
FixCon: A Generic Solver for Fixed-Cardinality Subgraph Problems∗

Christian Komusiewicz† Frank Sommer‡

Abstract

In fixed-cardinality optimization problems in graphs, we are

given a graph G = (V,E), an objective function f , and

an integer k and search for a set S ⊆ V of k vertices that

maximizes f(G[S]) where G[S] is the subgraph of G induced

by S. We implement an enumeration-based algorithm for

solving fixed-cardinality optimization problems when G[S]

needs to be connected. To avoid enumerating all connected

subgraphs of order k, we present several generic pruning

rules and a generic heuristic for computing a lower bound for

the objective value. We perform an experimental analysis

of the performance of the algorithm and the usefulness of

the pruning rules for eight example problems in which one

aims to find dense, sparse, or degree-constrained connected

subgraphs, respectively. Our experiments show that, when

this generic solver is combined with problem-specific pruning

rules, our algorithm is competitive with out-of-the-box ILP

formulations for these problems.

1 Introduction

In this work, we engineer an algorithm for the following
generic NP-hard graph problem.

Connected Fixed-Cardinality
Optimization (CFCO)
Input: An undirected simple graph G =
(V,E), an objective function f : G → R, and an
integer k.
Task: Find a set S ⊆ V of size k such thatG[S]
is connected and S maximizes f(G[S]) under
these conditions.

Herein, G is the set of all undirected simple graphs and
G[S] := (S, {{u, v} ∈ E | u, v ∈ S}) denotes the subgraph
induced by S. Throughout this work, we assume that f
depends only on the isomorphism class of G[S]. In other
words, for any two isomorphic graphs H and H ′ we
have f(H) = f(H ′).

∗To appear in Proceedings of the Twenty-Second Workshop
on Algorithm Engineering and Experiments (ALENEX ’20), Salt

Lake City, USA, January 2020. c© SIAM.
†Philipps-Universität Marburg, Germany,

komusiewicz@informatik.uni-marburg.de
‡Philipps-Universität Marburg, Germany,

fsommer@informatik.uni-marburg.de
Supported by the DFG, project MAGZ (KO 3669/4-1).

CFCO has applications for example in computa-
tional biology [1] and facility layout problems [6]. Due
to the generic nature of CFCO it contains Clique as a
special case and thus it is NP-hard. On the positive side,
CFCO can be solved inO((e(∆−1))k·|V |O(1)·Tf (k)) time
where Tf (k) is the time needed for evaluating f on graphs
of order k and ∆ is the maximum degree of G [10].

The algorithm achieving this running time is quite
simple: enumerate all connected induced subgraphs of
order at most k and evaluate f for those subgraphs G[S]
of order exactly k, keeping the best subgraph G[S] and
outputting S after the enumeration has finished. An
implementation of this algorithm was developed for the
special case when the task is to decide whether G con-
tains an order-k connected µ-clique, where a graph with k
vertices is a µ-clique if it has at least µ ·

(
k
2

)
edges [11].

As a proof of concept, this implementation showed that
enumeration of connected subgraphs can be a useful al-
gorithmic approach for special cases of CFCO. A major
drawback of this approach, however, is that for each
new problem one has to provide a new implementation
and develop a new set of reduction and pruning rules.
This makes it unlikely that these algorithms will find
widespread use in real-world applications.

In contrast, integer programming and SAT solving
has proved to be an extremely useful tool for solving
NP-hard problems. One reason for this is that SAT and
ILP solvers have been engineered over decades and, as a
result, can solve many real-world instances very quickly.
Another reason is that, due to the generic nature of
SAT and ILP, one may formulate many combinatorial
optimization problems rather easily as a SAT or ILP
problem.

In this work, we aim to lift enumeration-based
algorithms from specific to generic applications. We
develop the algorithmic tool FixCon in which the user
needs to program only the objective function f . The
user may furthermore provide some properties of the
objective function that will then be exploited by generic
pruning rules that restrict the search space for the
enumeration algorithm. The pruning rules assume only
the correctness of the provided properties and otherwise
treat f as a black box. In addition, the user may
implement problem-specific pruning rules. Since the
theoretical running time guarantees for CFCO are good

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

only in the case of small k [4, 10], we focus on engineering
FixCon for k ≤ 20.

Our contribution. We implement three variants of the
generic enumeration-based algorithm of Komusiewicz
and Sorge [10]. We then provide three generic pruning
rules that help decreasing the size of the search tree
used by the enumeration algorithm. To develop these
rules, we note and make use of two properties of the
objective function f : vertex-addition bounds (that limit
the change of the objective value when a vertex is added
to the graph) and edge-monotonicity (which means that
adding an edge to a graph does not decrease its objective
value). In addition, we decrease the search space size by
identifying vertices with the same neighborhoods in the
input graph (called twins) and by identifying cases in
which a current subgraph cannot be extended to one that
gives a better solution than the current one. The latter
two rules are valid for any function f that assigns the
same value to graphs from the same isomorphism class.
Moreover, we provide generic heuristics that provide
FixCon with lower bounds for the value of the optimal
solution. Finally, for some problems, we provide new
problem-specific reduction rules.

We analyze the algorithms and the effect of the
generic and problem-specific pruning rules for eight ex-
ample problems and compare them with ILP formula-
tions for these problems. In a nutshell, we show that the
best version of our algorithm can solve the majority of
the benchmark instances within 600 seconds per instance.
Moreover, we outperform the ILP formulations in terms
of number of solved instances.

Our source code is available at https:

//www.uni-marburg.de/en/fb12/research-groups/

algorith/software/fixcon.

Related work. Bruglieri et al. [3] give a systematic
survey of special cases of Fixed-Cardinality Opti-
mization. Another generic algorithm for FCO relies on
the random separation technique [4]. We did not choose
this technique as basis for our implementation since it has
worse running time guarantees and since it seems hard to
exploit properties of the objective functions during the
algorithm. Maxwell et al. [13] propose an algorithm to
enumerate all connected induced subgraphs H that for a
given “hereditary” objective function f and threshold t,
fulfill f(H) > t. We do not compare with Maxwell et
al. [13] since the enumeration problem is much harder:
our algorithm may stop immediately after finding one
optimal solution; in the enumeration problem, one must
output all solutions and thus continue the search. From
another perspective, our implementation is more general,
as f does not need to be hereditary in FixCon.

Notation. We consider undirected graphs G = (V,E),
and denote by E(G) the edge set of G and by V (G) its
vertex set. For a vertex v, NG(v) := {u | {u, v} ∈ E}
denotes the open neighborhood of v, and NG[v] :=
N(v) ∪ {v} denotes the closed neighborhood of v. For a
set S ⊆ V , NG(S) :=

⋃
v∈S N(v) \ S denotes the open

neighborhood of S; NG[S] := N(S)∪S denotes the closed
neighborhood of S. If there is no danger of confusion,
we skip the subscript G. For a vertex v ∈ V , G− v :=
G[V \ {v}] denotes the graph G without vertex v. For
two vertices u and v in a graph G, distG(u, v) denotes
the length of a shortest path from u to v in G. For two
graphs G and H, we let H ∼= G denote that H and G
are isomorphic. A graph is r-regular if every vertex has
degree r.

2 Example Problems

In this section, we describe eight example objective
functions that we will consider as input in the CFCO
instances.

Dense subgraph problems. The first two problems
have applications in finding dense cohesive subgraphs.
In the first, we aim to maximize the number of edges in
the subgraph.

Densest Subgraph:

f(H) := |E(H)|.

In the second problem we aim to find a graph in which
the minimum degree is large.

Max-Min-Degree Subgraph:

f(H) := min
v∈V (H)

{|NH(v)|}.

For both problems, cliques of order k give the best
objective values for all graphs of order k. A further
problem in this direction would be to minimize the
diameter of the induced subgraphs. We did not include
this problem in the comparison since for k ≤ 20, finding
solutions with diameter 2 is trivial in our instances and
thus the problem is essentially only to decide whether
there is a clique on k vertices.

Sparse subgraph problems. The next four problems
are concerned with finding sparse subgraphs. The first
is essentially the opposite of Max-Min-Degree, that
is, we aim to find a subgraph with a minimal maximum
degree; we formulate it as a maximization problem.

Min-Max-Degree Subgraph:

f(H) := − max
v∈V (H)

{|NH(v)|}.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

https://www.uni-marburg.de/en/fb12/research-groups/algorith/software/fixcon
https://www.uni-marburg.de/en/fb12/research-groups/algorith/software/fixcon
https://www.uni-marburg.de/en/fb12/research-groups/algorith/software/fixcon

The next problems are essentially recognition problems,
formulated as maximization problems. We may find
induced subgraphs that are trees by solving the following
problem.

Acyclic Subgraph:

f(H) :=

{
1 H is a tree,

0 otherwise.

In a similar fashion, we may look for connected induced
subgraphs that contain no triangle.

Triangle-Free Subgraph:

f(H) :=

{
1 H contains no triangle,

0 otherwise.

The final problem from this group is to search for a
subgraph that has a large diameter.

Maximum-Diameter Subgraph:

f(H) := max
u,v∈V (H)

distH(u, v).

Degree-constrained subgraph problems. In the fi-
nal two problems we consider two variants of restricting
vertex degrees. Again, these problems are basically deci-
sion problems, formulated as maximization problems.

r-Regular Subgraph:

f(H) :=

{
1 H is r-regular,

0 otherwise.

In the experiments, we use r = 3 for even k and r = 4
for odd k.

(a, b)-Degree-Constrained Subgraph:

f(H) :=

1 H has minimum degree at least a

and maximum degree at most b,

0 otherwise.

We set a = 3 and b = 5 in the experiments.

3 Experimental Setup

Each experiment was performed on a single thread of
an Intel(R) Xeon(R) Silver 4116 CPU with 2.1 GHz,
24 CPUs and 128 GB RAM running Python 3.6.8. We
used igraph with the python-igraph interface (http:
//igraph.org/python/) as the graph data structure.
We performed experiments on 40 real-world networks
from Konect [12], the DIMACS Challenge on Graph

Algorithm 1 The Simple algorithm; the initial call is
Simple({v}, N(v)).

1: procedure Simple(C,X)

2: if |C| = k then

3: store C if f(G[C]) is maximal
4: return

5: while X 6= ∅ do
6: u := arbitrary vertex of X . Create branch that

adds u to C

7: X := X \ {u}
8: X′ := X ∪ (N(u) \N [C])
9: Simple(C ∪ {u}, X′)
10: return

Algorithm 2 The Pivot algorithm; the initial call is
Pivot({v}, {}, {}).
1: procedure Pivot(P,Q, F)

2: if |P ∪Q| = k then
3: store P ∪Q if f(G[P ∪Q]) is maximal

4: return
5: while P 6= ∅ do
6: p := choose element of P

7: for each z ∈ N(p) \ (P ∪Q ∪ F) do
8: Pivot(P ∪ {z}, Q, F)

9: F := F ∪ {z}
10: P := P \ {p}
11: Q := Q ∪ {p}
12: return

Clustering and Partitioning [2], and the Network Repos-
itory [15]; 10 networks are sparse and small (less than
500 vertices), 10 are sparse and have medium size (500 –
5 000 vertices), 10 are sparse and large (between 5 000
and 500 000 vertices), and 10 are dense. The instance
names and some of their properties are shown in Table 1
in the appendix. To also study instances with differ-
ent structure, we built 20 random instances in the Gn,p

model with n ∈ {100, 200, . . . , 1000} and p ∈ {0.1, 0.2}.
We set a timeout of 600 seconds minutes per instance.
The time for reading the input is not included in the
running time, for the ILP we do include the time for
passing the initial set of constraints. For each graph,
we built an instance for each of the eight problems and
each k ∈ {4, . . . , 20}. We call k small if k ≤ 10 and large
if 11 ≤ k ≤ 20.

We add improvements to the algorithms and evaluate
their effect one by one. In any section, we compare
the version with the new improvement and all previous
improvements to the variant that has all previous
improvements but not the new one.

4 Enumeration Algorithms

We consider three different algorithms for enumerating
connected induced subgraphs of order k. In all of
them, there is one main algorithm loop (Algorithm 1

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

http://igraph.org/python/
http://igraph.org/python/

and Algorithm 2) which considers, in some order, each
vertex v ∈ V (G), enumerates all connected induced
subgraphs of order k containing v, and then removes v
from G.

All three algorithms are search tree algorithms in
which each node of the search tree is associated with a
set C of vertices that induces a connected graph, called a
connected set in the following. In each search tree node
with |C| < k, we branch into the possibilities to add
vertices of N(C). The most straightforward algorithm
following this paradigm was used as a basic routine in
the FANMOD tool for network motif detection [16, 17].
We refer to this algorithm as Simple. The algorithm
maintains a set X during the search, which is the set of
vertices in N(C) that may still be added to C. For each
vertex u ∈ X, we create a branch where we add u to the
connected set C. Afterwards, all vertices of N(u) \N [C]
are added to X. After this branch, u is removed from X,
as we already considered the possibility to add it to the
current subgraph.

The two other algorithms that we use are
called Pivot [9] and Kavosh [7], the latter has also been
used in network motif detection. Both follow a similar
approach with a small difference. In both algorithms
the connected set C is partitioned into a set P which
can have further neighbors and a set Q which can have
no further neighbors. Further, for each search tree node
there is a set F of forbidden vertices which will not be
added to C. Note, that the set of forbidden vertices in
Simple is implicit defined by N [C] \X.

In Pivot, for each vertex p ∈ P we create for each
vertex w ∈ N(P) \ (P ∪ Q ∪ F) a branch where we
add w to the connected set C. After returning from this
branch, w is added to the set of forbidden vertices F .
After considering all such vertices w, vertex p is moved to
the set Q which is not allowed to have further neighbors.

In Kavosh, we do not add single vertices of N(P)
in the branching but instead create one branch for each
subset of size at most k − |P | of N(P) \ (P ∪ Q ∪ F).
Hence, the search tree in Kavosh has, on average, smaller
depth and larger breadth than the search trees of Simple
and Pivot.

All three algorithms were implemented by the
authors in previous work [8]; we use this previous
implementation with one difference: instead of using
recursion, we now use arrays each with up to k pointers
on their positions to replace the recursion stack. This
proved to be substantially faster than the previous
implementation. The pseudocode of Simple and Pivot is
shown in Algorithm 1 and 2, respectively; it is adapted to
fixed-cardinality optimization since instead of outputting
the connected set C, we evaluate f(G[C]) and save C if
it gives the current-best objective value.

0.1 0.5 1.0 5.0 10.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot
Simple
Kavosh
Small k
Large k

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple Plain
Pivot Plain

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 1: Top: Comparison of the plain version of the
three algorithms. Bottom: Comparison of the running
times of the plain version of Simple and Pivot for the
three problem categories.

In the plain version of our implementation, we use
the following easy way to prune the search space: we
stop the search once a solution that is obviously optimal
has been found. To this end, users may provide FixCon
with a global upper bound for the value of f on graphs
of order k. For many problems such a bound is easy
to determine. For Densest Subgraph the global
upper bound is

(
k
2

)
, for Max-Min-Degree Subgraph

it is k − 1. For Min-Max-Degree Subgraph, the
global upper bound is −2, as a connected graph on at
least four vertices has at least one vertex that has two or
more neighbors. For Maximum-Diameter Subgraph,
the global upper bound is k − 1, this bound is met only
by the path on k vertices. Finally, for the remaining
problems which all describe graph properties, the best
objective value is 1 which can be seen directly from the
definition.

The performance of the plain version of our algo-
rithms is shown in Figure 1. The top part visualizes
the running times for the three enumeration algorithms.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Kavosh is substantially slower than Pivot which is again
substantially slower than Simple. In all further versions
of the algorithms that we tested, Kavosh was slower
than the other two algorithms. This is due to the struc-
ture of the enumeration tree in Kavosh which has many
leaves (corresponding to subgraphs of order k) and few
inner nodes (corresponding to subgraphs of order less
than k). Since the further improvements are rooted in
the idea to prune the search tree at some inner node,
Kavosh benefits less from these improvements. Hence,
to improve the presentation, Kavosh is excluded from
further experiments. The bottom part of Figure 1 shows
the performance of the plain versions of Simple and
Pivot separated by categories. Pivot is only faster in
the dense category. The main observations are that the
sparse problems are the easiest for the plain algorithm
version, followed by the degree-constrained problems,
and the dense problems which are the hardest. Simple
solved 69 % of the instances with small k and 34% of the
instances with large k. Thus, as expected, the instances
with large k are much harder than those with small k.

5 Pruning Rules

The plain algorithm only prunes the search tree if
the graph contains a solution that meets the global
upper bound which is often not the case. Thus, we
propose three additional pruning rules that help to
further decrease the number of search tree nodes. In
these pruning rules, we use the current connected set C
to obtain an upper bound on the value of f(G[S]) for
all S ⊃ C. In the formulation of the pruning rules, we
denote G[C] by HC for brevity.

Vertex-based Upper Bounds. To allow for a com-
putation of an upper bound, we consider the following
property of objective functions f .

Definition 1. An objective function f is vertex-
addition-bounded by value x, if for every graph H and
all graphs H∗ that are obtained by adding some vertex
to H and making this vertex adjacent to some subset
of V (H), we have f(H∗) ≤ f(H) + x.

We may now use the following rule.

Pruning Rule 1. (Vertex-addition Rule) Let C be the
current connected set, let |C| = k − `, let f be vertex-
addition-bounded by x, and let z denote the objective
value of the current best solution. If f(HC) + ` · x ≤ z,
then return to the parent node in the search tree.

We can use the Vertex-addition Rule (VAR) for all
eight problems. For example, the objective function for
Triangle-Free Subgraph is vertex-addition-bounded
by 0, since adding a new vertex to HC can only introduce

new triangles and never destroys existing triangles. More
generally, when the aim is to find an induced subgraph
fulfilling some hereditary property, then we may use
an objective function that is vertex-addition-bounded
by 0. Hence, Acyclic Subgraph is also vertex-addition-
bounded by 0.

For Min-Max-Degree Subgraph the vertex-
addition bound is 0 as adding a vertex does not decrease
the maximum degree. For Maximum-Diameter Sub-
graph the vertex-addition bound is 1, as adding a vertex
may increase the diameter by at most 1. For the dense
category, the vertex-addition bound is k−1 for Densest
Subgraph and 1 for Max-Min-Degree-Subgraph.

Finally, for the two problems from the degree-
constrained category, we can adapt the definition of f
to distinguish two cases for graphs that do not fulfill
the property. For example, if a subgraph HC contains
a vertex with degree at least r + 1, then HC is not
the subgraph of an r-regular graph. Similarly, if HC

contains a vertex with degree at least b+ 1, then HC is
not the subgraph of a graph fulfilling the constraints of
(a, b)-Degree-Constrained Subgraph. By setting
the objective value for such graphs to be −∞ and setting
the vertex-addition bound to 1, we can model this
observation rather easily.

r-Regular Subgraph:

f(H) :=

1 H is r-regular,

−∞ H has a vertex v with |N(v)| > r,

0 otherwise.

(a, b)-Degree-Constrained Subgraph:

f(H) :=

1 H has minimum degree at least a

and maximum degree at most b,

−∞ H has a vertex v with |N(v)| > b,

0 otherwise.

The results are shown in Figure 2. Both algorithms
benefit from a substantial speed-up when using the
VAR. Hence, VAR is enabled in all following variants.
The effect of VAR for Pivot and Simple for the three
categories is shown in the bottom part of Figure 2. Pivot
is now faster than Simple in all categories for small and
large k, now solving almost all instances of the sparse
category. The comparison of the plain version of Simple
and Pivot with the VAR is shown in the top part of
Figure 2. For small k and the dense and the degree-
constrained category, VAR gives a speedup factor of more
than 10. For instances of the degree-constrained category
and large k, all instances solved by the plain version of
Simple are now solved within 0.1 seconds by Pivot with

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple Plain
Pivot VAR

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple VAR
Pivot VAR

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 2: Top: Comparison of the plain version of Simple
and Pivot with VAR. Bottom: Comparison of Simple
and Pivot with VAR.

VAR. For instances of the dense category with large k,
VAR has almost no effect as the algorithm enumerates
too many dense subgraphs of order roughly k/2 which
are not pruned by VAR.

Summarizing, with VAR enabled, Pivot solved 79 %
of the instances for small k and 59 % of the instances for
large k.

Monotonicity. We call an objective function f edge-
monotone if adding an edge to a graph H does not
decrease the objective value f(H). For Densest
Subgraph the function f is edge-monotone, since adding
an edge increases the objective value by 1. Similarly,
f is edge-monotone in Max-Min-Degree Subgraph.
The other six objective functions are not edge-monotone.
We use edge-monotonicity as follows to prune the search
tree.

Pruning Rule 2. (Clique Join Rule) Let C be the
current connected set, let ` = k − |C|, and let z denote
the current best objective value. Let HC∗ be the graph ob-
tained from HC by adding an `-vertex clique K and mak-
ing it adjacent to all vertices of P ⊆ C. If f(HC∗) ≤ z,
then return to the parent node in the search tree.

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple
Pivot

CJR
CJR

VAR
VAR

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 3: Comparison of Pivot and Simple with VAR
and CJR, respectively.

The correctness of the Clique Join Rule (CJR) is obvious,
since all connected induced subgraphs found in the
subtree rooted at the current node are a subgraph of HC∗ .
Consequently, they cannot achieve a better objective
value than z.

The upper bound provided by the VAR is never
better than the one provided by the CJR. However, the
vertex-addition bound is faster to compute since we do
not need to add a clique to the current subgraph HC .
Hence, we apply first the VAR and then the CJR.

Figure 3 shows the effect of the CJR. Pivot with the
CJR is roughly 100 times faster than Pivot with only
the VAR, the previously fastest for this category. For
Simple, the speed-up is much smaller. We conclude that
any further variants of the program should include some
variant of the CJR when f is edge-monotone.

Universal Graphs. In contrast to the two rules above,
the following pruning rule puts no restrictions on the
objective function f . Such rules are highly desirable but
it is intuitively clear that it is hard to prune the search
tree when we have no knowledge about f .

Consider the connected set C of size k− ` at a node
in the search tree and assume that z is the current best
objective value. As in the other rules, if HC can not
be expanded to a connected subgraph HC∗ of order k
such that f(HC∗) > z, we can discard the connected
set C and hence return to the parent of the current node.
To test this condition without any knowledge of f , we
simply try each possibility to expand HC to a connected
subgraph of order k. This can be done as follows.

Pruning Rule 3. (Universal Graph Rule) For each
(up to isomorphism) subgraph J on ` vertices, try each
possibility of adding edges between V (J) and P such that
the resulting graph HC∗ is connected. If f(HC∗) ≤ z
for all resulting graphs HC∗ , then return to the parent

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot VAR
Pivot UGR

Sparse
Sparse

Degree−constrained
Degree−constrained

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple UGR
Pivot UGR

Sparse
Sparse

Degree−constrained
Degree−constrained

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 4: Top: Comparison of Pivot with the UGR and
Pivot with VAR. Bottom: Comparison of Simple and
Pivot with the UGR.

of the current node. Otherwise, abort the pruning rule
after encountering the first HC∗ with f(HC∗) > z.

The Universal Graph Rule (UGR) is obviously correct
but it is not clear when this rule will lead to an
improvement in running time as the number of graphs
and edge additions to consider grows exponentially in `
and the number of vertices of P . To this end, we compute
the number of graphs that we generate.

Let I(n) be the number of graphs (up to isomor-
phism) of order n. In the UGR we have to evalu-
ate y = I(`) · 2`·|P | graphs. Since y can be extremely
large, we apply the universal graph rule only for ` ≤ 3
where I(`) = 2`−1. In addition, we compare y with
an estimate of the number of search tree nodes in the
subtree rooted at the current node corresponding to C.

For this estimation, we consider the size of Y :=
N(P) \ F to obtain an estimate on the number of
vertices we will add to the current connected set C.
More precisely, we apply the UGR if 2|P |·`+`−1 < |Y |`.

The effect of the UGR for Pivot is shown in the
top part of Figure 4; the dense category is excluded
from the experiments, since the UGR is never better
than the CJR. For the problems of the sparse category

this rule had a small negative effect. This is due the
fact that Pivot with the VAR already solved almost all
instances in that category. For problems of the degree-
constrained category and large k, the rule had almost
no effect, but for small k the rule gives a speed-up of
factor 20 compared with Pivot with the VAR. Hence, we
recommend to use the UGR for objective functions that
are not edge-monotone. The running time comparison
of Simple and Pivot is shown in the bottom part of
Figure 4. Simple is slightly faster than Pivot in the
sparse category but overall both variants solve the same
number of instances in the sparse category. In the degree-
constrained category, Pivot is much faster. For the
future, it seems promising to fine-tune the UGR, for
example by applying the rule if 2|P |·`+`−1 < cu · |Y |`
where cu is a constant whose optimal value may be
experimentally determined.

Summarizing, with the CJR for the dense category
and the UGR for the other categories, Pivot solved 88 %
of the instances for small k and 63 % of the instances for
large k. Pivot benefits more from both rules than Simple
because the set P is smaller for Pivot. Thus, it could
be promising to consider further enumeration strategies
which often lead to small P .

6 Neighborhood-Based Data Reduction and
Branching

To further decrease the running times, we consider the
relations between the neighborhoods of vertices in G.

Twin Sets. The first idea is to avoid enumerating too
many graphs that are isomorphic by identifying vertices
that have the same neighborhood. For this, we use the
following definition. Two vertices u and v are called true
twins if N [u] = N [v] and false twins if N(u) = N(v). If
one of both cases occurs, u and v are called twins. If
there are two vertices u and v with N [u] = N [v], then
there exists no vertex w with N(u) = N(w), and vice
versa. As a consequence, being twins is an equivalence
relation. A maximal set of twins is called a twin set.

Before starting the enumeration algorithm, we
compute all twin sets and apply the following two
reduction rules.

Reduction Rule 1. Let C be a set of true twins of G
with |C| > k. Remove |C| − k vertices of |C| from G.

Reduction Rule 2. Let I be a set of false twins of G
with |I| ≥ k. Remove |I| − k + 1 vertices of |I| from G.

The correctness of the rules follows from the fact that
each solution containing exactly k vertices can contain
at most k vertices of a true twin set and at most k − 1
vertices of a false twin set.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot UGR + CJR
Pivot Twin Rule

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple Twin Rule
Pivot Twin Rule

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 5: Top: Comparison of Pivot with the Twin Rule
and Pivot with UGR and CJR. Bottom: Comparison of
Simple and Pivot with the Twin Rule.

During the enumeration, we use twin sets as follows.

Pruning Rule 4. (Twin Rule) Let C be the connected
set at the current node, let F denote the current set of
forbidden vertices and let v be a vertex such that the
algorithm considered each solution extending C ∪ {v}.
Let C denote the twin set of v. Add all vertices of C \ C
to F .

The correctness can be seen as follows: Let z be the
current best objective value. Assume there exists another
connected set C ′ with C ∪ {u} ⊆ C ′ and u ∈ C \C such
that f(HC′) > z. Consider the set C ′′ := (C ′\{u})∪{v}.
Since u and v are twins, HC′

∼= HC′′ . Since v ∈ C ′′,
the algorithm already considered the connected set C ′′.
Hence, f(HC′′) ≤ z, a contradiction to the assumption
that f(HC′) > z.

The effect of the Twin Rule for Pivot is shown in
the top part of Figure 5. For running times below ten
seconds, Pivot with Twin Rule is slower than Pivot with
the CJR and UGR. This is due to the time which is
needed to calculate the twin sets. In the sparse category,
the Twin Rule gave no improvement since almost all
instances can be solved within the time limit. For the

Number of Nodes for Pivot Twin Rule

N
um

be
r

of
 N

od
es

 fo
r

P
iv

ot
 U

G
R

 +
 C

J

10 100 1000 10000 1e+05 1e+06 1e+07

10
10

0
10

00
10

00
0

1e
+

05
1e

+
06

1e
+

07

Figure 6: Comparison of the number of search tree nodes
of Pivot with the Twin Rule and Pivot with UGR and
CJR.

dense and degree-constrained category, the Twin Rule
gives a running time improvement of roughly a factor two
for the harder instances. Moreover, as shown in Figure 6,
the Twin Rule may decrease the size of the search tree
tremendously in some cases. Since the running time
overhead incurred by the rule is not too high, we enable
the twin rule for all three categories.

The bottom part of Figure 5 compares Simple and
Pivot with the Twin Rule. In the sparse category, Simple
is competitive. In the dense and degree-constrained
category, for small k, Pivot is more than ten times faster
than Simple and for large k, Pivot solves each instance
that was solved by Simple within the time limit in less
than one second.

Neighborhood Relation for Edge-Monotonicity
In the following, we provide an improvement of the
Twin Rule for edge-monotone objective functions f .

Pruning Rule 5. (Neighborhood Inclusion Rule)
Let C be the connected set at the current node and
let F denote the current set of forbidden vertices and
let v be a vertex such that the algorithm considered each
solution extending C ∪ {v}. Add all vertices u /∈ C
with N(u) ⊆ N [v] to F .

The correctness of the Neighborhood Inclusion Rule
(NIR) can be seen as follows: Let z be the current best
objective value. Assume there exists a connected set C ′

with C ∪ {u} ⊆ C ′, u /∈ C and N(u) ⊆ N [v] such
that f(HC′) > z. Since N(u) ⊆ N [v], HC′ is a subgraph
of HC′′ where C ′′ := (C ′ \ {u}) ∪ {v}. Since f is edge-
monotone, f(HC′) ≤ f(HC′′). Hence, f(HC′) ≤ z, a
contradiction to the fact that f(HC′) > z.

Figure 7 shows the effect of the NIR. Similar to the

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Simple
Pivot

Twin Rule
Twin Rule

NIR
NIR

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 7: Comparison of Simple and Pivot with and
without the NIR.

Number of Nodes for Pivot NIR

N
um

be
r

of
 N

od
es

 fo
r

P
iv

ot
 T

w
in

 R
ul

e

10 100 1000 10000 1e+05 1e+06 1e+07

10
10

0
10

00
10

00
0

1e
+

05
1e

+
06

1e
+

07

Figure 8: Comparison of number of search tree nodes of
Pivot with the Twin Rule and Pivot with the NIR.

Twin Rule, for running times below 10 seconds, Pivot
with the NIR is slower than Pivot without it, which is
again due to the time needed to compute the relations.
For small k, the NIR does not improve Pivot. For large k,
Pivot with NIR is slightly faster than Pivot with Twin
Rule. Moreover, as shown in Figure 8, there are again
some cases in which the number of search tree nodes is
decreased tremendously. Hence, we enable this rule in
the following. For Simple and small k the speedup is
much better, but Pivot remains roughly 20 times faster
than Simple.

Summarizing, with the NIR for the dense category
and the Twin Rule for the other categories, Pivot
solved 88 % of the instances for small k and 65 % of
the instances for large k.

7 Heuristic Lower Bounds

We also implemented three randomized heuristics to
compute good initial solutions. These provide a lower
bound for the objective function f which will be useful
to prune the search tree. The heuristics work as follows:
We have a probability measure P0 on V (G). Choose a
start vertex v1 with probability P0(v1). For a connected
set C of size ` < k we have a probability measure P`

on N(C), and choose a vertex v` with probability P`(v`).
In the first heuristic, we let Pi be the uniform

distribution. This heuristic is aimed to be good for
objective functions where we have little knowledge.

In the second heuristic, we set P0(v) :=
|N(v)|/(2|E|) for each v ∈ V (G). Furthermore, for
each 1 ≤ i < k and for each v ∈ N(C), where C is the
current connected set, we set: Pi(v) := |N(v) ∩ C|/R,
where R :=

∑
v∈N(C)N(v) ∩ C. This heuristic is aimed

to be suitable for edge-monotone objective functions.
In the third heuristic, we set P0(v) := (∆ −

|N(v)|)/T , where T :=
∑

v∈V (G)(∆ − |N(v)|) for

each v ∈ V (G). Furthermore, for each 1 ≤ i < k and
for each v ∈ N(C), we set: Pi(v) := (∆ − |N(v)|)/M ,
where M :=

∑
v∈N(C)(∆ − |N(v)|). This heuristic is

aimed to be suitable for problems in the sparse category.
Since instances with larger k and larger n are harder,

we apply the heuristic more often, the larger n and k
are. More precisely, each heuristic is applied log(n) · k
times. We have chosen a linear dependence on k since
the subgraph size in our experiments is at most 20 and a
logarithmic dependence on n since we consider networks
with up to 500 000 vertices. We refer to each application
as a trial. Let z denote the objective value of the current
best solution.

While iteratively building a random subgraph in
some trial, we check whether the current subgraph can
still lead to a solution with objective value better than z
by applying the VAR. If this is not the case, then we
discard the current subgraph and start with the next
trial.

Since the variance of the best solution found by
these heuristics is huge, after each trial of each heuristic
we perform local search to improve the solution quality
of the found connected set C: In the local search, we
consider all possibilities of obtaining a better connected
set C∗ by swapping a vertex v ∈ C with a vertex u ∈
V \ C as follows. For each v ∈ C, we compute the
connected components C1, . . . , C` of HC−v. Afterwards,
we compute their common neighborhood N := (N(C1)∩
. . . ∩ N(C`)) \ C in G − C. We then compute the
vertex u ∈ N for which the connected set C∗ := C∪{u}\
{v} obtained by removing v and adding u has a maximal
value f(HC∗). If f(HC∗) > z set C ← C∗, z ← f(HC∗)
and continue, otherwise we abort the trial.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot Twin Rule
Pivot Heur. LB

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot Heur. LB
Simple Heur. LB

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 9: Top: Comparison of Pivot with and without
heuristic lower bounds. Bottom: Comparison of Simple
and Pivot with heuristic lower bounds.

The effect of the computation of the heuristic lower
bounds for Pivot is shown in the top part of Figure 9.
For the small instances, we can observe a small negative
effect that is caused by the additional time needed to
compute the lower bounds. For the large instances, we
either observe no effect or a small positive effect with one
exception: for the dense category and large k, the rule
gives a speed-up factor of almost 100 and almost doubles
the number of instances that can be solved within the
time limit. The comparison of Pivot and Simple with
heuristic lower bounds is shown in the bottom of Figure 9.
Simple is only competitive with Pivot in the sparse
category.

With the greedy heuristics and all previous rules,
Pivot solved 89 % of the instances for small k and 69 %
of the instances for large k, outperforming Simple also
in this variant.

8 Problem-Specific Pruning Rules

To allow for further improvement of the algorithms,
we extend FixCon to include problem-specific pruning
rules that, in addition, use not only HC as input but
also the graph G. We design such rules for the two

harder categories: the dense category and the degree-
constrained category.

First, we describe the pruning rules applied for
Densest Subgraph. The first rule is an adaptation of
a known upper bound on the number of edges of any
order-k graph containing the connected set C [11, 14].
We adapt this bound to our setting as follows. Let C be
the current connected set, let S be any order-k solution
extending C, and let ` := k − |C| denote the number of
vertices to add. We partition the edges of G[S] into three
subsets: the edges between vertices of C, whose number
is denoted by m(C) and already known, the edges
between vertices of C and S \ C, whose number will be
denoted by m(C, S \ C), and the edges between vertices
of S \C, whose number will be denoted by m(S \C). We
compute upper bounds on m(C, S \ C) and m(S \ C).

For bounding m(C, S \ C), we exploit that no
neighbors of vertices in C\P may be added. We thus first
compute the set Y := V \ (C ∪N(C \P)∪F) of vertices
that may still be added to C. For each vertex y ∈ Y ,
we compute degP (y) := |N(y) ∩ P | and degV \C(y) :=
|N(y)∩V \C|. Now m(C, S \C) +m(S \C) ≤ b0(C,P)
where

b0(C,P) :=
∑̀
i=1

(degP (yi) + min(degV \C(yi), `− 1)/2)

where {y1, . . . , y`} ⊆ Y is the set of vertices that
maximizes this sum. The second summand is divided
by 2 since these edges are double counted in the sum.
Moreover, if b0(C,P) is not integral, we may round down.
Thus, we obtain the first improved pruning rule.

Pruning Rule 6. Let C be the current connected
set and let z denote the current-best objective value.
If m(C) + bb0(C,P)c ≤ z, then return to the parent
node.

We now further refine this bound by partitioning the
set of edges between vertices in S\C even further. To this
end, let S1 := (S∩N(P))\C) denote the vertices of S\C
that are neighbors of P , and S2 := S\(C∪S1) denote the
remaining vertices. We partition the edges in S \C into
those edges inside S1, those edges between S1 and S2

and those edges inside S2. Moreover, we consider all
possible sizes `′ of S2; due to the connectivity constraint
we have |S1| ≥ 1 and thus 0 ≤ `′ < `. For each `′,
we compute an upper bound of m(S, `′), defined as the
maximum number of edges we may achieve by having
exactly `′ vertices in S2. The upper bound for m(S)
is then the maximum of m(S, `′) over all `′. Thus,
in the following, we describe how to compute bounds
for m(S, `′). For fixed `′, we denote the numbers of
the edge sets in the partition by m(S1, `

′), m(S1, S2, `
′)

and m(S2, `
′), respectively.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

The number m(S2, `
′) is at most

(
`′

2

)
since in the best

case, the vertices of S2 form a clique. To bound m(S1, `
′)

we compute degN(P)(v) := |N(v) ∩ N(P)| for all
vertices in Y ∩ N(P). To bound m(S1, S2, `

′), we
compute degV \N [C](v) := |N(v) \ N [C]| for vertices
in Y ∩N(P). We now obtain the bound m(C, S \C, `′)+
m(S1, `

′) +m(S1, S2, `
′) +m(S2, `

′) ≤ b1(C,P, `′) where

b1(C,P, `′) :=

`−`′∑
i=1

(
degP (vi)

+ min(degN(P)(vi), `− `′ − 1)/2

+ min(degV \N [C](vi), `
′)
)

where v1, . . . , v`−`′ are the vertices of Y ∩N(P) maxi-
mizing the sum.

Pruning Rule 7. Let C be the current connected
set and let z denote the current-best objective value.

If m(C) + max0≤`′<`(bb1(C,P, `′)c+
(
`′

2

)
) ≤ z, then re-

turn to the parent node.

The top part of Figure 10 shows the effect of both
pruning rules. The previously known upper bound gives
a considerable improvement for small k and large k.
Using in addition the new upper bound gives a rather
small improvement for large k and has a negligible effect
for small k.

For Max-Min-Degree-Subgraph, the pruning
rules are simpler.

Pruning Rule 8. Let C be the current connected set
and let z denote the current-best objective value. If

1. C contains a vertex with degree at most z in G, or

2. C contains a vertex v with at most z − degHC
(v)

neighbors in Y , or

3. z > `−1 and N(P)∩Y contains less than ` vertices v
with |N(v) ∩ P |+ min(`− 1, |N(v) \ C|) > z, or

4. N(P) ∩ Y contains no vertex with |N(v) ∩ P | +
min(`− 1, |N(v) \ C|) > z

then return to the parent of the current search tree node.

The first two cases of the pruning rule are obviously
correct. For the third case, observe that if z > `−1, only
vertices with at least one neighbor in P may be added.
Moreover, a vertex may only be added if his number
of neighbors in P plus the number of neighbors in the
remaining part of S exceeds z. If there are less than `
candidates to add, then there is no solution extending C.
For the last case, observe that we need to add at least
one vertex of N(P)∩Y . If there is no suitable candidate,
then we can discard the current connected set.

Next, we describe pruning rules for r-Regular Sub-
graph and (a, b)-Degree-Constrained Subgraph.
We will only describe the rules for the more general (a, b)-
Degree-Constrained Subgraph since we use the
same rules for r-Regular Subgraph by setting a = r
and b = r.

In the following, for each vertex of P , we
let demand(v) := a− degC(v) denote the demand of v,
that is, the number of edges with one endpoint being v
that we need to add in order to fulfill the degree con-
straint of v. Here, degC(v) is the degree of the vertex
in HC . Recall that Q = C \P denotes the set of vertices
for which we may not add further neighbors.

Pruning Rule 9. Let C be the current connected set.
Return to the parent node if

1. Q contains a vertex of degree less than a, or

2. C contains a vertex v with demand(v) > k−|C|, or

3. C contains a vertex v that has degree less than a
in G.

This rule is correct since in each case the vertex v cannot
have degree at least a in HS for a subgraph S with
minimal degree a.

The following rule is correct, since in the cases
described by the rule, every addition of a vertex to C
creates at least one vertex of degree at least b+ 1.

Pruning Rule 10. Let C be the current connected set.
If |C| < k and if all vertices of P have degree b in HC ,
then return to the parent node.

In the next case, the idea is to count how many
edges need to be added in order to increase the degree of
every vertex of HC above the threshold a. This number
is compared with an upper bound on the number of
edges that we may obtain by adding k−|C| new vertices
whose degree may not exceed b.

Pruning Rule 11. Let C be the current connected set.
Let V<a denote the set of vertices in HC that have degree
less than a. If

∑
v∈V<a

demand(v) > (k − |C|) · b, then
return to the parent node.

We now take a closer look at the vertices of V (G)\C
that we may add to C. More precisely, we exploit the
following observation: we may not add any vertex u that
has degree less than a in G or any vertex u that has
a neighbor w in C which has degree b in HC . Thus,
we may define for each vertex v ∈ C, a set of possible
neighbors N∗G(v, C) := {u ∈ V (G) \ C | degG(u) ≥
a and there is no w ∈ C ∩N(u) with degC(w) = b}.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Pruning Rule 12. Let C be the current connected
set. If C contains a vertex v such that demand(v) >
|N∗G(v, C)|, then return to the parent node.

We now look at pairs of vertices u and v in C for
which we still need to add neighbors. We exploit the
following observation: the fewer the number of common
neighbors of u and v in V (G)\C, the larger is the number
of vertices that we must add. If this number is too large,
then C cannot be extended to a solution.

Pruning Rule 13. Let C be the current connected set.
1) If C contains two vertices u and v such

that demand(v) + demand(u) − min(b − degC(v), b −
degC(u), |N∗G(v, C) ∩N∗G(u,C)|) > k − |C|, or

2) if C contains three vertices u, v, and w
such that N∗G(w,C) is disjoint from N∗G(u,C) and
from N∗G(v, C) and demand(v) + demand(u) +
demand(w)−min(b−degC(v), b−degC(u), |N∗G(v, C)∩
N∗G(u,C)|) > k − |C|, then return to the parent node.

The correctness of the first part of the rule can be seen
as follows: In order to fulfill the degree constants for v
and u, we need to add demand(v) + demand(u) edges
with an endpoint in u or v. Vertices that are common
neighbors of u and v add two such edges, all other
vertices add only one such edge. Hence, we may write
the number of vertices to add as the number of neighbors
of u plus the number of neighbors of v minus the number
of common neighbors of u and v. Since the number of
common neighbors of u and v that we may add is at most
min(b − degC(v), b − degC(u), |N∗G(v, C)| ∩ N∗G(u,C)|),
the left hand side thus gives a lower bound on the number
of vertices that we need to add to increase the degree of u
and v sufficiently. If this lower bound exceeds k − |C|,
the number of vertices that we may still add, then there
is no connected set C ′ that extends C.

For the second part, we simply consider a third
vertex w if the set of possible neighbors of w is disjoint
from those of v and u. The arguments for the correctness
are completely analogous. Since the second part of
the rule is costly in terms of running time (we have to
consider all triples of vertices in C), we apply this part
only if demand(v) + demand(w)−min(b− degC(v), b−
degC(u), |N∗G(v, C) ∩ N∗G(u,C)|) > (k − |C|)/2. The
rationale behind this condition is that it is unlikely that
the second part of the rule will be successful if the
condition is not met.

The final rule extends Rule 13 to larger subsets of
vertices in C. Instead of trying all possibilities of such
sets, we greedily compute a set of vertices in C for which
we still need to add neighbors and which have disjoint
possible neighborhoods.

Pruning Rule 14. Let C be the current connected

0.1 0.5 1.0 5.0 10.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot Order

Old UB
Heur. LB
New UB

Small k
Large k

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot Heur. LB
Pivot Specific UB

Dense
Dense

Degree−constrained
Degree−constrained

k ≤ 10

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 10: Comparison of Pivot with and without
problem-specific pruning rules. Top: The two rules
for Densest Subgraph. Bottom: Comparison for the
dense and degree-constrained category.

set. If C has a subset A of vertices such that for
all u, v ∈ A we have N∗G(v, C) ∩ N∗G(u,C) = ∅
and

∑
v∈A demand(v) ≥ k − |C|, then return to the par-

ent node.

As stated above, the set A is computed greedily. More
precisely, we consider the vertices of C in some order
and add the first vertex v in C \A with demand(v) > 0
whose possible neighborhood is disjoint from all possible
neighborhoods of A.

The overall effect of these pruning rules is shown in
the bottom of Figure 10. There is a substantial speed-up
for the dense category, particularly for large k, and a
tremendous speed-up for the degree-constrained category
for small and large k.

9 A Comparison with ILP formulations

To compare FixCon with some competitor, we developed
ILP formulations for all eight problems. As ILP solver,
we used Gurobi version 8.01 with the Python interface.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Pivot
ILP

Dense
Dense

Sparse
Sparse

Degree−constrained
Degree−constrained

0.1 0.5 5.0 50.0 500.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

k ≥ 11

Figure 11: Comparison of the ILP with the version of
Pivot containing all improvements.

In all eight formulations we have binary variables xv
for each vertex v ∈ V and the constraint

∑
v∈V xv = k

which ensures that k vertices are selected. As proposed
by Althaus et al. [1] we use lazy constraints to ensure the
connectivity of the solution: If at some node of the search
tree, we have a disconnected solution S, then we add the
following constraint for each connected component C
of G[S] in a callback 1

∑
v∈C

xv −
∑

v∈N(C)

xv ≤ |C| − 1.

Figure 11 compares the ILP formulations with the
best variants of Pivot.

Overall, Pivot solves 96% of the instances with
small k and 84% of the instances with large k, whereas
the ILP solves 85% of the small and 70% of the large
instances.

For small k, Pivot is significantly faster than the ILP
in all three categories. In the degree-constrained category
for small k and in the sparse category for all k, Pivot
solves almost all instances within the time limit. The
biggest difference can be observed for the sparse category.
This can be somewhat expected since FixCon maintains
the connectivity constraint during the search, whereas
for the ILP, the connectivity constraint is somewhat
contrary to the fact that sparse graphs are preferred by
the objective functions.

For the dense category and small k, Pivot is
roughly 20 times faster than the ILP. For the dense
category and the degree-constrained category and large k,
the ILP and Pivot are competitive. A further comparison
is shown in Table 1 (in the appendix); the table shows for

1We also tried using one constraint for each c ∈ C as Althaus et
al. [1]; in preliminary experiments this gave slightly worse results.

each real-world network the largest k such that all eight
CFCO problems could be solved within ten minutes.

Overall, we conclude that FixCon with Pivot is
competitive with off-the-shelf ILP formulations of the
considered CFCO problems when k ≤ 20 and problem-
specific pruning rules are employed.

10 Conclusion

We have demonstrated the usefulness of subgraph
enumeration for the generic Connected Fixed-
Cardinality Optimization problem. For using the
generic version of FixCon without problem-specific prun-
ing rules a user only needs to implement the objective
function f and provide some properties of f . This version
can be used as a baseline for comparison with special pur-
pose algorithms or as a base implementation that can be
improved by adding problem-specific pruning rules. In
the latter setting, FixCon is competitive with standard
ILP formulations for the problems under consideration.

There are many avenues to pursue in future research.
First, we aim to further improve the generic part of
FixCon, for example by extending the Twin Rule which
exploits symmetry in the neighborhood to cases where
vertices have almost the same neighborhood. Second, we
aim to collect further example problems and to further
improve the problem-specific rules for the problems
considered in this work. Third, we aim to extend the
algorithms to allow richer graph models; for example,
by allowing vertex and edge weights, vertex and edge
colors, or directed edges. One could also aim to address
problems where the objective function depends not only
on the subgraph itself but also on the rest of the graph.
This could be used to find, for example, connected
dominating sets or connected vertex covers of the graph
or to solve core-periphery subgraph problems. Finally,
one could extend FixCon to enumeration problems,
where one wants to output all optimal solutions or to
counting problems, where one wants to output their
number.

It is also open to translate other generic subgraph
problem representations into FixCon objective functions.
For example, one could aim to automatically translate
first-order-logic formulas into FixCon objective functions
and, in particular, extract useful properties such as edge-
monotonicity directly from the formulas.

Another interesting line of research is to examine
how parallelization can be used to speed up FixCon, as
it was done for example for clique enumeration [5].

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] E. Althaus, M. Blumenstock, A. Disterhoft,
A. Hildebrandt, and M. Krupp, Algorithms for the
maximum weight connected k-induced subgraph prob-
lem, in Proceedings of the 8th International Conference
on Combinatorial Optimization and Applications (CO-
COA ’14), vol. 8881 of Lecture Notes in Computer
Science, Springer, 2014, pp. 268–282.

[2] D. A. Bader, A. Kappes, H. Meyerhenke,
P. Sanders, C. Schulz, and D. Wagner, Benchmark-
ing for graph clustering and partitioning, in Encyclope-
dia of Social Network Analysis and Mining, Springer,
2014, pp. 73–82.

[3] M. Bruglieri, M. Ehrgott, H. W. Hamacher, and
F. Maffioli, An annotated bibliography of combina-
torial optimization problems with fixed cardinality con-
straints, Discrete Applied Mathematics, 154 (2006),
pp. 1344–1357.

[4] L. Cai, S. M. Chan, and S. O. Chan, Random
separation: A new method for solving fixed-cardinality
optimization problems, in Proceedings of the Second
International Workshop on Parameterized and Exact
Computation (IWPEC ’06), vol. 4169 of Lecture Notes
in Computer Science, Springer, 2006, pp. 239–250.

[5] E. Coppa, I. Finocchi, and R. L. Garcia, Count-
ing cliques in parallel without a cluster: Engineering a
fork/join algorithm for shared-memory platforms, Infor-
mation Sciences, 496 (2019), pp. 553–571.

[6] M. Fischetti, H. W. Hamacher, K. Jørnsten, and
F. Maffioli, Weighted k-cardinality trees: Complexity
and polyhedral structure, Networks, 24 (1994), pp. 11–
21.

[7] Z. R. M. Kashani, H. Ahrabian, E. Elahi,
A. Nowzari-Dalini, E. S. Ansari, S. Asadi, S. Mo-
hammadi, F. Schreiber, and A. Masoudi-Nejad,
Kavosh: a new algorithm for finding network motifs,
BMC Bioinformatics, 10 (2009), p. 318.

[8] C. Komusiewicz and F. Sommer, Enumerating con-
nected induced subgraphs: Improved delay and experi-
mental comparison, in Proceedings of the 45th Inter-
national Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM ’19), vol. 11376
of Lecture Notes in Computer Science, Springer, 2019,
pp. 272–284.

[9] C. Komusiewicz and M. Sorge, Finding dense
subgraphs of sparse graphs, in Proceedings of the 7th
International Symposium on Parameterized and Exact
Computation (IPEC ’12), vol. 7535 of Lecture Notes in
Computer Science, Springer, 2012, pp. 242–251.

[10] C. Komusiewicz and M. Sorge, An algorithmic
framework for fixed-cardinality optimization in sparse
graphs applied to dense subgraph problems, Discrete
Applied Mathematics, 193 (2015), pp. 145–161.

[11] C. Komusiewicz, M. Sorge, and K. Stahl, Finding
connected subgraphs of fixed minimum density: Imple-
mentation and experiments, in Proceedings of the 14th
International Symposium on Experimental Algorithms

(SEA ’15), vol. 9125 of Lecture Notes in Computer
Science, Springer, 2015, pp. 82–93.

[12] J. Kunegis, KONECT: the Koblenz network collection,
in Proceedings of the 22nd International World Wide
Web Conference (WWW ’13), International World Wide
Web Conferences Steering Committee / ACM, 2013,
pp. 1343–1350.

[13] S. Maxwell, M. R. Chance, and M. Koyutürk,
Efficiently enumerating all connected induced subgraphs
of a large molecular network, in Proceedings of the First
International Conference on Algorithms for Computa-
tional Biology (AlCoB ’14), vol. 8542 of Lecture Notes
in Computer Science, Springer, 2014, pp. 171–182.

[14] F. M. Pajouh, Z. Miao, and B. Balasundaram, A
branch-and-bound approach for maximum quasi-cliques,
Annals OR, 216 (2014), pp. 145–161.

[15] R. A. Rossi and N. K. Ahmed, The network data
repository with interactive graph analytics and visualiza-
tion, in Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence (AAAI ’15), AAAI Press,
2015, pp. 4292–4293, http://networkrepository.com.

[16] S. Wernicke, A faster algorithm for detecting net-
work motifs, in Proceedings of the 5th International
Workshop on Algorithms in Bioinformatics (WABI ’05),
vol. 3692 of Lecture Notes in Computer Science,
Springer, 2005, pp. 165–177.

[17] S. Wernicke and F. Rasche, FANMOD: a tool for
fast network motif detection, Bioinformatics, 22 (2006),
pp. 1152–1153.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

http://networkrepository.com

A Further Experimental Results

Table 1: The table shows for each instance the largest value k∗ such that all eight problems could be solved for all k ≤ k∗.
Pivot and Simple are the respective algorithms with all improvements up to the heuristic lower bound. Pivot+ has
additionally the problem-specific lower bounds and described in Section 8. A value of N/A for the ILP means that for all k,
there is at least one problem which the ILP did not solve for this graph.

Size Name |V | |E| Pivot Simple Pivot+ ILP

Small moreno-zebra 27 111 20 20 20 20
ucidata-zachary 34 78 15 14 15 9
contiguous-usa 49 107 12 12 18 20
dolphins 62 159 9 9 18 15
ca-sandi-auths 86 124 11 12 18 15
adjnoun adjacency 112 425 6 6 12 17
arenas-jazz 198 2 742 6 6 20 16
inf-USAir97 332 2 126 6 5 17 10
ca-netscience 379 914 8 8 19 13
bio-celegans 453 2 025 6 5 13 11

Medium bio-diseasome 516 1 188 7 6 20 12
soc-wiki-Vote 889 2 914 6 5 12 15
arenas-email 1 133 5 451 6 5 13 16
inf-euroroad 1 174 1 417 10 10 13 18
bio-yeast 1 458 1 948 7 7 12 14
ca-CSphd 1 882 1 740 9 10 13 10
soc-hamsterster 2 426 16 630 6 5 20 12
inf-openflights 2 939 15 677 6 5 16 8
ca-GrQc 4 158 13 422 6 5 20 12
inf-power 4 941 6 594 8 8 17 18

Large soc-advogato 6 541 39 432 6 4 11 6
bio-dmela 7 393 25 569 6 4 8 5
ca-HepPh 11 204 117 619 6 5 20 13
ca-AstroPh 17 903 196 972 6 5 17 N/A
soc-brightkite 56 739 212 945 5 4 15 N/A
coAuthorsCiteseer 227 320 814 134 5 5 20 N/A
coAuthorsDBLP 299 067 977 676 5 5 16 N/A
soc-twitter-follows 404 719 713 319 4 4 5 N/A
coPapersCiteseer 434 102 16 036 720 6 5 20 N/A
coPapersDBLP 540 486 15 245 729 5 5 13 N/A

Dense bn-cat-mixed-species brain 1 65 730 7 6 14 11
robot24c1 mat5 404 14 261 12 6 11 13
econ-beause 507 39 428 6 5 20 6
bn-mouse retina 1 1 076 577,350 6 5 16 12
comsol 1 500 48 119 6 5 20 N/A
bn-fly-drosophila medulla 1 1 781 8 911 6 4 10 5
heart2 2 339 340 229 8 6 20 9
econ-orani678 2 529 86 768 6 6 11 N/A
psmigr 1 3 140 410 781 6 5 17 16
bn-human-BNU 1 0025890 session 1 177 584 15 669 037 5 5 9 N/A

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Example Problems
	Experimental Setup
	Enumeration Algorithms
	Pruning Rules
	Neighborhood-Based Data Reduction and Branching
	Heuristic Lower Bounds
	Problem-Specific Pruning Rules
	A Comparison with ILP formulations
	Conclusion
	Further Experimental Results

