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Abstract. Given an undirected graph G and a nonnegative integer k,
the NP-hard Cluster Editing problem asks whether G can be trans-
formed into a disjoint union of cliques by applying at most k edge mod-
ifications. In the field of parameterized algorithmics, Cluster Editing

has almost exclusively been studied parameterized by the solution size k.
Contrastingly, in many real-world instances it can be observed that the
parameter k is not really small. This observation motivates our inves-
tigation of parameterizations of Cluster Editing different from the
solution size k. Our results are as follows. Cluster Editing is fixed-
parameter tractable with respect to the parameter “size of a minimum
cluster vertex deletion set of G”, a typically much smaller parameter
than k. Cluster Editing remains NP-hard on graphs with maximum
degree six. A restricted but practically relevant version of Cluster

Editing is fixed-parameter tractable with respect to the combined pa-
rameter “number of clusters in the target graph” and “maximum number
of modified edges incident to any vertex in G”. Many of our results also
transfer to the NP-hard Cluster Deletion problem, where only edge
deletions are allowed.

1 Introduction

The NP-hard Cluster Editing problem is among the best-studied parameter-
ized problems. It is usually defined as follows:

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Can G be transformed into a cluster graph by applying at
most k edge modifications?

Herein, an edge modification is either the deletion or insertion of an edge and
a cluster graph is a graph where every connected component is a clique. The
cliques of a cluster graph are referred to as clusters. Cluster Deletion is
defined analogously except that only edge deletions are allowed.

So far, the proposed fixed-parameter algorithms for Cluster Editing al-
most exclusively examine the parameter solution size k. While several algorith-
mic improvements have led to impressive theoretical results, it has been observed
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that the parameter k is often not really small for real-world instances [3]. Still,
the fixed-parameter algorithms can solve many of these instances [3], which raises
the question whether there are “hidden parameters” that are implicitly exploited
by these algorithms. In the spirit of multivariate algorithmics (cf. [15]), this work
aims at identifying promising new parameterizations for Cluster Editing that
help to separate easy from hard instances.

Related Work. The NP-hardness of Cluster Editing has been shown several
times [14, 17, 1]. The problem remains NP-hard even when the solution may
contain at most two clusters [17]. The parameterized complexity of Cluster

Editing with respect to the parameter k has been extensively studied. After a
series of improvements [10, 9, 16, 11, 2, 4], the currently fastest fixed-parameter
algorithm for this parameter has running time O(1.82k+n3) [2] and the currently
smallest problem kernel contains at most 2k vertices [4]. Several experimental
studies demonstrate that fixed-parameter algorithms can be applied to solve
real-world instances of Cluster Editing [6, 3]. Further theoretical studies have
dealt with the parameterized complexity of different generalizations of Cluster

Editing [5, 12, 8] for example by replacing the clique requirement in the cluster
graph with other models for dense graphs. The problem to transform a graph
into a cluster graph by a minimum number of vertex deletions is called Cluster

Vertex Deletion(CVD). Hüffner et al. [13] presented an O(2kk9 + nm)-time
iterative compression algorithm for CVD.

Our Results. Motivated by the observation that the parameter k is often very
large in practice and subsequent calls for “better parameterizations” [7], we con-
sider new parameters for Cluster Editing. Answering an open question by
Dehne [7], we show that Cluster Editing is fixed-parameter tractable with
respect to the parameter “cluster vertex deletion number” c of the input graph G.
Moreover, we consider the parameter t denoting the “maximal number of mod-
ified edges incident to any vertex”. First, we show that Cluster Editing is
NP-hard for maximum degree-six graphs. Since in an optimal solution the num-
ber of incident edge modifications of a vertex is bounded by its degree, there is
no hope for fixed-parameter tractability with respect to t. However, we can show
that a restricted version of Cluster Editing is fixed-parameter tractable when
combining t with the parameter d denoting the number of cliques in the final clus-
ter graph. Our methods include enumerative approaches, matching techniques,
and problem kernelization.

Due to lack of space, several proofs are deferred to a full version of the paper.

Preliminaries. Given a graph G = (V, E), we use V (G) to denote the vertex set
of G and E(G) to denote the edge set of G. Let n := |V | and m := |E|. The
(open) neighborhood N(v) of a vertex v is the set of vertices adjacent to v, and
the closed neighborhood is N [v] := N(v) ∪ {v}. For a vertex set W let EW :=
{{v, w} | {v, w} ⊆ W} denote the set of all size-two subsets of W . We use G[V ′]
to denote the subgraph of G induced by V ′ ⊆ V , that is, G[V ′] := (V ′, EV ′ ∩E).
Moreover, G − v := G[V \ {v}] for a vertex v ∈ V and G − e := (V, E \ {e}).
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Let E∆F := (E \ F ) ∪ (F \ E) denote the symmetric difference of two sets E
and F . The edit distance between two graphs G1 and G2 on the same vertex set
is |E(G1)∆ E(G2)|. Given three graphs G1, G2, and G3, we say that G2 is closer
to G1 than G3 if the edit distance between G1 and G2 is strictly smaller than
the edit distance between G1 and G3. For a graph G = (V, E) and a set S ⊆ EV

let G∆S := (V, E∆S) denote the graph that results by modifying G according
to S. A set of pairwise adjacent vertices is called clique.

2 Cluster Vertex Deletion Number

In this section, we present fixed-parameter algorithms for Cluster Editing

(CE) and Cluster Deletion (CD) parameterized by the size of a minimum-
cardinality vertex set Y such that removing Y from the input graph G results in
a cluster graph. In the following, we will refer to this parameter as cluster vertex
deletion number c of G. Note that c is bounded from above by the size k of a
minimum-cardinality edge-modification set: deleting for each edge modification
one of the two vertices (arbitrarily chosen) clearly results in a cluster graph. Our
algorithms solve the optimization version of CE and CD, that is, they find a
minimum-cardinality edge modification or edge deletion set, respectively. Both
algorithms make use of the following observation for cliques that are large in
comparison to the size of their neighborhood. These cliques are preserved to
large extent by any optimal solution for CE or CD.

Lemma 1. Let K denote a clique in G of size at least 2 · |NG(K)|. Then, for ev-
ery optimal edge modification set (optimal edge deletion set) S, the graph G∆ S,
contains a cluster K ′ with

|K ∩ K ′| ≥ |K| − 2|NG(K)|.

Proof. We show the lemma for the case of an optimal edge modification set S.
Let K ′

1, . . . , K
′

ℓ denote the clusters in G∆ S with K ′

i ∩ K 6= ∅. Furthermore,

define Bi := K ′

i ∩ K and observe that K =
⋃ℓ

i=1 Bi. Note that in the case
that |K| ≤ 2|NG(K)| + 1 the lemma trivially holds since |B1| ≥ 1 and |K| −
2|NG(K)| ≤ 1.

Assume towards a contradiction that all Bi’s contain less than |K|−2|NG(K)|
vertices. This implies that—in order to separate the Bi’s from each other—the
solution contains at least

1/2

ℓ
∑

i=1

|Bi|(|K| − |Bi|) > 1/2

ℓ
∑

i=1

(|Bi| · 2|NG(K)|) = |NG(K)| · |K|

edge deletions. Hence, one obtains a cluster graph that is closer to G by deleting
in G∆ S all edges between K and N(K) (at most |N(K)| · |K|) and undoing all
edge deletions between vertices in K (at least |N(K)| · |K|+ 1); a contradiction
to the fact that S is optimal. It is easy to verify that all steps of the proof hold
for an optimal edge deletion set, too. ⊓⊔

Next, we present our fixed-parameter algorithm for Cluster Editing.
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2.1 Cluster Editing

Given an input graph G and a size-c cluster vertex deletion set Y of G, a key
observation used by our algorithm is that clusters in G−Y that are much larger
than Y will not be split by any optimal edge modification set. Recall that an
isolated clique of a cluster graph is called a cluster.

Lemma 2. Let Y denote a size-c cluster vertex deletion set and let K denote a
cluster in G−Y of size at least 3c+1. Then, for every optimal edge modification
set S, the graph G∆ S contains a cluster K ′ with

1. K ⊆ K ′ and
2. K ′ ⊆ K ∪ Y .

Proof. Let K1, . . . , Kℓ (ℓ ≥ 1) denote the clusters in G∆ S with Ki ∩ K 6= ∅.
Let Bi := K ∩ Ki and note that K =

⋃

Bi. Without loss of generality, assume
that B1 has maximum size of all Bi’s. Since NG(K) ⊆ Y and by Lemma 1, |B1| ≥
c + 1. First, we show that K1 \ B1 ⊆ Y . Let X := K1 \ (B1 ∪ Y ) and assume
towards a contradiction that X 6= ∅. Since |B1| ≥ c + 1 one obtains a cluster
graph that is closer to G than G∆ S by making X an isolated clique, which
requires at most |X | · c additional edge deletions, however, allows one to undo
the edge insertions between B1 and X which amount to at least |X | · (c + 1).

Next, we prove that ℓ = 1, directly implying the lemma. Assume towards
a contradiction that ℓ > 1. Since |B1| > c one obtains a cluster graph that
is closer to G than G∆ S by deleting all edges between B2 and K2 \ B2 (at
most |K2 ∩ Y | · |B2| additional edge deletions), inserting all edges between B2

and K1 \ B1 (at most |B2| · |K1 ∩ Y | edge insertions since K1 \ B1 ⊆ Y ), and
undoing the edge deletions between B2 and B1 (at least |B2| · |B1| ). Since
|B2| · |K2 ∩ Y | + |B2| · |K1 ∩ Y | ≤ |B2| · c < |B2| · (c + 1) ≤ |B2| · |B1|, this is a
contradiction to the fact that S is optimal. ⊓⊔

According to Lemma 2, a cluster in G − Y of size at least 3c + 1 will not be
split by any optimal edge modification set and also not “merged” with any other
clusters of G−Y . We refer to these clusters of G−Y as large clusters. The basic
idea to establish fixed-parameter tractability is as follows (see Alg. 1 for an out-
line). Given a cluster vertex deletion set Y , in a first step, we guess the partition
of Y “induced” by the clusters generated by an optimal edge modification set
(Line 5 of Alg. 1). We refer to the sets of such a partition as fixed subclusters in
the following. Then, in a second step, we guess which of these fixed subclusters
will end up in a cluster together with a large cluster (Line 10 of Alg. 1). From
Lemma 2, we know that the large clusters cannot be split, and since the sub-
clusters in Y are fixed, the large clusters end up in a final cluster with at most
one fixed subcluster. Hence, the “mapping” of the large clusters to the respec-
tive fixed subclusters can efficiently be done by computing a maximum weight
matching. To this end, Alg. 1 employs the subroutine SolveLarge (see Line 13).
The remaining instance is solved by the subroutine SolveSmall. This subroutine
uses data reduction to bound the number of small clusters in G−Y by a function
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Function CEbyCVD(G)

Input: A graph G = (V, E)
Output: Size of an optimal solution S for Cluster Editing

Y = SolveCVD (G) ;1

Let A1, . . . , Ap denote the clusters in G − Y of size at most 3d;2

Let B1, . . . , Bq denote the clusters in G − Y of size at least 3d + 1;3

m1 = +∞;4

forall partitions Q1, . . . , Qt of Y (1 ≤ t ≤ |Y |) do5

Add all edges between vertices in Qi, 1 ≤ i ≤ t;6

Delete all edges between Qi and Qj , 1 ≤ i < j ≤ t;7

Let c1 denote the number of these edge modifications;8

m2 = +∞;9

forall subsets I ⊆ {1, . . . , t} do10

Delete all edges between Qi and Aj , i ∈ I and 1 ≤ j ≤ p;11

Let c2 denote the number of these edge deletions;12

cl =SolveLarge ({Qi | i ∈ I}, B1, . . . , Bp) ;13

cs =SolveSmall ({Qi | i ∈ {1, . . . , t} \ I}, A1, . . . , Aq );14

m2 = min(m2, c2 + cl + cs);15

end16

m1 = min(m1, c1 + m2);17

end18

return m1;19

Algorithm 1: An algorithm to find an optimal solution for Cluster Editing.

only depending on c, thus yielding a problem kernel for this subproblem. This
directly implies fixed-parameter tractability.

Next, we focus on the computation of an optimal solution for the subproblem
that has to be solved by SolveLarge. Formally, we have to find a solution to
the following problem Fixed Clique Cluster Editing: Let G = (V, E) be a
graph and let B⊎Q be a two partition of V such that G[B] and G[Q] are cluster
graphs. Furthermore, let B = {B1, . . . , Bq} be the set of clusters in G[B] and
let Q = {Q1, . . . , Qs} be the set of clusters in G[Q]. The task is to find a cluster
graph Gc on V such that the following cluster constraints are fulfilled:

1. each set in B ∪ Q is a subset of a cluster of Gc,
2. for every Bi ∈ B (Qi ∈ Q) the cluster containing Bi (Qi) does not contain

any other set from B (Q) and at most one set from Q (B), and
3. among all such cluster graphs Gc has minimum edit distance to G.

This problem can be formulated as a bipartite maximum weight matching
problem and, hence, can be solved in polynomial time.

Lemma 3. Fixed Clique Cluster Editing can be solved in polynomial time.

Next, we focus on the problem that has to be solved by SolveSmall, where
all remaining clusters in G − Y have size at most 3c.

Lemma 4. Let Y denote a cluster vertex deletion set for G of size c. If all
clusters in G − Y have size at most 3c, then CE is fixed-parameter tractable.
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Proof. The basic idea to show fixed-parameter tractability is as follows. We
group the clusters of G−Y into different “types”, where two clusters Qi and Qj

of G−Y have the same type if there is a graph-isomorphism φ between G[Y ∪Qi]
and G[Y ∪ Qj ] such that ∀v ∈ Y : φ(v) = v. We show that the number of types

of the clusters in G−Y is bounded by 2O(c2) and that if there is a type of which
there are more than O(c2) clusters, then one of these clusters will be a cluster
in the final cluster graph. Hence, we can delete all edges outgoing from this
cluster and remove it from G. Afterwards, since each cluster contains at most 3c
vertices the total number of vertices is bounded by a function only depending
on c, directly implying fixed-parameter tractability.

To bound the number of cluster types, we first classify the vertices in V \ Y
in 2c types; two vertices in u, w ∈ V \ Y have the same type if NG(u) ∩ Y =
NG(w) ∩ Y . Then, a cluster K can be described by a vector of length 2c with
at most 3c non-zero entries, where the ith entry contains the number of type-i
vertices in K (note that the sum of entries does not exceed 3c). Further, two
clusters have the same type if these corresponding vectors are identical. Finally,
observe that there are at most

∑3c

i=1

(

3c·2c

i

)

≤ 3c · (3c · 2c)3c = 2O(c2) cluster
types.

We now show that for each cluster type we can delete all but c2 clusters. First,
note that there are at most c clusters in a closest cluster graph that contain
vertices from Y . Second, we can assume that each cluster of a closest cluster
graph intersecting with Y contains vertices from at most c clusters of G − Y ; it
is straightforward to verify that otherwise separating the vertices of one cluster
results in a cluster graph with the same or smaller edit distance to G. As a
consequence, each of the at most c clusters intersecting with Y can contain
vertices from at most c clusters of each type. Finally, note that if there is a
cluster K of G − Y such that in a closest cluster graph no vertex of K is in
a cluster intersecting with Y , then K is a cluster of this closest cluster graph.
Hence, if there are c2 + i, 1 ≤ i, clusters of the same type in G − Y , then at
least i of these clusters are clusters in a closest cluster graph, and, hence, can be
deleted (together with the edges between these clusters and Y ). After deleting

these clusters there are at most 2O(c2)c2 + c = 2O(c2) vertices in G. ⊓⊔

Using these two results on the running times of SolveLarge and SolveSmall,
we can show the fixed-parameter tractability with respect to c.

Theorem 1. Cluster Editing is fixed-parameter tractable with respect to
the cluster vertex deletion number c of G.

Proof. We use Alg. 1 to compute an optimal solution for CE. First, we show
that Alg. 1 is correct. To this end, let G′ denote a cluster graph with closest edit
distance to G. Since Alg. 1 enumerates all partitions of Y , the sets Q1, . . . , Qt

(Line 5) once one-to-one correspond to the clusters in G′[Y ]. By Lemma 2, all
clusters of size at least 3c + 1 (“large cluster”) in G − Y either form a cluster
in G′ or are contained in a cluster of G′ together with vertices from Y . Since
the algorithm has already guessed the partition of Y , every such large cluster
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is contained in a cluster of G′ with the vertices of at most one Qi. By trying
all two-partitions of {1, . . . , t}, Alg. 1 guesses the Qi’s that are clusters in G′

or that are contained in a cluster together with one large cluster. Note that
the corresponding subproblem exactly corresponds to Fixed Clique Cluster

Editing since each clique Qi is in a cluster with at most one large cluster Bj

and vice versa. The remaining clusters in G−Y all have size at most 3c. Hence,
by Lemma 4 the remaining instance can be solved in fpt-time.

For the running time note that there are O(cc) partitions of Y . For each such
partition we try all two-partitions. Hence, Alg. 1 enters the body of the inner
for loop O(2c log(c)+c) times. Since by Lemma 3 the subroutine SolveLarge can
be applied in polynomial time and since subroutine SolveSmall runs in fpt-
time (by Lemma 4), Alg. 1 runs in fpt-time. A naive estimation gives a bound

of 22O(c2)

for the combinatorial explosion in the running time. ⊓⊔

2.2 Cluster Deletion

For Cluster Deletion parameterized by the cluster vertex deletion number,
we can achieve an algorithm with a better running time than the algorithm
for Cluster Editing (that in the subprocedure SolveSmall basically resorts
to brute-force). The main feature of Cluster Deletion that helps in achieving
this better algorithm is that none of the clusters in G−Y , where Y is the cluster
vertex deletion set, can be merged since only edge deletions are allowed.

Theorem 2. Cluster Deletion can be solved in c7c|V | ·poly(n) time, where c
is the cluster vertex deletion number of G.

3 Maximum Degree

We show that Cluster Editing is NP-hard even when restricted to graphs with
maximum degree six. To the best of our knowledge all previous NP-hardness
proofs require an unbounded degree. As an immediate consequence, Cluster

Editing is NP-hard even if each vertex is only incident to a constant number
of modified edges.

For the NP-hardness proof we present a reduction from 3-SAT. The basic idea
of the construction is as follows. For each variable xi of a given 3-CNF formula
we construct a so-called variable cycle of length 4m. It is easy to verify that only
deleting every second edge gives an optimal solution for an even-length cycle.
Thus, the two corresponding possibilities are used to represent the two choices
for the value of xi. Moreover, for each clause Cj containing the variables xp, xq,
and xr, we connect the three corresponding variable cycles by a clause gadget.
In doing so, the goal is to ensure that if the solutions for the variable gadgets
correspond to an assignment that satisfies Cj , then all P3s of the clause gadget
can be destroyed by four edge modifications and otherwise by at least five edge
modifications. This guarantees that there is a satisfying assignment for the 3-
CNF formula if and only if the constructed graph can be transformed into a
cluster graph by exactly 2mn + 4m edge modifications. The details follow.



Proc. SOFSEM 2011

aj
q4j+1

q4j+2

p4j p4j+1

r4j

r4j+1

Fig. 1. Illustration of the clause gadget for a clause Cj = (xp ∨ xq ∨ xr).

Given a 3-CNF formula φ consisting of the clauses C0, . . . , Cm−1 over the
variables {x0, . . . , xn−1}, construct a CE-instance consisting of a graph G =
(V, E) and an integer k as follows.

For each variable xi, 0 ≤ i < n, G contains a variable cycle consisting
of the vertices V v

i := {i0, . . . , i4m−1} and the edges Ev
i := {{ik, ik+1} | 0 ≤

k < m} (for ease of presentation let i4m = i0). So far, the constructed graph
consists of a disjoint union of cycles, each of length 4m. We use the following
notation. The edges {i0, i1}, {i2, i3}, . . . , {i4m−2, i4m−1} of the variable cycle of xi

are called even and all others are called odd.
Moreover, for each clause Cj containing the variables xp, xq , and xr (either

negated or non-negated), we construct a clause gadget connecting the variable
gadgets of xp, xq, and xr. More specifically, let aj be a new vertex and let Ec

j

contain for each i ∈ {p, q, r} the edges {aj , i4j} and {aj, i4j+1} if xi occurs non-
negated in Cj or the edges {aj , i4j+1} and {aj , i4j+2}, otherwise. See Fig. 3 for

an illustration. Finally, let V :=
⋃n−1

i=0 V v
i ∪

⋃m−1
j=0 {aj} and E :=

⋃n−1
i=0 Ev

i ∪
⋃m−1

j=0 Ec
j . This completes the construction of G = (V, E).

Theorem 3. Cluster Editing and Cluster Deletion are NP-complete
even when restricted to graphs with maximum vertex degree six.

4 Number of Clusters and Maximum Number of Edge

Modifications per Vertex

We show that a constrained version of Cluster Editing is fixed-parameter
tractable with respect to the combined parameter “number d of clusters in the
target graph” and “maximum number t of modifications per vertex”. The prob-
lem under consideration is a generalization of Cluster Editing:

(d, t)-Constrained-Cluster Editing ((d, t)-CCE)
Input: An undirected graph G = (V, E), a function τ : V → {0, . . . , t},
and nonnegative integers d and k.
Question: Can G be transformed into a cluster graph G′ by applying
at most k edge modifications such that G′ has at most d clusters and
each vertex v ∈ V is incident to at most τ(v) modified edges?
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We use τ during our algorithm to keep track of the number of modifications that
each vertex has been incident to. We can initially set τ(v) := t for each v ∈ V and
model directly the constraints described above. If only edge deletions are allowed,
the corresponding problem is called (d, t)-Constrained-Cluster Deletion.
Clearly, CE is exactly (n, n)-CCE. We investigate the parameterized complexity
of (d, t)-CCE with respect to the combined parameter (d, t). Before presenting
an algorithm for this problem, we discuss several aspects of both the problem
formulation and parameterization.

Concerning the problem formulation, in many application scenarios a reason-
able upper bound for the number of clusters d is given in advance. Furthermore,
constraining the maximum number t of modifications per vertex yields another
measure of closeness of the cluster graph to the input graph. In comparison to
Cluster Editing, (d, t)-Constrained-Cluster Editing allows to further
constrain the solution by adjusting the values of d and t. In certain application
scenarios this may help to obtain more reasonable clusterings.

Concerning the parameterization, we consider the combined parameter (d, t)
since Cluster Editing is NP-hard for t = 6 (which follows from Theorem 3).
Moreover, when comparing the parameterizations k and (d, t) one can observe
that for some instances, k is not bounded by a function in d and t. Consider
for example a graph G = (V, E) that consists of two cliques K1 and K2, each
of order |V |/2. Furthermore, let each v ∈ K1 have exactly one neighbor in K2

and vice versa. An optimal solution for this graph is to delete all |V |/2 edges
between K1 and K2. Hence, the parameter k is very large for this instance,
whereas d = 2 and t = 1. In general, we can always assume t ≤ k. The general
relation between d and k is a bit more tricky. For example, in case G is connected,
we can assume d ≤ k+1 since we can create at most k+1 connected components
by applying k edge modifications to G. Furthermore, in case G does not contain
isolated cliques, we can assume d ≤ 2k, since to each clique in the final cluster
graph at least one edge modification is incident. In summary, the parameters d
and t can be arbitrarily small compared to k and are bounded from above by a
linear function of k when G does not contain isolated cliques.

We now show that (d, t)-Constrained-Cluster Editing is fixed-parameter
tractable with respect to (d, t). More precisely, we present four data reduction
rules for (d, t)-Constrained-Cluster Editing that produce a kernel consist-
ing of at most 4dt vertices. The first two rules identify edge modifications that
have to be performed by every solution, since otherwise there would be vertices
to which more than t edge modifications are incident.

Reduction Rule 1 If G contains two adjacent vertices u, v ∈ V such that |N(u)\
N [v]| > 2t, then remove {u, v} from E and set τ(v) := τ(v)−1, τ(u) := τ(u)−1,
and k := k − 1.

Reduction Rule 2 If G contains two non-adjacent vertices u, v ∈ V such
that |N(u) ∩ N(v)| > 2t, then add {u, v} to E and set τ(v) := τ(v) − 1,
τ(u) := τ(u) − 1, k := k − 1.
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Lemma 5. Rules 1 and 2 are correct and can be exhaustively performed in O(n3)
time.

Proof. Let (G = (V, E), d, t, k) be an input instance of (d, t)-Constrained-

Cluster Editing. We show the correctness of each rule and then bound the
running time of exhaustively applying both rules.

Let u and v be as described in Rule 1. We show that every solution deletes the
edge {u, v}. Suppose that there is some solution S that does not delete {u, v},
let G′ := G∆S be the resulting cluster graph, and let K be the cluster of G′

such that u, v ∈ K. Clearly, |K ∩N(u) \N [v]| ≤ t since at most t inserted edges
are incident to v. Then, however, more than t deleted edges are incident to u.
This contradicts that S is a solution.

Let u and v be as described in Rule 2. We show that every solution adds
the edge {u, v}. Suppose that there is some solution S that does not add {u, v},
let G′ := G∆S be the resulting cluster graph, and let K be the cluster of G′

such that u ∈ K and v 6∈ K. Since at most t deleted edges are incident to u,
we have |N(u) ∩ N(v) ∩ K| > t. Then, however more than t deleted edges are
incident to v. This contradicts that S is a solution.

To achieve a running time of O(n3) we proceed as follows. First, we initialize
for each pair of vertices u, v ∈ V three counters, one counter that counts |N(u)∩
N(v)|, one counter that counts |N(u)\N [v]|, and one counter that counts |N(v)\
N [u]|. For each such pair, this is doable in O(n) time when an adjacency ma-
trix has been constructed in advance. Hence, the overall time for initializing
the counters for all possible vertex pairs is O(n3). All counters that warrant
an application of either Rule 1 or Rule 2 are stored in a list. We call these
counters active. Next, we apply the reduction rules. Overall, since k ≤ n2 the
rules can be applied at most n2 times. As long as the list of active counters is
non-empty, we perform the appropriate rule for the first active counter of the
list. It remains to update all counters according to the edge modification applied
by the rule. Suppose Rule 2 applies to u and v, that is {u, v} is added. Then,
we have to update the counters for each pair containing v or u. For v, this can
be done in O(n) time, by checking for each w 6= v, whether u must be added
to N(v) ∩ N(w) or added to N(v) \ N [w] or removed from N(w) \ N [v] (for
each counter this can be done in O(1) time by using the constructed adjacency
matrix). For each updated counter, we also check in O(1) time whether it needs
to be added to/removed from the list of active counters. The case that Rule 1
applies to u and v can be shown analogously. Overall, we need O(n3) time initial-
ize the counters and O(n3) time for the exhaustive application of the rules. ⊓⊔

The following reduction rule simply checks whether the instance contains vertices
to which already more than t modifications have been applied. Clearly, in this
case the instance is a “no”-instance.

Reduction Rule 3 If there is a vertex v ∈ V with τ(v) < 0, then output “no”.

The final rule identifies isolated cliques whose removal does not destroy solutions
of (d, t)-Constrained-Cluster Editing.
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Reduction Rule 4 If there is an isolated clique K in G such that |K| > 2t,
then remove K from G and set d := d − 1.

Lemma 6. Rule 4 is correct and can be exhaustively performed in O(m) time.

We now show that the reduction rules above yield a problem kernel.

Theorem 4. (d, t)-Constrained-Cluster Editing admits a 4dt-vertex prob-
lem kernel which can be found in O(n3) time.

Proof. We first show the kernel size and then bound the running time of the
kernelization.

Let (G = (V, E), d, t, k) be an input instance of (d, t)-Constrained-Cluster

Editing and let G be reduced with respect to Rules 1–4. We show the following:

(G, d, t, k) is a yes-instance ⇒ G has at most 4dt vertices.

Let S be a solution of the input instance and let G′ be the cluster graph that
results from applying S to G. We show that every cluster Ki of G′ has size at
most 4t. Assume towards a contradiction that there is some Ki in G′ with |Ki| >
4t. Since G is reduced with respect to Rule 4, there must be either an edge {u, v}
in G such that u ∈ Ki and v ∈ V \ Ki or a pair of vertices u, v ∈ Ki such
that {u, v} is not an edge in G.
Case 1: u ∈ Ki, v ∈ V \Ki and {u, v} ∈ E. Since at most t− 1 edge additions
are incident to u, it has in G at least 3t + 1 neighbors in Ki. Furthermore, since
at most t edge deletions are incident to v, it has in G at most t neighbors in Ki.
Hence, there are at least 2t + 1 vertices in Ki that are neighbors of u but not
neighbors of v. Therefore, Rule 1 applies in G, a contradiction to the fact that G
is reduced with respect to this rule.
Case 2: u, v ∈ Ki and {u, v} 6∈ E. Both u and v are in G adjacent to at
least |Ki| − (t− 1) vertices of Ki \ {u, v}. Since |Ki| > 4t they thus have in G at
least 2t + 1 common neighbors. Therefore, Rule 2 applies in G, a contradiction
to the fact that G is reduced with respect to this rule.

We have shown that |Ki| ≤ 4t for each cluster Ki of G′. Since G′ has at
most d clusters, the overall bound on the number of vertices follows.

It remains to bound the running time of exhaustively applying Rules 1–4. By
Lemma 5, the exhaustive application of Rules 1 and 2 runs in O(n3) time. After
these two rules have been exhaustively applied, Rules3 and 4 can be exhaustively
applied in O(m) time. ⊓⊔

Corollary 1. (d, t)-Constrained-Cluster Editing is fixed-parameter trac-
table with respect to the parameter (d, t).

The data reduction rules can be adapted to the case that only edge deletions
are allowed. Indeed, we can show a 2dt-vertex kernel for (d, t)-Constrained-

Cluster Deletion by just replacing 2t by t in Rules 1 and 4 (no further data
reduction rule is needed). Then, with a slightly modified analysis, we arrive at
the following (details omitted).
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Theorem 5. (d, t)-Constrained-Cluster Deletion admits a 2dt-vertex ker-
nel which can be found in O(n3) time. It is thus fixed-parameter tractable with
respect to the parameter (d, t).
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[13] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217, 2010.
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