thus, the more alternations between the agents,
the more complex it becomes to determine which player has a winning start-
egy. For a non-constant number of alternations between the agents, we intro-
duce in Section 4.2 the games Colored (s, t)-Cut Vulnerability Game
and Colored (s, t)-Cut Robustness Game and show that both problems
are PSPACE-complete even if every agent chooses only one color in each turn.
In this restricted case, these games can be seen as Shannon Switching Games
where one player tries to destroy all (s, t)-paths, whereas, the other player
tries to secure at least one (s, t)-path [18]. Throughout this work, we will
refer to the collection of all these introduced games as colored cut games.

In Section 5, we analyze the parameterized complexity of the colored cut
games in the hope to �nd e�cient algorithms for them if speci�c parameters
are small. First, we show that parameterization by the most natural param-
eters related to the budgets of the agents do not lead to FPT-algorithms.
Second, we prove polynomial kernels for all these games when parameterized
by both the number of colors |C| and the vertex cover number of the input
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graph. Moreover, we generalize this kernelization algorithm by replacing the
vertex cover number with an even smaller parameter.

In Section 6, we analyze the computational complexity of the colored
cut games on restricted instances to understand what makes the games dif-
�cult. First, we show hardness for all these games on graphs with degree
constraints such as complete and subcubic graph. Second, we show that
none of the games can be solved in polynomial time on uncolored graphs. In
contrast, Colored (s, t)-Cut can be solved in polynomial time on uncolored
graphs [17,22].
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2 Preliminaries

In this section we introduce the basic notation and de�nitions we use through-
out this work. First, we give basic graph and set notation. Afterwards, we
give an overview on classic complexity theory and parameterized complex-
ity theory. Finally, we recall the standard reduction from Hitting Set to
Colored (s, t)-Cut.

2.1 Set and Graph Notation

For a �nite set X, we denote with P(X) := {A | A ⊆ X} the power set
of X, that is, the set of all subsets of X. Let 0 ≤ k ≤ |X|, we de�ne

(
X
k

)
:=

{S ⊆ X | |S| = k}. We say that (Y1, . . . , Yr) is a partition of X if Yj ∩ Yk =
∅ for all 1 ≤ j < k ≤ r, and

⋃r
j=1 Yj = X. Moreover, we generalize a

function ` : A → B to sets with `(A′) := {`(a) | a ∈ A′} for all A′ ⊆ A.
Furthermore, we de�ne the inverse function for sets `−1 : P(B) → P(A)
with `−1(B′) := {a ∈ A | `(a) ∈ B′} for every set B′ ⊆ B.

A (simple undirected) graph G = (V,E) consists of a �nite set of ver-
tices V (G) := V and a set of edges E(G) := E ⊆

(
V
2

)
and we denote n := |V |

and m := |E|. Let V ′ ⊆ V , then we denote with G[V ′] := (V ′, E ∩
(
V ′

2

)
) the

induced subgraph of V ′ and with G− V ′ := G[V \ V ′] the induced subgraph
of G obtained by deleting the vertices of V ′ and their incident edges. Anal-
ogously, we denote for some E ′ ⊆ E, the graph obtained by deleting the
edges in E ′ with G − E ′ := (V,E \ E ′). For a vertex v ∈ V we denote
with NG(v) := {w ∈ V | {v, w} ∈ E} the neighborhood of v in G. Further-
more, we denote with degG(v) := |NG(v)| the degree of v in G, that is, the
size of the neighborhood of v. If G is clear from the context, we may also
write N(v) and deg(v) instead. The degree ∆ of G is de�ned as the maximum
degree of all vertices of G, that is, ∆(G) := max{degG(v) | v ∈ V }.

2.2 Paths

In a graph G = (V,E), we call a sequence of vertices P = (v1, . . . , vk) ∈
V k, k ≥ 1, a path of length k in G if {vi, vi+1} ∈ E for all 1 ≤ i < k. If vi 6= vj
for all 1 ≤ i < j ≤ k, then we call P a vertex-simple path. If not mentioned
otherwise, we only consider vertex-simple paths. Furthermore, we say that P
is a (v1, vk)-path. Moreover, we denote with V (P ) := {vi | 1 ≤ i ≤ k} the
vertices of P and with E(P ) := {{vi, vi+1} | 1 ≤ i < k} the edges of P .
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Given two paths P1 = (v1, . . . , vk) and P2 = (w1, . . . , wr) in G, we de�ne the
concatenation P1 · P2 := (v1, . . . , vk, w1, . . . , wr). Note that P1 · P2 is a path
in G if {vk, w1} ∈ E. Furthermore, if vk = w1 we de�ne the merge of P1

and P2 as P1 ( P2 := (v1, . . . , vk = w1, . . . , wr). For a path P = (v1, . . . , vr)

we denote with
←−
P := (vr, . . . , v1) the reverse path of P .

Proposition 2.1. Given a non-vertex-simple (a, b)-path P in G, then there
is a vertex-simple (a, b)-path P̃ in G with E(P̃ ) ⊆ E(P ).

This result is a well known fact, but since we may refer to it multiple
times throughout this work, we give the proof for the sake of completeness.

Proof. Let P = (v1, . . . , vr) be a non-vertex-simple (a, b)-path in G. Then
there is some vx such that vx = vy for 1 ≤ x < y ≤ r. By de�nition, P ′ =
(v1, . . . , vx) ( (vy, . . . , vr) is an (a, b)-path in G and E(P ′) ⊆ E(P ). This
can be done at most r times since the length of P ′ is less than the length of P .
Hence, we get an (a, b)-path P̃ in at most r iterations such that E(P̃ ) ⊆ E(P )
and P̃ is vertex-simple.

2.3 Graph Properties and Colored Graphs

For a graph G = (V,E), a subset V ′ ⊆ V is called an independent set if G[V ′]
is an edgeless graph, that is, {u, v} 6∈ E for all u, v ∈ V ′. A subset V ′ ⊆ V is
called a connected component if V ′ 6= ∅ is a maximal set of vertices such that
there is at least one (u, v)-path in G for pairwise distinct u, v ∈ V ′. Next,
we will de�ne some graph classes that will be used throughout this work. A
graph G = (V,E) is connected, if G has exactly one connected component;
in other words, for every u, v ∈ V there is at least one (u, v)-path in G. Note
that in a connected graph, it holds that m ≥ n− 1. A graph G = (V,E) is a
tree, if G is connected and contains exactly one (u, v)-path for every u, v ∈ V .
Note that in a tree, it holds that m = n− 1. A graph G = (V,E) is a forest,
if G is a disjoint union of trees, that is, G contains at most one (u, v)-path for
every u, v ∈ V . A graph G = (V,E) is bipartite, if there is a partition (V1, V2)
of V such that G1 := G[V1] and G2 := G[V2] are both edgeless graphs. A
graph G = (V,E) is planar, if there can be drawn in the Euclidean plane
such that no two edges intersect each other. A graph G = (V,E) is complete,
if E =

(
V
2

)
, in other words, for all pairwise distinct u, v ∈ V there is an

edge {u, v} ∈ E. A graph G = (V,E) is cubic, if deg(v) = 3 for all v ∈ V
and subcubic, if deg(v) ≤ 3 for all v ∈ V .
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An edge colored graph with terminals or short colored graph is a 5-tupleH =
(G = (V,E), s, t, C, `) where G is an undirected graph, s ∈ V and t ∈ V are
the terminals, C is a set of colors and ` : E → C is an edge coloring. We
denote with |H| := |G| + |C| + |`| = |V | + 2|E| + |C| the size of a colored
graph.

2.4 Colored Cuts

For a graph G = (V,E) and two vertices s ∈ V and t ∈ V , we call E ′ ⊆ E
an (s, t)-(edge-)cut in G, if s and t are in di�erent connected components
in G−E ′. Let H = (G, s, t, C, `) be a colored graph. We say that C̃ ⊆ C is a
colored (s, t)-cut in G if for every (s, t)-path P in G, it holds that `(E(P ))∩
C̃ 6= ∅, in other words, `−1(C̃) is an uncolored (s, t)-cut in G. We say
that C̃ ⊆ C is a colored (s, t)-connector in G if there is an (s, t)-path P in G
with `(E(P )) ⊆ C̃. In the following we denote for a colored graph H =
(G, s, t, C, `) with C(H) := {`(E(P )) | P is an (s, t)-path in G} the set of
colors of vertex-simple (s, t)-paths in G. Note that C̃ ⊆ C is a colored (s, t)-
cut in G if and only if C̃ ∩ C ′ 6= ∅ for all C ′ ∈ C(H). Moreover, C̃ is a
colored (s, t)-connector in G if and only if there is C ′ ∈ C(H) such that C ′ ⊆
C̃. Furthermore, if a colored graph H is part of a tuple I, we also use the
notation C(I) := C(H).

De�nition 2.2. We call two colored graphs H = (G, s, t, C, `) and H′ =
(G′, s′, t′, C, `′) colored-cut-equivalent if for all L1 ∈ C(H) ∪ C(H′) there ex-
ists L2 ∈ C(H) ∩ C(H′) such that L2 ⊆ L1.

In other words, H and H′ are colored-cut-equivalent if for every (s, t)-
path P in G there is an (s′, t′)-path P ′ in G′ such that `(E(P )) ⊆ `′(E(P ′))
and vice versa. Thus, intuitively, only the color sets in C(H) ∩ C(H′) are
relevant for colored (s, t)-cuts.

Proposition 2.3. Given two colored-cut-equivalent graphs H = (G, s, t, C, `)
and H′ = (G′, s′, t′, C ′, `′) and a set C̃ ⊆ C, then C̃ is a colored (s, t)-cut in G
if and only if C̃ is a colored (s′, t′)-cut in G′.

Proof. Due to symmetry, we only show one direction. Let C̃ be a col-
ored (s, t)-cut in G, then C̃ ∩ LH 6= ∅ for all LH ∈ C(H) ∩ C(H′). We
show C̃ ∩ LH′ 6= ∅ for all LH′ ∈ C(H′). Let LH′ ∈ C(H′), then there is
some LH ∈ C(H) ∩ C(H′) with LH ⊆ LH′ since H and H′ are colored-cut-
equivalent. Hence, LH′∩ C̃ ⊇ LH∩ C̃ 6= ∅ and therefore C̃ is a colored (s′, t′)-
cut in G′.
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2.5 Clauses and Satis�ability

For a set of variables Z, we de�ne the set of literals L(Z) := Z∪{¬z | z ∈ Z}.
A set of literals Z̃ ⊆ L(Z) is an assignment of Z if |{z,¬z} ∩ Z̃| = 1 for
all z ∈ Z. For a subset X ⊆ Z of variables we denote with τZ(X) :=
X ∪ {¬z | z ∈ Z \ X}, the assignment of Z where all variables of X occur
positively and all variables of Z \X occur negatively. For a set of variables Z,
a (CNF-)clause φ ⊆ L(Z) is satis�ed by an assignment Z̃ of Z if φ ∩ Z̃ 6= ∅,
and we write Z̃ |= φ. Analogously, a set Φ ⊆ P(L(Z)) of (CNF-)clauses is
satis�ed by Z̃ if Z̃ |= φ for all φ ∈ Φ, and we write Z̃ |= Φ. We say that
a set Φ of clauses is in 3-CNF, if Φ ⊆

(L(Z)
3

)
, that is, every clause φ ∈ Φ

contained exactly three literals.

2.6 Complexity Theory

For a general overview about computational complexity theory we refer to [2,
23,32].

We use the big-O notation to give worst-case analysis for running time
and space e�ciency for the algorithms we describe in this work. Let f, g :
N→ R be functions. We say that g is an asymptotic upper bound for f and
write f ∈ O(g) if there exists c > 0 and n0 ∈ N such that for all n ≥ n0

it holds that f(n) ≤ c · g(n). If f(n) ∈ O(nc) for some constant c, we say
that f is polynomial.

A decision problem is a language L ⊆ {0, 1}∗. We say that an in-
stance I ∈ {0, 1}∗ is a yes-instance of L if I ∈ L and a no-instance of L
otherwise. A polynomial-time (many-one) reduction from a decision prob-
lem A to a decision problem B is an algorithm running in polynomial time
and transforming an instance IA of A into an instance IB of B such that IA
and IB are equivalent. We write A ≤P B when there is a polynomial-time re-
duction from A to B. A complexity class L is a set of decision problems. For
the complexity classes we will analyze in this work, we say that a problem A
is L-hard if for every L ∈ L there is a polynomial-time reduction from L
to A. Since the relation ≤P is transitive, it is su�cient to show that L ≤P A
for some L-hard problem L. If A ∈ L and L-hard, then we say that A is
L-complete.

For a decision problem L a veri�er V is an algorithm such that for all w ∈
{0, 1}∗ it holds that w ∈ L if and only if there is a certi�cate c ∈ {0, 1}p(|w|)
for some polynomial function p such that V accepts the input (w, c). Using
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the notion of veri�er, one may de�ne the hierarchy of complexity classes ΣP
i

for all i ≥ 0, inductively. The class ΣP
0 := P is the set of all problems

that can be solved in polynomial time and for all i ≥ 0 the class ΣP
i+1 con-

tains exactly the problems that have a veri�er V which runs in polynomial
time and are allowed to use an oracle for a ΣP

i -complete problem. That
is, V can use an algorithm to solve a ΣP

i -complete problem and runs in poly-
nomial time where the running time is assumed to be O(1) of an oracle
query. Similarly, the complexity classes ΠP

i := {{0, 1}∗ \ L | L ∈ ΣP
i } for

all i ≥ 0 is the set of all problems L such that the complement problem L
is contained in ΣP

i . Note that it is also possible to show that a problem L
is in ΣP

i+1 by giving a veri�er that uses an oracle for a ΠP
i -complete prob-

lem. By de�nition, ΣP
i ⊆ ΣP

i+1,Π
P
i ⊆ ΣP

i+1,Σ
P
i ⊆ ΠP

i+1, and ΠP
i ⊆ ΠP

i+1

for all i ≥ 0 and it is widely assumed that these are proper inclusions [2].
Canonical ΣP

2i+1-complete and ΠP
2i-complete problems are QSAT2i+1-3-CNF

and QSAT2i-3-CNF, respectively [36].

QSAT2i+1-3-CNF
Input: A set Φ of clauses in 3-CNF over the variables Z and a
partition (Y1, X2, . . . , Xi+1, Yi+1) of Z.
Question: Is it true that ∃Ỹ1 ⊆ Y1.∀X̃2 ⊆ X2. · · · .∀X̃i+1 ⊆
Xi+1.∃Ỹi+1 ⊆ Yi+1 : τZ(Ỹ1 ∪ X̃2 ∪ · · · ∪ X̃i+1 ∪ Ỹi+1) |= Φ?

QSAT2i-3-CNF
Input: A set Φ of clauses in 3-CNF over the variables Z and a
partition (X1, Y1, . . . , Xi, Yi) of Z.
Question: Is it true that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆
Yi : τZ(X̃1 ∪ Ỹ1 ∪ · · · ∪ X̃i ∪ Ỹi) |= Φ?

These classes build the polynomial-time hierarchy [36]. We will use the more
common names NP for ΣP

1 and coNP for ΠP
1 .

The complexity class PSPACE contains exactly the decision problems
that can be solved with polynomial space. For all i ≥ 0, it holds that ΣP

i ⊆
PSPACE and ΠP

i ⊆ PSPACE and, again, it is widely assumed that the
containment is proper for all i ≥ 0 [2]. A canonical PSPACE-complete
problem is QSAT-3-CNF [36, 37].

QSAT-3-CNF
Input: A set Φ of clauses in 3-CNF over the variables Z =
{xj, yj | 1 ≤ j ≤ i} for some i ∈ N.
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Question: Is it true that ∀x̃1 ∈ {x1,¬x1}.∃ỹ1 ∈ {y1,¬y1}. · · · .∀x̃i ∈
{xi,¬xi}.∃ỹi ∈ {yi,¬yi} : {x̃j, ỹj | 1 ≤ j ≤ i} |= Φ?

2.7 Parameterized Complexity Theory

For more information about parameterized complexity theory we refer to [12,
15,20,31].

A parameterized problem is L ⊆ {0, 1}∗ ×N and an instance of a param-
eterized problem (x, k) consists of an instance x of a decision problem and a
parameter k.

A parameterized complexity class L is a set of parameterized problems.
We call a parameterized problem L �xed-parameter tractable if there is a
computable function f such that for every instance (x, k) ∈ {0, 1}∗ × N it
can be determined in f(k) · |x|O(1) time if (x, k) ∈ L. The class FPT contains
exactly the parameterized problems that are �xed-parameter tractable. Fur-
thermore, we call a parameterized problem L slicewise polynomial if there is
a computable function f such that for every instance (x, k) ∈ {0, 1}∗ ×N it
can be determined in |x|f(k) time if (x, k) ∈ L. The class XP contains exactly
the parameterized problems that are slicewise polynomial. Clearly, FPT is a
subset of XP and it is widely assumed to be a proper subset.

Similar to classic complexity theory, we say that a parameterized reduc-
tion from a parameterized problem L1 to a parameterized problem L2 is
an algorithm that transforms an instance I1 = (x1, k1) of L1 into an in-
stance I2 = (x2, k2) of L2 and runs in f(k1) · |x1|O(1) time such that I1 ∈ L1

if and only if I2 ∈ L2 and k2 ≤ g(k1) for some computable functions f and g.
Note that the parameter k2 of I2 only depends on k1. Moreover, if g is a
polynomial function, then we also call the reduction a polynomial parameter
transformation.

A reduction to a problem kernel for a parameterized problem L is a param-
eterized reduction from L to L that runs in polynomial time and transforms
any instance (x1, k1) of L into an instance (x2, k2) of L such that k2 ≤ k1

and |x2| ≤ h(k1) for some computable function h. In other words, we are able
to �nd an equivalent instance (x2, k2) of L in polynomial time such that the
size of (x2, k2) is upper-bounded by a computable function h only depending
on k1. Moreover, we call h the size of the kernel. A parameterized problem L
admits a kernel if and only if L admits an FPT-algorithm [31]. Clearly, one
might be interested in �nding kernels of small size for a given L ∈ FPT.
But for some parameterized problems one can show that it is not possible

11



to �nd a kernel of polynomial size, unless NP ⊆ coNP/poly [12], which is
widely assumed to be false. If L1 ∈ FPT does not admit a polynomial kernel,
unless NP ⊆ coNP/poly, the unparameterized version of L1 is NP-hard, and
there is a polynomial parameter transformation to another parameterized
problem L2 where the unparameterized version of L2 is contained in NP,
then L2 does also not admit a polynomial kernel, unless NP ⊆ coNP/poly.

The classes W[t], t ≥ 0, build the W-hierarchy, that is, W[i] ⊆ W[i + 1]
for all i ≥ 0 and it is widely assumed that these are proper inclusions [15].
Moreover, it holds that FPT = W[0] ⊆ W[1] ⊆ · · · ⊆ XP. Hence, we can
show that a parameterized problem L is �xed-parameter intractable, unless
FPT = W[i], if L is W[i]-hard for some i ≥ 1, that is, for every L′ ∈ W[i],
there is a parameterized reduction from L′ to L. Again, it is su�cient to
show that there is a parameterized reduction from L′ to L for some W[i]-hard
problem. Furthermore, we say that a parameterized problem L is contained
in coW[t], t ≥ 0, if ({0, 1}∗ × N) \ L ∈ W[t]. Similar, L is coW[t]-hard
if ({0, 1}∗×N)\L is W[t]-hard. A known W[1]-hard problem is Independent
Set parameterized by the size of the solution k [15].

Independent Set
Input: A graph G = (V,E) and a positive integer k.
Question: Is there a subset S ⊆ V with |S| ≥ k such that {u, v} 6∈
E for all u, v ∈ S?

A known W[2]-hard problem is Hitting Set parameterized by the size of
the solution k [15].

Hitting Set
Input: A hypergraph G = (U ,F) where U is a �nite set called
the universe, F ⊆ P(U) is a set of hyperedges, and a positive
integer k.
Question: Is there a subset S ⊆ U with |S| ≤ k such that S∩F 6=
∅ for all F ∈ F?

In contrast, the special case of Hitting Set where every hyperedge has size
exactly two, called Vertex Cover, is in FPT when parameterized by k.

Vertex Cover
Input: A graph G = (V,E) and a positive integer k.
Question: Is there a subset S ⊆ V with |S| ≤ k such that S∩e 6=
∅ for all e ∈ E?
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2.8 The Standard Reduction from Hitting Set

Next, we recall the reduction from Hitting Set to Colored (s, t)-Cut
[10, 26, 35].

Lemma 2.4. Colored (s, t)-Cut is NP-complete.

Proof. We can verify in polynomial time that a set C̃ ⊆ C of size at most k
is a colored (s, t)-cut in G by checking if s and t are in di�erent connected
components in G− `−1(C̃). Therefore, Colored (s, t)-Cut is in NP.

Given a Hitting Set instance (G = (U ,F), k), we describe how to
construct an equivalent instance I := (G = (V,E), s, t, C, `, k) of Col-
ored (s, t)-Cut in polynomial time.

We can assume without loss of generality that |F | ≥ 2 for all F ∈ F since
an empty hyperedge F ∈ F leads to a no-instance and there is exactly one
way to cover a hyperedge F ∈ F of size one. Furthermore, assume that there
is an ordering on F and an ordering on every hyperedge F ∈ F .

We set C = U and add two vertices s and t. Furthermore, we add for every
hyperedge Fj ∈ F new vertices vj1, . . . , v

j
|Fj |−1. Next, we add for every Fj ∈ F

the edges {s, vj1}, {v
j
|Fj |−1, t}, and {v

j
i , v

j
i+1} for all i, 1 ≤ i < |Fj|−1. Finally,

we set for every Fj ∈ F the colors `({s, vj1}) := Fj(1), `({vj|Fj |−1, t}) :=

Fj(|Fj|), and `({vji , v
j
i+1}) := Fj(i+ 1) for all i, 1 ≤ i < |Fj| − 1, where Fj(y)

denotes the yth element of Fj.
Note that there is an (s, t)-path P in G if and only if there is a hyper-

edge F ∈ F with `(E(P )) = F . Hence, C(I) = F and therefore, there is a
colored (s, t)-cut in G of size k if and only if there is a hitting set of size k
in I ′.

Throughout this work, we will refer to the above reduction as the stan-
dard reduction from Hitting Set. Note that in this reduction, the fol-
lowing holds: the budget k in both instances is the same and |C| = |U|.
Since Hitting Set parameterized by k is W[2]-hard [15] and Hitting
Set parameterized by |U| does not admit a polynomial kernel, unless NP ⊆
coNP/poly [12, 15], the following holds.

Corollary 2.5 ([19, 27, 38]). Colored (s, t)-Cut parameterized by k is
W[2]-hard and Colored (s, t)-Cut parameterized by |C| does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.
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3 Structural Graph Parameters

In this section we analyze several structural graph parameters for Col-
ored (s, t)-Cut and show that the problem is in XP for any of these
parameters but there is no FPT-algorithm for Colored (s, t)-Cut when
parameterized by the sum of all of these structural parameters, unless FPT
= W[2].

As discussed above, Colored (s, t)-Cut parameterization by vertex
deletion parameters is unlikely to lead to tractability results. We thus con-
sider edge deletion parameters.

De�nition 3.1. Let G = (V,E) be a graph and i ≥ 0 be an integer. Fur-
thermore, let ξi := min{|E ′| | E ′ ⊆ E,G − E ′ has a maximum degree of i}
be the edge deletion distance to a maximum degree of i.

Since Colored (s, t)-Cut parameterized by ∆ is in XP [10], the pa-
rameter ξi thus measures the distance to a trivial case. Since ∆ ≤ ξi + i,
Colored (s, t)-Cut parameterized by ξi is in XP when i is constant. Note
that the larger i, the smaller the parameter value ξi will be in most instances.
We now show that even for small i, namely for i = 3, an FPT algorithm for ξi
is unlikely.

Proposition 3.2 ([10]). Colored (s, t)-Cut is in XP parameterized by
any of the following parameters:

� the budget k,

� the maximum degree ∆, and

� the edge deletion distance to a maximum degree of three ξ3.

Proof. The XP-algorithms are already known for k and ∆ [10]. Note that
we can assume that ∆ > k since otherwise, the budget is large enough to
select all colors of incident edges of s. These are at most ∆, and therefore the
instance is a trivial yes-instance. It remains to show that Colored (s, t)-
Cut is in XP parameterized by ξ3. To this end, we show that ξ3 ≥ ∆− 3. A
graph G with a maximum degree of ∆ contains at least one vertex v ∈ V (G)
with deg(v) = ∆, we have to delete at least ∆ − 3 edges incident with v to
obtain a graph with maximum degree at most three. Hence, ξ3 ≥ ∆− 3.
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Figure 1: The Colored (s, t)-Cut instance constructed for the W[2]-
hardness reduction of Theorem 3.3 for the Hitting Set instance I =
((U ,F), k) with k = 3, U = {red, green, blue, black, gray,magenta, cyan},
and F = {{blue, black}, {red, green,magenta}, {red, black, gray,magenta},
{magenta, cyan}}.

3.1 Hardness for Degree-Based Parameterizations

Since Colored (s, t)-Cut parameterized by k,∆, and ξ3 is in XP, we next
show the �xed-parameter-intractability for the largest of these parameters ξ3

(assuming FPT 6= W[2])

Theorem 3.3. Colored (s, t)-Cut parameterized by ξ3 is W[2]-hard even
on planar graphs.

See Figure 1 for the instance I of Colored (s, t)-Cut constructed for
an example instance of Hitting Set.

Proof. We give a parametrized reduction from Hitting Set parameterized
by the size of the solution, which is known to be W[2]-complete [15]. Given
a Hitting Set instance I ′ = (G = (U ,F), k), we describe how to construct
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an equivalent Colored (s, t)-Cut instance I := (G = (V,E), s, t, C, `, k)
in polynomial time and show that ξ3 is bounded in k. An example of the
construction can be seen in Figure 1.

Again, we assume without loss of generality that |F | ≥ 2 for all F ∈ F
since an empty hyperedge F ∈ F leads to a no-instance and there is exactly
one way to cover a hyperedge F ∈ F of size one. Moreover, if k ≥ |U|, I ′ is
obviously a yes-instance and if k ≤ 2, I ′ can be solved in polynomial time.
Hence, we can assume that 2 < k < |U|. Furthermore, assume that U =
{1, . . . , |U|} and that there is an ordering on F and an ordering on every
hyperedge F ∈ F .

We set C = U and de�ne Gi = (V i, Ei) for all i, 1 ≤ i ≤ k + 1, in the
following way. The graph Gi contains two vertex disjoint balanced binary
trees T is and T it with roots si, ti and leaves sij, t

i
j for all j, 1 ≤ j ≤ |F|.

We set `(e) := i for all e ∈ E(T is) ∪ E(T it ). Furthermore, we connect sij
and tij with a path P i

j := (sij, v
i
(j,1), . . . , v

i
(j,|Fj |−1), t

i
j) and set `({sij, vi(j,1)}) :=

Fj(1), `({vi(j,|Fj |−1), t
i
j}) := Fj(|Fj|), and `({vi(j,x−1)}, vi(j,x)) := Fj(x) for all x,

with 1 < x < |Fj|, where Fj(y) denotes the yth element of Fj. Note that the
vertices vi(j,1), . . . , v

i
(j,|Fj |−1) occur only in P i

j .

Finally, we de�ne G = (V,E) with V := {s, t} ∪
⋃

1≤i≤k+1 V
i and E :=⋃

1≤i≤k+1(Ei ∪ {{s, si}, {t, ti}}) and set `({s, si}) := `({t, ti}) := i. That is,
we connected s and t with si and ti, respectively, with edges colored in i for
all i, 1 ≤ i ≤ k + 1. Note that G is planar.

Recall that beside s and t all vertices have degree at most three. Let E ′ :=
{{s, si}, {t, ti} | 1 ≤ i ≤ k − 2} then G − E ′ is cubic. Thus, ξ3 ≤ |E ′| =
2(k − 2).

For the correctness of this parameterized reduction it remains to show
that I is a yes-instance if and only if I ′ is a yes-instance. To this end, we
show that (G, k) has a hitting set of size at most k if and only if (G, s, t, C, `, k)
has a colored (s, t)-cut of size at most k.

(⇒) Let S be a hitting set of G with size at most k. By de�nition, S∩Fj 6=
∅ for all Fj ∈ F . Hence, removing all edges `−1(S) from G removes at least
one edge in the path P i

j from sij to t
i
j for all i and j, 1 ≤ i ≤ k+1, 1 ≤ j ≤ |F|.

Note that for every path P from s to t inG there is at least one, j, 1 ≤ j ≤ |F|
such that P contains sij and t

i
j for some i, 1 ≤ i ≤ k + 1. So by removing

at least one edge from every path P i
j , we separate s from t. It follows from

de�nition, that S is a colored (s, t)-cut of size at most k for I.
(⇐) Let S be a colored (s, t)-cut for I of size at most k, let ES := `−1(S),
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and let G′ := G − ES. By construction, s and t have a path only colored
in i to sij and tij, respectively, for all i and j, 1 ≤ j ≤ |F|, 1 ≤ i ≤ k + 1.
Since S has size at most k there is at least one i, 1 ≤ i ≤ k + 1, such that s
and t are in the same connected component as sxj and t

x
j , respectively, in G

′

for all j, 1 ≤ j ≤ |F|. The fact that S is a colored (s, t)-cut in G now implies
that there is at least one edge ej ∈ ES such that ej ∈ E(P i

j ) for each P i
j

with j, 1 ≤ j ≤ |F|. Thus, S ∩ `(E(P i
j )) 6= ∅ for all 1 ≤ j ≤ |F|. By the

fact that `(E(P i
j )) = Fj it follows that S ∩ Fj 6= ∅ for all 1 ≤ j ≤ |F|.

Consequently, S is a hitting set for G of size at most k.

The next corollary follows directly from Theorem 3.3 and the fact that ξ3+
3 ≥ ∆ > k.

Corollary 3.4. Colored (s, t)-Cut parameterized by k + ∆ + ξ3 is W[2]-
hard even on planar graphs.

3.2 FPT-Algorithms for Bounded Number of (s, t)-Paths

We now show that this result is tight by showing an FPT algorithm for ξ2

which is obtained via an FPT algorithm for p, the number of (s, t)-paths
in G.

The following Proposition is known [27], but we are not aware of a pub-
lished proof. Hence, we give a proof for the sake of completeness.

Proposition 3.5. Colored (s, t)-Cut is FPT parameterized by p and does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. First, we give an FPT-algorithm for Colored (s, t)-Cut parame-
terized by p. To this end, we give a parameterized reduction from Col-
ored (s, t)-Cut parameterized by p to Hitting Set parameterized by
the size of F which is known to be FPT [21]. Given an instance I =
(G, s, t, C, `, k), we compute the set P of (s, t)-paths in G in O(pn + m)
time [4]. Hence, we can compute C(I) = {`(E(P )) | P ∈ P} in in the same
time. Then, it is obvious, that there is a colored (s, t)-cut of size at most k
in G if and only if I ′ = (G := (C, C(I)), k) has a hitting set of size at most k.
Since Hitting Set can be solved in time O(2|F||F||U|) [21], we can solve
the instance I ′ in time O(2pp|C|). By the fact that I and I ′ are equivalent,
we can solve Colored (s, t)-Cut in time O(2pp|C|+ pn+m).

Note that the graph constructed by the standard reduction from Hit-
ting Set has exactly |F| many (s, t)-paths. Hence, the standard reduction
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leads to a polynomial parameter transformation from Hitting Set param-
eterized by |F| to Colored (s, t)-Cut parameterized by p. Unless NP ⊆
coNP/poly, Hitting Set parameterized by |F| does not admit a polynomial
kernel [14] and therefore, neither does Colored (s, t)-Cut parameterized
by the number of (s, t)-paths p.

Next, we show that p can be upper bounded by a computable function
only depending on the feedback edge set number fes which implies an FPT-
algorithm for Colored (s, t)-Cut parameterized by fes.

For a graph G = (V,E), we call F ⊆ E a feedback edge set if G− F is a
forest. We de�ne with fes := min{|F | | F is a feedback edge set} the feedback
edge set number.

We assume that the following result might be known already but we were
not able to �nd a proof for this particular statement. Hence, for the sake of
completeness, we give a proof.

Lemma 3.6. Let G = (V,E) be a graph with feedback edge set number f , then
for any s, t ∈ V there are at most O(2fes +1 fesfes +1) many vertex simple (s, t)-
paths in G.

Proof. Let F ⊆ E be a feedback edge set of G of size fes. Hence, T := G−F
is a forest. Since we only ask for vertex simple paths, every edge also occurs
at most once in every (u, v)-path for every u, v ∈ V . We show that there are
at most 2j fesj many (u, v)-paths P in G with |E(P )∩F | = j for every j, 0 ≤
j ≤ fes. That is,we bound the number of (u, v)-paths that contain exactly j
edges of F . We show this statement by induction over j.

Since T is a forest, there is at most one (u, v)-path P in T for every u, v ∈
V . Hence, there is at most one (u, v)-path P in G with E(P ) ∩ F = ∅ and
therefore the statement holds for j = 0.

Thus, assume that the statement holds for 0 ≤ j−1 < fes. We show that
the statement also holds for j. Let P = (v1, . . . , vr) be an arbitrary (u, v)-
path inG with |E(P )∩F | = j and let e = {vi, vi+1} ∈ F such that {vq, vq+1} 6∈
F for all 1 ≤ q < i, that is, e is the �rst feedback edge of P . By the induc-
tion hypothesis there is at most one (u, vi)-path in G and at most 2j−1 fesj−1

many (vi+1, v)-paths Pj−1 in G with |E(Pj−1) ∩ F | = j − 1. Since there
are at most fes possible feedback edges and every such edge has two ori-
entations, there are at most 2 fes possibilities for e. Hence, there are at
most 2j−1 fesj−1 2 fes = 2j fesj di�erent (u, v)-paths P in G with |E(P )∩F | =
j.
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Thus, there are at most
∑fes

j=0 2j fesj ∈ O(2fes +1 fesfes +1) many (u, v)-paths

in G and therefore at most O(2fes +1 fesfes +1) many (s, t)-paths in G.

The following can be obtained by applying Proposition 3.5.

Proposition 3.7. Colored (s, t)-Cut is FPT parameterized by the feed-
back edge set number fes and does not admit a polynomial kernel, unless
NP ⊆ coNP/poly.

Proof. By Lemma 3.6 the number of (s, t)-paths p is bounded from above
by a computation function h only depending on the feedback edge set num-
ber fes. Obviously, fes can be computed in O(n + m) time. Hence, we can
use the FPT-algorithm from Proposition 3.5 to solve Colored (s, t)-Cut
in O(2h(fes)h(fes)|C|+ h(fes)n+m) time.

Next, we show the kernel lower bound. Note that the graph constructed
by the standard reduction has a feedback edge set number of at most |F|−1:
by removing all incident edges of s except one, we can turn the graph into a
tree. Hence, the standard reduction leads to a polynomial parameter trans-
formation from Hitting Set parameterized by |F| to Colored (s, t)-Cut
parameterized by fes where fes = |F| − 1. Unless NP ⊆ coNP/poly, Hit-
ting Set parameterized by |F| does not admit a polynomial kernel [14] and
therefore, neither does Colored (s, t)-Cut parameterized by the feedback
edge set number fes.

Corollary 3.8. Colored (s, t)-Cut is FPT parameterized by ξ2 and does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof. Let I = (G = (V,E), s, t, C, `, k) be an instance of Colored (s, t)-
Cut. Since we that G is connected, we get that m ≥ n − 1 and that the
feedback edge set number is fes = m − n + 1. We show that ξ2 ≥ fes−1.
Note that for a graph G′ = (V ′, E ′) with a maximum degree of at most two,
it holds that |E ′| ≤ |V ′|. Hence, m − ξ2 ≤ n and therefore ξ2 ≥ m − n =
fes−1. Therefore, we can use the FPT-algorithm from above to solve I in
time O(2h(ξ2+1)h(ξ2 + 1)|C|+ h(ξ2 + 1)n+m).

Next, we show the kernel lower bound. Note that for the standard re-
duction it holds that ξ2 = 2(|F| − 2), since by removing all edges incident
with s or t except two each, we can turn G into graph with maximum degree
two. Hence, the standard reduction leads to an polynomial parameter trans-
formation from Hitting Set parameterized by |F| to Colored (s, t)-Cut
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parameterized by ξ2 where ξ2 = 2 ∗ (|F| − 2). Unless NP ⊆ coNP/poly,
Hitting Set parameterized by |F| does not admit a polynomial kernel [14]
and therefore, neither does Colored (s, t)-Cut parameterized by ξ2.
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4 Competitive Colored Cut Games

In this section we introduce the colored cut games which can be seen as
competitive defender-attacker games between two agents, a defender and
an attacker. First, we show that for an increasing but constant number of
alternations between the agents the colored cut games are complete for com-
plexity classes of increasing levels of the polynomial hierarchy. Afterwards,
we show that if the number of alternations is unbounded, the problems are
PSPACE-complete.

4.1 Polynomial-time Hierarchy Versions

The following problems can be seen as a competitive game between a defender
and an attacker with the following rules. The defender starts the game. In
the jth turn of an agent, he has to choose a set Dj ⊆ C or Aj ⊆ C of given
size dj and aj, respectively which is disjoint to all previous choses sets. The
integers dj and aj, respectively are called the budget of the agent of turn j.
Every agent has exactly i turns and the attacker wins the game if the union
of sets he chose is a colored (s, t)-cut in G. Consequently, the defender wins
if the attacker loses the game.

(DA)i Colored (s, t)-Cut Robustness ((DA)i-R)
Input: A colored graph (G = (V,E), s, t, C, `) and two integer

vectors ~d := (d1, . . . , di),~a := (a1, . . . , ai) ∈ Ni such that
∑i

k=1(dk+
ak) ≤ |C|.
Question: ∃D1 ∈

(
C
d1

)
.∀A1 ∈

(
C\D1

a1

)
.∃D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∀Ai ∈(

C\((
⋃i−1

k=1(Dk∪Ak)∪Di)
ai

)
: such that

⋃i
k=1Ak is not a colored (s, t)-cut

in G?

(DA)i Colored (s, t)-Cut Vulnerability ((DA)i-V)
Input: A colored graph (G = (V,E), s, t, C, `) and two integer

vectors ~d := (d1, . . . , di),~a := (a1, . . . , ai) ∈ Ni such that
∑i

k=1(dk+
ak) ≤ |C|.
Question: ∀D1 ∈

(
C
d1

)
.∃A1 ∈

(
C\D1

a1

)
.∀D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∃Ai ∈(

C\((
⋃i−1

k=1(Dk∪Ak)∪Di)
ai

)
: such that

⋃i
k=1Ak is a colored (s, t)-cut

in G?

In (DA)i-V we ask if the attacker has a winning strategy, that is, if
he is able to react on the turns of defender and complete a colored (s, t)-cut
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in G. Analogously, we ask in (DA)i-R if the defender has a winning strategy.
Since one of the agents has a winning strategy, (DA)i-R and (DA)i-V are
complement problems for all i ≥ 1, that is, I is a yes-instance of (DA)i-R if
and only if I is a no-instance of (DA)i-V.

Lemma 4.1. For all i ≥ 1 it holds that (DA)i-V is ΠP
2i-hard and (DA)i-R

is ΣP
2i-hard.

Proof. We show this statement by a polynomial-time reduction fromQSAT2i-
3-CNF. To this end, recall the de�nition.

QSAT2i-3-CNF
Input: A set Φ of clauses in 3-CNF over the variables Z and a
partition (X1, Y1, . . . , Xi, Yi) of Z.
Question: Is it true that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆
Yi : τZ(X̃1 ∪ Ỹ1 ∪ · · · ∪ X̃i ∪ Ỹi) |= Φ?

Note that the QSAT2i-3-CNF can also be seen as a competitive game
between two players, where Player 1 and Player 2 have to choose an assign-
ment for Xj and Yj, respectively in their jth turn. We ask if Player 2 has a
winning strategy, that is, the combined assignment satis�es Φ.

Given an instance I ′ = (Z,Φ, X1, Y1, . . . , Xi, Yi) of QSAT2i-3-CNF, we
construct an instance I = (G = (V,E), s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) of
(DA)i-V such that I ′ is a yes-instance if and only if I is a yes-instance.
Let Xj = {xjk | 1 ≤ k ≤ |Xj|}, Yj = {yjk | 1 ≤ k ≤ |Yj|} for all 1 ≤ j ≤ i and
let L := L(V ar).

We set C := L ∪ Cd ∪ Ca with Cd := {αdj , βdj | 2 ≤ j ≤ i}, and Ca :=
{αaj , βaj | 1 ≤ j ≤ i}. The idea is that every agent should choose an as-
signemnt for a set of variables in each turn. The colors of Cd and Ca are
auxiliary colors so that we can blow up the budgets of the defender and the
attacker, respectively in each turn to a value of at least two. With that,
both agents have the possibility to win the game if the other agent has not
chosen an assignment in the previous turn. Therefore, we force the defender
and the attacker to choose an assignment of the variables of Xj and Xj ∪Yj,
respectively in their jth turns or otherwise they will lose the game. Observe
that the only assignment on the variables of Xj that is disjoint to Dj is
the complement assignment. Hence, the attacker is forced to pick Aj such
that Aj ∩Xj = Xj \Dj.
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sj−1
hj rj0

αdj βdj

rj1

>j1

⊥j1

rj2

>j2

⊥j2

rj3

>j3

⊥j3

rj4 = sj

>j4

⊥j4

xj1 xj1

¬xj1 ¬xj1

xj2 xj2

¬xj2 ¬xj2

xj3 xj3

¬xj3 ¬xj3

xj4 xj4

¬xj4 ¬xj4

(a)

s = r1
0 s1

s2

s3

(b)

Figure 2: (a) shows the gadget for the defender for the variables of Xj

with |Xj| = 4. (b) shows GD = (VD, ED) where |X1| = 2, |X2| = 3,
and |X3| = 1.

The graph we construct, consists of three parts: the variable gadgets
for the defender, the variable gadgets for the attacker and a gadget for the
evaluation of the clauses. To this end, we de�ne G := (V,E) with V :=
Vd ∪ Va ∪ VΦ and E := Ed ∪ Ea ∪ EΦ where Vd, Ed and Va, Ea represent
the variable gadget for the defender and attacker, respectively and VΦ, EΦ

represent the gadget for the evaluation of the clauses. First, we introduce
the variable gadgets for the defender which can be seen in Figure 2:

Vd :={hj | 2 ≤ j ≤ i} ∪
i⋃

j=1

{rj0, r
j
k,>

j
k,⊥

j
k | 1 ≤ k ≤ |Xj|}

Ed :=
i⋃

j=1

{
{rjk−1,>

j
k}, {r

j
k−1,⊥

j
k}, {>

j
k, r

j
k}, {⊥

j
k, r

j
k} | 1 ≤ k ≤ |Xj|

}
∪
{
{rj−1
|Xj−1|, h

j}, {hj, rj0} | 2 ≤ j ≤ i
}

and set the colors:

`({rjk−1,>
j
k}) := `({>jk, r

j
k}) := xjk,

`({rjk−1,⊥
j
k}) := `({⊥jk, r

j
k}) := ¬xjk,

`({rj−1
|Xj−1|, h

j}) := αdj and `({hj, r
j
0}) := βdj .
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s = r1
0 s1

s2

s3
t

vx11 vx12 w1
1 w1

2 vy11

Figure 3: The variable gadget of the defender connected with the variable
gadget of the attacker where |Y1| = 1, |Y2| = 1, and |Y3| = 2. Solid edges
belong to Ed and dotted edges belong to Ea.

In the following, let s := s0 := r1
0 and sj := rj|Xj | for all 1 ≤ j ≤ i, that

is, the vertex that will be connected to the gadget for the attacker for the
variables of Xj ∪ Yj. The idea is that the defender has to choose in his jth
turn the auxiliary colors {αdj , βdj | j > 1} together with an assignment of the
variables of Xj, or otherwise the attacker can complete a colored (s, t)-cut
by taking at most two colors in his next turn.

Next, we de�ne the variable gadgets for the attacker. Figure 3 shows how
the attacker and the defender gadget are connected:
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Va :={t} ∪ {vx | x ∈ Z} ∪ {wj1, w
j
2 | 1 ≤ j ≤ i}

Ea :=
i⋃

j=1

{
{sj, wj1}, {sj, w

j
2}, {sj, vx} | x ∈ Xj ∪ Yj

}
∪ {{w, t} | w ∈ Va \ {t}}

and set the colors:

`({sj, wj1}) :=`({wj1, t}) := αaj ,

`({sj, wj2}) :=`({wj2, t}) := βaj ,

`({sj, vx}) :=x and `({vx, t}) := ¬x, x ∈ Xj ∪ Yj

The idea is that the attacker has to choose in his jth turn the auxiliary
colors αaj and βaj together with an assignment of the variables of Xj ∪ Yj,
or otherwise the defender can complete a colored (s, t)-connector by taking
two colors in his next turn. Since a player can only choose colors that were
not chosen before, the assignment for the variables of Xj of the attacker is
the complement assignment to the assignment on the variables of Xj of the
defender.

Finally, we de�ne the gadget for evaluating the clauses. To this end, we
assume an ordering on every clause φr ∈ Φ and denote with φj(y) the yth
element of φj. The �nal graph can be seen in Figure 4.

VΦ := {bj1, b
j
2 | 1 ≤ j ≤ |Φ|}

EΦ := {{si, bj1}, {b
j
1, b

j
2}, {b

j
2, t} | 1 ≤ j ≤ |Φ|}

`({si, bj1}) := φj(1),

`({bj1, b
j
2}) := φj(2),

`({bj2, t}) := φj(3)

That is, for every φ ∈ Φ, we added a new (si, t)-path P with `(E(P )) = φ.
We set d1 := |X1|, a1 := |X1|+ |Y1|+2, dj := |Xj|+2, and aj := |Xj|+ |Yj|+2
for all 1 < j ≤ i. This completes the construction of I.

In the following, we let GΦ := G[VΦ ∪ {si, t}] denote the subgraph in-
duced by the edges of EΦ. Note that for every (si, t)-path P in GΦ there
is a clause φ ∈ Φ such that `(E(P )) = φ. Before we show the equivalence
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s = r1
0 s1

s2

s3
t

b1
1 b1

2

b4
1 b4

2

Figure 4: The �nal graph of the construction with |Φ| = 4. Solid edges
belong to Ed, dotted edges belong to Ea, and dashed edges belong to EΦ.
Note that the gadget for the clauses are connected with s3 and t.

between I and I ′, we take some observations on colored (s, t)-cuts and col-
ored (s, t)-connectors in I.

Claim 4.2. Let C̃ ⊆ L be an assignment of Z, then C̃ is a colored (si, t)-cut
in GΦ if and only if C̃ |= Φ.

Proof. Observe that the set of (si, t)-paths in GΦ is {Pq := (si, bq1, b
q
2, t) |

1 ≤ q ≤ |Φ|}. Let C̃ ⊆ L be an assignment for Z. By de�nition, C̃ is a
colored (si, t)-cut in GΦ if and only if C̃ ∩ `(E(Pq)) 6= ∅ for all 1 ≤ q ≤
|Φ|. Since `(E(Pq)) = φq for all 1 ≤ q ≤ |Φ| this is the case if and only
if C̃ ∩ `(E(Pq)) = C̃ ∩ φq 6= ∅ which is by de�nition the case if and only
if C̃ |= Φ. �

Next, we de�ne when a turn of an agent is `nice'. Afterwards, we will
show that the agent who �rst choses a set of colors that is not nice, will lose
the game.

De�nition 4.3. We call a set of colors D1 ⊆ C nice if D1 is an assignment
for X1. Furthermore, we call Dk ⊆ C, 2 ≤ k ≤ i, nice if Dk ∩ L is an
assignment for Xk and Dk \ L = {αdk, βdk}. Analogously, we call the set of
colors Ak ⊆ C, 1 ≤ k ≤ i, nice if Ak ∩ L is an assignment for Xk ∪ Yk
and Ak \ L = {αak, βak}.
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Note that the de�ned budgets allow every agent to pick a nice set of colors
in each turn. Based on the de�ned budgets, if for some variable z ∈ Xj it
holds that {z,¬z} ⊆ Dj, then {αdj , βdj } 6⊆ Dj or there is a variable z′ ∈ Xj

such that {z′,¬z′}∩Dj = ∅. Hence, if Dj is not nice and {αdj , βdj } ⊆ Dj, then
there is z′ ∈ Xj such that {z′,¬z′} ∩ Dj = ∅. Clearly, the same also holds
for the sets of colors the attacker chooses. With the following claims, we will
show that the �rst agent who chooses a set of colors that is not nice, will lose
the game. We use this to argue in the proof of the equivalence between I
and I ′ that agents only choose nice sets of colors.

We start by showing that if the defender choses nice sets of colors in his
�rst k, 1 ≤ k ≤ i, turns then he has completed a colored (s, sk)-connector.

Claim 4.4. Let 1 ≤ k ≤ i and D̃k :=
⋃k
j=1 Dj such that Dj is nice for

all 1 ≤ j ≤ k, then there is an (s, sk)-path P in G with `(E(P )) ⊆ D̃k.

Proof. We show that there is an (sj−1, sj)-path P j in G with `(E(P j)) ⊆ Dj

if Dj is nice for any 1 ≤ j ≤ k.
Assume that Dj, 1 ≤ j ≤ i is nice. By construction, there are (rjq−1, r

j
q)-

paths P> = (rjq−1,>jq, rjq) and P⊥ = (rjq−1,⊥jq, rjq) in G with `(E(P>)) = {xjq}
and `(E(P⊥)) = {¬xjq}, respectively for all q, 1 ≤ q ≤ |Xj|. Since Dj ∩
L is an assignment for Xj, it follows that either xjq ∈ Dj, or ¬xjq ∈ Dj.

Therefore, there is an (rjq−1, r
j
q)-path P j

k in G with `(E(P j
q )) ⊆ Dj ⊆ D̃j.

Hence, there is an (rj0, s
j)-path P j in G with `(E(P j)) ⊆ Dj. If j = 1,

then P 1 is an (s0, s1)-path. If j > 1, then P rj := (sj−1, hj, rj0) is a path
in G with `(E(P rj)) = {αdj , βdj } ⊆ Dj. In combination, there is an (sj−1, sj)-
path P ′ inG with `(E(P ′)) ⊆ Dj ifDj is nice and therefore, there is an (s, sk)-
path P in G with `(E(P )) ⊆ D̃k if Dj is nice for all 1 ≤ j ≤ k. �

Next, we show that if the defender choses nice sets of colors in his
�rst k, 1 ≤ k < i turns then he is able to complete a colored (s, t)-connector
in in his next turn. Hence, he can win if the attacker does not chose colors
to intersect all of these colored (s, t)-connector in his next turn.

Claim 4.5. Let 1 ≤ k ≤ i and D̃k :=
⋃k
j=1 Dj such that Dj is nice for

all 1 ≤ j ≤ k, then the following sets are colored (s, t)-connectors in G:

1. D̃k ∪ {αak},

2. D̃k ∪ {βak}, and

3. D̃k ∪ {x,¬x} for any x ∈ Xk ∪ Yk.
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Proof. By Claim 4.4, there is an (s, sk)-path P in G with `(E(P )) ⊆ D̃k.
1. D̃k ∪ {αak}. By de�nition, then the path P ′ = (rk|Xk|, w

k
1 , t) is in G

and `(E(P ′)) = {αak}. Hence, `(E(P ′′)) = `(E(P )) ∪ {αak} ⊆ D̃k ∪ {αak}
with P ′′ := P ( P ′.

2. D̃k ∪ {βak}. This case is analogous.
3. D̃k ∪ {x,¬x} for any x ∈ Xk ∪ Yk. Let x ∈ Xk ∪ Yk, the path P ′ =

(rk|Xk|, vx, t) is in G and `(E(P ′)) = {x,¬x}. Hence, for P ′′ := P ( P ′ it

holds that `(E(P ′′)) = `(E(P )) ∪ {x,¬x} ⊆ D̃k ∪ {x,¬x}. �
Hence, if the defender has chosen nice sets of colors in his �rst k turns and

the attacker chose a set of colors in turn k that is not nice, then the defender
can win the game in turn k + 1. The wining strategy for this will be shown
in the proof of the equivalence between I and I ′.Therefore, the attacker has
no winning strategy if he is the �rst agent who choses a set of color which is
not nice.

Next, we show analogous claims for the attacker. That is, we show in
Claim 4.6 and 4.7 that the attacker can win the game in turn k + 1 if he
chose nice sets of colors in his �rst k turns and the defender did not chose a
nice set of colors in turn k + 1.

Claim 4.6. Let 1 ≤ k ≤ i and Ãk :=
⋃k−1
j=1 Aj such that Aj is nice for

all 1 ≤ j ≤ k− 1, then for every (s, t)-path P in G with `(E(P ))∩ Ãk = ∅ it
holds that sk ∈ V (P ).

In other words, every (s, t)-path that is not destroyed after removing the
edges colored in `−1(Ãk) has to contain the vertex sk.
Proof. We show this statement by an induction over k.

By construction, s1 ∈ V (P ) for every (s, t)-path P in G. Hence, the
Claim holds for k = 1.

Assume that the statement is true for some k′ = k − 1, 0 ≤ k < i. We
show that the statement is true for k. Assume towards a contradiction that
there is an (s, t)-path P in G with `(E(P ))∩ Ãk = ∅ and sk 6∈ V (P ). By the
induction hypothesis, we know that sk

′ ∈ V (P ). Note that by construction
for every (sk

′
, t)-path P k with hk ∈ V (P k) it holds that sk ∈ V (P k). Assume

towards a contradiction that hk 6∈ V (P ) and therefore, V (P ) ∩ ({vx | x ∈
Xk′ ∪ Yk′} ∪ {wk

′
1 , w

k′
2 }) 6= ∅.

Case 1: {wk′1 , w
k′
2 } ∩ V (P ) 6= ∅. Then, {{wk′1 , t}, {wk

′
2 , t}} ∩ E(P ) 6=

∅ and therefore `(E(P )) ∩ {αak′ , βak′} 6= ∅. Since Ak′ is nice, it follows
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that {αak′ , βak′} ⊆ Ak′ and therefore `(E(P )) ∩ Ak′ 6= ∅ which is a contra-
diction.

Case 2: {vx | x ∈ Xk′ ∪ Yk′} ∩ V (P ) 6= ∅. Then, there is some x ∈ Xk′ ∪
Yk′ such that {{sk′ , vx}, {vx, t}} ⊆ E(P ) and therefore {x,¬x} ⊆ `(E(P )).
Since Ak′ is nice, it follows that Ak′∩{x,¬x} 6= ∅ and hence `(E(P ))∩Ak′ 6= ∅
which is a contradiction. �

Next, we show that if the attacker choses nice colors in his �rst k turns
then he is able to complete a colored (s, t)-cut in his next turn. Hence,
he can win if the defender does not chose colors to intersect all of these
colored (s, t)-cuts in his next turn.

Claim 4.7. Let 1 ≤ k ≤ i and Ãk :=
⋃k−1
j=1 Aj such that Aj is nice for

all 1 ≤ j < k, then the following sets are colored (s, t)-cuts in G:

� Ãk ∪ {αdk} if k > 1,

� Ãk ∪ {βdk} if k > 1, and

� Ãk ∪ {x,¬x} for any x ∈ Xk.

Proof. Let 1 < k ≤ i and assume that Aj is nice for all 1 ≤ j < k. By
Claim 4.6, sk−1, sk ∈ V (P ) for every (s, t)-path P inG with `(E(P ))∩Ãk = ∅.
Therefore, we show that for every (sk−1, sk)-path P k in G with t 6∈ V (P k)
it holds that `(E(P k)) ∩ {x,¬x} 6= ∅ for all x ∈ Xk, and if k > 1 it holds
that {αdk, βdk} ⊆ `(E(P k)). We can assume that t 6∈ V (P k) since otherwise
there is an (s, t)-path P in G with `(E(P )) ∩ Ãk = ∅ and sk 6∈ V (P ) which
is impossible due to Claim 4.6.

By construction, every (sk−1, sk)-path P k in G with t 6∈ V (P k) contains
all vertices rk0 , . . . , r

k
|Xk|, and h

k if k > 1. Thus, `(E(P k)) ∩ {x,¬x} 6= ∅ for
all x ∈ Xk, and if k > 1, we get that {αdk, βdk} ⊆ `(E(P k)). �

Hence, if the attacker has chosen nice sets of colors in his �rst k−1 turns
and the defender choses a set of colors in turn k which is not nice, then
the attacker can win the game in turn k. The exact strategy for that will
be described in the proof of the equivalence between I and I ′. Hence, the
defender has no winning strategy if he is the �rst agent who choses a set of
colors which is not nice. In combination with the conclusion of Claim 4.5, the
�rst agent who does not choose a nice set of colors, loses the game. Hence, we
will assume that all chosen sets of colors are nice If all colors of each agent
are nice in every turn, then we can show that the attacker has completed
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a colored (s, t)-cut if and only if the set of literals he chose is a satisfying
assignment for Φ.

Claim 4.8. Let Dj, Aj be nice for all 1 ≤ j ≤ i and Ã :=
⋃i
j=1Aj, then Ã

is a colored (s, t)-cut in G if and only if Ã ∩ L is a colored (si, t)-cut in GΦ.

Proof. By Claim 4.6, si ∈ V (P ) for every (s, t)-path P in G with `(E(P ))∩
Ã = ∅. Since Ai is nice, by construction, all (si, t)-paths P ′ = (si, w, t)
with w ∈ Va ∩ N(si) are cut. Thus, bq1 ∈ V (P ) for some 1 ≤ q ≤ |Φ|. By
Claim 4.4 there is an (s, si)-path Pd in G with `(E(Pd)) ⊆ D̃i. Hence, s and s

i

cannot be separated by the attacker anymore. Therefore, Ã is a colored (s, t)-
cut in G if and only if Ã is a colored (si, t)-cut in GΦ. Recall that `(EΦ) ⊆ L.
Hence, Ã is a colored (s, t)-cut in G if and only if Ã∩L is a colored (si, t)-cut
in GΦ. �

Next, we show that the QSAT2i-3-CNF instance is a yes-instance if and
only if the constructed (DA)i-V instance is a yes-instance.

(⇒) Assume that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · ∀X̃i ⊆ Xi.∃Ỹi ⊆ Yi.τZ(X̃1∪Ỹ1∪
· · ·∪X̃i∪Ỹi) |= Φ is true. Then, there are functions fk : P(

⋃k
j=1 X̃j)→ P(Yk)

for all 1 ≤ k ≤ i such that ∀X̃1 ⊆ X1. · · · ∀X̃i ⊆ Xi.τZ(X̃1 ∪ f1(X̃1) ∪ · · · ∪
X̃i ∪ fi(

⋃i
k=1 X̃k)) |= Φ is true [3]. The functions f1, . . . fi are called Skolem

functions and can be seen as the winning strategy of Player 2 in the QSAT2i-
3-CNF instance. We will use these functions to describe a winning strategy
for the attacker in the (DA)i-V instance iteratively. Let D1 be the set of
colors the defender chooses in his �rst turn. Assume that D1 is not nice,
then {x,¬x} ∩ D1 = ∅ for some x ∈ X1. By Claim 4.6, the sets {x,¬x},
with x ∈ X1 are all colored (s, t)-cuts in G. Since a1 ≥ 2 the attacker has a
winning strategy. So, we assume that D1 is nice. Then, D1 is an assignment
forX1. LetD1 := X1\D1, that is, the complement assignment ofD1∩X1. We
set A1 := {αa1, βa1} ∪ τX1∪Y1(D1 ∪ f1(D1)) which is nice and disjoint from D1.

Let 1 < j ≤ i such that Dr and Ar are nice for all 1 ≤ r < j. Let Dj be
the set of colors the defender chooses in his jth turn. Assume that Dj is not
nice, then αdj 6∈ Dj, β

d
j 6∈ Dj, or {x,¬x} ∩ Dj = ∅ for some x ∈ Xj. With

Claim 4.6 we know that Ãj−1∪{αdj}, Ãj−1∪{βdj }, and Ãj−1∪{x,¬x}, x ∈ Xj

are all colored (s, t)-cuts in G. Since aj ≥ 2, the attacker has a winning
strategy. So, we assume that Dj is nice. Then, Dj ∩ L is an assignment
for Xj. Let Dr := Xr \Dr, that is, the complement assignment of Dr ∩L for
all 1 ≤ r ≤ j. We set Aj := {αaj , βaj } ∪ τXj∪Yj(Dj ∪ fj(

⋃j
r=1Dr)). Observe

that Aj is also nice and therefore Dr and Ar are nice for all 1 ≤ r < j + 1.
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So, we can assume that Dj is nice and Aj is de�ned as described for
all 1 ≤ j ≤ i. We show that Ãi :=

⋃i
j=1Aj is a colored (s, t)-cut in G.

By Claim 4.8, Ãi is a colored (s, t)-cut in G if Ãi ∩ L is a colored (si, t)-cut
in GΦ. By Claim 4.2 this is the case if Ãi∩L is a satisfying assignment for Φ.
Since we assumed that ∀X̃1 ⊆ X1. · · · ∀X̃i ⊆ Xi.τZ(X̃1 ∪ f1(X̃1) ∪ · · · ∪ X̃i ∪
fi(
⋃i
k=1 X̃k)) |= Φ is true, it follows that Ãi ∩ L = τZ(D1 ∪ f1(D1) ∪ · · · ∪

Di∪fi(
⋃i
k=1Dk)) |= Φ. Therefore, Ãi is a colored (s, t)-cut in G. Hence, the

attacker has a winning strategy.
(⇐) We show this direction by contra position. Assume that ∀X̃1 ⊆

X1.∃Ỹ1 ⊆ Y1. · · · ∀X̃i ⊆ Xi.∃Ỹi ⊆ Yi.τZ(X̃1 ∪ Ỹ1 ∪ · · · ∪ X̃i ∪ Ỹi) |= Φ is false.
Therefore, ∃X̃1 ⊆ X1.∀Ỹ1 ⊆ Y1. · · · ∃X̃i ⊆ Xi.∀Ỹi ⊆ Yi.τZ(X̃1 ∪ Ỹ1 ∪ · · · ∪
X̃i ∪ Ỹi) 6|= Φ is true. Then, there are functions gk : P(

⋃k−1
j=1 Ỹj) → P(Xk)

for all 1 ≤ k ≤ i such that ∀Ỹ1 ⊆ Y1. · · · ∀Ỹi ⊆ Yi.τZ(g1(∅) ∪ Ỹ1 ∪ · · · ∪
gi(
⋃i−1
j=1 Ỹj) ∪ Ỹi) 6|= Φ is true [3]. Note that g1 : {∅} → P(X1), that is, the

empty set is the only possible argument for g1. The functions g1, . . . gi can
be seen as the winning strategy of Player 1 in the QSAT2i-3-CNF instance.
We will use these functions to describe a winning strategy for the defender
in the (DA)i-V instance iteratively and therefore show that the attacker has
no winning strategy.

Let A1 := g1(∅) and set D1 := τX1(A1). Note that D1 is nice. Let A1

be the set of colors the attacker chooses in his �rst turn. Assume that A1 is
not nice, then αa1 6∈ A1, β

a
1 6∈ A1, or {x,¬x} ∩ A1 = ∅ for some x ∈ X1 ∪ Y1.

By Claim 4.5, D1 ∪ {αa1}, D1 ∪ {βa1}, and D1 ∪ {x,¬x}, x ∈ X1 ∪ Y1 are all
colored (s, t)-connectors in G. If i = 1, then the attacker cannot choose
a colored (s, t)-cut anymore and otherwise d2 ≥ 2 by de�nition. In both
cases the defender has a winning strategy. So, we assume that A1 is nice.
Therefore, A1 ∩L is an assignment for X1 ∪Y1. Since D1 is also nice, D1 ∩L
is an assignment for X1 and D1∩A1 = ∅. Hence, A1∩X1 = X1 \A1 = g1(∅),
that is, the attacker is forced to chose g1(∅) as his assignment for X1.

Let 1 < j ≤ i such that Dr and Ar are nice for all 1 ≤ r < j. Let Ỹr :=
Ar ∩ Yr for all 1 ≤ r < j, that is, the corresponding assignment of Yr chosen
by Ar. Let Aj := gj(

⋃j−1
r=1 Ỹr) and set Dj := {αdj , βdj }∪ τXj

(Xj \Aj). Observe
that Dj is nice. Now, let Aj be the set of colors the attacker chooses in his jth
turn. Assume that Aj is not nice, then α

a
j 6∈ Aj, βaj 6∈ Aj, or {x,¬x}∩Aj = ∅

for some x ∈ Xj∪Yj. By Claim 4.5, D̃j∪{αaj}, D̃j∪{βaj }, and D̃j∪{x,¬x}, x ∈
Xj∪Yj are all colored (s, t)-connectors inG. If i = j, then the attacker cannot
complete a colored (s, t)-cut anymore and otherwise dj+1 ≥ 2 by de�nition.
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In both cases the defender has a winning strategy. So, we assume that Aj
is nice. Therefore, Aj ∩ L is an assignment for Xj ∪ Yj. Since Dj is also
nice, Dj ∩ L is an assignment for Xj and Dj ∩ Aj = ∅. Hence, Aj ∩ Xj =
Xj \ Aj = gj(

⋃j−1
r=1 Ỹr), that is, the attacker is forced to pick gj(

⋃j−1
r=1 Ỹr) as

his assignment for Xj.
Thus, assume that Dj is de�ned as described above and that Aj is nice

for all 1 ≤ j ≤ i. We show that Ãi :=
⋃i
j=1Aj is not a colored (s, t)-cut

in G. By Claim 4.8, Ãi is a colored (s, t)-cut in G if and only if Ãi ∩ L is a
colored (si, t)-cut in GΦ. By Claim 4.2 this is the case if an only if Ãi ∩ L
is a satisfying assignment for Φ. Since we assumed that ∀Ỹ1 ⊆ Y1. · · · ∀Ỹi ⊆
Yi.τZ(g1(∅)∪ Ỹ1 ∪ · · · ∪ gi(

⋃i−1
j=1 Ỹj)∪ Ỹi) 6|= Φ is true, it follows that Ãi ∩L =

τZ(g1(∅)∪Ỹ1∪· · ·∪gi(
⋃i−1
r=1 Ỹr)∪Ỹi) 6|= Φ. Therefore, Ãi is not a colored (s, t)-

cut in G. Hence, the defender has a winning strategy and therefore the
attacker cannot have a winning strategy.

So, I is a yes-instance if and only if I ′ is a yes-instance. Therefore, (DA)i-
V is ΠP

2i-hard. Since (DA)i-R is the complement problem of (DA)i-V, it
follows that (DA)i-R is ΣP

2i-hard. This completes the proof of Lemma 4.1.

So far, we analyzed competitive games in which the defender starts. Next,
we introduce the analog problems in which the attacker starts the game.

A(DA)i Colored (s, t)-Cut Robustness (A(DA)i-R)
Input: A colored graph (G = (V,E), s, t, C, `) and two integer

vectors ~d := (d2, . . . , di+1) ∈ Ni and ~a := (a1, . . . , ai+1) ∈ Ni+1

such that a1 +
∑i+1

k=2(dk + ak) ≤ |C|.
Question: ∀A1 ∈

(
C
a1

)
.∃D2 ∈

(
C\A1

d2

)
.∀A2 ∈

(
C\(A1∪D2)

a2

)
. · · · .∀Ai+1 ∈(

C\((
⋃i

k=1(Ak∪Dk+1))
ai+1

)
: such that

⋃i+1
k=1 Ak is not a colored (s, t)-cut

in G?

A(DA)i Colored (s, t)-Cut Vulnerability (A(DA)i-V)
Input: A colored graph (G = (V,E), s, t, C, `) and two integer

vectors ~d := (d2, . . . , di+1) ∈ Ni and ~a := (a1, . . . , ai+1) ∈ Ni+1

such that a1 +
∑i+1

k=2(dk + ak) ≤ |C|.
Question: ∃A1 ∈

(
C
a1

)
.∀D2 ∈

(
C\A1

d2

)
.∃A2 ∈

(
C\(A1∪D2)

a2

)
. · · · .∃Ai+1 ∈(

C\((
⋃i

k=1(Ak∪Dk+1))
ai+1

)
: such that

⋃i+1
k=1Ak is a colored (s, t)-cut

in G?
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Observe that A(DA)0-V is equivalent to Colored (s, t)-Cut and for
all i ≥ 1 A(DA)i−1-V is a special case of (DA)i-V where the budget of the
�rst turn of the defender is zero and (DA)i-V is a special case of A(DA)i-V
where the budget of the �rst turn of the attacker is zero. Hence, Col-
ored (s, t)-Cut is a special case of all the problems (DA)i-V and A(DA)i-
V. Note that (DA)i-R, (DA)i-V, A(DA)i-R, and A(DA)i-V are games that
end with the attacker as the last agent. This is the case since after the at-
tacker performed his last turn, he can only win if and only if he has already
chosen a colored (s, t)-cut in G. Hence, a turn of the defender afterwards is
unnecessary.

Corollary 4.9. For all i ≥ 0, it holds that A(DA)i-V is ΣP
2i+1-hard and

A(DA)i-R is ΠP
2i+1-hard.

Proof. We show this statement by a polynomial-time reduction from the
ΣP

2i+1-complete problem QSAT2i+1-3-CNF [36]. To this end, recall the de�-
nition of QSAT2i+1-3-CNF.

QSAT2i+1-3-CNF
Input: A set Φ of clauses in 3-CNF over the variables Z and a
partition (Y1, X2, . . . , Xi+1, Yi+1) of Z.
Question: Is it true that ∃Ỹ1 ⊆ Y1.∀X̃2 ⊆ X2. · · · .∀X̃i+1 ⊆
Xi+1.∃Ỹi+1 ⊆ Yi+1 : τZ(Ỹ1 ∪ X̃2 ∪ · · · ∪ X̃i+1 ∪ Ỹi+1) |= Φ?

Note that QSAT2i+1-3-CNF starts and ends with an existential quan-
ti�ed set. Hence, it is a special case of QSAT2(i+1)-3-CNF where the �rst
universal quanti�ed set is empty.

Given an instance I = (Z,Φ, Y1, . . . , Xi+1, Yi+1) of QSAT2i+1-3-CNF,
then I is equivalent to the instance I2 = (Z,Φ, X1 = ∅, Y1, . . . , Xi+1, Yi+1) of
QSAT2(i+1)-3-CNF. Therefore, we use the reduction of Lemma 4.1 to get an
equivalent instance I ′2 = (G = (V,E), s, t, C, `, (d1, . . . , di+1), (a1, . . . , ai+1))
of (DA)i+1-V. Note that by construction of I ′2 we get that d1 = |X1| = 0.
Let I ′ = (G = (V,E), s, t, C, `, (a1, . . . , ai+1), (d2, . . . , di+1)) be an A(DA)i-
V instance. Clearly, I ′2 is equivalent to I ′. Therefore, we constructed for
the I an equivalent instance I ′ of A(DA)i-V in polynomial time. Hence,
A(DA)i-V is ΣP

2i+1-hard and A(DA)i-R is ΠP
2i+1-hard.

Theorem 4.10. For all i ≥ 0, it holds that A(DA)i-V is ΣP
2i+1-complete

and A(DA)i-R is ΠP
2i+1-complete and for all i ≥ 1 it holds that (DA)i-V

is ΠP
2i-complete and (DA)i-R is ΣP

2i-complete.
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Proof. By Lemma 4.1 and Corollary 4.9, (DA)i-V is ΠP
2i-hard andA(DA)

i-V
is ΣP

2i+1-hard. Hence, it remains to show that (DA)i-V ∈ ΠP
2i and A(DA)

i-
V ∈ ΣP

2i+1. We show this statement by induction over i.
By the fact that A(DA)0-V and Colored (s, t)-Cut are equivalent, we

get that A(DA)0-V is NP = ΣP
1 -complete and A(DA)0-R is ΠP

1 -complete
[10]. Hence, the statement holds for i = 0.

Assume that the statement is true for some 0 ≤ j − 1, we show that the
statement is also true for j. To this end, we show two inductive steps.

First, we show that the statment is true for (DA)j-R if it is true for
A(DA)j−1-V. Let I = (G, s, t, C, `, (d1, . . . , dj), (a1, . . . , aj)) be an instance
of (DA)j-R and let D1 ∈

(
C
d1

)
. Clearly, the attacker is not able to separate

vertices anymore that are connected with an edge colored in D1. We can
compute the graph G′ where we remove all edges of `−1(D1) and identify u, v
for all {u, v} ∈ E, `({u, v}) ∈ D1 in polynomial time. Note that this graph
might have parallel edges. Hence, we also subdivide every edge e into two
new edges e′1 and e′2 and set `′(e′1) := `′(e′2) := `(e). Next, we can use an
oracle to solve the instance I ′ = (G′, s, t, C \D1, `

′, (a1, . . . , aj), (d2, . . . , dj))
of A(DA)j−1-R. Since A(DA)j−1-R is ΠP

2j−1-complete due to the induction
hypothesis, it follows that (DA)j-R is ΣP

2j-complete and (DA)j-V is ΠP
2j-

complete.
Finally, we show that the statment is true for A(DA)j-V if it is true for

(DA)j-R. Let I = (G, s, t, C, `, (a1, . . . , aj+1), (d2, . . . , dj+1)) be an instance of
A(DA)j-V and let A1 ∈

(
C
a1

)
. We can compute the graph G′ := G− `−1(A1),

set C ′ := C \ A1, and set `′(e) := `(e) for all e ∈ E(G), `(e) 6∈ A1 in
polynomial time. Next, we can use an oracle to solve the instance I ′ =
(G′, s, t, C ′, `, (d2, . . . , dj+1), (a2, . . . , aj+1)) of (DA)j-V. Since (DA)j-V is ΠP

2j-
complete due to the induction hypothesis, it follows that A(DA)j-V is ΣP

2j+1-
complete and A(DA)j-R is ΠP

2j+1-complete.

Recall the property of colored-cut-equivalent graphs. If H = (G, s, t, C, `)
and H′ = (G′, s′, t′, C, `′) are colored-cut-equivalent, then C̃ ⊆ C is a col-
ored (s, t)-cut in G if and only if C̃ is a colored (s′, t′)-cut in G′. Therefore,
the following Claims follow directly.

Claim 4.11. Let i ≥ 1, then the (DA)i-R instances I = (G, s, t, C, `,~d,~a)

and I ′ = (G′, s′, t′, C, `′,~d,~a) are equivalent if (G, s, t, C, `) and (G′, s′, t′, C, `′)
are colored-cut-equivalent.
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Claim 4.12. Let i ≥ 0, then the A(DA)i-R instances I = (G, s, t, C, `,~a,~d)

and I ′ = (G′, s′, t′, C, `′,~a,~d) are equivalent if (G, s, t, C, `) and (G′, s′, t′, C, `′)
are colored-cut-equivalent.

Next, we will use these claims to show that (DA)i-V is ΠP
2i-hard and

A(DA)i-V is ΣP
2i+1-hard even on bipartite planar graphs. To this end, we

�rst show the following.

Proposition 4.13. For every colored graph H = (G = (V,E), s, t, C, `) there
is a colored-cut-equivalent graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′) where G′ is
bipartite and can be computed in polynomial time.

Proof. Given a colored graph H = (G = (V,E), s, t, C, `), we de�ne a colored
graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′) where G′ is bipartite and show that H
and H′ are colored-cut-equivalent.

We construct H′ as follows: V ′ := V ∪ {ve | e ∈ E}, E ′ := {{u, ve} |
e ∈ E, u ∈ e}, s′ := s, t′ := t, and `′({u, ve}) := `(e) for all {u, ve} ∈ E ′,
that is, we subdivided every edge {u,w} ∈ E into two edges {u, v{u,w}}
and {v{u,w}, w} of the same color. By construction, G′ is bipartite, since all
vertices v ∈ V have only neighbors in V ′ \ V and vice versa. This can be
done in polynomial time.

Next, we show that C(H) = C(H′), which implies that H and H′ are
colored-cut-equivalent. By construction, it follows that P = (u1, . . . , uk) is
an (s, t)-path in G if and only if P = (u1, v{u1,u2}, u2, . . . , v{uk−1,uk}, uk) is
an (s, t)-path in G′. Hence, `(E(P ))) = `′(E(P ′)) and therefore C(H) =
C(H′).

Corollary 4.14. For all i ≥ 1, it holds that (DA)i-V is ΠP
2i-hard even on

bipartite planar graphs.

Proof. Let I = (G, s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) be an instance of (DA)
i-

V de�ned as described in the proof of Lemma 4.1. We show that there is
a colored graph (G′, s′, t′, C, `′) that is colored-cut-equivalent to (G, s, t, C, `)
where G′ is bipartite and planar and that can be computed in polynomial
time.

Note that the constructed graph in the proof of Lemma 4.1 is already pla-
nar. By Proposition 4.13 there is colored-cut-equivalent graph (G′, s′, t′, C, `′)
that can be computed in polynomial time where G′ is bipartite. Note that G′

is still planar since it was constructed by only inserting a new vertex in the
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middle of each edge of G. Hence, G′ is bipartite planar and therefore I is
a yes-instance if and only if I ′ = (G′, s′, t′, C, `′, (d1, . . . , di), (a1, . . . , ai)) is a
yes-instance due to Claim 4.11.

The following corollary can be shown in the same way.

Corollary 4.15. For all i ≥ 0, it holds that A(DA)i-V is ΣP
2i+1-hard even

on bipartite planar graphs.

4.2 PSPACE Version

In this subsection we show that if the number of alternations between the
attacker and the defender is unbounded, it is PSPACE-complete to determine
which agent has a winning strategy. Therefore, we start by de�ning these
generalized versions of (DA)i-R and (DA)i-V.

Colored (s, t)-Cut Robustness Game (CCRG)
Input: An integer i ≥ 1, a colored graph (G = (V,E), s, t, C, `),

and two integer vectors ~d := (d1, . . . , di),~a := (a1, . . . , ai) ∈ Ni

such that
∑i

k=1(dk + ak) ≤ |C|.
Question: ∃D1 ∈

(
C
d1

)
.∀A1 ∈

(
C\D1

a1

)
.∃D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∀Ai ∈(

C\((
⋃i−1

k=1(Dk∪Ak)∪Di)
ai

)
: such that

⋃i
k=1Ak is not a colored (s, t)-cut

in G?

Colored (s, t)-Cut Vulnerability Game (CCVG)
Input: An integer i ≥ 1, a colored graph (G = (V,E), s, t, C, `),

and two integer vectors ~d := (d1, . . . , di),~a := (a1, . . . , ai) ∈ Ni

such that
∑i

k=1(dk + ak) ≤ |C|.
Question: ∀D1 ∈

(
C
d1

)
.∃A1 ∈

(
C\D1

a1

)
.∀D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∃Ai ∈(

C\((
⋃i−1

k=1(Dk∪Ak)∪Di)
ai

)
: such that

⋃i
k=1Ak is a colored (s, t)-cut

in G?

By de�nition, an instance I of CCVG or CCRG is a tuple of an integer i
and an instance Ĩ of (DA)i-R or (DA)i-V, respectively and we ask, if Ĩ is
a yes-instance. Hence, (DA)i-R (respectively, (DA)i-V) is a special case of
CCRG (respectively, CCVG) for all i ≥ 1. Note that we could also de�ne
problems in which the attacker starts and afterwards every agent has i turns
for an unbounded i ≥ 1. But since (DA)i-R is a special case of A(DA)i-R
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which is a special case of (DA)i+1-R, a problem in which the attacker starts
would be equivalent to CCRG (respectively, CCVG).

In the following we will show that CCRG and CCVG are PSPACE-
complete. More precisely, we show that both CCRG and CCVG are al-
ready PSPACE-complete if every budget in every turn is exactly one. There-
fore, we introduce the following problem.

Unit Budget Colored (s, t)-Cut Robustness Game (Unit-
CCRG)
Input: A colored graph (G = (V,E), s, t, C, `) where |C| = 2i for
some i ∈ N.
Question: ∃d1 ∈ C.∀a1 ∈ C \ {d1}.∃d2 ∈ C \ {d1, a1}. · · · .∀ai ∈
C \ ({dj, aj | 1 ≤ j < i} ∪ {di}) : such that {dj | 1 ≤ j ≤ i} is a
colored (s, t)-connector in G?

This problem can also be seen as a Shannon Switching Game [18]. In this
case, Unit-CCRG is a game between two agents where every agent selects
an unselected color in each turn. The game ends when there is no unse-
lected color remaining and the attacker wins if he selected a colored (s, t)-cut.
This is the case if and only if the defender has not selected a colored (s, t)-
connector, since at the end of the game every color is selected by either
the attacker or the defender. Furthermore, we ask if the defender has a
winning strategy. In contrast to the Shannon Switching Game where every
agent selects an edge every turn instead of a color, which is known to be
polynomial-time-solvable [7,9], we will show that Unit-CCRG is PSPACE-
complete.

Lemma 4.16. Unit Budget Colored (s, t)-Cut Robustness Game
is PSPACE-hard.

Proof. We show this statement by a polynomial-time reduction from Shan-
non Switching Game on the Vertices which is known to be PSPACE-
complete [18].

Shannon Switching Game on the Vertices (SSG-V)
Input: A graph G = (V,E) and two distinct vertices s, t ∈ V
such that |V \ {s, t}| = 2i.
Question: ∃d1 ∈ V \{s, t}.∀a1 ∈ V \ {s, t, d1}.∃d2 ∈ V \ {s, t, d1, a1}.
· · · .∀ai ∈ V \ ({dj, aj | 1 ≤ j < i} ∪ {s, t, di}) : such that s and t
are in the same connected component in G[{dj | 1 ≤ j ≤ i}]?
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Given an instance I = (G = (V,E), s, t) of SSG-V, we describe how
to construct an instance I ′ = (G′ = (V ′, E ′), s′, t′, C, `) of Unit-CCRG in
polynomial time such that I is a yes-instance of SSG-V if and only if I ′ is a
yes-instance of Unit-CCRG. We can assume without loss of generality that
there is no edge {s, t} connecting s and t in E.

Let Ṽ := V \ {s, t}. We set s′ := s, t′ := t, V ′ := V ∪ {v{u,w} | {u,w} ∈
E, {u,w}∩{s, t} = ∅}, E ′ := {e ∈ E | e∩{s, t} 6= ∅}∪{{u, v{u,w}} | {u,w} ∈
E, {u,w}∩{s, t} = ∅}, in other words, we subdivided every edge of E which
is not incident to s or t. Note that for every edge e′ ∈ E ′ there is exactly
one u ∈ e′ ∩ Ṽ . Furthermore, we set C := Ṽ and set `({u,w}) := u for
all {u,w} ∈ E ′, u ∈ Ṽ . That is, every vertex v ∈ Ṽ is also a color and all
incident edges of v in G′ are colored in v.

Next, we show that I is a yes-instance of SSG-V if and only if I ′ is a
yes-instance of Unit-CCRG. To this end, we show that a set D̃ ⊆ C is a
colored (s, t)-connector in G′ if and only if s and t are connected in G[{s, t}∪
D̃].

(⇒) Let D̃ ⊆ C = Ṽ be a colored (s, t)-connector in G′. Then there
is an (s, t)-path P ′ in G′ with `(E(P ′)) ⊆ D̃. By construction, P ′ =
(s, u1, v{u1,u2}, u2, . . . , v{ur−1,ur}, ur, t) for some r ≥ 1 and uj ∈ Ṽ = C for
all j, 1 ≤ j ≤ r. Furthermore, `(E(P ′)) = {u1, . . . , ur}. Hence, P =
(s, u1, . . . , ur, t) is an (s, t)-path in G and therefore s and t are in the same
connected component in G[{s, t} ∪ D̃].

(⇐) Let D̃ ⊆ Ṽ = C such that s and t are in the same connected
component inG[{s, t}∪D̃]. Hence, there is an (s, t)-path P = (s, u1, . . . , ur, t)
with r ≥ 1 in G where {u1, . . . , ur} ⊆ D̃. By construction, the path P ′ =
(s, u1, v{u1,u2}, u2, . . . , v{ur−1,ur}, ur, t) is an (s, t)-path in G′ with `(E(P ′)) =

{u1, . . . , ur} ⊆ D̃ and therefore D̃ is a colored (s, t)-connector in G′.
Hence, a winning strategy for the defender in theUnit-CCRG instance I ′

is also a winning strategy for the defender in the SSG-V instance I and vice
versa. Therefore, I is a yes-instance of SSG-V if and only if I ′ is a yes-
instance of Unit-CCRG.

Theorem 4.17. Colored (s, t)-Cut Robustness Game, Colored (s, t)-
Cut Vulnerability Game and Unit Budget Colored (s, t)-Cut Ro-
bustness Game are PSPACE-complete.

Proof. By Lemma 4.16 and the fact that Unit-CCRG is a special case of
CCRG, CCRG is also PSPACE-hard. It remains to show that all these
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problems are in PSPACE. Let I = (i, G, s, t, C, `,~d,~a) be an instance of

CCRG then I is a yes-instance if and only if I ′ = (G, s, t, C, `,~d,~a) is a yes-
instance of (DA)i-R. Due to Theorem 4.10, for all i ≥ 1 (DA)i-R is contained
in ΣP

2i and since ΣP
2i ⊆ PSPACE, CCRG is contained also in PSPACE.

By the fact that the class of PSPACE-complete problems is closed under
complement, CCVG is also PSPACE-complete.

Recall the property of colored-cut-equivalent graphs. If H = (G, s, t, C, `)
and H′ = (G′, s′, t′, C, `′) are colored-cut-equivalent, then C̃ ⊆ C is a col-
ored (s, t)-cut in G if and only if C̃ is a colored (s′, t′)-cut in G′. Therefore,
the following Claims follow directly.

Claim 4.18. The CCVG instances I = (H,~d,~a) and I ′ = (H′,~d,~a) are
equivalent if H and H′ are colored-cut-equivalent.

Corollary 4.19. Both Colored (s, t)-Cut Robustness Game and Col-
ored (s, t)-Cut Vulnerability Game are PSPACE-complete even on
planar graphs.

Proof. We show this statement by a polynomial-time reduction from QSAT-
3-CNF to CCVG. To this end, recall the de�nition.

QSAT-3-CNF
Input: A set Φ of clauses in 3-CNF over the variables Z =
{xj, yj | 1 ≤ j ≤ i} for some i ∈ N.
Question: Is it true that ∀x̃1 ∈ {x1,¬x1}.∃ỹ1 ∈ {y1,¬y1}. · · · .∀x̃i ∈
{xi,¬xi}.∃ỹi ∈ {yi,¬yi} : {x̃j, ỹj | 1 ≤ j ≤ i} |= Φ?

Given an instance I = (Z,Φ) of QSAT-3-CNF with |Z| = 2i, we con-

struct an instance I ′ = (i,H = (G, s, t, C, `),~d,~a) of CCVG where G is
planar such that I is a yes-instance of QSAT-3-CNF if and only if I ′ is a
yes-instance of CCVG. We can use the same construction as in Lemma 4.1
to construct H and the budget vectors ~d and ~a in polynomial time. Af-
terwards, the proof that I is a yes-instance of QSAT-3-CNF if and only
if I ′ is a yes-instance of CCRG can also be shown identical to the proof in
Lemma 4.1. By construction, G is planar and therefore, Colored (s, t)-Cut
Robustness Game and Colored (s, t)-Cut Vulnerability Game are
PSPACE-complete even on planar graphs.
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5 Parameterizations for Colored Cut Games

In this section we analyze the parameterized complexity of the colored cut
games. In Sections 5.1 � 5.3, we investigate parameters that are related to
the budget of the agents. In Section 5.4, we present polynomial kernels for all
colored cut games. Since Colored (s, t)-Cut does not admit a polynomial
kernel when parameterized by |C|, the kernels in Section 5.4 use parameters
larger than |C|.

Let us introduce some notations that are necessary for the parameter-
izations of this section. We denote for an instance I = (G, s, t, C, `,~d,~a)
of (DA)i-R or (DA)i-V with Bd(I) := {dj | 1 ≤ j ≤ i} and Ba(I) :=
{aj | 1 ≤ j ≤ i} the set of budgets of the defender and attacker, re-
spectively and with Bd(I) :=

∑i
x=1 dx and Ba(I) :=

∑i
x=1 ax the sum of

the budget of the defender and attacker, respectively. Furthermore, we
denote with B(I) := Bd(I) ∪ Ba(I) the set of all budgets. Moreover, we
set B(I) := Bd(I)+Ba(I). For A(DA)i-R, A(DA)i-V, CCRG, and CCVG,
we de�ne the functions Bd,Ba,B, Bd, Ba, and B analogously.

We use the abbreviation DA-V and DA-R for (DA)1-V and (DA)1-
R, respectively. Furthermore, since there is only one turn per agent, we
de�ne a := a1 and d := d1.

To determine whether or not (DA)i-R admits an XP-algorithm when
parameterized by some parameter k∗, it is su�cient to show that (DA)i-
V admits an XP-algorithm when parameterized by k∗ and vice versa, since
XP is closed under complement [15]. The same holds for FPT-algorithms.
Hence, we only investigate parameterizations for either (DA)i-R or (DA)i-V.
Clearly, this observation also holds for the other pairs of complement games,
A(DA)i-R and A(DA)i-V, as well as CCRG and CCVG.

5.1 Parameterization by the Full Budget B(I)

First, we investigate the parameter B(I). Colored (s, t)-Cut is in XP and
W[2]-hard when parameterized by k = B(I) due to Corollary 2.5. Similar
to Colored (s, t)-Cut, we will show that all the colored cut games are in
XP and W[2]-hard when parameterized by B(I). Moreover, we show that
all colored cut games are in FPT and do not admit polynomial kernels when
parameterized |C|.
Proposition 5.1. (DA)i-R, i ≥ 1, A(DA)i-R, i ≥ 0, and CCRG parame-
terized by B(I) are in XP.
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Proof. There is a trivial XP-algorithm for (DA)i-R when parameterized
by B(I). The idea of this algorithm is to compute an and-or tree of depth 2i+
1 where the �rst i odd levels belong to choices of the defender, and the even
levels belong to the attacker. A non-leaf node branches into all possible sub-
sets of unchosen colors of size equal to the budget of the corresponding turn.
A leaf is evaluated as true if the union of the choices of the attacker on the
path from this leaf to the root is not a colored (s, t)-cut. A node belong-
ing to the defender is evaluated as true if there is at least one child that
is evaluated as true, whereas, a node belonging to the attacker is evaluated
as true if all its children are evaluated as true. To determine if an instance
of (DA)i-R is a yes-instance, we thus have to check if the root of the cor-
responding and-or tree is evaluated as true. This algorithm clearly runs

in time O(
(|C|
d1

)(|C|−d1
a1

)
. . .
(|C|−∑i−1

j=1(dj+aj)−di
ai

)
(n + m)) ⊆ O(|C|B(I)(n + m)).

A(DA)i-R and CCRG can be solved analogously.

By de�nition, B(I) ≤ |C|. Hence, the XP-algorithms of Proposition 5.1
also imply FPT-algorithms when parameterized by |C|.

Corollary 5.2. (DA)i-R, A(DA)i−1-R, i ≥ 1, and CCRG can be solved
in O(min(|C||C|, 22i|C|)(n + m)) time and do not admit a polynomial kernel
when parameterized by |C|, unless NP ⊆ coNP/poly.

Proof. Since Colored (s, t)-Cut parameterized by |C| does not admit a
polynomial compression [38], which is a stronger result than not admit a
polynomial kernel [12], unless NP ⊆ coNP/poly, none of the colored cut
gamesadmits a polynomial kernel when parameterized by |C|, unless NP ⊆
coNP/poly.

With the algorithm described in Proposition 5.1 and the fact that B(I) ≤
|C| a running time of O(|C||C|(n+m)) follows directly. Moreover,

(|C|
j

)
≤ 2|C|

for every 0 ≤ j ≤ |C| and therefore, I can be solved in O(22i|C|(n + m)) =

O((2|C|)2i(n+m)) ⊇ O(
(|C|
d1

)(|C|−d1
a1

)
. . .
(|C|−∑i−1

j=1(dj+aj)−di
ai

)
(n+m)) time.

Next, we improve the running time of the FPT-algorithm of Corollary 5.2
for DA-R and DA-V.

Proposition 5.3. DA-R can be solved in O(2|C|(n+m)) time.

Proof. Recall that in DA-R we ask if there is a set D1 ⊆ C of size at most d
such that there is no colored (s, t)-cut A1 ⊆ (C \D1) of size at most a in G.
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In the following, we call a set D̃ ⊆ C of size at least a safe if there is no
colored (s, t)-cut A1 ⊆ D̃ of size at most a in G, that is, if the defender
chooses all colors in C \ D̃, the attacker is not able to select a colored (s, t)-
cut of size at most a. In other words, the defender wins if and only if there
is a safe set D̃ ⊆ C of size at least |C| − d. Now, we describe an algorithm
that runs in O(2|C|(n + m)) time and checks if there is a safe set D̃ ⊆ C of
size at least |C| − d.

The algorithms computes iteratively the sets Sj of all safe sets of col-
ors D̃j ∈

(
C
j

)
of size exactly j for every a ≤ j ≤ |C| − d. Clearly, the

defender has a winning strategy if S|C|−d 6= ∅. We can compute the set Sa
in O(

(|C|
a

)
(n + m)) time by checking for every D̃a ∈

(
C
a

)
in O(|C|(n + m))

time if D̃a is not a colored (s, t)-cut in G. Next, we use the set Sj to compute
the set Sj+1 for every a ≤ j < |C|−d. By de�nition, D̃ with |D̃| > a is safe if
and only if there is no D′ ⊂ D̃ with |D′| = a such that D′ is not safe. There-

fore, D̃j+1 ∈
(
C
j+1

)
is safe if every D̃j ∈

(
D̃j+1

j

)
is safe. Hence, the algorithm

checks for every D̃j+1 ∈
(
C
j+1

)
in O(|C|) time if every D̃j ∈

(
D̃j+1

j

)
is safe and

therefore we can compute Sj+1 in O(
( |C|
j+1

)
|C|) time. Therefore, the algorithm

checks if S|C|−d 6= ∅ in O(
∑|C|−d

j=a

(|C|
j

)
(|C| + n + m)) ⊆ O(2|C|(n + m)) time

since we can assume without loss of generality that |C| ≤ m.

Note that this algorithm uses O(2|C|) space and therefore might only be
interesting for theoretical use and not in practice.

Finally, we show that it is unlikely to �nd an FPT-algorithm for any of
the colored cut games when parameterized by B(I).

Proposition 5.4. (DA)i-V, i ≥ 1,A(DA)i-V, i ≥ 0, and CCVG parame-
terized by B(I) are W[2]-hard.

Proof. Let I ′ = (G, s, t, C, `, k) be a Colored (s, t)-Cut instance. Since
Colored (s, t)-Cut is a special case of (DA)i-V,A(DA)i-V, and CCVG
where all budgets except a1 are set to zero, we can give a trivial reduction
from Colored (s, t)-Cut to any of these problems where B(I) = a1 = k.
The statement follows since Colored (s, t)-Cut is W[2]-hard parameterized
by k [19, 38].
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5.2 Parameterization by All Budgets Except One

In the previous section, we have shown that for all colored cut games there
is an XP-algorithm when the parameter is B(I). Recall that B(I) denotes
the set of all budgets of both agents. In this subsection, we show that it is
unlikely to �nd an XP-algorithm for any of these problems when they are
parameterized by B(I)− b for any budget b ∈ B(I). In other words, even if
all budgets except one sum up to a constant, all these problems cannot be
solved in polynomial time, unless P = NP.

The �rst statement follows directly from the fact that Colored (s, t)-
Cut is a special case of DA-V with d = 0. Hence, DA-V is NP-hard even
if d = 0, and therefore DA-R is coNP-hard even if d = 0.

Corollary 5.5. DA-R is coNP-hard and DA-V is NP-hard even if d = 0.

Next, we show that all the introduced games can be solved in polynomial
time if the attacker is only allowed to chose at most one color in the entire
instance.

Proposition 5.6. Let I be an instance of (DA)i-R i ≥ 1, A(DA)i-R i ≥ 0,
or CCRG, then I can be solved in O(i+ |C|(n+m)) time if Ba(I) ≤ 1.

Proof. First, we show that DA-R can be solved in O(|C|(n + m)) time
if a ≤ 1. Let I = (G = (V,E), s, t, C, `, d, a) be an instance of DA-R.
We can assume that s and t are in the same connected component in G,
since otherwise I is a trivial no-instance. Hence, if a = 0, I is a trivial yes-
instance. If a = 1, we can compute the set of all colored (s, t)-cuts of size
exactly one, that is, A ⊆ C such that {α} is a colored (s, t)-cut in G for
all α ∈ A. This can be done in O(|C|(n+m)) time.

We show that I is a yes-instance if and only if d ≥ |A|. If the attacker is
able to choose some α ∈ A in his turn, then he has picked a colored (s, t)-cut
and therefore, the defender will lose the game. Therefore, I is a no-instance
if d < |A|. If d ≥ |A|, then I is a yes-instance, since the defender can
choose D1 ⊇ A and therefore, there is no colored (s, t)-cut of size one left.

Next, we show that CCRG can be solved in O(i + |C|(n + m)) time
if Ba(I) ≤ 1. Let I = (i, G = (V,E), s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) be an
instance of CCRG with Ba(I) ≤ 1. Recall that if Ba(I) = 0, the defender
wins if and only if s and t are in the same connected component in G. Thus,
assume that Ba(I) = 1. Hence, there is some x, 1 ≤ x ≤ i, such that ax = 1
and ay = 0 for all 1 ≤ y ≤ i, y 6= x. Recall that the defender cannot change

43



the outcome of the game after the attacker has performed his last turn. This
also holds for the last turn in which the attacker is able to select a set of
colors of size at least one. Therefore, I is a yes-instance, if the (DA)x-R
instance Ĩ := (G, s, t, C, `, (d1, . . . , dx), (a1, . . . , ax)) is a yes-instance. Note
that a1 = a2 = · · · = ax−1 = 0. Hence, Ĩ is a yes-instance, if the DA-
R instance I ′ := (G, s, t, C, `, d, a) is a yes-instance where d :=

∑x
j=1 dj

and a = 1. Recall that we can solve I ′ in O(|C|(n+m)) time and therefore
we can solve the equivalent instance I in O(i + |C|(n + m)) time. The
additional summand i in the running time, comes from �nding the turn x
where ax = 1.

Thus, CCRG can be solved in O(i+ |C|(n+m)) time. Since, A(DA)i-R
is a special case of CCRG, (DA)i-R and A(DA)i-R can be solved in the
same time.

In contrast, we now show that (DA)i-R, A(DA)i-R, i ≥ 1, and CCRG
are NP-hard if the attacker is allowed to choose at least two colors.

Proposition 5.7. DA-R is NP-complete even if a = 2.

Proof. We reduce from Vertex Cover. Let I ′ = (G′ = (V ′, E ′), k′) be
an instance of Vertex Cover. We construct in polynomial time an in-
stance I = (G = (V,E), s, t, C, `, d, a) of DA-R with a = 2 such that I is a
yes-instance if and only if I ′ is a yes-instance.

Assume E ′ := {e1, . . . e|E′|} and an ordering on V ′ and set

� C := V ′,

� V := {v0, v
<
i , v

>
i , vi | 1 ≤ i ≤ |E ′|}, s := v0, t := v|E′|, and

� E := {{vi−1, v
<
i }, {vi−1, v

>
i }, {v<i , vi}, {v>i , vi} | 1 ≤ i ≤ |E ′|}.

Furthermore, we set `({vi−1, v
<
i }) := `({v<i , vi}) := ui and `({vi−1, v

>
i }) :=

`({v>i , vi}) := wi for all ei = {ui, wi}, ui < wi. That is, we connect the
vertices vi−1 and vi with two paths P< and P> such that `(E(P<)) = ui
and `(E(P>)) = wi. Finally, we set d = k′ and a = 2.

Next, we show that I is a yes-instance of DA-R if and only if I ′ is a
yes-instance of Vertex Cover. By construction, vi ∈ V (P ) for every (s, t)-
path P inG and for every i, 0 ≤ i ≤ |E ′|. By removing the edges `−1({ui, wi})
from G for some {ui, wi} ∈ E ′, the vertices vi−1 and vi are in di�erent
connected components. Thus, {ui, wi} is a colored (vi−1, vi)-cut in G and
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therefore also a colored (s, t)-cut in G. Therefore, the defender has to pick D1

such that D1 ∩ {u, v} 6= ∅ for all e ∈ E ′ (which is a colored (s, t)-connector
in G) or otherwise, the attacker can pick a colored (s, t)-cut of size two.
Consequently, D1 is a colored (s, t)-connector in G if and only if D1 is a
vertex cover in G′. Thus, I is a yes-instance of DA-R if and only if I ′ is a
yes-instance of Vertex Cover.

It remains to show that DA-R is contained in NP if a = 2. Let I = (G =
(V,E), s, t, C, `, d, a) be an instance of DA-R with a = 2. The defender has
a winning strategy if and only if the attacker has no winning strategy, that
is, if the defender can choose D1 ∈

(
C
d

)
such that there is no colored (s, t)-

cut A1 ⊆ C \D1 of size at most two in G. Since we can compute the set F of
all colored (s, t)-cuts of size at most two in O(

(|C|
2

)
(n+m)) we can construct

the instance I∗ = ((C,F), d) of Hitting Set in polynomial time. Clearly, I
is a yes-instance if and only if I∗ is a yes-instance. We gave a reduction
from DA-R with a = 2 to Hitting Set and therefore DA-R with a = 2 is
contained in NP since Hitting Set is contained in NP.

The next theorem follows from Propositions 5.6, and 5.7, and the fact
that DA-R is a special case of (DA)i-R, A(DA)i-R, i ≥ 1, and CCRG.

Theorem 5.8. The problems (DA)i-R, A(DA)i-R, i ≥ 1, and CCRG can
be solved in O(i+ |C|(n+m)) time if Ba(I) ≤ 1 and are NP-hard otherwise.

With Corollary 5.5 and Proposition 5.7, we are now able to show that it
is unlikely to �nd an FPT-algorithm for any of the colored cut games when
parameterized by B(I)− b for any budget b ∈ B(I).

Corollary 5.9. (DA)i-R, i ≥ 1, A(DA)i-R, i ≥ 0 and CCRG parameter-
ized by B(I)− b are not in XP for every b ∈ B(I), unless P = NP.

Proof. Let 1 ≤ x ≤ i. We show that (DA)i-R is NP-hard even if B(I)−dx =
2 and coNP-hard even if B(I)−ax = 0. In both cases we reduce from DA-R.

Given an instance I ′ = (G, s, t, C, `, d, a) of DA-R with a = 2, we de�ne
the instance I := (G, s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) with ax = 2, dx = d,
and aj := dj := 0 for all 1 ≤ j ≤ i, j 6= x. By de�nition, B(I) − dx =
2. Moreover, I and I ′ are equivalent. Hence, (DA)i-R is NP-hard even
if B(I)−dx = 2 since DA-R is NP-hard even if a = 2 due to Proposition 5.7.

Given an instance I ′′ = (G, s, t, C, `, d, a) of DA-R with d = 0, we de�ne
the instance I := (G, s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) with ax = a, dx = 0,
and aj := dj := 0 for all 1 ≤ j ≤ i, j 6= x. By de�nition, B(I) − ax = 0
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and I and I ′′ are equivalent instances. Hence, (DA)i-R is coNP-hard even
if B(I)−ax = 0 since DA-R is coNP-hard even if d = 0 due to Corollary 5.5.

Hardness for A(DA)i-R and CCRG can be shown in the same way.

The next theorem follows from Propositions 5.1, and 5.4 and Corol-
lary 5.9.

Theorem 5.10. The problems (DA)i-R, A(DA)i-R, i ≥ 1, and CCRG
are in XP and W[2]-hard when parameterized by B(I) and not in XP when
parameterized by B(I)− b for every budget b ∈ B(I), unless P = NP.

5.3 Parameterization by the Number of Unchosen Col-

ors

As the last parameterization that is related to the budget, we investigate |C|−
b for any b ∈ B(I). That is, the number of colors that cannot be chosen in
any turn with budget b. Recall that in the case of DA-R, B(I) = {d, a}.
Thus, for DA-R we investigate parameterizations by |C|−d and |C|−a and
generalize the hardness results we obtain to all colored cut games.

Proposition 5.11. (DA)i-R, i ≥ 1, A(DA)i-R, i ≥ 0, and CCRG are in
XP when parameterized by |C| − b for every b ∈ B(I).

Proof. Let I be an instance of (DA)i-R and let b ∈ B(I) be an arbi-
trary budget. With the algorithm described in Proposition 5.1 and the
fact that B(I) ≤ |C| we can solve I in time O(|C||C|−b

(|C|
b

)
(n + m)) =

O(|C||C|−b
( |C|
|C|−b

)
(n + m)) ⊆ O(|C||C|−b|C||C|−b(n + m)) which implies an

XP-algorithm for (DA)i-R parameterized by |C| − b. The statements for
A(DA)i-R and CCRG can be shown analogously.

Next, we show that it is unlikely to �nd an FPT-algorithm for any of
the colored cut games when parameterized by |C| − b for b ∈ Bd(I). To this
end, we �rst show the �xes-parameter intractability for DA-R parameterized
by |C| − d.

Corollary 5.12. DA-R parameterized by |C| − d is W[1]-hard.

Proof. In the proof of Proposition 5.7 we gave an implicit parameterized
reduction from the Independent Set problem parameterized by the size of
the solution (which is known to be W[1]-hard [15]) to DA-R parameterized
by |C| − d. Hence, DA-R parameterized by |C| − d is also W[1]-hard.
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To analyze the parameterized complexity of DA-R parameterized by |C|−
a, we �rst show the following connection to Colored Path.

Lemma 5.13. An instance I = (G, s, t, C, `, d, a) of DA-R with d+ a = |C|
is a yes-instance if and only if the instance I ′ = (G, s, t, C, `, d) of Colored
Path is a yes-instance.

Proof. If I is a yes-instance, then there is D1 ∈
(
C
d

)
such that s and t are in

the same connected component in G− `−1(C \D1). Hence, there is an (s, t)-
path in G − `−1(C \ D1) and therefore also in G with `(E(P )) ⊆ D1. By
construction, D1 is a colored (s, t)-connector in G.

If I ′ is a yes-instance, then there is a colored (s, t)-connector L of size at
most d in G and therefore choosing D1 ⊇ L is a winning strategy for the
defender.

Since Colored Path is NP-complete and W[2]-hard when parameter-
ized by the size of the solution k [19], the following also holds.

Corollary 5.14. DA-R parameterized by |C| − a is W[2]-hard and NP-
complete if d+ a = |C|.

Since DA-R is a special case of (DA)i-R, A(DA)i-R, and CCRG, the
next result follows directly from the Corollaries 5.12 and 5.14.

Corollary 5.15. (DA)i-R, i ≥ 1, A(DA)i-R, i ≥ 1, and CCRG parame-
terized by |C| − bd are W[1]-hard for every bd ∈ Bd(I) and W[2]-hard when
parameterized by |C| − ba for every ba ∈ Ba(I).

The main theorem of this subsection now follows from Proposition 5.11
and Corollary 5.15.

Theorem 5.16. (DA)i-R, A(DA)i-R, i ≥ 1, and CCRG parameterized
by |C| − b are in XP for every b ∈ B(I) and W[1]-hard if b ∈ Bd(I) and
W[2]-hard if b ∈ Ba(I).

5.4 Polynomial Kernels for Parameters Larger than the

Number of Colors

Since it is unlikely that any of the colored cut games admits a polynomial ker-
nel when parameterized by |C|, we have to investigate (comined) parameters
that are larger than |C| in order to obtain polynomial kernels.
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Recall that unless P = NP. Colored (s, t)-Cut parameterized by the
vertex cover number does not admit an XP-algorithm [10] and therefore
neither does any of the colored cut games. We will show that all the colored
cut games admit polynomial kernels when parameterized by both |C| and the
vertex cover number. More general, we show that even for smaller parameters
we can �nd polynomial kernels. To this end, we consider a generalization of
the vertex cover number to the r-COC number.

De�nition 5.17 ([16, 28]). Let G = (V,E) be a graph and r ≥ 1 be an
integer. We call Γ ⊆ V a r-component order connectivity set (r-COC set) if
for all connected components H in G−Γ it holds that |H| ≤ r. Furthermore,
we call κr := min{|Γ| | Γ ⊆ V,Γ is a r-COC set} the r-component order
connectivity number (r-COC number) of G.

Note that a set Γ ⊆ C is a 1-COC set if and only if Γ is a vertex cover.

Lemma 5.18. Let r ≥ 1 be a constant and let H = (G = (V,E), s, t, C, `)
be a colored graph with r-COC number κr. Then, there is a colored-cut-
equivalent graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′) with |H′| ≤ (κr + |C|)O(r)

that can be computed in |H|O(r) time.

The idea of the following construction is to �rst compute an r-COC set Γ
in polynomial time such that s ∈ Γ and t ∈ Γ. Second, we compute all color
sets A{a,b} of (a, b)-paths in the graph induced by for all distinct a, b ∈ Γ. Fi-
nally, we remove all connected components in G− Γ and add an (a, b)-paths
with the colors L for all a, b ∈ Γ and for all L ∈ A{a,b}. Thus, we con-
struct a colored graph H′ in polynomial time where the number of connected
components in G′ − Γ is bounded from above by a polynomial function only
depending on |C| and |Γ|.

Proof. We can �nd an r-COC set Γ′ of size at most κr(r + 1) in O(n + m)
time due to the (r+1)-approximation algorithm for r-COC [28]. Afterwards,
we set Γ := Γ′ ∪ {s, t} which is an r-COC set of size at most κr(r + 1) + 2.
Let q be the number of connected components in G−Γ and H1, . . . , Hq ⊆ V
be the vertex sets of the connected components in G−Γ. Recall that |Hi| ≤ r
for all 1 ≤ i ≤ q. Therefore, for every {a, b} ∈

(
Γ
2

)
and every (a, b)-path P

in G with V (P ) ∩ Γ = {a, b} it holds that |V (P )| ≤ r + 2. The idea is that
we compute for every {a, b} ∈

(
Γ
2

)
the set P{a,b} of all (a, b)-paths in G− (Γ \

{a, b}). This can be done in O(
(|Γ|

2

)
q · rr) time by computing all (a, b)-paths
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in G[{a, b} ∪ Hi] for all {a, b} ∈
(

Γ
2

)
and all i, 1 ≤ i ≤ q since there are at

most rr many (a, b)-paths inG[{a, b}∪Hi]. Note thatG[{a, b}∪Hi] might also
contain a direct edge {a, b}. Then, we compute the sets A{a,b} := {`(E(P )) |
P ∈ P{a,b}} of color sets of paths in P{a,b} in time O(

(|Γ|
2

)
(q · rr + |C|r+1)),

since there are at most |C|r+1 paths with di�erent sets of colors of size at
most r+1. Furthermore, assume an ordering on every L ∈ A{a,b}, {a, b} ∈

(
Γ
2

)
and an ordering on the vertices of Γ.

Now, we de�ne the instance H′. We start with an empty graph and add
all vertices of Γ, set s′ = s, and t′ = t. Next, for every set {a, b} ∈

(
Γ
2

)
, a < b,

and L ∈ A{a,b} we add vertices v{a,b}L,1 , . . . , v
{a,b}
L,r and edges {a, v{a,b}L,1 }, {v

{a,b}
L,r , b},

and {v{a,b}L,i , v
{a,b}
L,i+1} for all i, 1 ≤ i < r. Let L(y) denote the yth color in L. We

set `′({a, v{a,b}L,1 }) := L(1), `′({v{a,b}L,r , t}) := L(|L|), and `′({v{a,b}L,i , v
{a,b}
L,i+1}) :=

L(min(i+ 1, |L|) for all i, 1 ≤ i < r. This �nishes the de�nition of H′.
Note that for P

{a,b}
L = (a, v

{a,b}
L,1 , . . . , v

{a,b}
L,r , b) it holds that `′(E(P

{a,b}
L )) =

L. By construction, no edge e ∈ E belongs to E ′, and therefore every (a, b)-

path in G′ − (Γ \ {a, b}) is of the form P
{a,b}
L for some L ∈ A{a,b}. Therefore,

there is an (a, b)-path P in G− (Γ \ {a, b}) with `(E(P )) = L if and only if

there is an (a, b)-path P
{a,b}
L in G′− (Γ\{a, b}) with `′(E(P

{a,b}
L )) = L. Since

every path P
{a,b}
L contains exactly r+1 edges and there are at most

(|Γ|
2

)
|C|r+1

such paths, the number of edges in G′ is at most
(|Γ|

2

)
|C|r+1(r+1) ≤ (κr)

2(r+

1)3|C|r+1 and the number of vertices is at most |Γ|+
(|Γ|

2

)
|C|r+1r ≤ ((κr)

2 +

κr)(r + 1)3|C|r+1. Hence, |H′| ≤ (κr + |C|)O(r). Furthermore, H′ and can be
computed in |H|O(r) time.

Finally, we show that H and H′ are colored-cut-equivalent. To this end,
we prove that C(H) ⊆ C(H′) (which implies that for every LH ∈ C(H) there
is LH′ ∈ C(H′) such that LH′ ⊆ LH) and that for every LH′ ∈ C(H′) there
is LH ∈ C(H) such that LH ⊆ LH′ .

First, we show C(H) ⊆ C(H′). Let P = (u1, . . . , uq) be an (s, t)-path
in G with u1 = s and uq = t. We show that there is an (s, t)-path P ′ in G′

with `′(E(P ′)) = `(E(P )). Let {ui1 , . . . , uiz} := {u ∈ V (P ) | u ∈ Γ} such
that ij < ij+1 for all j, 1 ≤ j < z. Recall that s, t ∈ Γ, which implies
that i1 = 1 and iz = q. Now, let Pj := (uij , uij+1, . . . , ui(j+1)−1, ui(j+1)

) for
all 1 ≤ j < z. By construction, |V (Pj)| ≤ r + 2 and also Lj := `(E(Pj)) ∈
A{uij ,uij+1

}. Hence, for all j, 1 ≤ j < z, G contains a path P
{uij ,uij+1

}
Lj

with `′(E(P
{uij ,uij+1

}
Lj

)) = Lj. Therefore, there is an (s, t)-path P ′ in G′
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with `′(E(P ′)) = `(E(P )) and we get C(H) ⊆ C(H′).
It remains to show that for every LH′ ∈ C(H′) there is LH ∈ C(H) such

that LH ⊆ LH′ . Let P ′ be an (s, t)-path in G′. We know by construction

that P ′ = P ′1 ( · · ·( P ′q−1 with V (P ′y) = {u′y, v
{u′y ,u′y+1}
Ly ,1

, . . . , v
{u′y ,u′y+1}
Ly ,r

, u′y+1}
for some u′y, u

′
y+1 ∈ Γ, 1 ≤ y < q and Ly ∈ A{u′y ,u′y+1}, 1 ≤ y < q. Note

that `′(E(P ′j)) = Ly. Then, for every y, 1 ≤ y < q, there is also an (u′y, u
′
y+1)-

path Py in G with `(E(P )) = Ly. By connecting all paths P1 ( · · ·( Pq−1,
we get an (s, t)-path P in G with `(E(P )) =

⋃q−1
j=1 `(E(Pj)) = `′(E(P ′)).

Note that P might not be vertex-simple. But then we know from Propo-
sition 2.1 that there is a vertex-simple (s, t)-path P̃ in G with `(E(P̃ )) ⊆
`(E(P )) = `′(E(P ′)). Hence, `(E(P̃ )) ∈ C(H). Thus, there is some LH ∈
C(H) such that LH ⊆ LH′ for every LH′ ∈ C(H′).

With this lemma we can now show the kernelization algorithm.

Theorem 5.19. Let r ≥ 1 be a constant, then (DA)i-R, i ≥ 1, A(DA)i-
R, i ≥ 0, and CCRG parameterized by the r-COC number κr and |C| admit
a polynomial kernel of size (κr+ |C|)O(r) that can be computed in |I|O(r) time.

Proof. Let I = (H,~d,~a) be an instance of (DA)i-R. By Lemma 5.18 we can
compute in |I|O(1) time a colored graph H′ which is colored-cut-equivalent
to H such that |H′| ≤ (κr + |C|)O(1). Due to Claim 4.11, I is a yes-instance

if and only if I ′ = (H′,~d,~a) is a yes-instance and therefore (DA)i-R admits
a polynomial kernel when parameterized by the r-COC number κr and |C|.
The statements for A(DA)i-R and CCRG can be shown analogously, since
by Claim 4.12 and 4.18, one can replace the colored graph H of an instance
of A(DA)i-R or CCRG with a colored-cut-equivalent graph H′ and obtain
an equivalent instance.

It would be also possible to generalize the vertex cover number to the
vertex deletion distance to a maximum degree of r for any r ∈ N. Note that
in the standard reduction from Hitting Set the vertex deletion distance
to degree two is only two. Hence, Colored (s, t)-Cut parameterized by
both |C| and the vertex deletion distance to a maximum degree of r, for r ≥ 2
admits a polynomial kernel if Colored (s, t)-Cut parameterized by |C|
alone admits a polynomial kernel. Due to Corollary 2.5, such a kernel does
not exists, unless NP ⊆ coNP/poly.

Finally, we also show a polynomial kernel for all colored cut games when
parameterized by both |C| and the number of (s, t)-paths p.
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Lemma 5.20. Let H = (G = (V,E), s, t, C, `) be a colored graph and let p
be the number of (s, t)-paths in G. Then, there is a colored-cut-equivalent
graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′) with |H′| ≤ O(p|C|) that can be com-
puted in O(p(n+ |C|) +m) time.

Proof. Recall that we can compute C(H) in O(p(n + |C|) + m) time due
to Proposition 3.5. We start with a graph only containing the vertices s′

and t′. Next, we can assume an order on every L ∈ C(H) and add the ver-
tices vL1 , . . . , v

L
|L| and the edges {s′, vL1 }, {vL|L|, t′}, and {vLi , vLi+1} for all 1 ≤ i <

|L|. Furthermore, let L(y) denote the yth element of L. We set `′({s′, vL1 }) :=
L(1), `′({vLL, t′}) := L(|L|), and `′({vLi , vLi+1}) := L(i + 1) for all 1 ≤ i < |L|.
That is, we added for every L ∈ C(H) the (s′, t′)-path PL = (s′, vL1 , . . . , v

L
|L|, t

′)

in G′ such that `′(E(PL)) = L. By construction, |E(PL)| = |L|+1 to prevent
parallel edges.

Next, we show that H and H′ are colored-cut-equivalent. To this end,
we show that C(H) = C(H′). Let L ∈ C(H), then PL is an (s′, t′)-path in G′

with `′(E(PL)) = L. By construction, every (s′, t′)-path is of the form PL

for some L ∈ C(H). Hence, L ∈ C(H) if and only if L ∈ C(H′).
Finally, we show that |H′| ≤ O(p|C|). Clearly, |C(H)| ≤ p and |L| ≤ |C|

for all L ∈ C(H). Therefore, every path PL contains exactly |L| + 1 edges
and |L| vertices distinct from s and t. Hence, |V ′| ≤ p|C| + 1 and |E ′| ≤
p(|C|+ 1).

Corollary 5.21. (DA)i-R, i ≥ 1, A(DA)i-R, i ≥ 0, and CCRG parameter-
ized by the number of (s, t)-paths p and |C| admit a polynomial kernel of size
at most O(p|C|) that can be computed in O(p2(n+ |C|) + pm) time.

Proof. Let I = (G, s, t, C, `,~d,~a) be an instance of (DA)i-R. We can com-
pute p in O(p(pn+m)) time by checking if there are exactly p′ many (s, t)-
paths in G for all 0 ≤ p′ ≤ p [4]. By Lemma 5.20 we can compute in O(p(n+
|C|)+m) time a colored graph (G′, s′, t′, C, `′) which is colored-cut-equivalent
to (G, s, t, C, `). Hence, due to Claim 4.11, I is a yes-instance if and only

if I ′ = (G′, s′, t′, C, `′,~d,~a) is a yes-instance and therefore (DA)i-R admits a
kernel of size at most O(p|C|) when parameterized by the number of (s, t)-
paths p and |C|. The statements for A(DA)i-R and CCRG can be shown
analogously, since by Claim 4.12 and 4.18, one can replace the colored graphH
of an instance of A(DA)i-R orCCRG with a colored-cut-equivalent graphH′
and obtain an equivalent instance.
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6 Restricted Instances of Colored Cut Games

In this section we take a closer look at the classic complexity of (DA)i,
A(DA)i, and CCRG on restricted instances. First, we investigate restricted
graph classes like cubic and complete graphs. Second, we analyze two re-
stricted classes of colored graphs for whichColored (s, t)-Cut is polynomial-
time-solvable and show thatDA-R is NP-complete on these restricted colored
graphs.

6.1 Computational Complexity on Graphs with Restricted

Degree

First, we show that (DA)i-R, A(DA)i-R, and CCRG, i ≥ 1, can be solved
in polynomial time on graphs with maximum degree at most two but cannot
be solved in polynomial time on graphs with maximum degree at least three,
unless P = NP. Second, we show that none of these problems can be solved
in polynomial time on complete graphs.

Recall that (DA)i-R, A(DA)i-R, and CCRG ask if the defender has a
wining strategy, whereas (DA)i-V, A(DA)i-V, and CCVG ask if the at-
tacker has a winning strategy.

Claim 6.1. Let I = (G, s, t, C, `, (d1, . . . , di), (a1, . . . , ai)) be an instance of
(DA)i-R and let j = min({i} ∪ {k | 1 ≤ k ≤ i,

∑k
r=1 ar ≥ |C(I)|}), that is,

the �rst turn in which the sum of the budget of the attacker so far is at least
the number of color sets of vertex-simple (s, t)-paths in G. Then I is a yes-
instance if and only if the instance I ′ = (G, s, t, C, `, (d1, . . . , dj), (a1, . . . , aj))
of (DA)j-R is a yes-instance.

Proof. The attacker can intersect at least one L ∈ C(I) for each color he
choses. Hence, after choosing at most |C(I)| colors, he has completed a col-
ored (s, t)-cut, unless the defender has chosen a colored (s, t)-connector be-
fore. Therefore, the outcome of the game is determined at the latest after the
attackers jth turn of the attacker since either he completed a colored (s, t)-
cut in G or the defender has already completed a colored (s, t)-connector
in G.

Proposition 6.2. (DA)1-R and (DA)2-R can be solved in polynomial time
on graphs with maximum degree at most two.
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Proof. Let H = (G, s, t, C, `) be a colored graph where G has degree at
most two. Consequently, there are at most two (s, t)-paths in G and there-
fore |C(H)| ≤ 2 and can be computed in polynomial time.

First, let I1 = (H, d, a) be an instance of (DA)1-R. We show that we
can solve I1 in polynomial time. Note that I1 is a no-instances if C(H) = ∅,
that is, if s and t are not in the same connected component in G. Hence,
we can assume that C(H) 6= ∅. By Proposition 5.6, we can solve I1 in
polynomial time if a ≤ 1. Therefore, assume that a ≥ 2. Since a ≥ 2
and |C(H)| ≤ 2, the attacker can win the game if the defender has not picked
a colored (s, t)-connector in his turn. Hence, I1 is a yes-instance if and only
if d ≥ min{|L| | L ∈ C(H)} which can be checked in polynomial time.

Finally, let I2 = (H, (d1, d2), (a1, a2)) be an instance of (DA)2-R. We
show that we can solve I2 in polynomial time. Note that I2 is a no-instances
if C(H) = ∅, that is, if s and t are not in the same connected component in G.
Hence, we can assume that C(H) 6= ∅. By Proposition 5.6, we can solve I2 in
polynomial time if a1+a2 ≤ 1. Therefore, assume that a1+a2 ≥ 2 and C(H) 6=
∅. If a1 ≥ |C(H)| then I2 is equivalent to the (DA)1-R instance (H, d1, a1)
due to Claim 6.1 and therefore can be solved in polynomial time. Moreover,
if a1 = 0, I2 is equivalent to the (DA)1-R instance (H, d1 + d2, a2) and
therefore can be solved in polynomial time. Hence, we can assume that a1 =
1, a2 ≥ 1, and |C(H)| = 2. Let C(H) = {L1, L2} and assume that |L1| ≤ |L2|.
Note that the defender can win the game in his �rst turn if d ≥ |L1|. If the
defender does not choose D1 such that D1 ⊇ L1 ∩ L2, then the attacker can
win the game in his �rst turn by taking only one color α ∈ (L1 ∩ L2) \D1.
Therefore, I2 is a no-instance if d1 < |L1∩L2|. Thus, assume that |L1∩L2| ≤
d1 < |L1|. SinceD1 has to be a superset of L1∩L2, we can reduce the instance
such that L1∩L2 = ∅ by decreasing d1 by |L1∩L2| and merging the endpoints
of edges e ∈ E with `(e) ∈ L1∩L2. Note that the attacker can pick α ∈ Li, i ∈
{1, 2}, in his �rst turn where |Li \ D1| = min(|L1 \ D1|, |L2 \ D1|), that is,
the set that is closest to being fully chosen by the defender. If d1 + d2 < |L2|
then the defender loses the game since the attacker can choose α ∈ L1 in
his �rst turn and the defender cannot complete a colored (s, t)-connector,
since |L2| − |D1| > d2. Thus, assume that d1 ≥ |L2| − d2, a1 = 1, a2 ≥ 1,
and L1 ∩ L2 = ∅.

If d1 ≥ |L1|−d2+|L2|−d2 then the defender can choose D1 such that |L1\
D1| ≤ d2 and |L2 \D1| ≤ d2. By the fact that a1 = 1 and L1 ∩ L2 = ∅, the
attacker can cut at most one path with the color α in his �rst turn. Therefore,
in the second turn of the defender there is an i ∈ {1, 2} such that α 6∈ Li

53



and |Li \D1| ≤ d2. Hence, the defender can win by choosing D2 ⊇ (Li \D1) :
We have Li ⊆ D1 ∪ D2 and therefore D1 ∪ D2 is a colored (s, t)-connector
and I2 is a yes-instance.

If d1 < |L1|−d2 + |L2|−d2 then the defender is not able to choose D1 such
that |L1 \ D1| ≤ d2 and |L2 \ D1| ≤ d2. Assume without loss of generality
that |L2 \D1| > d2, then the attacker can choose α ∈ (L1 \D1). Hence, the
defender can only win by choosing D2 such that (D1∪D2) ⊇ L1 which is not
possible since |L2 \D1| > d2 = |D2|. Therefore, the defender loses and I2 is
a no-instance.

Note that we checked all possibilities and that all checks in this algorithm
can be done in polynomial time and therefore, we can solve I2 in polynomial
time.

We will use this statement as the base case for an induction to show the
following.

Corollary 6.3. (DA)i-R, A(DA)i-R, and CCRG can be solved in polyno-
mial time on graphs with maximum degree at most two.

Proof. We prove the statement by an induction over i. Note that Proposi-
tion 6.2 is the base case.

Let j ≥ 3 and assume that the statement is true for j − 1, we show that
the statement is also true for j. Let I = (G, s, t, C, `, (d1, . . . , dj), (a1, . . . , aj))
be an instance of (DA)j-R. If a1 = 0 or a2 = 0, then we can construct an
equivalent instance I ′ of (DA)j−1-R in polynomial time. Due to the induc-
tion hypothesis, we can solve I ′ and therefore I in polynomial time. Hence,
assume that a1 6= 0 and a2 6= 0. So, a1 + a2 ≥ 2 ≥ |C(I)| and therefore I is
equivalent to the (DA)2-R instance I2 = (G, s, t, C, `, (d1, d2), (a1, a2)) due
to Claim 6.1. By Proposition 6.2, we can solve I2, and therefore also I, in
polynomial time.

SinceA(DA)i-R is a special case of (DA)i+1-R the statement forA(DA)i-
R follows directly.

This result might not be very surprising since most problems can be solved
in polynomial time on graphs with maximum degree at most two, but we will
show next that, for all i ≥ 1, (DA)i-R and A(DA)i-R cannot be solved in
polynomial time on graphs with degree at least three, unless P = NP. To
this end, we �rst show the following.
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Lemma 6.4. Let H = (G = (V,E), s, t, C, `) be a colored graph and α ∈ C
such that α ∈ L for every L ∈ C(H). Then, there is a colored-cut-equivalent
graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′) where G′ has a maximum degree of
three and can be computed in polynomial time.

Proof. Given a colored graph H = (G = (V,E), s, t, C, `) and α ∈ C such
that α ∈ L for every L ∈ C(H), we describe how to construct a colored
graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′) where G′ has a maximum degree of
three and show that H and H′ are colored-cut-equivalent.

We start with an edgeless graph containing the vertices of V and add
vertices and edges such that every vertex v ∈ V is the root of some balanced
binary tree T v that has the leafs bvu1 , . . . , b

v
ur where NG(v) = {u1, . . . , ur}.

Moreover, we assign the color α to all edges of these trees T v with v ∈
V . Next, we add edges {bvw, bwv } for all {v, w} ∈ E and set `′({bvw, bwv }) :=
`({v, w}). This can be done in polynomial time. For every v ∈ V, x, y ∈ N(v)
we de�ne the (bvx, b

v
y)-path P v

x,y and the (v, bvx)-path P v
x in G′ in T v. By

construction, `′(E(P v
x,y)) = `′(E(P v

x )) = {α}.
By construction, G′ has a maximum degree of three so it remains to show

that H and H′ are colored-cut-equivalent. To this end, we prove that for
every LH′ ∈ C(H′), there is some LH ∈ C(H) such that LH ⊆ LH′ and vice
versa.

First, we show that C(H) ⊆ C(H′) which implies that for every LH ∈
C(H), there is some LH′ ∈ C(H′) such that LH′ ⊆ LH. Let P = (v0, . . . , vr)

be an (s, t)-path in G for some r ≥ 1. Let
←−−−
P vr
vr−1

be the reverse path

of P vr
vr−1

, then P ′ = P v0
v1
· P v1

v0,v2
· . . . · P vr−1

vr−2,vr
·
←−−−
P vr
vr−1

is an (s, t)-path in G′

and `′(E(P ′)) ⊇
⋃r−1
j=0 `

′({bvjvj+1 , b
vj+1
vj }) =

⋃r−1
j=0 `({vj, vj+1}) = `(E(P )). By

construction, every other edge in E(P ′) is colored in α. Recall that α ∈ L
for all L ∈ C(H). Hence, α ∈ `(E(P )) and therefore `′(E(P ′)) = `(E(P )).

Finally, we show that for every LH′ ∈ C(H′) there is LH ∈ C(H) such
that LH ⊆ LH′ . Let P

′ be an (s, t)-path inG′. Then, we know by construction

that P ′ = P v0
v1
· P v1

v0,v2
· . . . · P vr−1

vr−2,vr
·
←−−−
P vr
vr−1

for vj ∈ V and where
←−−−
P vr
vr−1

is
the reverse path of P vr

vr−1
. Then, P = (v0, . . . , vr) is an (s, t)-path in G

and `(E(P )) ⊆ `′(E(P ′)). Note that P might not be vertex-simple. But then
we know from Proposition 2.1 that there is a vertex-simple (s, t)-path P̃ in G
with `(E(P̃ )) ⊆ `(E(P )) ⊆ `′(E(P ′)).

It is easy to see that if G is planar, we can also construct G′ planar.
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We will use this lemma to show that (DA)i-R and A(DA)i-R are ΣP
2i-

hard even on cubic graphs.

Proposition 6.5. For all i ≥ 1, (DA)i-R and A(DA)i-R are ΣP
2i-hard even

on graphs with maximum degree at least three.

Proof. Since (DA)i-R is a special case of A(DA)i-R, we only have to show
that (DA)i-R is ΣP

2i-hard even on graphs with a maximum degree of three.
We reduce from (DA)i-R where a′1 ≥ 1. Given an instance I ′ = (G′ =
(V ′, E ′), s′, t′, C ′, `′, (d′1, . . . , d

′
i), (a

′
1, . . . , a

′
i)) of (DA)

i-R with a′1 ≥ 1, we de-
scribe how to construct an instance Ĩ of (DA)i-R such that I ′ is a yes-instance
if and only of Ĩ is a yes-instance.

We add a new color α, a new vertex s, set t := t′, V := V ′ ∪ {s}, E :=
E ∪ {{s, s′}}, C := C ′ ∪ {α}, `({s, s′}) := α, d1 := d′1 + 1, a1 := a′1, dj := d′j,
and aj := a′j for all 1 < j ≤ i. Furthermore, let H = (G = (V,E), s, t, C, `).

Next, we show that I = (H, (d1, . . . , di), (a1, . . . , ai)) is a yes-instance if
and only if I ′ is a yes-instance. By construction, {s, s′} ∈ E(P ) for ev-
ery (s, t)-path P in G and therefore, the defender has to choose α in his �rst
turn because a1 ≥ 1 and {α} is a colored (s, t)-cut in G. Clearly, the defender
has a winning strategy for I if and only if he has a winning strategy for I ′.

With Lemma 6.4 and the fact that α ∈ L for every L ∈ C(I) there is a
colored graph H̃ = (G̃, s̃, t̃, C, ˜̀) with a maximum degree of three which is
colored-cut-equivalent to H. Hence, by Claim 4.11, I is a yes-instance if and
only if Ĩ := (H̃, (d1, . . . , di), (a1, . . . , ai)) is a yes-instance. Therefore, Ĩ is a
yes-instance if and only if I ′ is a yes-instance. Since Ĩ can be computed in
polynomial time, (DA)i-R and A(DA)i-R are ΣP

2i-hard even on graphs with
maximum degree at least three.

The next theorem follows from Corollary 6.3 and Proposition 6.5.

Theorem 6.6. The problems (DA)i-R, A(DA)i-R, i ≥ 1, and CCRG can
be solved in polynomial time on graphs with a maximum degree of at most
two and cannot be solved in polynomial time on graphs with degree at least
three, unless P = NP.

With the constructions of Proposition 4.13 and Proposition 6.5 to com-
pute colored-cut-equivalent graphs, we are also able to show the following.

Corollary 6.7. For all i ≥ 1, (DA)i-R and A(DA)i-R are ΣP
2i-hard even

on bipartite planar subcubic graphs.
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Proof. Since (DA)i-R is a special case for A(DA)i-R, we only have to show
that (DA)i-R is ΣP

2i-hard even on bipartite, planar and cubic graphs.
By Corollary 4.14, (DA)i-R is ΣP

2i-hard even on planar graphs. Let I =

(H = (G, s, t, C, `),~d,~a) be an instance of (DA)i-R where G is planar. If
we apply the construction of Proposition 6.5 on I, we get an equivalent
instance Ĩ := (H̃ = (G̃, s̃, t̃, C, ˜̀), ~d′, ~a′) of (DA)i-R where G̃ is subcubic.
Note that G̃ is also planar, sinceG is planar and we only replaced every vertex
by an binary tree and added one edge to a new vertex. By Proposition 4.13,
we can construct a colored-cut-equivalent graph H′ = (G′, s′, t′, C ′, `′) to H̃
in polynomial time such that G′ is bipartite.

By construction of Proposition 4.13, G′ was constructed by subdividing
every edge of G̃. Hence, G′ is still planar, and subcubic. By Claim 4.11 Ĩ
is an equivalent instance to I ′ = (H′, ~d′, ~a′). Hence, I ′ is also equivalent
to I. Moreover, I ′ can be computed in polynomial time. Hence, (DA)i-R
is ΣP

2i-hard even on bipartite planar subcubic graphs.

The same construction can be used in combination with Theorem 4.19
and Claim 4.18 to show the following corollary.

Corollary 6.8. Colored (s, t)-Cut Vulnerability Game and Col-
ored (s, t)-Cut Robustness Game are PSPACE-complete even on bipar-
tite planar cubic graphs.

Finally, we analyze the computational complexity for (DA)i-V, A(DA)i-
V, and CCVG on complete graphs. To this end, we use techniques similar
to the ones we used to show Proposition 6.5.

Lemma 6.9. Let H = (G = (V,E), s, t, C, `) be a colored graph and α ∈ C
such that {α} ∈ C(H). Then, there is a colored-cut-equivalent graph H′ =
(G′ = (V ′, E ′), s′, t′, C, `′) where G′ is a complete graph. Moreover, H′ can
be computed in polynomial time.

Proof. Given a colored graph H = (G = (V,E), s, t, C, `) and α ∈ C such
that {α} ∈ C(H), we de�ne a colored graph H′ = (G′ = (V ′, E ′), s′, t′, C, `′)
where G′ is a complete graph and show that H and H′ are colored-cut-
equivalent.

We construct H′ by adding the edges e ∈
(
V
2

)
\E to H and set `′(e) := α

for all e ∈
(
V
2

)
\E. By construction, E ′ =

(
V
2

)
and therefore G′ is a complete

graph. This can be done in polynomial time.
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Now, we show that H and H′ are colored-cut-equivalent. To this end, we
prove that for every LH′ ∈ C(H′) there is LH ∈ C(H) such that LH ⊆ LH′
and vice versa.

Clearly, if P is an (s, t)-path in G, then P is also an (s, t)-path in G′

and `(E(P )) = `′(E(P )). Hence, C(H) ⊆ C(H′) and therefore, for every LH ∈
C(H) there is LH′ ∈ C(H′) such that LH′ ⊆ LH.

It remains to show that for every LH′ ∈ C(H′) there is LH ∈ C(H) such
that LH ⊆ LH′ . Let P ′ be an (s, t)-path in G′. If α ∈ `′(E(P ′)), then by
assumption, `′(E(P ′)) ⊇ {α} ∈ C(H). Thus, assume that α 6∈ `′(E(P ′)).
Recall that `′(e) = α for all e ∈ E ′ \ E. Hence, E(P ′) ⊆ E and therefore P ′

is also an (s, t)-path in G and `(E(P ′)) = `′(E(P ′)).

Proposition 6.10. For all i ≥ 0, A(DA)i-V and (DA)i+1-V are ΣP
2i+1-

complete even on complete graphs.

Proof. Since A(DA)i-V is a special case of (DA)i+1-V, we only have to
show that A(DA)i-V is ΣP

2i+1-hard even on complete graphs. The problem
A(DA)0-V (Colored (s, t)-Cut) is complete for NP = ΣP

1 on complete
graphs [38]. Thus, it remains to show that, for i ≥ 1, A(DA)i-V is ΣP

2i+1-
hard even on complete graphs and that (DA)i+1-V is contained in ΣP

2i+1 on
complete graphs. We reduce from A(DA)i-V where d′2 ≥ 1. Let I ′ = (G′ =
(V ′, E ′), s′, t′, C ′, `′, (a′1, . . . , a

′
i+1), (d′2, . . . , d

′
i+1)) be an instance of A(DA)i-V

with d′2 ≥ 1.
We add a new color α, a new vertex vα, and set s := s′, t := t′, a1 := a′1+1,

and dj := d′j and aj := a′j for all 1 < j ≤ i + 1. Furthermore, we set V :=
V ′ ∪ {vα}, E := E ′ ∪ {{s, vα}, {vα, t}}, C := C ′ ∪ {α}, and `({s, vα}) :=
`({vα, t}) := α. Moreover, set H = (G, s, t, C, `).

Next, we show that I = (H, (a1, . . . , ai+1), (d2, . . . , di+1)) is a yes-instance
if and only if I ′ is a yes-instance. By construction, P = (s, vα, t) is an (s, t)-
path in G and therefore, the attacker has to choose α in his �rst turn be-
cause d2 ≥ 1. Clearly, the attacker has a winning strategy for I if and only
if he has a winning strategy for I ′.

With Lemma 6.9 and the fact that {α} ∈ C(I), we know that there is
a colored graph H̃ = (G̃, s̃, t̃, C, ˜̀) which is colored-cut-equivalent to H and
where G̃ is a complete graph. Hence, by Claim 4.12, I is a yes-instance if
and only if Ĩ := (G̃, s̃, t̃, C, ˜̀, (d1, . . . , di), (a1, . . . , ai)). Therefore, Ĩ is a yes-
instance if and only if I ′ is a yes-instance. Moreover, Ĩ can be computed in
polynomial time.
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It remains to show that (DA)i+1-V is contained in ΣP
2i+1. Let I = (G =

(V,E), s, t, C, `, (d1, . . . , di+1),~a) be an instance of (DA)i+1-V where G is a
complete graph. If d1 ≥ 1, then the defender can win in his �rst turn by
choosing D1 3 `({s, t}) since {s, t} ∈ E. If d1 = 0, then I is equivalent

to the A(DA)i-V instance (G, s, t, C, `,~a, (d2, . . . , di+1)). Hence, (DA)i+1-V
is ΣP

2i+1-complete on complete graphs, since A(DA)i-V is ΣP
2i+1-complete due

to Theorem 4.10.

A similar proof in combination with Theorem 4.17 and Claim 4.18 can
be used to show the following corollary.

Corollary 6.11. Colored (s, t)-Cut Vulnerability Game and Col-
ored (s, t)-Cut Robustness Game are PSPACE-complete even on com-
plete graphs.

6.2 Restricted Colored Graphs

In this subsection, we analyze the complexity of DA-R on instances where
every color appear in at most two (s, t)-paths or where every color is only
given to one edge each. In these cases, Colored (s, t)-Cut is polynomial-
time-solvable [10,22,38]. In contrast, we will show thatDA-R is NP-complete
on both of them. Hence, for any i ≥ 1, (DA)i-R and A(DA)i-R cannot be
solved in polynomial time on these restricted colored graphs, unless P = NP.

Proposition 6.12. DA-R is NP-hard even if every color appears in at most
two (s, t)-paths.

Proof. First, we show that DA-R is contained in NP if every color appears
in at most two (s, t)-paths by describing a veri�er. To this end, we show
that if the defender has a winning strategy, then D1, the set of colors he
defender chooses, is a certi�cate. In other words, given an instance I =
(G = (V,E), s, t, C, `, d, a) of DA-R where every color appears in at most
two (s, t)-paths and a set of colors D1 ⊆ S with |D1| ≤ d, we show that we
can determine in polynomial time whether or not there is a colored (s, t)-
cut A1 of size at most a in G such that D1 ∩ A1 = ∅. We de�ne a graph G′

where we identify the vertices u, v ∈ V if there is an (u, v)-path P in G
with `(E(P )) ⊆ D1. Since the resulting graph might have parallel edges,
we also subdivide every edge. In this graph, every color still appears on at
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most two (s, t)-paths [30]. Hence, D1 is a winning strategy for the defender
if the Colored (s, t)-Cut instance (G′, s, t, C, `′, a) is a no-instance. This
can be determined in polynomial time since every color appears in at most
two (s, t)-paths in G′ [38]. This veri�er is correct, since if the vertices u, v ∈ V
are connected with an (u, v)-path P in G with `(E(P )) ⊆ D1, there is no
colored (u, v)-cut A1 ⊆ C \ D1. Hence, DA-R is contained in NP if every
color appears in at most two (s, t)-paths.

Second, we show that DA-R is NP-hard even if every color appears in
at most two (s, t)-paths by giving a polynomial-time reduction from the NP-
hard problem Matching Interdiction [41].

Matching Interdiction
Input: A graph G = (V,E) and integers b and r.
Question: Is there a subset S ⊆ E with |S| ≤ b such that the
maximum matching in G− S has size at most r?

In other words, we ask if there is a set S ⊆ E such that there are no r + 1
distinct edges with pairwise disjoint endpoints in G − S. Given an in-
stance I = (G = (V,E), b, r) of Matching Interdiction, we build in
polynomial time an instance I ′ = (G′ = (V ′, E ′), s, t, C, `, d, a) of DA-R
where every color appears in at most two (s, t)-paths such that I is a yes-
instance of Matching Interdiction if and only if I ′ is a yes-instance of
DA-R. Since the maximum matching in G has size at most |V |/2, I is a
yes-instance if r ≥ |V |/2. Hence, we can assume without loss of generality
that r ≤ |V |/2− 1.

We start with an empty graph G′, set d := b, a := |V | − r− 1, C := {αvj |
v ∈ V, 0 ≤ j ≤ d} ∪ E and add vertices s and t. Furthermore, we add for
every v ∈ V an (s, t)-path Pv in G′ such that `(E(Pv)) = {αvj | 0 ≤ j ≤
d} ∪ {e ∈ E | v ∈ e}.

Note that for distinct vertices v, w ∈ V , `(E(Pv)) ∩ `(E(Pw)) = {{v, w}}
if {v, w} ∈ E and `(E(Pv)) ∩ `(E(Pw)) = ∅ otherwise. Moreover, every
color e ∈ E appears on exactly two (s, t)-paths inG′ and every color α ∈ C\E
appears on exactly one (s, t)-path. By construction, there are exactly |V |
many (s, t)-paths in G′ and all of them have pairwise di�erent sets of colors.
Hence, |C(I ′)| = |V |. The idea of this construction is that the defender is
not able to choose a colored (s, t)-connector since each (s, t)-path contains
at least d + 1 di�erent colors and therefore he only has a wining strategy, if
he is able to reduce the size of the maximum matching in G. We now give
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the formal proof of this intuition. That is, we show that I is a yes-instance
if and only if I ′ is a yes-instance.

(⇒) Let S ⊆ E, such that there is no matching of size r+1 in G−S. We
will show that there is no colored (s, t)-cut A1 ⊆ C \S of size at most a in G′.
Assume towards a contradiction that there is a colored (s, t)-cut A1 ⊆ C \ S
of size at most a in G′. Recall that every color appears in at most two (s, t)-
paths in G′. Since |A1| ≤ a = |V | − r − 1 and |C(I ′)| = |V |, there is a
set of colors R ⊆ A1 of size at least r + 1 such that every color α ∈ R
appears in two (s, t)-paths. By construction, no color appears in more that
two (s, t)-paths. Hence, for all distinct colors α, β ∈ R it holds that there
is no (s, t)-path P ′ in G′ with {α, β} ⊆ `(E(P ′)). By construction, only
the colors E ⊆ C appear in exactly two (s, t)-paths and therefore R ⊆ E.
For every pair of distinct edges e1 := {u1, w1}, e2 := {u2, w2} ∈ R in I (and
therefore colors in I ′), it holds that `(E(Pu1)∪E(Pw1))∩`(E(Pu2)∪E(Pw2)) =
∅. Hence e1 ∩ e2 = ∅ and therefore R is a matching of size r + 1 in G− S, a
contradiction.

(⇐) Let D1 ⊆ C be a set of colors of size at most d, such that there
is no colored (s, t)-cut A1 ⊆ C \ D1 in G′ of size at most a in G′. By
construction, there is no colored (s, t)-connector of size at most d in G′ and
therefore, for every v ∈ V there is some βv ∈ `(E(Pv)) \ D1. We will show
that there is no matching of size r + 1 in G − (D1 ∩ E). Assume towards a
contradiction that there is a matchingM of size at most r+1 in G−(D1∩E).
Then, A1 := M∪{βv | v ∈ V \(

⋃
e∈M e)} has size at most r+1+|V |−2(r+1) =

|V |− (r+ 1) = a and A1∩D1 = ∅. By construction, A1 is a colored (s, t)-cut
in G′, since for every (s, t)-path Pv with v ∈ V it holds that either βv ∈ A1

or `(E(Pv)) ∩M 6= ∅, a contradiction.

Note that the proof of Proposition 6.12 is also a parameterized reduction
fromMatching Interdiction parameterized by b to DA-R parameterized
by d. Since Matching Interdiction parameterized by b is W[1]-hard [24,
41], the next corollary follows directly.

Corollary 6.13. DA-R parameterized by d is W[1]-hard even if every color
appears in at most two (s, t)-paths.

Note that Colored (s, t)-Cut can be solved in polynomial time on
uncolored graphs, that is, when |`−1(α)| = 1 for all α ∈ C [17, 22]. In
contrast, we will show that DA-R is NP-hard even on uncolored graphs.

Proposition 6.14. DA-R is NP-complete even on uncolored graphs.
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To show this statement, we �rst show the NP-hardness for the following
problem.

Weighted Min (s, t)-Cut Interdiction
Input: A graph G = (V,E), two vertices s, t ∈ V , a cost func-
tion c : E → N, a weight function ω : E → N, and integers d
and a.
Question: Is there a subset S ⊆ E with c(S) :=

∑
e∈S c(s) ≤

d such that for every (s, t)-cut M ⊆ (E \ S) in G it holds
that ω(M) :=

∑
e∈M ω(e) > a?

In other words, we ask if there is a set of edges S ⊆ E such that there is
no (s, t)-cut M in G that is disjoint to S and has weight at most a. Note
that on uncolored graphs, DA-R is equivalent toWeighted Min (s, t)-Cut
Interdiction where c(e) = ω(e) = 1 for all e ∈ E.

Lemma 6.15. Weighted Min (s, t)-Cut Interdiction is NP-complete
even if c(e) + ω(e) ∈ O(|G|) for all e ∈ E.

Proof. First, we show that Weighted Min (s, t)-Cut Interdiction is
contained in NP by describing a veri�er. Let I = (G = (V,E), s, t, c, ω, d, a)
be an instance of Weighted Min (s, t)-Cut Interdiction, we show that
the set of edges S ⊆ E with |S| ≤ d is a certi�cate if I is a yes-instance.
We de�ne the weight function ω′ : E → N with ω′(e) := ω(e) for all e ∈
E \ S and ω′(e) := a + 1 for all e ∈ S. Next, we answer yes if and only if
the minimum weighted (s, t)-cut M in G with respect to ω′ has weight at
least a+ 1. By construction, ω′(M) > a for all e ∈ S and therefore M has to
be disjoint from S if ω(M) ≤ a. Hence, this algorithm is correct and runs in
polynomial time [17,22]. Hence,Weighted Min (s, t)-Cut Interdiction
is contained in NP.

Second, we show thatWeighted Min (s, t)-Cut Interdiction is NP-
hard. To this end, we reduce from the NP-hard problem Vertex Cover
on cubic graphs [1, 23].

Let I = (G = (V,E), k) be an instance of Vertex Cover where deg(v) =
3 for all v ∈ V . We describe how to construct an instance I ′ = (G′ =
(V ′, E ′), s, t, c, ω, d, a) of Weighted Min (s, t)-Cut Interdiction in poly-
nomial time such that I is a yes-instance of Vertex Cover if and only
if I ′ is a yes-instance of Weighted Min (s, t)-Cut Interdiction. Re-
call that n := |V | and m := |E|. Note that m = 3

2
n since deg(v) = 3 for

all v ∈ V .
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Figure 5: These �gures show the two subgraphs discussed in the �rst di-
rection of the proof. The number on an edge denotes the weight of the
corresponding edge and highlighted edges belong to S ′ and therefore cannot
be contained inM . Moreover, dotted edges show the minimum-weight (s, t)-
cut; (a) shows G′v for v ∈ S with NG(v) = {u1, u2, u3} and ei := {v, ui}
for i ∈ {1, 2, 3}; (b) shows G′{u′,v′} for {u′, v′} ∈ E2.

We set d := k and a := 5m − 2(n − k) − 1. The graph G′ consists of
a copy of G and two new vertices s and t. Moreover, we add edges {s, v}
to G′ for all v ∈ V . Furthermore, for every edge e := {u, v} ∈ E we add a
vertex xe and edges {u, xe}, {v, xe}, and {xe, t} to G′. For every edge e ∈
E ′ we set c(e) := 1 if s ∈ e and c(e) := d + 1 otherwise. Finally, we
set ω({u, x{u,v}}) := ω({v, x{u,v}}) := 3 for all {u, v} ∈ E. For the remaining
edges e ∈ E ′ \ E, we set ω(e) := 5 if t ∈ e, and w(e) := 1 otherwise. This
completes the construction of I ′.

Clearly, c(e)+ω(e) ∈ O(|G′|) for all e ∈ E ′. The idea is that a set S ′ ⊆ E ′

with cost at most d has to be a subset of the edges incident with s. This is
true since all other edges have cost d+ 1. Hence, S ′ can be seen as a choice
of the vertices S := {v | {s, v} ∈ S ′} of G of size at most k = d and vice
versa.

Next, we show that I is a yes-instance of Vertex Cover if and only
if I ′ is a yes-instance of Weighted Min (s, t)-Cut Interdiction.

(⇒) Let S ⊆ V be a vertex cover of size at most k in G. We show
that S ′ := {{s, v} | v ∈ S} is a solution with cost at most d = k for I ′.
By construction, c(S ′) := |S ′| = |S| ≤ k. Hence, it remains to show that
every (s, t)-cutM ⊆ (E ′ \S ′) in G′ has weight at least a+1 = 5m−2(n−k).
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Let S := V \ S.
To this end, we analyze the minimum-weight (s, t)-cut in constant-sized

subgraphs of G′. These subgraphs will only share edges contained in S ′. We
will use this to argue that the minimum-weight (s, t)-cut M in G′ with M ∩
S = ∅ is at least the sum of all minimum-weight (s, t)-cuts of the di�erent
subgraphs. Let G′v := (V ′v , E

′
v) where V

′
v := NG′(v) ∪ {t, v} and

E ′v := {{s, v}, {s, u}, {v, u}, {v, x{v,u}}, {u, x{v,u}}, {x{v,u}, t} | u ∈ NG(v)}

for all v ∈ S. This graph is visualized in Figure 5(a). Since S is a vertex
cover for G, it holds that NG(v) ⊆ S and therefore {s, u} ∈ S ′ for all u ∈
NG(v). Clearly, every (s, t)-cut Mv in G′v with Mv ∩ S ′ = ∅ has weight at
least 13. Note that G′v is not the same graph as G′[NG′(v) ∪ {v, t}] since
there might be edges between the neighbors of v in G. Let E2 := {e ∈
E | e ⊆ S}, and E1 := E \ E2. That is, E2 contains the edges of E where
both endpoints are contained in S and since S is a vertex cover for G, E1

contains the edges where exactly one endpoint is contained in S. Moreover,
for every {u, v} ∈ E2 it holds that {s, u}, {s, v} ∈ S ′. For each e = {u, v} ∈
E2, let G

′
e := G′[{s, u, v, xe, t}]. This graph is visualized in Figure 5(b).

Clearly, every (s, t)-cut Me in G
′
e with Me ∩ S ′ = ∅ has weight at least 5.

Since deg(v) = 3 for all v ∈ V , it follows that |E1| = 3(n − k) and
therefore |E2| = m − 3(n − k). Let G = {G′v | v ∈ S} ∪ {G′e | e ∈ E2}.
By construction, for all pairwise distinct graphs G′1, G

′
2 ∈ G only share edges

that are connected to s. Moreover, it holds that E(G′1) ∩ E(G′2) ⊆ S ′,
since for every v ∈ V \ S, (s, v) is only contained in E(G′v). Hence, for
every (s, t)-cutM in G′ withM∩S ′ = ∅ it holds that ω(M) ≥ 5|E2|+13|S| =
5m − 15(n − k) + 13(n − k) = 5m − 2(n − k) = a + 1. Therefore, I ′ is a
yes-instance of Weighted Min (s, t)-Cut Interdiction.

(⇐) We show this direction by contraposition. Assume that I is a no-
instance of Vertex Cover. We show that I ′ is a no-instance of Weighted
Min (s, t)-Cut Interdiction. In the following, we de�ne, for all i ∈
{1, 2, 3}, the sets of edged Ei where every edge e ∈ Ei has exactly i end-
points in S. Let S ′ ⊆ E with c(S ′) ≤ k. Recall that s ∈ e′ for all e′ ∈ S ′
since c(e) = d + 1 for all e ∈ E ′ with s 6∈ e. Let S := {v | {s, v} ∈ S ′}
be the corresponding vertices of G. By assumption, S is not a vertex cover.
Hence, the set E0 := {e ∈ E | e ∩ S = ∅} is not empty. Furthermore,
let E2 := {e ∈ E | e ⊆ S} and E1 := E \ (E0 ∪ E2). Since deg(v) = 3 for
all v ∈ V , it follows that |E1| =

∑
v∈V \S(3− |NG(v) \ S|) = 3(n− k)− 2|E0|
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and therefore |E2| = m − (3(n − k) − 2|E0|) − |E0| = m − 3(n − k) + |E0|.
Let V ′s := {s}∪S∪{xe | e ⊆ S} and V ′t := V ′\V ′s = {t}∪(V \S)∪{xe | e 6⊆ S}.
Clearly, M := {e′ ∈ E ′ | e′ ∩ V ′s 6= ∅, e′ ∩ V ′t 6= ∅} is an (s, t)-cut in G′. We
will show that ω(M) ≤ a. By construction,M = M1∪M2∪M3 whereM1 :=
{{s, v} | v ∈ V \S},M2 := {{u, v}, {u, x{u,v}} | {u, v} ∈ E, u ∈ S, v ∈ V \S},
and M3 := {{xe, t} | e ⊆ S}. Clearly, ω(M1) = n − k, ω(M2) = 4|E1|,
and ω(M3) = 5|E2|. Hence, ω(M) = n− k+ 4|E1|+ 5|E2| = n− k+ 4(3(n−
k)−2|E0|)+5(m−3(n−k)+ |E0|) = 5m−2(n−k)−3|E0| < a since E0 6= ∅.
Hence, I ′ is a no-instance of Weighted Min (s, t)-Cut Interdiction.

Now, we prove Proposition 6.14. To this end, we show that Weighted
Min (s, t)-Cut Interdiction is NP-hard even if c(e) = ω(e) = 1 for all e ∈
E which is equivalent to DA-R on uncolored graphs.

Proof of Proposition 6.14. Let I = (G = (V,E), s, t, c, ω, d, a) be an in-
stance of Weighted Min (s, t)-Cut Interdiction where c(e) + ω(e) ∈
O(|G|) for all e ∈ E. We describe how to construct an instance I ′ =
(G′ = (V ′, E ′), s, t, c′, ω′, d, a) of Weighted Min (s, t)-Cut Interdiction
in polynomial time such that c′(e′) = ω′(e′) = 1 for all e′ ∈ E ′ and I is a
yes-instance if and only if I ′ is a yes-instance.

The graph G′ contains the vertices of V . For every edge e = {u, v} ∈ E
we add (u, v)-paths P e

j for all j, 1 ≤ j ≤ ω(e), of length c(e) such that
every x ∈ V (P e

j ) \ {u, v} only appears on P e
j . In the special case of c(e) = 1

and w(e) > 1, we have to prevent parallel edges and therefore add an (u, v)-
path P e

1 of length one and an (u, v)-path P e
j of length two for all j, 2 ≤ j ≤

ω(e).
This construction can be done in polynomial time since we add for every

edge e ∈ E at most O(c(e)ω(e)) new vertices and edges and by assump-
tion, c(e) +ω(e) ∈ O(|G|). It remains to show that I is a yes-instance if and
only if I ′ is a yes-instance.

Clearly, for every edge e = {u, v} ∈ E one can connect u and v with
cost c(e) in G if and only if one can connect u and v with cost |E(P e

1 )| = c(e)
in G′. Moreover, one has to take at least the weight ω(e) to cut e in G if and
only if one has to take at least weight ω(e) to cut all the paths P e

j , 1 ≤ j ≤
ω(e) in G′. Therefore, I is a yes-instance if and only if I ′ is a yes instance.

Hence, Weighted Min (s, t)-Cut Interdiction is NP-complete even
if c(e) = ω(e) = 1 and therefore DA-R on uncolored graphs is also NP-
complete, since both problems are equivalent.
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Table 1: Classic Complexity of Colored (s, t)-Cut, (DA)i-V, A(DA)i-V,
and CCVG in general and in some restricted cases.

Colored (s, t)-Cut (DA)i-V A(DA)i-V CCVG

In general NP-c [10,19] ΠP
2i-c ΣP

2i+1-c PSPACE-c
Ba(I) ≤ 1 ∈ P ∈ P ∈ P ∈ P
Ba(I) = 2 ∈ P coNP-h coNP-h coNP-h

coNP-c if i = 1
∆(G) ≤ 2 ∈ P ∈ P ∈ P ∈ P
∆(G) = 3 ∈ P ΠP

2i-c ΠP
2i-h PSPACE-c

bipartite planar NP-c [39] ΠP
2i-c ΣP

2i+1-c PSPACE-c
bipartite planar ∈ P ΠP

2i-c ΠP
2i-h PSPACE-c

subcubic
complete graphs NP-c [38] ΣP

2i−1-c ΣP
2i+1-c PSPACE-c

uncolored graphs ∈ P [17, 22] coNP-h coNP-h coNP-h
coNP-c if i = 1

every color in ≤ 2 ∈ P [38] coNP-h coNP-h coNP-h
(s, t)-paths coNP-c if i = 1

Even though, it is unlikely that DA-R can be solved in polynomial time
in any of these two restricted cases, it is still interesting to observe that the
in general ΣP

2 -complete problem becomes complete for ΣP
1 =NP.

An overview on the classic complexity of the de�ned games can be seen
in Table 1.
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7 Conclusion

Finally, we summarize our results and list open question and potential fu-
ture work. In this work, we extended previous work [10, 26, 35] and further
analyzed Colored (s, t)-Cut from a parameterized point of view and gen-
eralized it to defender-attacker games.

7.1 Summary

In Section 3, we showed W[2]-hardness for Colored (s, t)-Cut parame-
terized by the maximum degree ∆ and the edge deletion distance of the
input graph to a maximum degree of three ξ3. This extends the known
W[2]-hardness for k [10] to an even larger parameter. In contrast, we gave
FPT-algorithms for parameterizations by the feedback edge set number fes
of the input graph or the edge deletion distance of the input graph to a
maximum degree of two ξ2. Both algorithms where obtained by bounding
from above the number p of (s, t)-paths of the instances where fes or ξ2 are
bounded and using the known FPT-algorithm for Colored (s, t)-Cut when
parameterized by p [27].

In Section 4.1, we generalized Colored (s, t)-Cut to the defender-
attacker games (DA)i-R,(DA)i-V,A(DA)i-R, and A(DA)i-V where a de-
fender and an attacker alternatingly choose color sets. The goal of the at-
tacker is to complete a colored (s, t)-cut, whereas, the defender tries to pre-
vent this. We showed that for all i ≥ 0, A(DA)i-V is ΣP

2i+1-complete and
A(DA)i-R is ΠP

2i+1-complete and for all i ≥ 1, (DA)i-V is ΠP
2i-complete and

(DA)i-R is ΣP
2i-complete. In other words, for an increasing but constant

number of alternations between the agents, these games are complete for
complexity classes of increasing levels of the polynomial-time hierarchy. For
a non-constant number of alternations between the agents, we introduced,
in Section 4.2, the games Colored (s, t)-Cut Vulnerability Game and
Colored (s, t)-Cut Robustness Game and showed that both problems
are PSPACE-complete even if every agent chooses only one color in each
turn. In other words, the more turns an agent has in the game, the more
complex it is to determine which player has a winning strategy.

In Section 5, we analyzed these games from a parameterized complexity
point of view. We analyzed parameterizations by natural parameters re-
lated to budgets of the agents, and showed that they are unlikely to lead
to FPT-algorithms. on the positive site, we showed that all games admit
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Table 2: Parameterized Complexity of Colored (s, t)-Cut, (DA)i,
A(DA)i, and CCRG. We write 6∈ XP under the assumption that P 6= NP.
Furthermore, we write `no poly kernel' under the assumption that NP 6⊆
coNP/poly. Recall that B(I) denotes the sum of all budgets in I. More-
over, Bd(I) and Ba(I) denote the sets of budgets of the defender and attacker,
respectively and B(I) is the union of both sets.

Parameter Colored (s, t)-Cut (DA)i-V, A(DA)i-V, CCVG
B(I) ∈ XP, W[2]-h ∈ XP, W[2]-h
B(I)− b, 6∈ XP 6∈ XP
b ∈ B(I)
|C| ∈ FPT, ∈ FPT,

no poly kernel no poly kernel
|C| − b ∈ XP ∈ XP
b ∈ Bd(I) − coW[1]-h
b ∈ Ba(I) W[1]-h coW[2]-h
p ∈ FPT, ?

no poly kernel
fes ∈ FPT, ?

no poly kernel
ξ2 ∈ FPT, ?

no poly kernel
ξ3 ∈ XP, W[2]-h 6∈ XP
∆ ∈ XP, W[2]-h 6∈ XP
p+ |C| O(p|C|) kernel O(p|C|) kernel

in O(p(n+ |C|) +m) time in O(p(n+ |C|) +m) time
κr + |C|, O((κr + |C|)r) kernel O((κr + |C|)r) kernel
r ∈ N constant in O(|I|r) time in O(|I|r) time

FPT-algorithms when parameterized by the number of colors |C|. Further-
more, we showed in Section 5.4 how to achieve polynomial kernels for all
colored cut games when parameterized by both the number of colors |C|
and the vertex cover number. We were also able to replace the vertex cover
number with the vertex deletion distance κr to a maximum component size
of r. This result is somewhat surprising, since even the PSPACE-complete
games admit polynomial kernels and only few parameters are known for
which Colored (s, t)-Cut admits polynomial kernels. An overview on our
parameterized complexity results is given in Table 2.

In Section 6, we analyzed the computational complexity of the colored
cut games on restricted instances. First, in Section 6.1, we investigated
instances with degree constraints. We showed that none of the colored cut
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games, except A(DA)0-R and A(DA)0-V, can be solved in polynomial time
on bipartite planar subcubic or on complete graphs, unless P = NP. Second,
in Section 6.2, we showed that (DA)1-R is NP-complete on uncolored graphs
and on colored graphs, where every color appears in at most two (s, t)-paths.
This is a contrast to Colored (s, t)-Cut which can be solved in polynomial
time in both cases. In one of these proofs we also introduced theWeighted
Min (s, t)-Cut Interdiction problem and showed its NP-completeness.
This problem is closely related to (DA)1-R and might be interesting for the
design and analysis of robust networks.

7.2 Future Work

One of the main open questions of this work is, if the colored cut games such
as (DA)i-R, or at least some of them, admit FPT-algorithms when parame-
terized by the number of (s, t)-paths p. If yes, then these games also admit
FPT-algorithms when parameterized by the the feedback edge set number fes
and the edge deletion distance to a maximum degree of two ξ2. Another
natural parameter which is related to p is the number of color sets |C(I)|
of (s, t)-paths in the input graph. In every colored graph H, |C(H)| cannot
be larger than p and is probably much smaller in most instances. If one �nds
an exact FPT-algorithm to compute the set C(I), one can easily show an
FPT-algorithm for Colored (s, t)-Cut when parameterized by |C(I)|.

Furthermore, we were able to show that (DA)1-R and (DA)1-V can be
solved in time 2|C||I|O(1). It would be interesting to analyze if algorithms with
this running time can also be found for A(DA)1-R or even for all colored cut
games.

Since, the de�ned games are complete for complexity classes that are
higher in the polynomial-time hierarchy than NP, one might also study
whether a given parameterization allows not for an FPT-algorithm but for
a parameterized reduction to a lower level of the polynomial-time hierar-
chy [13].

In general, it might be interesting to analyze other games or PSPACE-
complete problems from a parameterized point of view and search for FPT-
algorithms or even polynomial kernels.

Moreover, one can also de�ne defender-attacker games where both agents,
again, choose color sets each turn and the defender only wins if he completes
a colored (s, t)-connector. It should be possible to show that, for a constant
number of alternations between the agents, these games are also complete for
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complexity classes of di�erent levels of the polynomial-time hierarchy. For
a non-constant number of alternations, a special case of these games cor-
responds to Unit-CCRG. Hence, we have already shown in Theorem 4.17
that a defender-attacker game where the defender aims to complete a col-
ored (s, t)-connector with non-constant number of alternations between the
agents is PSPACE-complete even if every agent only choses one color each
turn.

All in all, it would be interesting to observe, if the positive results in this
work are relevant for practice.
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